

[image: image1.jpg]Microsoft

Windows Server2003

Implementing a Scalable Architecture

Microsoft Corporation

Published: November 2002
Abstract

This white paper outlines the many ways that Microsoft® Windows Server™ 2003 facilitates scalability, thus allowing IT professionals and developers to construct systems that are easy to manage, and can cost-effectively scale up and out.
This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2002 Microsoft Corporation. All rights reserved.

Microsoft, SQL Server, Visual Basic, Visual Studio, Windows, the Windows logo, Windows NT, and Windows Server are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.
Contents

2Introduction

3Scalability versus Performance

3Scaling Modes

5Scalable Solutions

5Windows Server 2003 Scalable Architectural Changes

7Scalability Case Study

8Microsoft Systems Architecture (MSA)

11Design Concepts

11Applications and Scaling

11Load Balancing and Clustering

12Choosing Scalable Applications

13Choosing Scalable Hardware

15Implementing a Scalable Architecture

15Server Configurations

15Scaling Out

16Table 1: Application Types

17Scaling Up

18Configuring and Managing IIS for Scalability

22Installing and Managing NLB and Server Clusters

23Windows Server 2003 Settings

27Conclusion

28Related Links

Introduction

IT Professionals are tasked with creating an affordable yet scalable infrastructure to execute and support enterprise applications. As proven many times over, the cost of making a decision on the development technology can mean millions of dollars over the life of the applications running on the supported platforms. Windows Server 2003 can dramatically lower all costs associated with running and maintaining your applications.

The Windows Server 2003 family delivers enterprise-ready solutions that cost less to deploy and maintain, and scale better than competing offerings. As you can see from the Windows Server 2003 product family, you can select servers ranging from a Web server for your Web farm (Windows Server 2003, Web Edition) up to 64-bit versions of Windows Server 2003, Windows Server 2003, Enterprise Edition and Windows Server 2003, Datacenter Edition.

Scalability versus Performance

Scalability can be defined as the ability to increase the amount of processing that can be done by adding more resources. Note that scalability differs from performance insofar as scalability does not increase performance per se, but rather, maintains performance in the face of higher throughput (i.e., heavier user and transaction loads). Therefore, performance refers to the system response time under a typical load whereas scalability refers to the ability of a system to increase that load without degrading response time.

To design the most cost-effective solution, IT professionals should consider a system’s scalability factor, the factor by which the overall throughput of the system improves when you double system resources, with the response time being constant.

Almost all business applications are scalable, given proper design choices to avoid potential bottlenecks, such as database access. For example, adding CPUs will not solve your problem if disk access is the bottleneck. An application is only as scalable as its least scalable link. Therefore IT professionals need to detect and alleviate bottlenecks in order to ensure application scalability.

There are several ways to achieve scalability, such as using more powerful CPUs or adding additional CPUs. Selecting the right platform ensures that the operating system does not limit future scalability. The Windows Server 2003 family allows complete flexibility in choosing the most cost-effective scaling mode for your particular application.

Scaling Modes

There are two different modes of scaling known as scale up and scale out.

Scaling up is accomplished by adding additional resources to a single machine to allow an application to service more requests. The most common ways to do this are by adding memory (RAM) or to use a faster CPU. Windows Server 2003 offers another exciting scaling option, using a 64-bit (Itanium) processor, thereby giving a wider data highway that provides more throughput.

Scaling out is accomplished by adding servers to a server farm (group) to make applications scale by spreading the processing among multiple computers. Windows Server 2003 natively implements scaling out with the Network Load Balancing (NLB) technology. When a server center is scaled out, it will require management software (such as NLB) or hardware to distribute requests among the member nodes. You can add to the server cluster by simply installing a new system preloaded with the software. This allows you to grow and shrink your applications’ capacity by simply adding and removing servers.

Each scaling method requires an understanding of the bottlenecks and the applications before a particular method can be successfully utilized. Scaling out or up doesn’t work if there are other architectural bottlenecks, such as in the time it takes to dispatch messages or the overhead in synchronizing caches. Certain scaling methods also require application awareness of that method. For instance, to scale out effectively an application must be architected to be multi-processor friendly. Likewise, if an application maintains session state “in-process,” it won’t scale up because the process is running on only one server; and other servers in the farm would not be able to access the session state.

