Hardware Watchdog Timers Design Specification - 2

Hardware Watchdog Timers Design Specification

Requirements for Hardware Watchdog Timers Supported by Microsoft® Windows Vista® and Microsoft Windows Server® 2008 Operating Systems

© 2006 Microsoft Corporation. All rights reserved. Information in these materials is restricted to Microsoft authorized recipients only. Any use, distribution or public discussion of, and any feedback to, these materials is subject to the terms of the Microsoft end user license agreement for these materials, a copy of which is attached. By providing any feedback on these materials to Microsoft, you agree to the terms of that license. If the license agreement has been removed, contact wdtinfo@microsoft.com before using these materials.

Contents

3Introduction

3Definitions

3Conventions

4Goals, Typical Uses, and Assumptions

4Goals

4Typical Uses

4Assumptions

5Architectural Description

5Watchdog Timer Requirements

6Microsoft Hardware Watchdog Action Table

Microsoft Corporation Technical Documentation License Agreement
READ THIS! THIS IS A LEGAL AGREEMENT BETWEEN MICROSOFT CORPORATION ("MICROSOFT") AND THE RECIPIENT OF THESE MATERIALS, WHETHER AN INDIVIDUAL OR AN ENTITY ("YOU"). IF YOU HAVE ACCESSED THIS AGREEMENT IN THE PROCESS OF DOWNLOADING MATERIALS ("MATERIALS") FROM A MICROSOFT WEB SITE, BY CLICKING "I ACCEPT", DOWNLOADING, USING OR PROVIDING FEEDBACK ON THE MATERIALS, YOU AGREE TO THESE TERMS. IF THIS AGREEMENT IS ATTACHED TO THE MATERIALS, BY ACCESSING, USING OR PROVIDING FEEDBACK ON THE ATTACHED MATERIALS, YOU AGREE TO THESE TERMS.

For good and valuable consideration, the receipt and sufficiency of which are acknowledged, You and Microsoft agree as follows:

1. You may review these Materials only as a reference to provide feedback on these Materials to Microsoft. All other rights are retained by Microsoft; this agreement does not give You rights under any Microsoft patents. You may not (i) duplicate any part of these Materials, (ii) remove this agreement or any notices from these Materials, or (iii) give any part of these Materials, or assign or otherwise provide Your rights under this agreement, to anyone else.

2. These Materials may contain preliminary information or inaccuracies, and may not correctly represent any associated Microsoft Product as commercially released. All Materials are provided entirely "AS IS." To the extent permitted by law, MICROSOFT MAKES NO WARRANTY OF ANY KIND, DISCLAIMS ALL EXPRESS, IMPLIED AND STATUTORY WARRANTIES, AND ASSUMES NO LIABILITY TO YOU FOR ANY DAMAGES OF ANY TYPE IN CONNECTION WITH THESE MATERIALS OR ANY INTELLECTUAL PROPERTY IN THEM.

3. If You are an entity and (a) merge into another entity or (b) a controlling ownership interest in You changes, Your right to use these Materials automatically terminates and You must destroy them.

4. You have no obligation to give Microsoft any suggestions, comments or other feedback ("Feedback") relating to these Materials. However, any Feedback you voluntarily provide may be used in Microsoft Products and related specifications or other documentation (collectively, "Microsoft Offerings") which in turn may be relied upon by other third parties to develop their own products, services and technologies. Accordingly, if You do give Microsoft Feedback on any version of these Materials or the Microsoft Offerings to which they apply, You agree: (a) Microsoft may freely use, reproduce, license, distribute, and otherwise commercialize Your Feedback in any Microsoft Offering; (b) You also grant third parties, without charge, only those patent rights necessary to enable other Products to use or interface with any specific parts of a Microsoft Product that incorporate Your Feedback; and (c) You will not give Microsoft any Feedback (i) that You have reason to believe is subject to any patent, copyright or other intellectual property claim or right of any third party; or (ii) subject to license terms which seek to require any Microsoft Offering incorporating or derived from such Feedback, or other Microsoft intellectual property, to be licensed to or otherwise shared with any third party.

5. Microsoft has no obligation to maintain confidentiality of any Microsoft Offering. However, Microsoft will use commercially reasonable efforts to not disclose Your identity as the source of such Feedback for a period of five years.

