Microsoft ASP.NET 2.0
Hosting Deployment Guide
Published: November 2005
Abstract

This white paper provides an overview of the features and benefits of Microsoft® ASP.NET 2.0. Hosters utilizing ASP.NET 1.1 will be able to use the setup and configuration recommendations to implement or integrate ASP.NET 2.0 into their hosting solution. This white paper also provides hosters who have not yet implemented ASP.NET the information they need to evaluate requirements for implementing ASP.NET 2.0 into their hosting environment.
The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This white paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS
DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2005 Microsoft Corporation. All rights reserved.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

Microsoft, MSDN, Visual Web Developer, Windows, and Windows Server, are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Table of Contents

1Overview

1Trust Levels and ASP.NET 2.0 Features

2Trust Level Recommendations for Hosters

3Customizing Trust Level Policy

4Locking the Trust Level

4Setting Multiple Trust Levels for Applications

5Additional Resources

5Providers in ASP.NET 2.0

6Configuring a Database for Use with ASP.NET 2.0 Providers

7Common Questions

7Running ASP.NET 1.1 and ASP.NET 2.0 Applications Together

7Using Backward Compatibility

8Running ASP.NET Side-by-Side

8SMTP Configuration

9SMTP Configuration Example

9ASP.NET 2.0 Configuration API

10Additional Resources

10Hosting Scenarios and Recommendations

10Trust Levels for a Shared Hosting Environment

11Hosting and Isolating Multiple Applications

11Isolating by Application Pool

11Enabling Additional Worker Processes Using SharedWPDesktop

12Using ASP.NET 2.0 in a Web Farm

12Ensuring Application State Will Be Maintained in a Web Farm

13New Features for Hosters

13Access Databases: Using OleDB and ODBC Providers in Medium Trust

13Application Idle Timeout: Shutting Down Inactive Application Domains

14Performance Benefits

14Configuring Garbage Collection to Improve Performance

15ASP.NET 2.0 Performance on the x64 Platform

15WOW64 Compatibility: Running 32-bit Applications on a 64-bit Server

16Deploying ASP.NET 2.0 Step-by-Step

16ASP.NET 2.0 Server Setup and Deployment

18Additional Resources

Overview

ASP.NET is a powerful set of tools for building dynamic, high-performance, data-driven Web applications. With ASP.NET 2.0, customers can quickly create ASP.NET Web pages and applications using new ASP.NET server controls and existing controls with new features. New areas such as membership, personalization, and themes provide system-level functionality that would normally require extensive developer coding. In addition, Microsoft Visual Web Developer™ 2005 Express Edition, which is available for download at no cost, provides everything needed to easily design, build, and deploy powerful, dynamic Web applications.

ASP.NET 2.0 also provides benefits for hosted environments, including support for shutting down inactive applications and locking down rogue applications. Hosters can use enhanced health monitoring configuration to set thresholds and severity levels for monitoring the health of ASP.NET.

Discrete feature throttling enables server administrators to dynamically add and remove feature support for applications within individual customer applications. Powerful starter kits can be offered separately or easily integrated, providing compelling features for end customers.

Some of the key differences or features include:

· Reliability. Ability to shut down inactive appDomains.

· Code access security. Strong-named Assemblies are now supported outside the Global Assembly Cache (GAC). They no longer need to be placed inside the GAC unless they need Full trust or to be shared globally.

· Code access security. Support for the event log, OleDB, and Open Database Connectivity (ODBC) no longer demands Full trust, though by default these permissions are not granted to Medium trust applications.

· Configuration file changes. Machine-wide configuration settings for all Web applications on a server are now maintained in a machine-level Web.config file instead of Machine.config. The machine-level Web.config file is located in the \%windir%\Microsoft.NET\Framework\{version}\CONFIG directory.

· Configuration file encryption. ASP.NET 2.0 introduces a Protected Configuration feature to enable you to encrypt sections of your Web.config and Machine.config files by using either Data Protection application programming interface (DPAPI) or Rivest-Shamir-Adleman (RSA) encryption. This is particularly useful for encrypting connection strings and account credentials.

Trust Levels and ASP.NET 2.0 Features

Trust levels allow you to define security rules. They define what types of operations an application can perform, such as reading from disk or accessing the registry. While each trust level has an associated policy file, Full trust does not. When an application runs with Full trust, code access security places no restrictions on the resources and operations it can access. Resource access is based solely on operating system security and Microsoft Windows® access control lists (ACLs). Full trust is mapped to an internal handler, so it is not possible to edit the operations an application can perform. Full trust is effectively the absence of an application domain policy and therefore never has an associated policy file.

To protect ASP.NET applications, you can restrict the resources the application can access and the privileged operations it can perform. You do this by configuring the <trust> element in either the machine-level Web.config file or the application’s Web.config file and setting it to one of the predefined trust levels.

A brief overview of the predefined trust levels is as follows:

· Full — Applications that run at Full trust level can execute arbitrary native code in the process context in which they run. Because of the inherent risks that come with running in Full trust mode, this mode it is not recommended in a shared environment except when every Web site uses its own application pool and its own application pool identity.
Important: The default trust level “out-of-the-box” is Full trust. You should evaluate the security requirements for your environment and set the trust level appropriately.

· High — Code in High trust applications can use most .NET Framework permissions that support partial trust. This mode is often appropriate for applications that you want to run with least privileges to mitigate risks. For example, using this mode provides access to the registry, all environment variables, and file system paths outside of the application root directory.