The right platform won’t force you to change operating systems to achieve scalability, nor will it force you into a corner by mandating a particular scaling mode, such as scale up. The Windows Server 2003 family of products supports different scaling modes, allowing you to mix and match as your needs change. Windows Server 2003 offers the same manageability features across the entire product line, so administrator skills transfer well as applications are scaled up or out, even scaled down. Your scalability solution remains your decision, independent of the operating system or hardware platform.

If response time is faster than necessary under typical or even peak load, you may be able to reduce costs by scaling “down” or “in” instead of “up” and “out.” For example, scaling an application that is running in a large data center to run on fewer machines can be thought of as “scaling in” (the opposite of scaling out). Scaling in might reduce hardware costs in an overbuilt data center or when setting up a secondary data center with lesser throughput needs. For example, if a large company acquires a smaller company and wants to deploy the same applications in a secondary data center that demands lesser throughput, the same application could be run on a cluster of, say, two machines instead of ten.

As distributed computing increases, running applications on smaller systems is also important. This is where the ability to “scale down” (the opposite of scaling up) an application server is important. Scaling an application down can be important for both smaller organizations and lightweight clients. For example, the .NET Framework allows developers to write one application that runs on Windows Server 2003, Enterprise Edition and also on small servers at satellite offices such as branch banks. That is, an application originally deployed to a data center can also be deployed to the desktop. The .NET Framework also supports devices such as PDAs (using the .NET Compact Framework) and cell phones (using the Mobile Internet Toolkit).

Scalable Solutions

Picking a scalable solution is the hardest part of building the scalable architecture. The Windows Server 2003 family includes a range of solutions, allowing IT Professionals to right-size their server operating system for their particular application requirements.

The Windows Server 2003, Web Edition is a platform designed for developing and deploying Web services and running local applications. It is optimized to give businesses a comprehensive and robust platform for Web serving and hosting that is easy to deploy and manage. As with all versions of Windows Server 2003, it includes Network Load Balancing for building scalable server farms for Web applications and .NET Remoting hosts. It is appropriate for Web serving and hosting, but it is not an application server for running applications such as SAP or Exchange.

The Windows Server 2003, Standard Edition is designed for everyday business needs such as file and printer sharing, secure Internet connectivity, centralized desktop application deployment, hosting Web and .NET Remoting applications, and rich collaborative applications. Because it is an application server, it can run applications like Microsoft Exchange.

The Windows Server 2003, Enterprise Edition is the platform of choice for applications, Web services, and infrastructure. It runs everything that the Windows Server 2003 Web Edition and Standard Edition do, and it also scales up to 8 CPUs each with up to 32 GB RAM (64 GB for Itanium processors) to deliver high reliability, performance, and superior business value.

The Windows Server 2003, Datacenter Edition is for business-critical and mission-critical applications demanding the highest levels of scalability and availability. It is the most powerful and functional server operating system Microsoft has ever offered, supporting up to 32-way symmetric multiprocessing (SMP) and providing both eight-node clustering and load balancing services as standard features. Windows Server 2003, Datacenter Edition supports up to 64 GB RAM per CPU (128 GB for Itanium processors).

For more details on the Windows Server 2003 family of products, see Table 1 in the “Windows Scalability Flexibility” white paper.

Windows Server 2003 Scalable Architectural Changes

The Windows Server 2003 family includes numerous application, utilities, and technologies that facilitate scalability at all levels. They work in concert to deliver a scalable architecture that is also reliable, manageable, and secure.

The performance enhancements in Windows Server 2003 and Internet Information Services (IIS) are too numerous to discuss at length here, but we’ll touch on a few items that have practical importance to scalability. For this discussion, we address only IIS 6.0 worker process mode, not its IIS 5.0 isolation mode used for backward compatibility.

IIS has four main components:

· The IIS Admin Service (Inetinfo.exe) handles the IIS Metabase, FTP, SMTP, NNTP, and Web services

· HTTP.sys is a kernel mode listener and request router. It also contains a response cache that allows cached requests to be handled without a context transition to user mode. It manages TCP connections, performs IIS text-based logging services and implements Quality of Service limits.

· Web Administration Service (WAS) is responsible for worker process management (the application pool manager) and HTTP.sys configuration.

· The Worker Process application (w3wp.exe) executes all worker processes, including in-process ISAPI extensions and ISAPI filters.