6. This agreement is governed by the laws of the State of Washington. Any dispute involving it must be brought in the federal or state superior courts located in King County, Washington, and You waive any defenses allowing the dispute to be litigated elsewhere. If there is litigation, the losing party must pay the other party’s reasonable attorneys’ fees, costs and other expenses. If any part of this agreement is unenforceable, it will be considered modified to the extent necessary to make it enforceable, and the remainder shall continue in effect. This agreement is the entire agreement between You and Microsoft concerning these Materials; it may be changed only by a written document signed by both You and Microsoft.

Introduction

This specification is for engineers who are designing watchdog timer (WDT) hardware that will operate with the Microsoft® Windows® hardware watchdog timer driver (hardware WDT driver) supplied by Microsoft Windows Vista® and Microsoft Windows Server® 2008.
The hardware WDT driver provides basic watchdog support to a hardware timer exposed by the Microsoft hardware watchdog timer resource table (WDAT). The WDAT is a fixed resource table, defined by the Advanced Configuration and Power Interface (ACPI) Specification, Version 2.0. This specification defines an interface that describes the hardware and its usage. The hardware is described at the time of transition from the BIOS to the operating system.

This specification does not describe the use of a WDT before BIOS/operating system handoff.

Definitions

The hardware WDT driver is a built-in Windows driver used to perform basic watchdog functionality. A WDT is a piece of hardware that takes certain actions when a timer expires. The action could be as simple as restarting the system or as complex as running a system diagnostic test. A WDT is said to have fired if it has not been reset within a programmable period. It is the role of the hardware WDT driver to configure the hardware WDT and to reset the timer before it expires. The process of resetting the timer is often referred to as pinging the hardware.

The hardware WDT driver is designed to recover the system from a hard hang. A hard hang is defined as a hang where no code is being executed by the processor. Soft hangs are code bugs in an application or the operating system that prevent the system from making forward progress. Recovery from a soft hang can be achieved with well-designed code that monitors and enforces progress at all execution levels of the operating system. The Windows software WDT detects and recovers from system soft hangs. In the absence of the Windows software WDT, the hardware WDT also recovers from soft hangs that appear to be hard hangs.

In this specification, features are described as required or recommended as follows:

Required: These features must be implemented by the hardware to comply with this specification.

Recommended: These features add functionality supported by the Microsoft WDT driver but are not required to comply with this specification.

Conventions

In this specification, hexadecimal numbers are either prefaced by 0x or followed by the letter h. Binary numbers are followed by the letter b. All other numbers refer to decimal numbers.

Any fields marked reserved must be initialized to zero.

A range of bits in a register are referred by [a:b], where a is the high-order bit and b is the low-order bit of the range. Bit 0 refers to the lowest-order bit of a register. Using this notation, [7:0] refers to the lowest 8 bits of a register.

Goals, Typical Uses, and Assumptions

This section describes the goals that the hardware WDT specification was designed to meet, the typical uses for a WDT, and assumptions about when and how it is used.

Goals

This specification was designed to satisfy the following goals:

Minimize down time that is due to system hangs – The use of a WDT allows some action to automatically take place if a system hang (hardware or software) occurs. This feature minimizes down time and maximizes productivity.

Provide end-to-end watchdog solution – Provide a solution that covers the entire lifetime of the operating system, including boot and shutdown time.

Extensible – The hardware WDT driver and the WDAT must be extensible, enabling additional features in future hardware.

Portable – The hardware WDT driver must be able to use any register-based watchdog implementation that satisfies our requirements.

Simple – The hardware WDT driver is meant to be a simple solution, providing generic watchdog support for a wide range of hardware WDT implementations.

Minimize false positives – In providing a recovery solution for system hangs, the WDT must not decrease system stability.

The built-in WDT driver provides basic watchdog support for many hardware watchdog implementations. It is not intended to replace existing watchdog drivers, which may support additional features and functionality but merely to provide a default solution for existing hardware.

Typical Uses

The hardware WDT driver is designed for use on systems that are located away from a user or that must do work when the user is not present. This includes, but is not limited to, servers and Media Center systems. The hardware WDT driver also runs on desktop machines where a user is present, but it will provide minimal value in these cases because the user can often initiate recover actions more quickly.

Assumptions

The cause of a hang does not re-occur with each boot. Such a hang would result in infinite reboots. A solution to this problem is beyond the scope of the Windows WDT feature.