· Medium — This is the recommended default for hosters. Code in Medium trust applications can read and write its own application directories and can interact with SQL Server™ databases. Medium trust is the recommended setting for a shared server because it allows connections to SQL Server databases and restricts all other permissions to the application root structure.

· Low — Code in Low trust applications can read its own application resources but cannot interact with resources outside of its application hierarchy. Thus, you effectively lock applications down to their application directory and remove all access to system resources including the GAC.

· Minimal — Code in Minimal trust applications can execute but cannot interact with any protected resources. Minimal trust may be appropriate for mass hosting sites that want to support dynamic generation of Hypertext Markup Language (HTML) and isolated business logic.

The trust levels remain essentially the same from ASP.NET version 1.1 to version 2.0, although some of the permissions or operations that can be granted at each trust level do vary slightly. (That is although Medium trust is still the recommended default in version 2.0 as it was in version 1.1, you can now add OleDB support.)
For more information on trust levels in ASP.NET, see Working with Medium Trust in ASP.NET, on the Microsoft MSDN® TV Web site, at http://msdn.microsoft.com/msdntv/episode.aspx?xml=episodes/en/20050317aspnetss/manifest.xml.

For detailed information on running ASP.NET application in a hosted environment, including trust levels and code access security, see Microsoft Solution for Windows-based Hosting version 3.5 on the Microsoft Service Providers Web site, at http://www.microsoft.com/serviceproviders/solutions/windowsbasedhosting.mspx.

Trust Level Recommendations for Hosters

Hosters should not use Full trust when application isolation is desired, because it assumes the applications are fully trusted on the server. Full trust could be used when each application is run in a separate process and is isolated by using a separate application pool account and anonymous user account. Permissions on the file system should also be locked down. However, in this scenario, keep in mind that even when isolated by process and permissions as discussed, applications may not be able to access each others’ content but can still access many system resources, such as the registry or the event logs. Medium trust is recommended for hosters or Web servers that are Internet-facing.

However, applications may need certain features like the ability to use OleDb or enhanced reflection permissions. These are not permitted in Medium trust. For situations where your application requires a set of code access security permissions that do not exactly match one of the predefined trust levels, it often makes sense to create a custom trust level. Rather than using Full trust, you can simply enable whatever permissions are needed for the application, instead of allowing everything.

Customizing Trust Level Policy

Predefined trust level policies are Extensible Markup Language (XML) files that give details on the various security settings. When a predefined trust level policy does not meet your security requirements, you can create a customized policy by modifying an existing predefined policy.

With this approach, you do the following:
· Copy one of the existing trust-level policy files to create a custom policy file.
· Add the required permissions to the custom policy file.
· Configure the machine-level Web.config to use the custom policy.
The following is an example of creating a customized trust level policy that modifies the default OleDB permissions.
· To create the custom trust level configuration file and add a new permission

1. Copy the Medium trust policy file, web_MediumTrust.config, to create a new policy file in the same directory (%windir%\Microsoft.NET\Framework\{version}\CONFIG\).

Give it a name that indicates that it is a variation of Medium trust. For instance, it could be named web_CustomTrust.config.

2. Add the OleDbPermission security class definition to the <SecurityClass> section in the web_CustomTrust.Config file, as shown in the following example.

<SecurityClass Name="OleDbPermission" Description="System.Data.OleDb.OleDbPermission, System.Data, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/>

3. Add the unrestricted OleDbPermission to the "ASP.Net" named permission set, as shown in the following example.

<PermissionSet

class="NamedPermissionSet"

version="1"

Name="ASP.Net">

...

 <IPermission class="OleDbPermission"

 version="1"

 Unrestricted="true"/>

 ...

 </PermissionSet>

4. Modify the default Web.config file in the %windir%\Microsoft.NET\Framework\{version}\CONFIG\ directory to add the custom trust level that references the custom trust configuration file you have created.

5. Add a new <trustLevel> element to the <securityPolicy> section of the Web.config file to define a new level called "Custom" and to associate it with the custom policy file.

<location allowOverride="true">

 <system.web>

 <securityPolicy>

 <trustLevel name="Full" policyFile="internal" />

 <trustLevel name="High" policyFile="web_hightrust.config" />

 <trustLevel name="Medium" policyFile="web_mediumtrust.config" />

 <trustLevel name="Low" policyFile="web_lowtrust.config" />

 <trustLevel name="Minimal" policyFile="web_minimaltrust.config" />

 <trustLevel name="Custom" policyFile="web_CustomTrust.config" />

 </securityPolicy>

 <trust level="Full" originUrl="" />

 </system.web>

 </location>

These changes apply to the root Web.config file in the framework CONFIG folder. This applies defaults to all Web applications on the current server.

Locking the Trust Level

If a Web server administrator wants to use code access security to ensure application isolation and restrict access to system-level resources, the administrator must be able to define security policy at the machine level and prevent individual applications from overriding it.

Application service providers or anyone responsible for running multiple Web applications on the same server should lock the trust level for all Web applications.

To do this, enclose the <trust> element in the machine-level Web.config file in a <location> tag, and set the allowOverride attribute to false, as shown in the following example.

<location allowOverride="false">

 <system.web>

 <securityPolicy>

 <trustLevel name="Full" policyFile="internal" />

 <trustLevel name="High" policyFile="web_hightrust.config" />

 <trustLevel name="Medium" policyFile="web_mediumtrust.config" />

 <trustLevel name="Low" policyFile="web_lowtrust.config" />

 <trustLevel name="Minimal" policyFile="web_minimaltrust.config" />

 </securityPolicy>

 <trust level="Medium" originUrl="" />

 </system.web>

</location>

You can also lockdown other sections so that they cannot be overwritten by Web.config files that appear lower in the hierarchy, using the location and tag and the allowOverride attribute.