Important architectural features of IIS that are related to scalability include

· Application Pools allows multiple Web applications to share a single worker process. This allows configuration settings to be applied to multiple applications at once. Because one instance of w3wp.exe is loaded for each process, using application pools limits the number of copies of w3wp.exe that are needed (reducing the resource load on the system)

· Web Gardens are application pools with more than one worker process. Connection-based routing within the Garden ensures that the application is available even if one process dies.

· Processor Affinitization allows developers to bind an application pool process (or processes) to one or more CPUs using a mask-based configuration.

There have been dozens of performance improvements to IIS 6.0 and ASP.NET on Windows Server 2003. Even ASP applications run faster on IIS 6.0 and Windows Server 2003 than they did on Windows 2000 and IIS 5.0. A few of the reasons for the performance improvements include:

· 64-bit processor (Itanium) support for Windows Server Enterprise Edition and Datacenter Edition.

· ASP.NET is able to cache complete responses in HTTP.sys (the responses are marked as Location=“Server”). Cached responses are served straight from HTTP.sys, which is much faster because it is served from kernel mode and no user-mode transition is required. The ASP.NET application doesn’t even see requests if they are served from the cache.

· IIS 6.0 supports output caching and a persistent ASP template cache for improved throughput, even when serving ASP applications.

· IIS 6.0 supports a worker process mode without the marshaling overhead of IIS 5’s in-process mode. Again, faster processing means the server can handle more requests per second, which translates into more simultaneous users.

· Centralized Binary Logging allows Windows Server 2003 to support up to 10,000 sites per server, up to twenty times more than the recommended 500 sites per box for Windows 2000. Centralized binary logging relieves past bottlenecks by logging data for multiple sites to a single log file. The binary data is later parsed out for individual site reporting.

· Enterprise Edition and Datacenter Edition support more processors (up to eight for Enterprise Edition and up to 32 for Datacenter Edition).

· Recycling processes recovers resources to ensure that a poorly written application doesn’t compromise the scalability of other applications by starving them for resources.

· Scalability features such as out-of-process session state management allow applications to be deployed across a Web farm for greater throughput and reliability.

· Processes are generally started on-demand, i.e., only when they are needed, so as not to consume resources unnecessarily. They can also be killed after a specified idle time. This allows a single server to serve more applications than was practical in prior implementations. Set the idle timeout to shut down a process if it is idle for given period of time and free up resources for active applications. Consider disabling idle timeout if application startup takes a long time.

· Applications can be swapped and restarted on the fly, and a Web site can be restarted without affecting other Web sites on the same server. Eliminating down-time boosts effective performance as users are never waiting for a response from a crashed server. Furthermore, fewer extra servers are needed to handle the load during maintenance.

· Running safe out-of-process processes doesn’t require additional context switches from the IIS process to the application process as it did before.

· Optimizations were made to global PFN lock acquisition on both 32-bit and 64-bit systems.

· Improvements were made to dispatcher lock acquisition during context switching. The dispatcher lock assures synchronization between different threads and different CPUs. It is acquired whenever you need to scale a thread or perform a synchronization operation like setting an event, acquiring a mutex, setting a semaphore, or using any of the .NET synchronization objects. On systems with a large number of threads and processes, performance will improve between 15 and 20 percent.
· Windows Server 2003, Enterprise Edition, and Windows Server 2003, Datacenter Edition, both support Hot Add Memory. This allows ranges of memory to be added to a computer and made available to the operating system and applications as part of the normal memory pool while the server is running. This does not require re-booting the computer and involves no downtime. This feature will be available only on hardware that supports this feature.
Scalability Case Study

The NILE application was tested for scalability using an e-commerce benchmark from Doculabs, which measures the overall performance of some scenarios that are commonly used by e-commerce sites, including logon, browse items, search, shopping cart operations, check out, static file caching, data-base operations, and session state management. Results showed that ASP.NET ran more than twice as fast than ASP whether running on Windows 2000 or Windows Server 2003. The best performance was obtained using ASP.NET on Windows Server 2003, which ran more than three times as fast as ASP on Windows 2000. The application scaled up well too—performance with four and eight processors was approximately 250 percent and 350 percent faster, respectively, than benchmarks with one processor. The following figure shows a graph of the performance results.

[image: image2.wmf]

As you can see from this graph, Windows 2000 has impressive performance gains for multiple processors, but Windows Server 2003 has built on that and provides tremendous gains as you scale up.