A software watchdog timer can catch soft hangs and initiate hang diagnostics on the system. This specification describes the hardware WDT, but the software WDT is beyond the scope of this specification. If a software WDT is not running, the WDT driver treats soft hangs like hard hangs.

Architectural Description

Watchdog Timer Requirements

Given the goals outlined above, certain requirements that apply to the WDT hardware are apparent.

For a clear end-to-end solution, the WDT must be configurable in the boot environment. The system must be able to describe the WDT hardware to the operating system’s boot loader and allow the boot loader to initialize, start, and ping the WDT hardware.

Commonly, device information is provided to the boot loader by using a fixed resource ACPI table. Therefore, a valid WDAT (as described below) must be available in the ACPI namespace.

The hardware may also need to be configured early during kernel initialization before device enumeration. Therefore, the WDT hardware cannot use system resources. This limitation includes interrupt service routines (ISRs).

To adhere to the simplicity model desired in the timer, the watchdog hardware must be register-based.

To prevent the WDT from firing and taking actions when the system is operational, the hardware WDT driver runs at dispatch level. It cannot run at passive level because doing so is too nondeterministic, particularly under heavy stress loads. As a result, system control methods, such as ACPI control methods, cannot be used.

The following is a complete list of the requirements for the hardware watchdog timer:

· Firmware must provide the Microsoft Hardware Watchdog Timer Action Table (as detailed later in this document).

· Watchdog hardware must not use system resources.

· Watchdog hardware must be register-based.

· The WDT hardware must provide a programmable timer. The clock interval that the WDT uses must be greater than or equal to 1 millisecond. This granularity is referred to as the WDT’s count interval. The time-out period before the WDT fires is recommended to be at least 5 minutes and is required to be less than 4,294,967,296 count intervals.

· The WDT hardware’s countdown value is required to be configured through a WDT hardware register.

· The WDT hardware is required to provide a way to reset the WDT’s countdown through a watchdog hardware register.

· The WDT hardware is required to support two main operating states, disabled and enabled. In the disabled stated, the hardware must not count down and the operating system cannot start the hardware to do so. In the enabled state, the hardware must support two sub-states, running and stopped.

In the enabled\stopped state, the timer must not count down.

In the enabled\running state, the timer must count down and fire if it is not reset in the programmed period.

· A mechanism must be provided to transition between enabled and disabled states. The transition mechanism is required to be independent of the operating system, such as a jumper setting or a BIOS configuration setting.

· An optional mechanism should be provided to set the initial enabled\running or enabled\stopped state. The mechanism is required to be independent of the operating system, such as a jumper setting or a BIOS configuration setting. The default setting is required to be enabled\stopped. If the initial setting is enabled\running, the BIOS is required to reset the WDT count immediately before executing the operating system’s boot code. In addition, if the initial setting is enabled\running, the initial countdown period is required to be at least 5 minutes long. If this mechanism is not provided and the WDT is enabled this setting must be set to enabled\stopped.
· The WDT hardware enabled\running and enabled\stopped states must be configurable through a WDT hardware register.

· The WDT hardware is required to support a reboot of the system if the WDT fires. It is recommended that this action be configured through a watchdog hardware register. A reboot of the system is defined as a system reset. It is recommended that the reboot reset all buses in the system.

· The WDT hardware is required to provide status through a WDT hardware register indicating whether the current boot is a result of the WDT firing.

The WDT hardware should not be a PCI device. For legacy purposes, PCI WDT devices are supported. However, if the watchdog hardware is a PCI device, it is required to be on bus 0 to ensure that it is affected only by system power state changes and not by device power state changes.

Microsoft Hardware Watchdog Action Table

A system that uses the Microsoft Windows hardware watchdog timer driver (hardware WDT driver) requires the firmware to provide the hardware WDAT, which is a fixed resource table, as defined in the ACPI Specification, Version 2.0. The table describes the watchdog hardware generically.

The table is broken into three sections for clarity, but the table is required to be contiguous in memory. The three sections are the ACPI Standard Header, Watchdog Header, and the Watchdog Action table.

The Watchdog Header describes global information about the watchdog hardware and the structure of the table. The Watchdog Action table is a series of entries that describe how to interact with the hardware to perform common actions.

Watchdog Action Table (WDAT)

	Field
	Byte Length
	Byte Offset
	Description

	ACPI Standard Header
	
	
	

	Header Signature
	4
	0x0
	WDAT. Signature for the Watchdog Action Table.

