[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Connected Digital Picture Frames: Analysis and Specifications
November 5, 2008
Abstract
Users accumulate digital pictures at a rapid pace. In fact, it is not uncommon to find families with thousands of digital pictures stored in PCs, network-attached storage (NAS) devices, flash memory, iPods, on photo-sharing Web sites, and so on. With this distributed set of storage devices and access models, it is challenging to manage and share these pictures.
Most families enjoy sharing their pictures with friends and relatives if they can use readily available and easy-to-set-up digital picture frames. A user who wants to share pictures by using a digital picture frame selects pictures in a PC, transfers the selection to USB memory, and sends this USB memory to remote family and friends and, finally, the recipient downloads the content to the digital picture frame. Although this method works successfully for most users today, it becomes limited when users have thousands of pictures in their PCs. Users begin to find that their digital picture frame is showing stale pictures due to the effort involved in manually transferring pictures from storage device, to USB, and finally, to the digital picture frame. Eventually, users often lose satisfaction with the digital picture frames and look for other sharing mechanisms.
Digital picture frame devices that can connect with the network become necessary to satisfy the user needs. Digital picture frames that connect to the network can access pictures from networked PCs or directly from Web sites.
This white paper presents two Microsoft technologies that enable full connectivity for digital picture frame devices:
Windows 7 Media Sharing technologies to connect digital picture frames with PCs in the home network.
FrameIt technologies to connect digital picture frames with Web-based receive-side scaling (RSS) feeds.

This information applies for the Windows 7 operating system.
For the latest information, see:
http://www.microsoft.com/whdc/device/media/DigitalPicFrms.mspx

Disclaimer: This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2008 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Windows Server, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.
Document History
	Date
	Change
	
	
	

	November 5, 2008
	First publication

Contents
Organization of This White Paper	4
Part 1. Windows Media Sharing Protocols for Digital Picture Frames	4
Background	4
Main Usage Scenario	4
Introduction to the Protocol	5
Scope	6
Implementation of Networked Digital Picture Frames	7
Baseline Architecture	7
Core Architecture Requirements	8
Media Formats	9
Connectivity	10
Device Discovery	10
Device Description	10
Service Description	12
Connection Manager Service	12
AV Transport Service	13
State Transitions	14
Rendering Control Service	15
Events	16
References	17
Part 2. Windows Live FrameIt	18
Terms of Use	18
Introduction	18
How FrameIt works	18
RSS Overview	19
Integrating with FrameIt	19
System Requirements	19
Specifications	19
Step 1: Choose a level of integration.	20
Step 2: Implement the specifications.	20
Step 3: Apply for device certification.	30
Other Integration Options	30
Integrating with FrameIt via the PC	30
Integrating with FrameIt on Windows CE Devices	30
About External Content Sources	31
Frequently Asked Questions	31
Further Information	32
Appendix	33
Sample FrameIt RSS XML Content	33

[bookmark: _Toc211737800][bookmark: _Toc212894780]Organization of This White Paper
This white paper presents two complementary technologies that can be implemented together or separately by digital picture frame manufacturers. These technologies are represented in standalone documents that are presented here in one package. In packaging them together in this format, we hope to facilitate digital picture frame manufacturers to easily find and integrate either or both technologies as necessary.
As mentioned, these technologies may be implemented independently of each other. Therefore, the digital picture frame manufacturer with the goal of achieving certification in either or both technologies must follow the separate testing and certification requirements for each technology. Information is provided in each of the parts to describe the required certification processes.
[bookmark: _Toc211737801][bookmark: _Toc212894781]Part 1. Windows Media Sharing Protocols for Digital Picture Frames
[bookmark: _Toc211737802][bookmark: _Toc212894782]Background
Users collect large numbers of digital pictures that usually are stored in a home PC. It is not uncommon to find users who have accumulated several thousands pictures in their home PCs.
At the same time, the diminishing cost of liquid crystal display (LCD) displays has made possible the manufacture of affordable digital picture frames. Within the last two years, the number of available digital picture frame models at retail stores has increased from a few to dozens of models. There is now a healthy competitive environment among digital picture frame vendors offering users different features at different prices.
A majority of the currently available digital picture frames consume content locally. Users typically download a desired set of images from their PCs or directly from their digital cameras to USB flash memory. Then, they connect the flash memory to the digital picture frame that, after a few configuration options, displays the stored images one after the other.
The fact that most users keep their large digital picture collection stored in their PCs becomes a strong motivator to design the infrastructure to connect directly PCs and digital picture frames by using home networks. In this paper, we explain how digital picture frame devices can connect with Windows PCs by using UPnP and Digital Living Network Alliance (DLNA) standards.
[bookmark: _Toc211737803][bookmark: _Toc212894783]Main Usage Scenario
Alice is an average user who owns a computer at home. Like many other users, Alice has installed a home network. Alice buys a networked digital picture frame from the local electronics retail store and connects this device to her home network. Then,
1.	Alice selects a group of pictures from her Windows PC that she wants to play in the new digital picture frame.
2.	Alice uses the PC to start the process to display pictures in the digital picture frame. In response, the digital picture frame displays the pictures one by one.
3.	Alice can cancel the connection with the digital picture frame at any time.

Figure 1 illustrates this scenario. The digital picture frame might provide some extra features.