Setting Multiple Trust Levels for Applications

It is recommended that hosters lock the trust level to prevent individual applications from arbitrarily assigning Full trust and gaining permissions that may not have been intended by the hoster. By having a trust level specified with no override allowed, all applications on the server will run in that trust level and be unable to set their own trust, nor perform any operations not permitted by that trust level.

However, some applications on the server may need different permissions than the trust level the hoster has specified. Perhaps a control panel or billing application needs different privileges. For such circumstances, a different trust level can be set for this application by adding a second <trust> element, with a path specified. By adding a second <trust> element only for a specific application, that application will run under a different trust level.
To do this, enclose the <trust> element in the machine-level Web.config file in a <location> tag, set the allowOverride attribute to false and add a path attribute, as shown in the following example. The path attribute should contain the URL of the Web site, such as mysite.com or mysite.com/thisvirtualdirectory, to specify which application gets this unique trust level.
<location allowOverride="false" path="mysite.com">

 <system.web>

 <trust level="Medium" originUrl="" />

 </system.web>

</location>

It is important not to assign a different trust level simply because a customer’s application will not run in a hoster’s chosen trust level. By enabling that application to run in a higher trust level, for instance, you may place other applications or your server at risk. An example would be a hoster that ran in Medium trust also providing one application the ability to run in Full trust. The application would no longer be restricted to Medium trust operations and would be able to access resources outside of its own directory, or read from the registry.

Additional Resources

Additional information about trust levels and code access security permissions provided by each trust level in ASP.NET 2.0 can be found on the MSDN Web site in the following guides:

· For more information on how to select an appropriate trust level for your application, and how to create a custom ASP.NET code access security policy file to define a custom trust level, see How To: Use Code Access Security in ASP.NET 2.0, at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/paght000017.asp.
· For more information on using code access security and the Medium trust level to provide application isolation when running multiple applications on the same server, see How To: Use Medium Trust in ASP.NET 2.0, at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/paght000020.asp.
Providers in ASP.NET 2.0

Many of the features of ASP.NET rely on providers to store and retrieve data from a data source. ASP.NET Membership relies on a membership provider to store and retrieve user authentication data. The ASP.NET Profile Manager uses a profile provider to store and retrieve user settings and personal data. Other features that use providers include site navigation, role management, Web Parts, personalization, and so on.

For each feature, a provider is included that uses a SQL Server Express or SQL Server database. Whether you use one feature or several of them, they can store and retrieve data from the same database.

Note: Some features include a provider for other data sources, such as the Windows token role provider or the Authorization Manager Role provider. In addition, a custom provider can be implemented for additional data sources or custom data schemas.

When you install ASP.NET, the machine-level Web.config file for your server includes configuration elements that specify SQL Server providers for each of the ASP.NET features that rely on a provider. These providers are configured, by default, to connect to the local instance of SQL Server Express. SQL Server Express is not installed on the server by default and hosters should carefully evaluate its functionality before using it in their environment.

Note: SQL Server Express uses a new mode of operation called user instancing. User instancing should never be enabled on shared hosting servers unless each Web site runs in a unique application pool with its own custom identity.

You can disable user instancing when you install SQL Server Express. You can also turn off user instancing for an existing installation by running the following commands. (In order to run these commands, you need to connect to SQL Server Express using a tool such as SQLCMD.)
exec sp_configure 'show advanced option', '1'

go

reconfigure with override

go

exec sp_configure 'user instances enabled', 0

go

reconfigure with override

go

Assuming that you are not using SQL Server Express with user instancing, you must install the SQL Server database and the database elements for each of the features you have chosen before you can use any of the ASP.NET features configured in the machine configuration.

Configuring a Database for Use with ASP.NET 2.0 Providers

To configure a database for use with providers, you can use the built-in Aspnet_regsql.exe tool. This tool is included by default in the %windir%\Microsoft.NET\Framework\{version} directory on your Web server. It can be run from both a user interface and a command-line interface. It can also be used to generate a piece of SQL script that configures the database.

In order to run Aspnet_regsql.exe, you must use an account that has db_datareader, db_datawriter, db_ddladmin, and db_securityadmin privileges for the specific database you are configuring. You can also use Aspnet_regsql.exe to generate a SQL script and then have the script run as part of an existing SQL provisioning process.

One method of running Aspnet_regsql.exe is to launch it as a UI-based wizard that walks you through adding or removing schema to a database. To launch the wizard, run Aspnet_regsql.exe without any command line arguments, as shown in the following example:

Aspnet_regsql.exe

You can also run the Aspnet_regsql.exe tool as a command-line utility. For example, the following command installs the database schema for membership and role management for a database on a remote SQL server:

Aspnet_regsql.exe -A all -d MyDatabase

To automate extending the schema against a database, you can run Aspnet_regsql.exe with certain switches that will generate the SQL script used to extend the database. You can use this script in your existing SQL provisioning scripts.

To generate a SQL script to use later that will add all the providers to a database, the following command can be used:

Aspnet_regsql.exe -A all -sqlexportonly runproviders.sql

This command will generate a file called Runproviders.sql that can be used for programmatically adding the schema to the database.

Additionally, you also need to add the database user to the following roles. This allows the application connecting as that user to use the provider features. Aspnet_regsql.exe does not do this for you automatically, as you need to choose which users are given access to the following roles.