	Length
	4
	0x4
	Length, in bytes, of entire WDAT. Entire table must be contiguous.

	Revision
	1
	0x8
	1

	Checksum
	1
	0x9
	Entire table must sum to zero.

	OEMID
	6
	0xA
	OEM ID

	OEM Table ID
	8
	0x10
	The manufacturer model ID.

	OEM Revision
	4
	0x18
	OEM revision of the WDAT for the supplied OEM table ID.

	Creator ID
	4
	0x1C
	Vendor ID of the utility that created the table.

	Creator Revision
	4
	0x20
	Revision of the utility that created the table.

	Watchdog Header
	
	
	

	Watchdog Header Length
	4
	0x24
	Length of watchdog header

	PCI Segment
	2
	0x28
	PCI segment number. For systems that don’t support PCI segments, this number must be 0xFF.

	PCI Bus Number
	1
	0x2A
	PCI bus number if table describes a PCI device. Must be 0xFF if it is not a PCI device.

	PCI Device Number
	1
	0x2B
	PCI device number if table describes a PCI device. Must be 0xFF if it is not a PCI device.

	PCI Function Number
	1
	0x2C
	PCI function number if table describes a PCI device. Must be 0xFF if it is not a PCI device.

	Reserved
	3
	0x2D
	

	Timer Period
	4
	0x30
	Contains the period of one timer count (in milliseconds).

	Maximum Count
	4
	0x34
	Contains the maximum counter value that this watchdog implementation supports (in count intervals).

	Minimum Count
	4
	0x38
	Contains the minimum counter value that this watchdog implementation supports (in count intervals).

	Watchdog Flags
	1
	0x3C
	See the Watchdog Flag Definition. Each flag that is true for the watchdog hardware should have the appropriate flag set in watchdog flags. All other bits should be zero.

	Reserved
	3
	0x3D
	

	Number watchdog instruction entries
	4
	0x40
	Contains the number of watchdog instruction entries in the table.

	Action table
	
	
	

	 Watchdog instruction entries
	
	0x44
	A series of watchdog instruction entries.

Watchdog Flag Definition

//

// Indicates whether the watchdog hardware is in an enabled state when

// the BIOS transfers control to

// the operating system boot code. If set, the watchdog hardware could

// be enabled\running or

// enabled\stopped. If not set, the watchdog hardware is disabled and

// can not be enabled by the OS.

//

#define WATCHDOG_ENABLED 0x1

//

// Indicates whether the watchdog hardware countdown is stopped in sleep

// states S1 through S5.

// If the watchdog countdown is not stopped in all sleep states S1

// through S5, this flag must not be

// set. The WATCHDOG_STOPPED_IN_SLEEP_STATE flag can be used by the Microsoft

// Hardware Watchdog Timer driver when going into a sleep state to

// decide whether the watchdog

// timer should be stopped.

//

#define WATCHDOG_STOPPED_IN_SLEEP_STATE 0x80

Action Table

A watchdog action is defined as a series of watchdog instructions on registers that result in a well known action. Examples of watchdog actions include setting the watchdog countdown period or querying the watchdog hardware to see if it is in the enabled\running state. A watchdog instruction is a watchdog action primitive and consists of either reading or writing a register. The watchdog action table contains watchdog instruction entries for all of the watchdog actions that the watchdog hardware supports.

In most cases a watchdog action only requires one watchdog instruction, but it is conceivable that a more complex device will require more than one watchdog instruction to complete a watchdog action. When a watchdog action comprises more than one watchdog instruction, the watchdog instructions must be listed consecutively and will be performed sequentially, according to their placement in the watchdog action table. When the Microsoft Hardware Watchdog Timer driver reads the table, each watchdog action can be internalized as a linked list of watchdog instructions. A watchdog action is complete when all watchdog instructions in the list have successfully been performed. If more than one Watchdog Instruction in a given Watchdog Action is a WATCHDOG_INSTRUCTION_READ_COUNTDOWN instruction then they will all be executed, but only the return value from the last one will be returned.

Defined Watchdog Actions

Not all of the watchdog actions defined in this section are required to comply to with this specification. The required actions are labeled as such, all others are optional.

//

// Restarts the watchdog timer’s countdown.

// This action is required.

//

#define WATCHDOG_ACTION_RESET 0x1

//

// Returns the current countdown value of the watchdog hardware (in count intervals).