For more information, see the following topics:

· Compare the Editions of Windows Server 2003
· Windows Server 2003 Family Technical Overview
· Benchmarking Microsoft® .NET vs. Sun® Microsystem’s J2EE
· Gregory F. Pfister, In Search of Clusters, 2nd Edition, Prentice Hall, 1998
Microsoft Systems Architecture (MSA)

Microsoft understands that IT Professionals are under increasing pressure to deliver scalable architectures in tight timeframes. Research alone can consume many months, after which development and testing may only reveal flaws in the initial design. Therefore, the Microsoft Systems Architecture program was chartered to provide IT Professional with reference architectures, prescriptive guidance, operations architectures, service models, and support models for the predominant data center configurations.

The Reference architecture allows customers to build a scalable, reliable, available, secure, and manageable environment using a recommended set of tools, technologies, and processes. Prescriptive guidance provides hardware and software configuration recommendations required to build this infrastructure in a production environment. An operations architecture, leveraging the Microsoft Operations Framework, provides a context for building a comprehensive data center management and operations environment. A service model addresses the complete lifecycle—pre-sales, envisioning, planning, building, deploying, and operating—of a standardized data center infrastructure in a reliable, consistent manner within known costs that meet the business, application, and IT requirements of the organization. The Support model defines how the MSA data center will be supported as a solution by Microsoft and/or Microsoft’s partners. The MSA program also includes support guides to help customer maintain performance and therefore value of the infrastructure.

The lab implementation and testing of these architectures allows Microsoft to optimize them for the Windows operating system. It also allows us to implement security on a data center-wide basis over the integration of all the products. This leverages the strong security built into each of our products and adds additional strategies and operating procedures to cover the entire infrastructure.

The first of these MSA configurations is the Internet Data Center (IDC) architecture, implemented for Windows 2000 as published in January 2002. By following the recommendations in the Internet Data Center documentation, an organization can quickly and efficiently build Internet data centers that in turn support rapid implementation of the applications that are suitable for its long-term Internet business needs. The architecture documents in extensive detail a data center configuration that provides Internet services in a secure and controlled manner. The following figure shows a logical view of the Internet Data Center.

[image: image3.wmf]

Several implementations of the architecture have been tested and validated using hardware from different vendors to assure that the required performance, scaling, availability, manageability, and security goals are met. The architecture also ensures that these services are consistently available and have the capacity to grow as business requirements increase. There are currently two IDC instances available, one based on the prescriptive implementations of hardware and software developed by Microsoft, Compaq, EMC, and Cisco, the other by Microsoft, Compaq, EMC, and Nortel. In addition other partners have developed, or are in the process of developing, their own qualified versions of the IDC. These partners include Dell, Unisys, Brocade, Fujitsu, and Siemens. The Windows Server 2003 implementation is in development with early adopters and will be published within 60 days of the v1.0 release of Windows Server 2003.

The Enterprise Data Center architecture, released as a Beta in July 2002, and implemented with Windows 2000, is the second major architecture to be released under the MSA program. It addresses the need for a scalable, robust, high-availability data center for business-critical and mission-critical applications. The final specification will be published in the Fall of 2002 for Windows 2000. Shortly thereafter a version optimized for Windows Server 2003 will be released. Additional MSA architectures will be released for the Windows Server 2003 platform in ensuing months.

For more information, see the following topics:

· Microsoft Systems Architecture: Internet Data Center
· Microsoft Systems Architecture program
· Microsoft Solution for Systems Architecture: Enterprise Data Center
· Microsoft Solution for Systems Architecture: Departmental Data Center
Design Concepts

Designing and implementing scalable architecture requires not only understanding the server features that support scaling but also understanding a few application, hardware, and server concepts.

Applications and Scaling

There is a continuum along which applications have characteristics that allow them to be scaled up or scaled out. Both scaling modes require parallelization, but they differ in the level at which the application can be parallelized; they also differ in the granularity with which they are partitioned.

In order to scale up, an application does not need to be partitioned at the core stream level but it still has to be partitioned at the filestream level. For example, one non-obvious bottleneck is that a multi-threaded process must avoid writing to the same data records from different threads. Simultaneous writes are an expensive operation because caches must be synchronized. Similarly, if a file or record is locked, the requests tend to queue up for processing in a serial fashion, in which case you lose the advantage of threading.