· Aspnet_Membership_FullAccess
· Aspnet_Personalization_FullAccess

· Aspnet_Profile_FullAccess

· Aspnet_Roles_FullAccess

· Aspnet_WebEvent_FullAccess

You can add the user to the roles through a scripted method using the following example, running it once for each *_FullAccess role above:

EXEC sp_addrolemember 'aspnet_Membership_FullAccess', 'SqlDbUser'
‘SqlDbUser’ is the database user that will be added to the roles, ‘aspnet_Membership_FullAccess’ is the role to which the user will be added.
This command will execute against the database that has the schema extended (per the prior example) and will add the database user to the appropriate roles. The database user itself would not be able to run this command unless it is dbo, but you could add this to a provisioning script that ran as dbo or a higher privileged account (such as a SQL Server administrator).

If this step is missed, the database user configured in the connection string will be unable to execute stored procedures necessary for certain applications, such as the Personal Web Site Starter.

Common Questions

What are the Member Roles used by?

The Member Roles schema is necessary in order to support applications such as the Personal Web Site Starter; which is one of the first options a developer will be offered when he opens Visual Web Developer 2005 Express Edition. Other ASP.NET starter kits and community-developed applications may also require the Member Roles or other provider schemas.

Who provisions the schema, the hoster, or the customer?

It is expected that the hoster would provision Member Roles, and that the customer would simply be able to upload or develop an application that takes advantage of the shared membership.

Can a hoster allow their customers to provision the schema themselves?

In order to provision the schema, the database user will need db_datareader, db_datawriter, db_ddladmin, and db_securityadmin. It is up to the hoster whether they want to provide this level of access or not.

Why are db_ddladmin and db_securityadmin needed to provision the schema?

The database objects (views, stored procedures, roles, and tables) will be automatically created with the owner dbo. Hosters may not grant dbo access to the database user account, because of certain privileges that it allows. In order to provision dbo-owned objects as a user who is not dbo, db_ddladmin and db_securityadmin (in addition to normal privileges of db_datareader and db_datawriter) are needed.

Running ASP.NET 1.1 and ASP.NET 2.0 Applications Together

ASP.NET 2.0 is backward compatible and allows you to run an ASP.NET 1.1 application on a server that has only ASP.NET 2.0 installed. Alternately, you can also run the ASP.NET 1.1 and ASP.NET 2.0 applications side-by-side. In this section, both methods are discussed.

Using Backward Compatibility

In the context of the .NET Framework, backward compatibility means that an application created using an early version of the .NET Framework will run on a later version. The .NET Framework provides a high degree of support for backward compatibility.

Most applications created using version 1.0 will run on version 1.1, and applications using version 1.1 will run on version 2.0. However, you may need to modify the application so that it will run as expected. For example, you should evaluate your existing applications and determine if they are running at optimum performance levels. If performance is not optimum, determine if the application can be modified or migrated over to ASP.NET 2.0.
Running ASP.NET Side-by-Side

Side-by-side execution is the ability to install multiple versions of code so that an application can choose which version of the common language runtime or of a component it uses. Subsequent installations of other versions of the runtime, an application, or a component will not affect applications already installed.

To run ASP.NET 1.1 and ASP.NET 2.0 side-by-side, you can simply install ASP.NET 2.0 on a server that has ASP.NET 1.1 installed (or vice versa). When you install 2.0, it will not become the default framework version because another version of the framework is already installed.

To register ASP.NET 2.0 as the default framework for all sites on the Web server, you can run Aspnet_regiis.exe as shown in the following example:

Aspnet_regiis.exe -r

Note: This program is located in the %windir%\Microsoft.NET\Framework\{version} folder.

· To use Aspnet_regiis.exe to update a script map for a single ASP.NET application

6. Open a command window by clicking Start, and then click Run. In the Open text box, type cmd, and then click OK.

7. Navigate to the directory of the Aspnet_regiis.exe version you want to use.

8. Use the -s or -sn option of Aspnet_regiis.exe along with the path to the application to set up the script maps.
The following shows a sample command line that updates the script maps for an application called SampleApp1.

Aspnet_regiis.exe -s W3SVC/1/ROOT/SampleApp1

Or you can simply switch a few sites over to ASP.NET 2.0 using the new tab added to the Internet Information Services (IIS) Microsoft Management Console (MMC) snap-in. ASP.NET 2.0 adds an ASP.NET tab to the IIS properties dialog box, where you can change the version with a drop-down box. To access this tab, right-click a Web site and select Properties.
Note that sites running different versions of the .NET Framework cannot run in the same process. For example, an application that uses ASP.NET 2.0 must run in a separate application pool (separate process) than an application that uses ASP.NET 1.1.
When two or more applications are mapped to different versions of ASP.NET, but share the same application pool, you would encounter the following error message in the Application event log:

It is not possible to run different versions of ASP.NET in the same IIS process. Please use the IIS Administration Tool to reconfigure your server to run the application in a separate process.

The fix is to ensure that the two applications do not run in the same application pool.

SMTP Configuration

The mailSettings element configures e-mail sending options. This configuration can be placed inside the customer’s Web.config or directly into the root Web.config, if you want to provide a default for the server.

By providing a default in the root Web.config, you are allowing all applications on the server to take advantage of the e-mail settings. If you provide e-mail only to certain customers, do not set the mailSettings element in the root Web.config.

E-mail delivery methods include:

· Using a Simple Mail Transfer Protocol (SMTP) server.

· Moving the e-mail into the pickup directory for IIS, which then delivers the message.

· Moving the e-mail to a directory specified by PickupDirectoryLocation for later delivery by another application.