//

#define WATCHDOG_ACTION_QUERY_CURRENT_COUNTDOWN_PERIOD 0x4

//

// Returns the countdown value the watchdog hardware

// is configured to use when reset

// (in count intervals).

//

#define WATCHDOG_ACTION_QUERY_COUNTDOWN_PERIOD 0x5

//

// Sets the countdown value (in count intervals)

// to be used when the watchdog timer is reset.

// This action is required if WATCHDOG_ACTION_RESET does not explicitly

// write a new countdown value to a register during a reset.

// Otherwise, this action is optional.

//

#define WATCHDOG_ACTION_SET_COUNTDOWN_PERIOD 0x6

//

// Determines if the watchdog hardware is currently in enabled\running

// state. The same result must occur when performed from both

// from enabled\stopped state and enabled\running state.

// If the watchdog hardware is disabled, results are indeterminate.

// This action is required.

//

#define WATCHDOG_ACTION_QUERY_RUNNING_STATE 0x8

//

// Starts the watchdog, if not already in running state.

// If the watchdog hardware is disabled, results are indeterminate.

// This action is required.

//

#define WATCHDOG_ACTION_SET_RUNNING_STATE 0x9

//

// Determines if the watchdog hardware is currently in enabled\stopped

// state. The sameresult must occur when performed from both the

// enabled\stopped state and enabled\running state.

// If the watchdog hardware is disabled, results are indeterminate.

// This action is required.

//

#define WATCHDOG_ACTION_QUERY_STOPPED_STATE 0xA

//

// Stops the watchdog, if not already in stopped state.

// If the watchdog hardware is disabled, results are indeterminate.

// This action is required.

//

#define WATCHDOG_ACTION_SET_STOPPED_STATE 0xB

//

// Determines if the watchdog hardware is configured

// to perform a reboot when the watchdog is fired.

//

#define WATCHDOG_ACTION_QUERY_ REBOOT 0x10

//

// Configures the watchdog hardware to perform a reboot

// when it is fired.

//

#define WATCHDOG_ACTION_SET_REBOOT 0x11

//

// Determines if the watchdog hardware is configured to perform

// a system shutdown when fired.

//

#define WATCHDOG_ACTION_QUERY_SHUTDOWN 0x12

//

// Configures the watchdog hardware to perform a system shutdown

// when fired.

//

#define WATCHDOG_ACTION_SET_SHUTDOWN 0x13

//

// Determines if the current boot was caused by the watchdog firing.

// The boot status is required to be set if the watchdog fired

// and caused a reboot.

// It is recommended that the Watchdog Status be set if the watchdog

// fired and causeda shutdown.

// This action is required.

//

#define WATCHDOG_ACTION_QUERY_WATCHDOG_STATUS 0x20

//

// Sets the watchdog’s boot status to the default value.

// This action is required.

//

#define WATCHDOG_ACTION_SET_WATCHDOG_STATUS 0x21

Watchdog Instruction Entries

A watchdog action consists of a series of watchdog instructions. A watchdog instruction is the operation on a register region as defined in a watchdog instruction entry.

A watchdog instruction entry describes a region in a watchdog hardware register and the watchdog instruction to be performed on the region. A watchdog instruction entry is only included in the watchdog action table if the corresponding watchdog action is supported by the watchdog hardware.

Watchdog Instruction Entries

	Field
	Byte Length
	Byte Offset
	Description

	Watchdog Action
	1
	N
	The watchdog action that this watchdog instruction is a part of.

	Instruction Flags
	1
	N+0x1
	See the Instruction Flags section.

	Reserved
	2
	N+0x2
	

	Register Region
	12
	N+0x4
	Generic address structure as defined in section 5.2.3.1 of the ACPI Specification to describe the address and bit.

	Value
	4
	N+0x10
	The value corresponding to the given watchdog instruction.

	Mask
	4
	N+0x14
	The bit mask required to obtain the bits corresponding to the watchdog instruction in a given bit range defined by register region.

Instruction Flags:

#define WATCHDOG_INSTRUCTION_READ_VALUE 0x0

#define WATCHDOG_INSTRUCTION_READ_COUNTDOWN 0x1

#define WATCHDOG_INSTRUCTION_WRITE_VALUE 0x2

#define WATCHDOG_INSTRUCTION_WRITE_COUNTDOWN 0x3

#define WATCHDOG_INSTRUCTION_PRESERVE_REGISTER 0x80

Field Descriptions:

Register Region is described as a generic address structure. This structure describes the physical address and size of a register as well as the bit range within that register that corresponds to a desired region of the register. The bit range is defined as the smallest set of consecutive bits that contains every bit in the register that is associated with the watchdog instruction. If bits [6:5] and bits [3:2] all correspond to a watchdog instruction, the bit range for that instruction would be [6:2].