In order to scale out an application needs to be created such that each element that runs on a server does not contain state information. This allows it to exploit added resources in a scalable manner. In other words, to scale out well, an application should be parallelized so that different parts are independent of other parts, with each part taking advantage of appropriate resources.
For example a scalable Web application will generally be partitioned into a presentation layer, which runs on the client where scaling is not an issue, a middle tier that implements the business logic, for which scaling may be a substantive issue, and a data layer, with well-known database scaling requirements and solutions. The middle tier should be built where each component is not tied to a particular server across round trip requests from a client. This allows the server farm to grow or shrink as scaling dictates. Furthermore, because the throughput of an entire system is equal only to the throughput of its slowest part, partitioning an application into modular portion allows resources to be targeted at the particular bottleneck.

Load Balancing and Clustering

Let’s take a look at two Windows Server 2003 technologies and see how they relate to scaling an application.

With Windows Server 2003, Microsoft uses a two-part clustering strategy:

· Network Load Balancing (NLB) provides load balancing support for IP-based applications and services that require high scalability and availability.

· Server Cluster (SC) provides failover support for applications and services that require high availability, scalability and reliability.

Network Load Balancing (NLB) is a clustering technology that distributes TCP requests across servers. For instance, if there are two servers in a cluster, NLB will allocate TCP requests across those two servers. NLB is easy to setup and is included in all Windows Server 2003 products. With NLB, organizations can build groups of clustered computers to support load balancing of TCP, UDP, and GRE requests. Web-tier and front-end services, such as Web servers, streaming media servers, and Terminal Services, are ideal candidates for NLB.

A Server Cluster takes two or more computers and organizes them to work together to provide higher availability, reliability, and scalability than can be obtained by using a single system. When failure occurs in a cluster, resources can be redirected and the workload can be redistributed. Typically the end user experiences a limited failure, and may only have to refresh the browser or reconnect to an application to begin working again.

Together, these two technologies combine to insulate your IT infrastructure from application and service failure (software crashes), system and hardware failure (disk crashes), and even site failure (natural disasters, power outages, network interruptions, and so on). Microsoft cluster technologies increase overall availability, while minimizing single points of failure.

Network Load Balancing (NLB) is available in all versions of the Windows Server 2003 family. Cluster Server is available only in Windows Server 2003, Enterprise Edition and Datacenter Edition.

For more information, see the Windows Server 2003 Help and Support Center – NLB and Cluster Server topics

Choosing Scalable Applications

As discussed earlier, some applications are inherently scalable whereas others are not. Sometimes, however, an application that is scalable in theory is not in practice due to poor implementation. Any application can be slowed by gated access to a restricted resource. For example, a file or record lock will quickly turn into a bottleneck. Therefore, you might want to ensure that files and records remain unlocked by opening them in read-only mode when write access is not needed. Similarly, locking an entire file during peak demand to allow, say, someone to sort the database, will obviously lead to availability problems. Likewise, avoid writing to the same data space from multiple different threads that run on multiple different CPUs in order to avoid having to synchronize caches (which are a very expensive operation because it requires writing to memory and reading back from memory, with the attendant overhead).

Furthermore, you must identify the solutions to potential bottlenecks (or recognize where certain features will not enhance scalability due to the nature of the application). Almost any database scalability issue can be solved, but at what cost? Therefore, you must examine price performance (i.e., the cost per transaction) of a given solution.

IT Professionals have to install complete solutions, such as Enterprise Resource Planning (ERP) or Customer Relationship Management (CRM) applications, not just a database in isolation. So how do you identify applications that are scalable and avoid common bottleneck to ensure that they remain scalable? And how do you evaluate various solutions to ensure they will meet your scalability requirements without going to the time and expense of installing and testing each configuration yourself?

Fortunately, there are industry-standard benchmarks to assist in selecting well-scaling applications for various applications available at Ideas International. The benchmarks from TPC-C include transaction throughput rating for both clustered and non-clustered configurations. These are not vague theoretical numbers, but are instead truly reliable benchmarks based on stringent testing. For example, the Sales and Distribution (SAD) benchmark standard defines a suite of sales and distribution transactions that correlate closely with the number of supportable simultaneous users. For example, Microsoft’s SAP r3 implementation supports 25,000 simultaneous users, one of the highest throughputs among all solutions tested. IT Professionals can confidently architect their own configuration based on these benchmarks. Because benchmarks represent a minimum assured transaction throughput rate, if the benchmark numbers tell you that a configuration addresses the problem, then real-world enterprise scalability can be achieved with the benchmark hardware and software, or possibly even at lower levels.