Certain controls have dependencies on the e-mail settings. PasswordReceovery relies on the e-mail settings, and requires a working e-mail server configured. Other controls use e-mail settings optionally, such as CreateUserWizard and ChangePassword. Third-party controls may also use e-mail.

SMTP Configuration Example

The following example specifies SMTP parameters to send e-mail using a remote SMTP server and user credentials.

<system.net>

<mailSettings>

<smtp

deliveryMethod="Network|PickupDirectoryFromIis|SpecifiedPickupDirectory">

<network

defaultCredentials="true|false"

from="me@foo.bar"

host="smtphost"

port="25"

password="password"

userName="user"/>

<specifiedPickupDirectory

pickupDirectoryLocation="c:\pickupDirectory"/>

</smtp>

</mailSettings>

</system.net>

ASP.NET 2.0 Configuration API

There are many ways to create and edit ASP.NET configuration files (the machine-level Web.config file, or individual application Web.config files). You can use standard text editors, the ASP.NET MMC snap-in, or the ASP.NET configuration API.

The MMC snap-in for ASP.NET provides a convenient way to manipulate ASP.NET configuration settings at all levels on a local or remote Web server. The ASP.NET MMC snap-in uses the ASP.NET configuration API, but it simplifies the process of editing configuration settings by providing a graphical user interface (GUI).

The ASP.NET configuration API provides the following capabilities:

· Simplifies administrative tasks by providing an integrated view of data from all levels of the configuration hierarchy.

· Supports deployment tasks, including creating configurations and configuring multiple computers with one script.

· Provides a single programming interface for developers who build ASP.NET applications, console applications and scripts, Web-based management tools, and MMC snap-ins.

· Prevents developers and administrators from making invalid configuration settings.

· Allows you to extend the configuration schema. You can define new configuration parameters and write configuration section handlers to process them.

· Supports batch execution across multiple servers.
For hosters and others environments containing many Web servers that host hundreds or thousands of sites, the ASP.NET configuration system provides server administrators with a complete managed interface for programmatically configuring ASP.NET applications without directly editing the XML configuration files. ASP.NET configuration system simplifies tasks, such as:

· Writing a script that configures the same ASP.NET application on any or all of the servers in the Web farm.

· Locking down some of the files that are used for each instance of the application.

· Automating an audit that records configurations of deployed applications to ensure that the installation on each computer is configured in the same way.

· Editing a change in configuration once, and then applying the change to all the instances of the application, wherever they are installed.

Additional Resources

Additional information on ways to create and edit ASP.NET 2.0 configuration files can be found on the MSDN Web site in the following articles:

· For more information on how to write tools using the Configuration API, see the articles: Using the Configuration Classes, at http://msdn2.microsoft.com/en-us/library/ms133904 and How to: Access ASP.NET Configuration Settings Programmatically, at http://msdn2.microsoft.com/en-us/library/4c2kcht0.
· For more information on configuration elements that configure ASP.NET Web applications and control how the applications behave, see System.Web Element (ASP.NET Settings Schema), at http://msdn2.microsoft.com/en-us/library/dayb112d.

· For more information on new features in the configuration system, see What’s New in ASP.NET 2.0 Configuration, at http://msdn2.microsoft.com/en-us/library/ms178687.
Hosting Scenarios and Recommendations

Most hosting scenarios involve a shared Web server that hosts hundreds or thousands of Web sites. These Web sites need rich functionality while also being isolated from each other, as these sites are not trusted code. In this section, we discuss certain recommendations for server administrators running in such environments.

Trust Levels for a Shared Hosting Environment

As discussed in the Trust Levels and ASP.NET 2.0 Features section, hosters should never run in Full trust level, which does not place restrictions on the operations an application can perform. Instead, a partial trust level (that is, a trust level other than Full trust) should be used. The recommended trust level is Medium, which allows many common operations and restricts many of the dangerous applications. If more operations need to be permitted than Medium trust allows, you should create a custom trust level.

Hosters can create more customized trust levels based on their needs. With a custom trust policy, hosters could base the permission set on Medium trust but also allow applications to read from Microsoft Access databases. For more information on how to customize default trust level policies, see the topic, Customizing Trust Level Policy.
It is also very important that hosters always lock down the trust level so that it cannot be changed by an application lower in the hierarchy. If unlocked, an application may change its own trust level to Full trust and perform operations on the server such as reading from the registry or accessing arbitrary physical file locations outside of its own path.

A good trust level for hosters will be one based on Medium trust, but with specific operations allowed where needed or restricted even further when not required by applications on the server.

Hosting and Isolating Multiple Applications

When hosting multiple Web sites on a single server, server administrators should consider how to isolate the applications from each other. Medium trust provides some sandboxing and isolation. Each application runs in its own appDomain (an application domain is where an application executes, and it is isolated to a certain extent from other applications within the same process).

Additionally, by default Medium trust only allows an application to write within its own application directory. Even if NTFS file system permissions are set so that an application has permissions to some other directory, code access security prevents it from accessing any location outside of its own application directory.

Isolating by Application Pool

Having each application run its own application pool, configured with a unique process identity, would offer an additional level of isolation. Each application would have its own process and if the application stopped responding, it would be unable to affect other sites on the server. By having a process with its own identity, physical content can be secured to only allow access for that identity. This is a robust and secure method of isolation, but one that can consume many resources by having a large number of processes enabled.