Because a bit range could contain bits that do not pertain to a watchdog instruction (such as bit 4 in the example above), a bit mask is required to distinguish all the bits in the region that correspond to the instruction. The Mask field is defined to be this bit mask with a bit set to a ‘1’ for each bit in the bit range (defined by register region) corresponding to the watchdog instruction. Note that bit 0 of the bit mask corresponds to the lowest bit in the bit range. In the example used above, the mask would be 11011b or 0x1B.

A watchdog instruction can be one of four instructions. The Value field of the watchdog instruction entry has a specific meaning for each of the four instructions and each type of watchdog action. In general, the value field provides a mechanism to translate the value stored in the register to an internal format and vice versa.

Watchdog Instructions

WATCHDOG_INSTRUCTION_READ_VALUE: A read value instruction reads the register region and compares the result with Value. If the values are not equal, the instruction failed as did the parent watchdog action. This can be described in pseudo code as follows.

X = Read(register)

X = X >> Bit Offset described in Register Region

X = X & Mask

If (X != Value) FAIL

SUCCEED

WATCHDOG_INSTRUCTION_READ_COUNTDOWN: A read countdown instruction reads the register region. The result is a countdown value and should not be compared with Value. Value will be ignored. The countdown value is in count intervals. This can be described in pseudo code as follows.

X = Read(register)

X = X >> Bit Offset described in Register Region

X = X & Mask

Return X

WATCHDOG_INSTRUCTION_WRITE_VALUE: A write value instruction writes Value to the register region. If WATCHDOG_PRESERVE_REGISTER is set in Instruction Flags, then the bits not corresponding to the write value instruction are preserved. If the register is preserved, the write value instruction requires a read of the register. This can be described in pseudo code as follows.

X = Value & Mask

X = X << Bit Offset described in Register Region

If (Preserve Register)

Y = Read(register)

Y = Y & ~(Mask << Bit Offset)

X = X | Y

Write(X, Register)

WATCHDOG_INSTRUCTION_WRITE_COUNTDOWN: A write countdown instruction writes the internal Microsoft Hardware Watchdog Timer driver countdown value to the register region. The countdown value is the number of count intervals the driver has chosen to use for a countdown period. Value will be ignored. If WATCHDOG_PRESERVE_REGISTER is set in Instruction Flags, then the bits not corresponding to the write countdown instruction are preserved. If the register is preserved, the write value instruction requires a read of the register. This can be described in pseudo code as follows.

X = countdown value

X = X & Mask

X = X << Bit Offset described in Register Region

If (Preserve Register)

Y = Read(register)

Y = Y & ~(Mask << Bit Offset)

X = X | Y

Write(X, Register)

The majority of watchdog actions can be accomplished with watchdog instruction entries for the read value instruction and write value instruction. Assuming that a value of ‘0’ in bit X of a register R indicates whether the register is enabled\running, the watchdog action WATCHDOG_ACTION_QUERY_RUNNING_STATE would require one watchdog instruction entry for a read value instruction. Register region would be bit X of register R, mask would be 0x1 and value would be 0x0.

Watchdog actions that require reading or writing a countdown value require a read countdown instruction or a write value instruction. Assuming bits [b:0] of register R correspond to the region in a watchdog hardware register that contains the current countdown count, the watchdog action WATCHDOG_ACTION_QUERY_CURRENT_COUNTDOWN would require one watchdog instruction entry for a read countdown instruction. The register region would be bits [b:0] of register R and Mask would be 2(b +1) – 1.

� The extensibility of the hardware WDT is not limited by this specification, but the functionality that the driver can leverage is limited by design choices made. Therefore, new features can be added to the hardware WDT, but the hardware WDT driver will not be able to leverage some of them.

� As was previously noted, the WDT hardware may include functionality such as this, but the hardware WDT driver does not leverage this additional functionality.

© 2006 Microsoft Corporation. All rights reserved. By using or providing feedback on these materials, you agree to the attached Microsoft license agreement.