For more information, see the following topics:

· Ideas International
· The Top Ten TPC-C by Performance Version 5 Results
Choosing Scalable Hardware

You must choose your hardware to match your scalability requirements, although hardware has become largely a commodity for all but the most demanding situations. There are limits to hardware’s ability to scale an application, however.

Although you can add more memory and a faster CPU up to the limits offered by hardware manufacturers, many applications will benefit up to a point from a multi-processor architecture. But, even multiple processors in the same box can experience bottlenecks. Because they share the same pool of RAM, and both the CPUs and the memory are connected via same bus, the bus eventually constitutes a bottleneck. Empirical testing revealed that a maximum of four CPUs was optimal, after which adding more CPUs offered noticeably diminishing returns.

Memory performance increases have been mostly due to a wider bus, not because of improvements in memory’s latency characteristics. Memory response time, from the time of a RAM request until the data is available, remain in the 70 ns to 150 ns range, where a CPU clock cycle is only 1 ns for a 1 GHz processor.

Windows 2000 offers support for processor affinity, which lets you limit the amount of hardware resources given to various groups of processes. You can group processes into job objects, and then limit resources assigned to these job objects. In Windows Server 2003, the feature is enhanced to deal with additional processors and job objects are known as application pools. You can limit the group process’s access to CPU and memory. This guarantees hardware is available for mission critical and priority applications in two ways. First, it can be used to specify the processor affinity for high priority applications. Alternatively, by tying less reliable or less critical processes to a certain subset of resources, the remaining CPUs are available for high-priority applications. Therefore, mission-critical applications won’t be starved of resources by badly behaved low-priority application.

Windows Server 2003 also offers greater support for Storage Area Networks (SANs), which significantly increase the amount of storage available. Virtual Disk Service (VDS) lets you manage large amounts of storage the same way you manage a local disk. This impacts scalability because it lets you manage large SANs connected to a server system via fiber. Furthermore, you can use SAN for multiple servers at the same time. Multi-path I/O lets you refer to same disk using multiple paths, which increases both scalability and availability.

Windows Sever 2003 also supports a Large Send Offload feature that lets the CPU offload major portions of the TCP/IP stack onto a network card (NIC) that also support this feature.

Numerous third-party manufacturers provide hardware that allows Hot-Add Memory to be added (i.e. you can add memory while a server is running). You should check with the manufacturer to make sure servers support this and determine what type of memory is hot swappable.

The Internet Security and Acceleration (ISA) Server supports packet-, circuit-, and application-level traffic screening, stateful inspection, integrated virtual private networking (VPN), integrated intrusion detection, smart application filters, transparency for all clients, advanced authentication, and secure server publishing.

Implementing a Scalable Architecture

One of the hardest tasks an IT professional usually faces is implementing an architecture that is scalable, manageable, and cost effective over time. These tasks are compounded by the ever-increasing pressure to place more functionality in the applications running on those servers.

Windows Server 2003 is the first server that has been designed from the ground up to work in this distributed and infinitely scalable world we find ourselves in.

Server Configurations

Let’s take a look at two ways to scale an application, by scaling out or scaling up.

Scaling Out

As mentioned earlier, all versions of Windows Server 2003 supports NLB. This allows you to create an NLB cluster as shown in the following diagram by simply installing Windows Server 2003 and enabling NLB. See the next section for more information.

[image: image4.wmf]Network Load

Balancing Cluster

This sever configuration can support up to 32 servers. For instance, you could start the NLB farm with four servers as shown in the top of the figure, and then add more servers as shown in the bottom part of the figure.

NLB supports the application types shown in Table 1.
Table 1: Application Types
	Application Type
	Description

	ASP.NET and ASP
	All types of ASP.NET such as Web Forms or XML Web Services are supported by NLB. ASP applications are also supported. See the last description in this table for a note on Affinity settings.

	Client / Server and Peer to Peer Applications (using .NET Remoting)
	Applications that communicate with each other using .NET Remoting can also use NLB. This includes client/server applications and peer-to-peer applications that are connected using Remoting. NET Remoting applications are supported because they are TCP/IP-based. This allows NLB to provide clustering support for remoted components.