Figure 1. Alice selects a group of pictures on her PC and sends the pictures to the digital picture frame.
[bookmark: _Toc211737804][bookmark: _Toc212894784]Introduction to the Protocol
After the user selects a group of pictures, the PC sends a request to play the first picture to the digital picture frame. The PC uses simple UPnP protocols for this purpose. The digital picture frame retrieves the picture from the PC by using an HTTP GET request and displays the picture. The process is repeated at the time of displaying the second picture, third picture, and so on. Figure 2 illustrates this process. In the DLNA architecture, the PC acts as a controller (either a digital media controller {DMC} or +PU+), and the digital picture frame acts as a digital media renderer (DMR).
The PC communicates with the digital picture frame each time it sends a request to play a new picture. In other words, the PC sends pictures one by one to the digital picture frame. The current protocols do not allow the PC to download lists of pictures in a single transfer or to synchronize the digital picture frame cached pictures with folders in a PC. Future versions of the protocol will cover these scenarios.

Figure 2. The PC sends UPnP actions to the digital picture frame to play a picture.
At the protocol level, the communication between the PC and a digital picture frame can be described with the following sequence of tasks:
1.	The controller PC discovers the networked digital picture frame by receiving discovery messages generated by the digital picture frame. The controller PC can also discover a networked digital picture frame by sending search requests to the network to initiate communications with any networked digital picture frame.
2.	The controller PC discovers essential features in the digital picture frame after parsing and processing the content of the device description document and service description document (XML documents).
3.	The controller PC discovers the types of picture formats supported by the digital picture frame by using the connection management request action CMS:GetProtocolInfo.
4.	The controller PC sends the digital picture frame the uniform resource identifier (URI) for the first picture by using the AVT:SetAVTransportURI action.
5.	The controller PC sends the digital picture frame a request to start rendering the first picture by using the AVT:Play action.
6.	The networked digital picture frame sends an HTTP request (by using the picture URI) to obtain the picture file from the source server. The source server can be the PC itself, or it can be some other server device in the home network.
7.	The digital picture frame device displays the picture and waits for new request actions from any controller in the network.

After the digital picture frame obtains the picture, the digital picture frame renders the picture immediately. Assuming no external interactions such as user commands or other applications, the picture remains displayed in the digital picture frame until the PC sends the next picture or until the picture lifetime expires.
[bookmark: _Toc211737805][bookmark: _Toc212894785]Scope
Not all elements and features can be introduced in the first version of a protocol for communications between digital picture frames and PCs. Table 1 describes the current scope (Version 1) and a plan to extend the features in future work.
Table 1. Features for the Communication Protocol between Digital Picture Frames and PCs
	Area
	Version 1 features
	Possible Version 2
	Beyond Version 2

	Communi-
cations
	UPnP/DLNA communications.
Targets multiple digital picture frames but no synchronized playback between digital picture frames.
Protocol extensions for
Picture lifetime.
Digital picture frame screen resolution.
	Exchange media playlists.
Wake on LAN protocols.
Synchronized playback of multiple target digital picture frames.
	Synchronization between digital picture frame cache and PC folders.
Support for interactive applications.

	Transport controls
	Basic transport controls (play and stop) for image rendering.
	Full set of transport controls for audio and video playback such as play, stop, pause, fast forward.
Transport controls for playlists.
	Transport controls for complex media display sessions; for example, sessions where multiple media items play concurrently in a synchronized manner.

	Media
	Basic set of image format profiles (JPEG_SM and JPEG_MED).
	Additional audio and A/V formats.
PC-generated transition effects.
Format for linear playlists
	Formats for multimedia playlists.
Formats for interactive media.

[bookmark: _Toc211737806][bookmark: _Toc212894786]Implementation of Networked Digital Picture Frames
[bookmark: _Toc211737807][bookmark: _Toc212894787]Baseline Architecture
DLNA defines the following device classes for exchanging media in home networks:
Digital media server (DMS)
Digital media controller (DMC)
Digital media renderer (DMR)

A digital media server is a device that stores content in the network. A digital media renderer is a device that renders content in the network. Users use the digital media controller to select a server, select content from the server, select a target digital media renderer, and then push the content to the target digital media renderer.
For example, a PC acting as a digital media controller sends the digital media renderer picture frame a request to display an image. The digital media renderer responds by displaying the requested image. In a digital media renderer/controller scenario, the UI functionality exists in the digital media controller. All complex UI operations (browse content, classify content, select content, and so on.) must be developed in the digital media controller.
Figure 3 illustrates the interactions between a DMS, a DMC, and a DMR.