If you do not have a large number of sites active at a given time, and you aggressively recycle based on memory limits as well as shut down idle processes, you may find this to be a good approach for your environment.
For more information on isolating multiple applications on a server, see Chapter 20 – Hosting Multiple Web Applications, on the MSDN Web site at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh20.asp.
Enabling Additional Worker Processes Using SharedWPDesktop

If you are setting up your application pools with unique identities, then depending on the applications and memory resources on your server you will reach a limit of about 60 application pools on the x86-processor architecture. The limit may be different on the x64-bit processor architecture. There are finite limits of some system resources that are allocated with each new logon session. This means that 60 processes can run concurrently as distinct accounts.

IIS 6.0 supports running these processes in a single shared workstation and desktop, at a cost of sharing a single encapsulation of a user session among all parties. To scale beyond 60 application pools and to share a single desktop, change the UseSharedWPDesktop to a DWORD value of 1. After changing this registry key, you should be able to scale to hundreds of application pools and hundreds of concurrently running worker processes.

For more information on working with WWW Service registry keys in IIS 6.0, see WWW Service Registry Entries (IIS 6.0), on the Microsoft TechNet Web site, at http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/d779ee4e-5cd1-4159-b098-66c10c5a3314.mspx.
Using ASP.NET 2.0 in a Web Farm

In a Web farm scenario, server administrators must run multiple front-end Web servers with a back-end server for content storage. Instead of using a physical drive path for the Web site, a Universal Naming Convention (UNC) share is defined for the Web site.
· To serve content from a UNC share

9. Configure the home directory for the Web site to be a UNC share. Leave the Connect As option set so that the authenticated user (the anonymous user) will be used.

10. Grant read permissions for the anonymous user and the process identity (user account configured for the application pool in which the site runs) on the physical directory.

11. Grant the anonymous user Full control to the %windir%\Microsoft.NET\Framework\{version}\Temporary ASP.NET Files directory or to the configuration tempDirectory for that application.

12. Grant the anonymous user List files and Delete permission to the %windir%\Temp directory.

13. Run the Code Access Security Policy editor to add policy that allows ASP.NET the appropriate access the UNC share.

This step is necessary because code access security intersects policy across levels, meaning that code running from a UNC share may end up with less permission than it needs. You can set policy for a UNC share and against applications hosted on the local disk. If you are hosting applications on a UNC share, it’s often easiest to grant Full trust to the UNC share where application content is being hosted, and then use a more locked-down trust level specified in the machine-level Web.config file.
caspol -m -ag 1. -url "file://\\myshare\mydir*" FullTrust

Note: This program is located in the %windir%\Microsoft.NET\Framework\{version} folder.
14. If the process identity (the account configured for the application pool in which the site runs) is a domain or custom user, you will need to follow this additional step to add the appropriate permissions. If your process identity is Network Service, this step is not necessary.

Aspnet_regiis.exe -ga ActiveDirectoryDomain\ProcessIdentity

Note: This program is located in the %windir%\Microsoft.NET\Framework\{version} folder.

For more information on using a custom process identity with ASP.NET 2.0, see How To: Create a Service Account for an ASP.NET 2.0 Application, on the MSDN Web site at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/paght000009.asp.
Ensuring Application State Will Be Maintained in a Web Farm
If an application is deployed in a Web farm, the configuration files on each server share the same value for validationKey and decryptionKey, which are used for hashing and decryption respectively. This is required because you cannot guarantee which server will handle successive requests.

If this is not done, visitors to the site may receive the error “The View State is Invalid for this Page and Might Be Corrupted.”

For more information on working with application deployed in a Web farm, see the following articles:

· Fix: "The View State Is Invalid for This Page and Might Be Corrupted" Error Message in ASP.NET, on the Microsoft Help and Support Web site at http://support.microsoft.com/kb/323744.

· How To: Configure MachineKey in ASP.NET 2.0, on the MSDN Web site at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/paght000007.asp.
New Features for Hosters

Access Databases: Using OleDB and ODBC Providers in Medium Trust

A change for ASP.NET 2.0 is the ability for applications to read or write to Access databases in partial trust, rather than requiring Full trust. As discussed in the trust level section, the OleDB managed data provider no longer demands Full trust, though by default the OleDbPermission is not granted to Medium trust applications. This means that you can access an OleDB data source, such as an MDB Access database file, in partial trust.

To do this, you must create a custom trust policy file as demonstrated in the Trust Levels and ASP.NET 2.0 Features section. This section shows the necessary steps to enable applications to connect to Access databases in partial trust.

Application Idle Timeout: Shutting Down Inactive Application Domains

ASP.NET 1.0 added a feature called Process Model Idle Timeout. This feature enables a worker process to be shut down after the application has been idle for a predefined amount of time. The default configuration is set to “Infinite,” meaning that the application will be instantiated and kept alive as long as that process is running.

However, many Web sites may run in a single application pool, so that while one application may become idle, the entire pool is not as likely to do so. For this reason, a new feature was introduced in ASP.NET 2.0 called Application Idle Timeout.

The Application Idle Timeout feature provides hosters with a mechanism to shut down an appDomain that has been idle (meaning that it has not received a request) for a determined amount of time. As discussed earlier, an application domain is where an application executes, and it is isolated from other applications within the same process. Each application has its own appDomain.

This feature enables ASP.NET to support a larger number of appDomains per process by optimizing the use of resources. Only active appDomains that are currently being used by customers will be kept in memory.

This can be configured under the hostingEnvironment element. The element is in the Web.config.comments file. You can copy the line into your root Web.config file within the system.web element of the configuration. By default, it is configured to have an infinite timeout.

This setting is best used when you have multiple applications per application pool. When configuring this setting, keep in mind that setting it too low could result in having a lot of churn in the process. If many applications are constantly starting up and then being quickly shut down, the process has to work harder and may consume more resources to keep up with the churn.