	Other TCP/IP Applications
	NLB uses TCP/IP as its published protocol, so it should route any TCP/IP application requests correctly. If the application requires repeated connections to a server, then you can change the Affinity setting of NLB to keep the application returning to the same server in the farm. This will probably negatively affect scaling.

NLB is also nice as you can add or remove servers to a cluster while the cluster is running. This allows you to expand or contract a farm dynamically as the application needs to scale out. This also allows you to reconfigure servers in the cluster without taking the entire cluster down.

Scaling Up

Windows Server 2003 provides tremendous flexibility because you cannot only scale out but also scale up. Scaling up allows you to scale an application on a single server by adding resources such as more memory, faster disk, and more and/or faster processors as shown in the following figure.

[image: image5.wmf]U

p

Windows Server 2003 can scale from one processor to 32 (Datacenter Edition), resulting in a tremendous amount of room to grow on a single system.

Not only can you scale a single system up, you can also combine the modes. Combining the two modes provides the most in terms of scalability, reliability, and manageability. Later in this paper we will discuss IIS 6 features that fit into this model of scaling.

As mentioned earlier, the server hardware has improved dramatically. Many of the servers on the market and future servers provide support for adding memory while the server is running. This will allow you dynamically scale a server without taking down any applications.

Configuring and Managing IIS for Scalability

Part of implementing a scalable architecture involves setting up the software. IIS 6 provides a number of features you can use to accomplish this.

First, let’s take a look at Application Pools and the options that affect performance related to them. To create a new application pool, start Internet Information Services (IIS) and select the Application Pools folder. Right-click this folder, select New, then Application Pool. This will display the dialog shown below where you can name the new pool. Click OK when you are finished with the name and the new pool will be created.

[image: image6.wmf]

Once you click OK, the new pool will show up under Application Pools.

Now you can associate your application with the new pool. To accomplish this, open the properties for the application and switch to the Virtual Directory or Home Directory page. Next, select the new pool under the Application Pool list at the bottom of the page as shown below, then apply the change or click OK.

Now, you are ready to configure the pool. You can set these properties on the Application Pool parent folder and the settings will migrate to each pool. You can also set or override them at the pool level.

The main performance-related features are on the Performance Tab. This property page is used to configure the way that IIS handles processes. It is useful because you can tweak this behavior for each pool. This property page is shown below.

[image: image7.wmf]

The Idle Timeout limit helps conserve system resources by terminating unused worker processes. IIS will gracefully shutdown an idle process after the time period elapses. The Request Queue Limit prevents a server from being overloaded by a large number of events. IIS monitors the number of requests for a designated application pool queue before adding a new request to the queue. Users receive a non-customizable 503 error response if the queue limit is exceeded.

CPU accounting allows you to keep a process from overloading a CPU. You can enable this and then set the percentage of processor usage the application can use. You can elect to take no action or terminate the pool when it exceeds this limit. An error is written to the Event Log when an exception occurs.

The last option affects Web gardens. A Web garden is an application pool using more than one worker process. A single Web garden may take advantage of multiple processors on a server. A Web garden can also establish affinity between processes and processors. Web gardens allow other processes to accept requests, even when one in the pool is unresponsive or hung.

The Web Garden option is critical to scale up scenarios. If you need to scale up, you can set up multiple Web gardens and control how many of them are running based upon your number of processors.

Additional options that pertain heavily to performance are found under the Recycling tab. This tab is used to administer the recycling of worker processes. You can configure IIS to periodically restart worker processes in an application pool based upon one or more metrics that you set. This allows you to manage worker processes that are faulty before they can impact the performance of a server. This ensures that specified applications in those pools remain healthy and that system resources can be recovered on a timely basis. This Recycling tab is shown below with the default values.

[image: image8.wmf]

If IIS has to recycle a process, it throttles the ability of the faulty worker process to receive requests until it completes processing all remaining requests that it has stored in the request queue. A replacement worker process is started before the old worker process stops.

The last set of options that affects performance for application pools is found under the Cache Options tab. This tab is used to set your application caching options for ASP applications for the pool. The options for this tab are shown below.