Figure 3. A user interacts with the DMC to select a media server (DMS), select pictures, and push the pictures to the target DMR, in this case, a digital picture frame.
[bookmark: _Toc211737808]In addition to these three device classes, DLNA defines the class of digital media players (DMPs). A digital media player includes a user interface that can be used to browse and retrieve content from servers. Although it is possible to build digital picture frame devices belonging to the DMP class, this paper recommends building devices that adhere to the DMR class. The Windows logo for certified network media devices will certify only devices from the DMR class.
The rationale for preferring a DMR over a DMP is straightforward. When families keep thousands of pictures and other types of media stored in multiple devices in the home network, classifying and selecting content is an arduous task for low-cost devices such as digital picture frames. Computers are well suited to provide the necessary media management functions because they routinely use search engines and database tools to classify and organize content.
[bookmark: _Toc212894788]Core Architecture Requirements
The digital picture frame should pass all the required DLNA tests for a DMR that supports the Image class.
The next sections in this document describe additional requirements and recommendations beyond DLNA to match some of the current digital picture frame capabilities. The following list summarizes these additions;
Digital picture frames must support an additional JPEG format profile.
Digital picture frames should advertise their screen resolution. Windows PCs will use the actual screen resolution to generate matching pictures.
Digital picture frames should send UPnP discovery messages at a faster rate than UPnP/DLNA recommendations.
Digital picture frames should provide icons that match the Windows globally unique identifier (GUI) requirements.
Digital picture frames should implement the DMR as a root device.
Digital picture frames should recognize the picture lifetime field to ensure a consistent user experience.
Digital picture frames must follow the state transitions described in section 5.10
Digital picture frames that interact with other applications such as FrameIt must transition to a well-defined state and wait for the next controlling action.
Digital picture frames that support brightness and contrast adjustments must use values between 0 and 100 for these variables.
[bookmark: _Toc211737809][bookmark: _Toc212894789]Media Formats
Image Format Profiles
If a digital media renderer undergoes DLNA certification for a specific media class (audio, AV, or image), the test procedure verifies that the device decodes and plays the mandatory format profiles for the specific media class.
A networked digital picture frame behaves as a digital media renderer for the Image class. In this class, DLNA requires the networked digital picture frame to decode and play the JPEG_SM profile (small JPEG images with resolutions up to 640 x 480).
Any low-cost digital camera already surpasses the JPEG_SM profile. Consequently, digital picture frames are required to decode and play JPEG_MED (images with size up to 1024 x 768).
DLNA has no requirement to display the content in its original size; that is, a digital picture frame that retrieves an image in the JPEG_SM or JPEG_MED profiles can scale the image to any appropriate size for display.
A Windows PC allows users to select images in multiple formats (JPEG, GIF, PNG, and so on) and multiple resolutions (from small sizes to very large sizes). The PC transcodes and scales the images to the profiles described here to ensure that all networked digital picture frames can play those images.
Optimized Image Scaling
DLNA defines three types of images: small (resolutions up to 640 x 480), medium (resolutions up to 1024 x 768), and large (resolutions up to 4096 x 4096). Windows PCs transcode and rescale images to these values.
If a PC knows the exact digital picture frame screen resolution, the PC can scale large images into a size that matches the screen resolution. DLNA does not have a method to pass this information. Use the following method to pass this scaling information.
The PC sends action AVT:GetDeviceCapabilities. The response includes three arguments described in Table 3, which shows a digital picture frame with resolution 800 x 600 (800 is the number of horizontal pixels and 600 is the number of vertical pixels).
Table 3. AVT:GetDeviceCapabilities Output Arguments
	Argument
	Value

	PlayMedia
	NONE,NETWORK,X_DPF_800_600

	RecMedia
	NOT_IMPLEMENTED

	RecQualityModes
	NOT_IMPLEMENTED

The tokens NONE and NETWORK must be used for DLNA compliance. The token X_DPF_H_V gives the exact digital picture frame screen resolution.
[bookmark: _Toc211737810][bookmark: _Toc212894790]Connectivity
Physical Connectivity
Per DLNA, a digital picture frame must include Ethernet connectivity, Wi-Fi connectivity, or both.
IP Addressing
Per DLNA, all devices obtain IP addresses using both AutoIP and DHCP. Home networks are expected to have a router that acts as a DHCP server, but devices will use AutoIP to remain connected if the DHCP server fails. AutoIP is also used if the home network is configured without a DHCP server.
Because most users already have access to affordable routers with reliable DHCP servers, the need for AutoIP is no longer a high priority. It is sufficient for networked digital picture frames to obtain an IP address via DHCP.
If the digital picture frame undergoes DLNA certification, it will have to implement AutoIP.
[bookmark: _Toc211737811][bookmark: _Toc212894791]Device Discovery
Discovery Protocols
In compliance with UPnP and DLNA specifications, any networked digital picture frame must do the following upon connecting to the network:
Broadcast ssdp:alive messages periodically to advertise its presence in the network.
Broadcast ssdp:byebye messages to announce its departure from the network.
Respond to applicable M-SEARCH requests.

The ssdp:alive messages keep the PC continuously informed about the connectivity of the digital picture frame. For this reason, we recommend to send these messages every two minutes. The ssdp:alive message has a header called CACHE-CONTROL. This header defines the expiration time of the ssdp:alive message. Usually, its value is set to twice the period of ssdp:alive messages. Therefore, the value should be (in seconds): CACHE-CONTROL: 240.
[bookmark: _Toc211737812][bookmark: _Toc212894792]Device Description
Device Description Document
Per UPnP and DLNA, devices provide a Device Description Document. Table 4 summarizes the required element values for this document.
Note: The italic text entries represent instructions to the device vendor to define the actual value.
Table 4. Elements and Values in a Digital Picture Frame Device Description Document
	Element
	Value

	specVersion, major
	1

	specVersion, minor
	0

	deviceType
	urn:schemas-upnp-org:device-1-0

	friendlyName
	Vendor-defined friendly name for the digital picture frame

	dlna:X_DLNADOC
	DMR-1.50

	manufacturer
	Vendor-defined manufacturer name applicable to the digital picture frame

	modelName
	Vendor-defined model name for the digital picture frame

	UDN
	uuid:vendor-defined-uuid-value

	iconList
	DLNA requires four icons according to the following instructions:
--One JPEG icon and one PNG icon of size 48x48
--One JPEG icon and one PNG icon of size 120x120

	serviceType
	Provide valid identifiers for the three required services (CMS, AVT, and RCS):
--For CMS: urn:schemas-upnp-org:service:ConnectionManager:1
--For AVT: urn:schemas-upnp-org:service:AVTransport:1
-For RCS: urn:schemas-upnp-org:service:RenderingControl:1

	serviceID
	Provide valid identifiers for the three required services (CMS, AVT, and RCS).
--For CMS: urn:upnp-org:serviceId:ConnectionManager
--For AVT: urn:upnp-org:serviceId:AVTransport
--For RCS: urn:upnp-org:serviceId:RenderingControl