The shutdownTimeout should not typically be configured for less than 30 minutes and is probably better configured for an hour. Depending on the application load, hosters should test various time limits and find out what works best in their environment.

· To enable the application idleTimeout

15. Open the machine-level Web.config.comments file in Notepad (%windir%\Microsoft.NET\Framework\{version}\CONFIG\).

16. Find the hostingEnvironment element, as shown in the following example.
idleTimeout is a time span attribute – the amount of time, in minutes, before unloading an inactive application.
shutdownTimeout sets the amount of time, in seconds, to gracefully shut down the application.

<!--

 <hostingEnvironment

 idleTimeout="Infinite" [number]

 shutdownTimeout="30" [number]

 shadowCopyBinAssemblies="true" [true|false]

 />

-->

<hostingEnvironment idleTimeout="Infinite" shutdownTimeout="30” shadowCopyBinAssemblies="true” />

17. Copy the last line into the root-level Web.config, in the same directory, and edit the settings appropriately. The line should go in the system.Web section.

<hostingEnvironment idleTimeout="Infinite" shutdownTimeout="30” shadowCopyBinAssemblies="true” />

These changes apply to the root Web.config file in the framework CONFIG folder. This applies defaults to all Web applications on the current server.

Performance Benefits

ASP.NET 2.0 introduces some performance gains in memory usage and application hosting. The number of applications per worker process has increased since version 1.1, and the number of worker processes per box has also increased.

In ASP.NET 1.1, the framework modules (system.web.dll, system.data.dll, system.xml.dll, and so on) must be jitted (just in time compiled) in each appDomain. In ASP.NET 2.0, the framework modules have native images generated by ngen.exe. These images are loaded domain-neutral and are shared across multiple appDomains. Additionally, the native images are loaded just like any other DLL – the memory can be shared by multiple processes.

Performance changes in ASP.NET 2.0 can provide the following benefits:

· Increase in the number of applications (measured by appDomains) that can be hosted

· Increase in the number of worker processes per machine, often as much as 80 percent more

The benefits may vary on hosted servers, where content is uploaded by many different users and may be poorly written or very complex.

Configuring Garbage Collection to Improve Performance

On multiprocessor machines, the performance benefits may be increased by using the workstation garbage collector (GC). The .NET common language runtime (CLR) has two GC modes, Server and Workstation. The former, known as ServerGC, is optimized for scalable throughput on multiprocessor machines, while the latter, known as WorkStationGC, is optimized to reduce collection pause times for interactive applications.

The ServerGC creates a heap per processor for parallel collections to improve GC performance on multiprocessor machines. In contrast, the WorkStationGC creates only one heap, reducing working set at the expense of GC performance on multiprocessor machines. When hosting multiple ASP.NET worker processes, the ServerGC can consume more memory than desired. For this scenario, if the WorkStationGC is used instead, the number of hostable worker processes may increase substantially with only a small decrease in throughput.

· To enable the WorkStationGC:

18. Open the Aspnet.config.comments file in Notepad (%windir%\Microsoft.NET\Framework\{version}\).

19. Add the following to the Aspnet.config file, within the <runtime> element:

<gcServer enabled=”false” />

Note: This change can also be made in ASP.NET 1.1; it is not limited to ASP.NET 2.0.

ASP.NET 2.0 Performance on the x64 Platform

Many performance gains in ASP.NET 2.0 have been realized on the x64 platform. For example, on the x86 platform, the nonpaged pool memory limit is 256 MB, whereas on the x64 platform the limit is 128 GB. This resolves several problems:

· Denial-of-service attacks where nonpaged pool is consumed by HTTP.sys.

· Many ASP.NET out of memory exceptions.

· Errors when IIS runs out of work items and causes remote procedure call (RPC) failures when content is on a UNC path.

· Errors with ASP.NET File Change Notifications. ASP.NET File Change Notification relies upon Server Message Block (SMB) protocol when the content is hosted on a UNC share. SMB uses nonpaged pool memory, so as the number of UNC shares is increased, it will eventually run out of nonpaged pool on the x86 platform. This problem can be confirmed by monitoring the “Memory\Pool Nonpaged Bytes” performance counter for the Web server.

For more information about the problem with ASP.NET File Change Notifications, see the following articles on the Microsoft Help and Support Web site:

· IIS Runs Out of Work Items and Causes RPC Failures When Connecting to a Remote UNC Path, at http://support.microsoft.com/?id=221790.
· "The network BIOS command limit has been reached" error message in Microsoft Windows Server™ 2003, in Microsoft Windows XP, and in Microsoft Windows 2000 Server, at http://support.microsoft.com/?id=810886.

WOW64 Compatibility: Running 32-bit Applications on a 64-bit Server

Another one of the performance benefits of the x64 platform is that it increases virtual address space, so more memory is available. Standard 32-bit systems can map at most 4 GB of memory. With 2 GB reserved for the operating system, only 2 GB remains for the application. You can increase the application virtual address space to 3 GB by setting a /3GB switch in the Windows boot.ini file.
64-bit offers 8 TB of memory for applications (the user virtual address space), with another 8 TB reserved for the operating system. This is a substantial increase in memory that can be used by Windows. However, some Web sites may have 32-bit applications that cannot be run on 64-bit. For such circumstances, IIS can be configured to start a 32-bit worker process, enabling Microsoft Windows on Windows 64 (WOW64) compatibility for 32-bit Web applications on a 64-bit server.
The user virtual address space for a WOW64 application is 4 GB; however, the .NET CLR is only able to use 3 GB of this address space. However, WOW64 applications also benefit from a nonpaged pool size of 128 GB, just as native x64 applications do. Recall that using /3GB on an x86 machine reduces the size of nonpaged pool, and therefore there are clear advantages to temporarily moving to WOW64 when your application has outgrown the x86 architecture but has not yet been compiled for native x64.
For more information about enabling WOW64 compatibility mode, see the article Microsoft Windows Server 2003 SP1 enables WOW64 compatibility for 32-bit Web applications in IIS 6.0, on the Microsoft Help and Support Web site, at http://support.microsoft.com/default.aspx?scid=kb;en-us;895976.
Deploying ASP.NET 2.0 Step-by-Step
This section provides a basic overview of the steps to deploy ASP.NET 2.0. This setup will be using the information in this document to install ASP.NET 2.0 onto a new server and configure recommended settings.