[image: image9.wmf]

As shown in this figure, you can see that IIS does not cache any ASP files by default. This forces the client browser to query the server for a new (or updated) page at each request. Although this strategy saves disk space on the client, it increases application response time. However, the client is assured of obtaining the most current version of the page or pages.

You can use the cache options to improve performance of the application. You can either force the cache to memory on the server or limit the amount of files cached in memory and force the rest to disk. If you force them to disk, then you might consider setting up the cache directory on a fast disk.

There are also server settings that can impact the server’s performance. For instance, there are certain ASP settings that change the server’s behavior to one that will not scale as well. Tweaking these options can make a big difference on your server, especially if you are running ASP.NET applications only and not any ASP applications. This information is found in the Performance Settings topic in the IIS 6 Documentation.

Another important property, Enable Direct Metabase Edit, allows changes to the metabase while IIS is running. This setting allows you to make edits that affect scalability while the servers are in production if necessary. You can change this on the property page for the IIS server as shown below.

[image: image10.wmf]

For more information, see the following topics:

· Cache in the IIS6 documentation

· Performance Tuning / Performance Settings in the IIS 6 Documentation

· Performance Tuning / Scalability in the IIS 6 Documentation

Installing and Managing NLB and Server Clusters

To implement an NLB cluster, you must have at least two systems running Windows Server 2003 that are connected via a network. They must also be running the TCP/IP protocol. Ideally, you need at least two network adapters in each NLB server. One of the adapters is used to connect the NLB servers while the other is used to connect to the public network.

To create a new NLB cluster, open the Network Load Balancing Manager. Then right-click the Network Load Balancing Clusters node and select New Cluster. Answer the prompts as the wizard steps through the process.

Once you have your NLB cluster up and running, you can use either the GUI interface or the NLB command-line tool to manage it. This tool lets you control NLB from the command-line or in scripts. The syntax is:

c:\>nlb command [remote options][/h]

For instance, to query the status of all servers in a cluster named NorthWind and return the status of each, you can use this command:

nlb query < NorthWind >

To stop cluster operations on the local server to perform maintenance, you can use:

nlb stop

If you need to shutdown an entire NLB cluster, you can use this command:

nlb stop < NorthWind >

To start an NLB server in the cluster, you can use this command:

nlb start < NorthWind >:2

There are, of course, other options you can use with both the command-line and GUI tools. For more information on the command-line and other tools, search the Windows Server 2003 documentation for NLB.

NLB is a powerful clustering system with years of deployed history. Windows Server 2003 improves on the system by adding new features to NLB and also incorporating NLB into all versions of the server.

For more information, see the following topics NLB and Cluster Server topics in the Windows Server 2003 Documentation.
Windows Server 2003 Settings

There are only a few settings on Windows Server 2003 that you may want to tweak on a scalable server. The System applet in Control Panel has a few performance options. You can find these on the Advanced page under Performance, Settings. The Visual Effects page allows you to either adjust these settings for appearance or performance or just let the system decide (the default).

[image: image11.wmf]

It is probably a good idea to switch this setting to Adjust for best performance on a server just to make sure it stays that way.

The Advanced tab allows you to have some control over the processor priority and memory as shown below. If you change the processor scheduling from Programs to Background, then equal processor cycles are given to both types of programs (a background program would be a program such as SQL Server™).

The Memory usage setting is already set to favor using the server as an application server.

[image: image12.wmf]

Another setting that could affect your server is the Automatic Updates setting. This setting is found on the Automatic Updates tab in the System Outlet properties as shown below.

[image: image13.wmf]

By default, this setting automatically checks for updates over the Internet. For maximum performance, you may decide to turn this off on highly scalable servers. This will eliminate any cycles for checking updates. Of course, then you are responsible for manually applying updates.

Conclusion

The Windows Server 2003 platform facilitates cost-effective scalability. It features out-of-the-box scalability enhancements, and all the plumbing is in place for IT architects and developers to take advantage of. The Windows Server 2003 family was designed with scalability in mind. IT Professionals and developers can construct systems that scale up and scale out easily and cost-effectively. The MSA program provides proven, field-tested, benchmarked reference architectures and prescriptive guidance to ensure data centers follow best practices to capture the benefits that Windows Server 2003 offers.

Related Links

· What's New in Application Services
· Application Server Technologies
· Server Clusters & Load Balancing

· Server Scalability in the Windows Server 2003 Documentation

DNS, SMTP, FTP