It is important for digital picture frame vendors to choose the friendlyName, manufacturer, and modelName values carefully because Windows uses these fields in GUIs that represent the digital picture frame.
Windows uses the portable network graphics (PNG) icons when it builds a GUI representing the digital picture frame. Thus, it is important for digital picture frame vendors to ensure that the PNG icons are always present. Furthermore, each PNG icon must have the following characteristics:
Truecolor (RGB) with an alpha channel for transparency.
8-bits-per-color channel (for a total of 24 bits per palette), and 8 bits for the alpha channel.
The image should depict the picture frame device onto a transparent background.
Root Device
Per UPnP and DLNA, the physical box that makes up a device can host a root device and multiple layers of embedded devices. The device description document uses element <root> to describe features for the root device, and then it uses element <deviceList> to describe features for embedded devices. Embedded devices can embed yet another layer of devices, and so on.
Most implementations use only a root device and have no embedded devices. They follow this practice for simplicity. Therefore, a digital picture frame device should be the root device, not an embedded device. In fact, the digital picture frame device should have zero embedded devices.
[bookmark: _Toc211737813][bookmark: _Toc212894793]Service Description
Service Description Document
Per UPnP and DLNA, a digital picture frame device makes available an XML-based service description document for each of the three required services:
Connection Manager Service (CMS)
AV Transport Service (AVT)
Rendering Control Service (RCS)
The service description document lists the collections of actions and state variables that a device implements for each service. UPnP and DLNA define a list of required actions and state variables for each of the services. From the required list, only a subset is used by controller PCs to communicate with devices like a digital picture frame.
Connection and Service Instances
Per DLNA, simple devices like a digital picture frame implement only a default connection. The default connection is always available and can be identified by the following values:
ConnectionID = 0
AVTransportID = InstanceID (in AVT actions) = 0
RcsID = InstanceID (in RCS actions) = 0

Windows PCs invokes only actions that use the default connection.
[bookmark: _Toc211737814][bookmark: _Toc212894794]Connection Manager Service
CMS Actions
Per DLNA, a networked digital picture frame always implements the following three actions and associated state variables:
CMS:GetProtocolInfo
CMS:GetCurrentConnectionIDs
CMS:GetCurrentConnectionInfo

Controllers may or may not use the three actions. The controller in a Windows PC queries digital picture frame devices by using only CMS:GetProtocolInfo.
5.8.2 CMS:GetProtocolInfo
Per DLNA, a networked media renderer always reports the complete set of supported protocolInfo values in response to action CMS:GetProtocolInfo. This action has two output arguments, Source and Sink. The Source argument is of no use for a digital picture frame because the digital picture frame is not a source of content. The Sink argument carries a comma-separated list of all the protocolInfo values.
Table 5 describes the minimal list of protocolInfo values for a digital picture frame in compliance with recommendations in this paper.
Table 5. protocolInfo Values
	protocolInfo values
	Description

	http-get:*:image/jpeg:DLNA.ORG_PN=JPEG_SM
	Digital picture frame accepts small JPEG images (JPEG_SM profile) by using HTTP.

	http-get:*:image/jpeg:DLNA.ORG_PN=JPEG_MED
	digital picture frame accepts medium-size JPEG images (JPEG_MED profile) by using HTTP.

If a digital picture frame supports media format profiles other than those described in Table 5, then it must add the corresponding protocolInfo values to the list.
[bookmark: _Toc211737815][bookmark: _Toc212894795]AV Transport Service
AVT Actions
UPnP defines several actions for the AVT service (version 1). DLNA does not use all the UPnP actions, and it adds some new actions for seek operations. Controllers may or may not use all of the actions.
The controller in a Windows PC uses the following subset to communicate with digital picture frames:
AVT:SetAVTransportURI
AVT:GetTransportInfo
AVT:GetDeviceCapabilities
AVT:Stop
AVT:Play
AVT:SetAVTransportURI
This action sends the digital picture frame the following information:
The URI of a picture (by using argument CurrentURI).
Metadata for the picture (by using argument CurrentURIMetaData).

A Windows PC always sends metadata that contains several <res> elements. Each <res> element defines a variant for the picture. The original picture is one variant. Resized versions or transcoded versions provide additional variants.
A digital picture frame can accept the URI that appears in the CurrentURI argument, but a better digital picture frame examines the list of <res> elements and selects the variant that provides the highest quality.
AVT:GetTransportInfo
A controller PC invokes this action to obtain information about the state and status of the digital picture frame.
Argument CurrentTransportState returns the value stored in state variable AVT.TransportState. This state variable tracks the current digital picture frame state. The state is always one of the following: NO_MEDIA_PRESENT, PLAYING, TRANSITIONING, or STOPPED.
Argument CurrentTransportStatus returns the value stored in state variable AVT.TransportStatus. This state variable tracks the status of the playback operation. The status is always one of the following: OK or ERROR_OCCURRED.
The value ERROR_OCCURRED must be used whenever some error prevents the correct decoding and rendering of a picture. If a digital picture frame cannot recover from this error condition, it must transition to the STOPPED state and wait for further actions from controllers in the network.
AVT:GetDeviceCapabilities
This action returns a list of capabilities associated with the digital picture frame device. Windows PCs use this action to retrieve the actual screen resolution.
AVT:Stop
This action stops the rendering of an image. The image cannot be displayed after the controller issues an AVT:Stop action.
AVT:Play
After sending the image URI via AVT:SetAVTransportURI, the controller sends an AVT:Play action to start the process of rendering an image.
Use of Picture Lifetime
A Windows PC sends an AVT:SetAVTRansportURI action to the digital picture frame to convey the URI of a picture. The metadata for the picture (carried in the CurrentURIMetaData argument) can include the following lifetime field.
<msnmd:Lifetime xmlns:msnmd=”http://www.microsoft.com/wex/dnm/nmd”>LVALUE
</msnmd:Lifetime>