ASP.NET 2.0 Server Setup and Deployment

20. Download and install ASP.NET 2.0 on the Web server.

21. Add a custom trust policy based on Medium trust.
a) Copy the Medium trust policy file, web_MediumTrust.config, to create a new policy file in the same directory (%windir%\Microsoft.NET\Framework\{version}\CONFIG\).

Give it a name that indicates that it is a variation of Medium trust. For instance, it could be named web_CustomTrust.config.

22. Add any additional permissions to the custom policy.
b) Add the OleDbPermission security class definition to the <SecurityClass> section in the web_CustomTrust.Config file, as shown in the following example.

<SecurityClass Name="OleDbPermission" Description="System.Data.OleDb.OleDbPermission, System.Data, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/>

c) Add the unrestricted OleDbPermission to the "ASP.Net" named permission set, as shown in the following example.

<PermissionSet

class="NamedPermissionSet"

version="1"

Name="ASP.Net">

...

 <IPermission class="OleDbPermission"

 version="1"

 Unrestricted="true"/>

 ...

 </PermissionSet>

d) Modify the default Web.config file in the %windir%\Microsoft.NET\Framework\{version}\CONFIG\ directory to add the custom trust level that references the custom trust configuration file you have created.

e) Add a new <trustLevel> element to the <securityPolicy> section of the Web.config file to define a new level called "Custom" and to associate it with the custom policy file.

<location allowOverride="true">

 <system.web>

 <securityPolicy>

 <trustLevel name="Full" policyFile="internal" />

 <trustLevel name="High" policyFile="web_hightrust.config" />

 <trustLevel name="Medium" policyFile="web_mediumtrust.config" />

 <trustLevel name="Low" policyFile="web_lowtrust.config" />

 <trustLevel name="Minimal"
 policyFile="web_minimaltrust.config" />

 <trustLevel name="Custom" policyFile="web_CustomTrust.config" />

 </securityPolicy>

 <trust level="Full" originUrl="" />

 </system.web>

 </location>

23. Lock the trust level so that it cannot be changed by applications on the server, by setting the location allowOverride element to false.

<location allowOverride="false">

 <system.web>

 <securityPolicy>

 <trustLevel name="Full" policyFile="internal" />

 <trustLevel name="High" policyFile="web_hightrust.config" />

 <trustLevel name="Medium" policyFile="web_mediumtrust.config" />

 <trustLevel name="Low" policyFile="web_lowtrust.config" />

 <trustLevel name="Minimal" policyFile="web_minimaltrust.config" />

 </securityPolicy>

 <trust level="Medium" originUrl="" />

 </system.web>

</location>

For More Information: This step is documented further under the Trust Levels and ASP.NET 2.0 Features section, in the topic titled Locking the Trust Level.

24. Configure ASP.NET 2.0 for a Web site.
To do this, right-click on the Web site in the IIS MMC snap-in and select Properties. On the ASP.NET tab, select ASP.NET 2.0 from the drop-down list.
For More Information: This step is documented further under the Running ASP.NET 1.1 and ASP.NET 2.0 Applications Together section, in the topic titled Running ASP.NET Side-by-Side.

25. Configure a custom process identity for your application pool. If your process identity is custom (that is, not Network Service), you will need to run this additional step. Without this, the
ASP.NET 2.0 pages may run anyway, but this step configures the proper permissions for the custom accounts.

ActiveDirectoryDomain is the domain that the application pool account is part of, if this is a domain account.

ProcessIdentity is the user account that is configured as the identity of the application pool.

Aspnet_regiis.exe -ga ActiveDirectoryDomain\ProcessIdentity

For More Information: This step is documented further under the Hosting Scenarios and Recommendations section, in the topic titled Using ASP.NET 2.0 in a Web Farm.

26. Add the provider schemas to the associated SQL database.
SqlDbUser is the SQL username that will be used in the customer’s Web.config to connect to the database.

EXEC sp_addrolemember 'aspnet_Membership_FullAccess', ‘SqlDbUser’

EXEC sp_addrolemember 'aspnet_Personalization_FullAccess', ‘SqlDbUser’

EXEC sp_addrolemember 'aspnet_Profile_FullAccess', ‘SqlDbUser’

EXEC sp_addrolemember 'aspnet_Roles_FullAccess', ‘SqlDbUser’

EXEC sp_addrolemember 'aspnet_WebEvent_FullAccess', ‘SqlDbUser’

For More Information: This step is documented further under the Providers in ASP.NET 2.0 section, in the topic titled Configuring a Database for Use with ASP.NET 2.0 Providers.

Additional Resources
For a list of how-to guidance on a variety of scenarios in ASP.NET version 1.1 and 2.0, see the Patterns and Practices Security How Tos Index, on the MSDN Web site, at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/SecurityHowTosIndex.asp.