where LVALUE represents a time value formatted according to the UPnP specifications for AVT.CurrentTrackDuration.
This element indicates the expected lifetime of a picture; that is, the display time of a picture assuming no direct intervention of a user or another application. Before this time expires, the controlling PC may send another picture with a different lifetime value to replace the current picture. After the picture lifetime expires, the digital picture frame may stop displaying the picture and proceed to do any vendor-defined operations such as display another picture or display a screen saver. In the absence of a lifetime field, the digital picture frame should continue displaying the picture until a user or another application forces the digital picture frame to do something different.
[bookmark: _Toc211737816][bookmark: _Toc212894796]State Transitions
Per DLNA, the digital picture frame responds according to Figure 4 state diagram when it processes images received from a controller in the network.
When a digital picture frame renders a picture, it is in PLAYING state and Windows PC sends a sequence of three actions to replace the picture with a new picture, as shown in Figure 4.
AVT:Stop to halt the rendering of the current picture.
AVT:SetAVTransportURI to prepare the digital picture frame for the new picture.
AVT:Play to start the display of the new picture.

In general, digital picture frames use the TRANSITIONING state sporadically, for example, if a delay in the network prevents quick downloading. Any errors in the download process or in the decoding and rendering process always move the system to the STOPPED state. Per DLNA, an AVT:SetAVTransportURI action with an empty URI always moves the system to the NO_MEDIA_PRESENT state.
If another application, such as FrameIt, begins displaying a picture in the digital picture frame, the device must transition to the NO_MEDIA_PRESENT state by using a status value of OK. The digital picture frame remains in the NO_MEDIA_PRESENT state until it receives an AVT:SetAVTransportURI action.
A digital picture frame must not block requests to display images from networked controllers or from third-party applications. That is, the most recent request for screen usage always gains control of the screen at the time of displaying images.
Figure 4 shows the state transitions.

Figure 4. State transitions for networked digital picture frames
[bookmark: _Toc211737817][bookmark: _Toc212894797]Rendering Control Service
RCS Actions
UPnP defines a long list of actions for controlling the output characteristics of a device. From this list, the following four actions are currently relevant to baseline digital picture frames:
RCS:GetBrightness
RCS:SetBrightness
RCS:GetContrast
RCS:SetContrast
RCS:SetBrightness and RCS:GetBrightness
A controller PC can invoke these actions to change the brightness level in the picture frame. Argument DesiredBrightness in RCS:SetBrightness action defines the new brightness level. Argument CurrentBrightness in RCS:GetBrightness action returns the current brightness level. The brightness level must be any number from 0 to 100, with 0 representing the darkest option.
RCS:SetContrast and RCS:GetContrast
A controller PC can invoke these actions to change the contrast level in the picture frame. Argument DesiredContrast in RCS:SetContrast action defines the new contrast level. Argument CurrentContrast in RCS:GetContrast action returns the current contrast level. The contrast level must be any number from 0 to 100, with 0 representing the least difference between blacks and whites and 100 representing the largest difference between blacks and whites.
[bookmark: _Toc211737818][bookmark: _Toc212894798]Events
AVT Events
Eventing is a tool that provides quick feedback to controller PCs over the network. Although DLNA requires eventing, devices like a digital picture frame can ignore this functionality. If the functionality is available, the controller PC subscribes and listens for events from the AVTransport service. There is one evented AVT variable, ,AVT.LastChange, and it includes a list of all the digital picture frame state variables that have changed recently.
Per DLNA, all required state variables must be evented. However, a Windows PC tracks changes only for the following state variables:
AVT.TransportState
AVT.TransportStatus
AVT.CurrentTrackURI

Per DLNA, a digital picture frame generates events only if there has been a change to one of the state variables. If there is a change, the digital picture frame has to wait 0.2 second from the last event before firing a new event.
RCS Events
Eventing is a tool that provides quick feedback to controller PCs over the network. Although DLNA requires eventing, devices like a digital picture frame can ignore this functionality. If the functionality is available, the controller PC subscribes and listens for events from the Rendering Control Service. There is one evented RCS variable, RCS.LastChange, and it includes a list of all the digital picture frame state variables that have changed recently.
Per DLNA, all implemented state variables must be evented. However, a Windows PC tracks changes only for the following state variables:
RCS.Brightness
RCS.Contrast

Per DLNA, a digital picture frame generates events only if there has been a change to one of the state variables. If there is a change, the digital picture frame has to wait 0.2 second from the last event before firing a new event.
[bookmark: _Toc211737819][bookmark: _Toc212894799]References
"DLNA Networked Device Interoperability Guidelines - Expanded," Volume 1 (Architecture and Protocols) and Volume 2 (Media Formats), Digital Living Network Alliance (DLNA), October 2006.
"DLNA Networked Device Interoperability Guidelines – Expanded, Errata Edition #3," Digital Living Network Alliance (DLNA), September 2008.
"UPnP Device Architecture 1.0," Document Version 1.0.1, UPnP Forum, July 2006.
"UPnP AV Architecture:1 – For UPnP Version 1.0," UPnP Forum, June 2002.
"ConnectionManager:1 Service Template Version 1.01 – For UPnP Version 1.0," UPnP Forum, June 2002.
"AVTransport:1 Service Template Version 1.01 – For UPnP Version 1.0," UPnP Forum, June 2002.
"RenderingControl:1 Service Template Version 1.01 – For UPnP Version 1.0, "UPnP Forum, June 2002.

Connected Digital Picture Frames: Analysis and Specifications - 2

© 2008 Microsoft Corporation. All rights reserved.
[bookmark: _Toc211737820][bookmark: _Toc212894800]Part 2. Windows Live FrameIt
[bookmark: _Toc212894801]Terms of Use
Your use of the Windows Live FrameIt developer integration documentation and tools is subject to the terms at http://dev.live.com/terms/default.aspx.This document describes how a device manufacturer can integrate with the FrameIt service from Windows Live.
[bookmark: _Toc211737821][bookmark: _Toc212894802]Introduction
Windows Live FrameIt is the new way to combine photos, news, and information for personal use and for sharing with friends and family. With FrameIt, customers weave together photos, interesting news sources, and Web content into an RSS feed tailored for digital display devices such as digital photo frames and other consumer electronic (CE) devices.
Through FrameIt, Windows Live provides the device manufacturer a simple and easy way to extend hardware offerings to include live images served from the Internet. The complete Windows Live solution provides the customer access to free, online photo storage, photo editing and sharing services, and a simple out-of-box setup experience.
Some digital display devices provide support for RSS image feeds today. FrameIt advances this integration. Integrating with FrameIt provides a consistent interface for displaying a wide variety of Web-based content on the frame. The FrameIt service shelters the device from changes in RSS formats and competing technologies so you can concentrate on providing a compelling, leading-edge hardware and device software experience.
[bookmark: _Toc211737822][bookmark: _Toc212894803]How FrameIt works
At the FrameIt Web site, a customer can choose content from a variety of sources. Some of these sources are photo-sharing sites. Other sources are information services such as traffic, weather, and news. In addition to the content sources in the FrameIt catalog, the customer may also choose content from their favorite blogs, Web sites, other RSS feeds, ATOM feeds, and so on. Most types of online text or image content can be used with the service.
After the user chooses content, FrameIt fetches all of the programmed content on the user’s behalf. All text content chosen by the customer is converted into image format on an ongoing basis on the FrameIt servers. FrameIt then mixes this content with the photo content chosen by users. The resulting set of images is published by using the RSS data format over HTTP.
FrameIt will continue to fetch updates from the programmed content sources. FrameIt updates the resulting RSS feed as the source content is updated. Any device configured to pull a FrameIt RSS feed can then display the images chosen by the customer. Because the content is constantly changing, the device should periodically check for updates to the FrameIt feed. The feed contains a time to live (TTL) value that the device uses to know when to fetch an updated version of the feed. The TTL is generated based on the content in the feed. For example, a feed containing a highway traffic report has a short TTL. As traffic data changes frequently, this feed needs to be fetched frequently to ensure the frame displays current information. If the TTL is not respected, the customer may receive a poor device and content experience.
FrameIt provides support for customers to create multiple feeds, each with similar content or with different content, for various devices and for various audiences. For example, a customer might have a frame in the kitchen as well as a frame on the desk at work. Similarly, a user might manage a frame owned by an older family member. Each of these frames could display different content.
In addition, a customer might want to create a personal feed and a family feed. The family feed might aggregate all the photos of the children in the family. This customer might then send a frame preconfigured to use this family feed to grandma for a holiday gift.
[bookmark: _Toc211737823][bookmark: _Toc212894804]RSS Overview
Really Simple Syndication (RSS) allows customers to subscribe to changes in published content on the Internet. For example, if Jennifer takes a photo and uploads it to an RSS-enabled photo-sharing site, anyone subscribing to Jennifer’s photos via RSS is notified that the photo is available. As Jennifer uploads additional photos, her changes are published to an XML-based data file, or RSS feed. This data file is updated as Jennifer makes changes. Each change in the content source is a separate item in the RSS feed. Therefore, each image Jennifer uploads is represented as a separate item in the RSS feed. Eventually, the items in her RSS feed represent a history of the photos she has uploaded over days, months, or even years.
RSS has been extended by multiple parties. FrameIt can generate RSS feeds compliant with both enclosure and media:content tags to ensure compatibility with the wide variety of devices produced today. Your device may use either tag to retrieve the published images.
[bookmark: _Toc211737824][bookmark: _Toc212894805]Integrating with FrameIt
The following section provides detailed requirements and specifications for integrating with Windows Live FrameIt. At the end of this section are guidelines for self-testing that should be completed before submitting a frame for certification.
[bookmark: _Toc211737825][bookmark: _Toc212894806]System Requirements
Internet connectivity
RSS 2.0 support
[bookmark: _Toc211737826][bookmark: _Toc212894807]Specifications
Integrating with Windows Live FrameIt is a three-step process.
1.	Choose the level of integration you want to complete.
2.	Implement against the specifications for that level of integration.
3.	Apply for certification.

If you have unique requirements, please contact us at frameit@microsoft.com.
[bookmark: _Toc211737827][bookmark: _Toc212894808]Step 1: Choose a level of integration.
The levels of integration are described in Table 1.
Table 1. FrameIt Integration Levels
	Level
	Scenario
	Required specifications

	Good
	The customer can program an RSS feed URL into the device. The device fetches images from the FrameIt RSS feed. The device fetches an updated version of the feed based on the RSS TTL value. If the device has displayed all the images before the TTL, it replays the images until it fetches an update.
	Content refresh requirements

	Better*
	The customer can program the device to fetch a particular feed from Windows Live by using only the unique feed ID and secret number. The device software formulates the remainder of the URL and provides the recommended FrameIt query string parameters based on its own hardware specifications.
	Content refresh requirements
Programmatic URL creation

	Best
	The customer can tether the frame to a Windows Live ID that enables the frame to fetch a list of all the customer’s FrameIt feeds. The device provides the UI to selecting the feed to display.
	Content refresh requirements
Programmatic URL creation
Device pairing

*The Better integration level is the minimum level of integration that satisfies the
 requirements for certification. Certification requirements may change at any time.
[bookmark: _Toc211737828][bookmark: _Toc212894809]Step 2: Implement the specifications.
The following specifications are included in this document:
Content refresh requirements*
Programmatic URL creation specification*
Device pairing specification
Category specification

*Required for certification
Content Refresh Requirements Specification
Content refresh requirements fall into two areas:
Respecting the TTL of the user’s FrameIt RSS feed.
Recovering from a loss of network connectivity.
Respecting the TTL Element of the User FrameIt RSS Feed
The FrameIt RSS feed must be fetched on a frequent basis to provide the expected user experience. Within FrameIt, users are able to mix content from various sources. Each source might have a unique refresh interval. Moreover, users can schedule when certain content should begin or stop showing on their device. The RSS feed TTL element provides the device knowledge for how long the feed may be cached. The feed should be fetched as soon as the TTL is expired. Images no longer included in the updated feed should be removed from the FrameIt slideshow on the frame to create the user’s requested experience.
The feed and content in the feed are refreshed in the following order:
1.	Frame fetches initial copy of feed (Feed1).
2.	Frame fetches next copy (Feed2) based on TTL.
3.	Frame discards images in Feed1 that are not listed in Feed2.
4.	Frame fetches copies of all new mages in Feed2.

While the frame is fetching the new images, valid images from the older feed continue to be played. As new images are available for display, these are included in the slideshow.
Table 2. Content Freshness RSS Feed Elements
	Node
	Element
	Usage

	Channel
	ttl
	The TTL tells the device how long the feed should be cached in minutes. Different feeds may be valid for different periods of time depending on the content in the feed. The device fetches updates to the feed based on the TTL. The TTL can be calculated against the PubDate in the RSS feed or against an internal timer maintained on the frame.

	Channel
	pubDate
	The PubDate specifies when the feed was requested by the device.

Example
In this example, the frame fetches another copy of the RSS feed at Thu, 10 Apr 2008 17:19:30 -07:00:
<?xml version="1.0" ?>
<rss version="2.0" xmlns:media="http://search.yahoo.com/mrss/">
....<channel>
........<ttl>178</ttl>
........<title>Demo Slide Show</title>
........<link>http://frameit.live.com</link>
........<generator>http://frameit.live.com</generator>
........<lastBuildDate>Thu, 10 Apr 2008 13:20:47 -07:00</lastBuildDate>
........<pubDate>Thu, 10 Apr 2008 14:21:30 -07:00</pubDate>
........<description></description>
 </channel>
</rss>

Recovering from a Loss of Network Connectivity
For many reasons, a digital picture frame may lose connectivity from the wireless network. Obviously, this can impact the user experience when playing images accessed over a network. If a user is playing their FrameIt collection when a loss of network connectivity occurs, FrameIt requires that a certified frame continues playing the previously selected FrameIt content until the user intervenes or network connectivity is regained, whichever occurs first. When network connectivity is restored, FrameIt requires that the frame begin playing the previously selected slideshow. The frame must also refetch the feed immediately or when the TTL expires. Frames do not default back to another slideshow if the FrameIt feed was playing when network connectivity was lost.
Programmatic FrameIt URL Creation Specification
The Uniform Resource Locator (URL) for any FrameIt feed can be constructed programmatically. The device should use this specification in three ways:
Reduce the number of characters a user must enter directly on the frame.*
Request the images and RSS feed in the format required for the requesting device.**
Implement a troubleshooting feature on the device that allows the frame user to track requests made from the device to FrameIt.

*If the device does not implement device pairing, implementation of this
 specification is required for certification.
**This work is required for devices with and without device pairing.
Reduce the number of characters a user must enter directly on the frame.
On your device, you should ask the user for two pieces of information:
FrameIt feed ID
Secret number (optional)

These unique portions of their feed URL can be combined in the following manner to construct the full URL to their feed in the software on the device. The secret number is an optional element:
http://<PIN>.<FeedID>.frameit.com

 For testing, fetch a demonstration feed from http://demo.frameit.com.
Request the images and RSS feed in the format required for the requesting device
The feed URL can be modified with various query string parameters to manipulate the content and formatting of the feed:
http://<PIN>.<FeedID>.frameit.com/?s=<size>&th=<theme>&rt=<RSSType>&tr=<trackingID>

The query string parameters are defined in Table 3.
Table 3. FrameIt Feed URL Modifiers
	Modifier
	Name
	Use
	Required

	id
	Feed ID
	A unique identifier used to differentiate Collections. This is a user provided value.
Validation rules:
string; <=32 alphabetic characters and hyphen
	Required

	pin
	Secret number
	A string value used to limit access to the feed to those who know the value. This is a user-provided value.
Validation rules:
string; <= 5 numeric characters
	Optional.
Required, if a secret number is set on a Collection.

	s
	Size
	The set of two positive integer numbers. The first number is the number of pixel columns (width) and the second is the number of pixel rows (height), for example, 640 by 480.
Supported values:
0. 640x480
1. 800x600
2. 1600x900
3. 1024x768
4. 800x480
5. 1280x800
6. 480x400
	Optional.
The Collection default value is used if this is not provided.

	th
	theme
	A positive integer that represents the background color for generated images.
Supported values:
0. Red
1. Brown
2. Dark gray
3. Dark yellow
4. Pale gray
5. Medium green
6. Dark blue
7. Medium blue
8. Light blue
9. Pale blue
10. Bright pink
11. Dark orange
12. Bright green
13. Medium orange
14. Bright blue
15. Pale green
	Optional.

	rt
	RSS type
	Specifies the RSS tag used for the image.
Supported values:
0. Content:Media
1. Enclosure
	Optional. The collection default value is used if this is not provided.

	tr
	Device ID
	This value allows FrameIt to track which devices are calling for a feed. This is often used for troubleshooting with a frame. To use this feature, add the tr parameter to the feed URL.
The FrameIt Web site maintains a count for each time the tr value is received for a feed. The FrameIt Web site then exposes how many times any tracking ID has been called at http://frameit.live.com/
Manage/CollectionTraffic.aspx?id=<feedID>. If a device isn’t receiving updated content and the FrameIt Web site reports no hits for the feed with the tracking ID for that device, then Support knows that FrameIt was not called for the updated feed.
The tracking ID can be automatically generated and exposed on the frame or it can be a user-provided value. If automatically generated, you must expose the unique ID to the device owner.
Validation rules:
Alphanumeric; <=10 characters
	Optional.

Device Pairing Specification
Pairing improves the device setup experience. Without pairing, the user must enter the entire URL or the Feed ID for a Collection on a device in order for the device to fetch the associated RSS feed. This is cumbersome using toggle keys, a remote control, or a soft keyboard. Device pairing solves this problem by allowing the frame to query FrameIt for a list of a customer’s feeds.
Device pairing connects a device to a Windows Live ID. Every customer of the FrameIt service must obtain a free Windows Live ID. The Windows Live ID is the credential used to authenticate to Windows Live services. After a customer authenticates at frameit.live.com, he may create one or many collections of content tied to her Windows Live ID. As mentioned in the overview, these Collections are each unique RSS feeds. With lower levels of integration, the user would need to enter the URLs or IDs for each feed on the frame. With device pairing, a customer can pair his device with his Windows Live ID. This pairing permits the frame to query FrameIt for a listing of the customer’s feeds. In this manner, the user experience to select content for display on the frame is greatly improved.
A device may be simultaneously paired with multiple IDs.
The Device Pairing Web service
The FrameIt device pairing Web service is located at http://frameit.live.com/service/devicesvc.asmx. The Web service exposes the following methods, which are used in the order listed.
GetClaimToken - Returns a ClaimToken.
DeviceBind - Binds a device to a Windows Live ID.
GetCollectionInfo - Returns a list of RSS feeds.

The device calls GetClaimToken to request a ClaimToken. That ClaimToken is displayed on the device to the device owner along with the URL to a Web page where the user should enter the ClaimToken via a Web browser. The device owner goes to the provided URL, signs in with or creates a Windows Live ID, and enters the ClaimToken. After the ClaimToken is assigned to the Windows Live ID, the device can call DeviceBind to request a deviceID. The device calls GetCollectionInfo with the deviceID to request a list of the collections tied to the assigned Windows Live ID.
GetClaimToken
GetClaimToken returns a ClaimToken to a device that initiates the Device Bind process. The method requires two input parameters that are used to identify the device to the FrameIt system and are described in the following table. These parameters may be displayed to the user on the FrameIt Web site.
	Input value
	Description
	Type

	manufacturerId
	An identifier that can be used by FrameIt to identify the maker and model of the requesting frame.
	string

	serialNumber
	An identifier that identifies the requesting frame.
	string

The following table describes the response values for the GetClaimToken method.
	Response value
	Description
	Type

	ClaimToken
	Short-lived token that the device owner must enter at the ClaimURL page.
	string

	ClaimUrl
	The Web location where the device owner must enter the ClaimToken.
	string

	ResponseCode
	Is always an integer.
	int

Sample request
<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <GetClaimToken xmlns="http://frameit.live.com/service/device/1.0/">
 <manufacturerId>Contoso</manufacturerId>
 <serialNumber>0123456789</serialNumber>
 </GetClaimToken>
 </soap:Body>
</soap:Envelope>

Sample response
<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <GetClaimTokenResponse xmlns="http://frameit.live.com/service/device/1.0/">
 <GetClaimTokenResult>
 <ClaimToken>EM4T-ZUB3J</ClaimToken>
 <ClaimUrl>http://claimit.frameit.com</ClaimUrl>
 <ResponseCode>0</ResponseCode>
 </GetClaimTokenResult>
 </GetClaimTokenResponse>
 </soap:Body>
</soap:Envelope>

Response Codes
	Number
	Description
	Troubleshooting help

	0
	Success
	

	1
	Fail
	Ensure input values are valid and request is properly formatted.

DeviceBind method
DeviceBind returns a deviceID when the provided ClaimToken is successfully bound to a Windows Live ID. The method requires three input parameters that are described in the following table.
	Input value
	Description
	Type

	claimToken
	Short-lived token that the device owner must enter at the ClaimURL page.
Must be the ClaimToken returned in the GetClaimToken response. Can only be used once. Can expire.
	string

	manufacturerId
	An identifier that can be used by FrameIt to identify the maker and model of the requesting frame.
	string

	serialNumber
	An identifier that identifies the requesting frame.
	string

The following table describes the response values for the DeviceBind method.
	Response value
	Description
	Type

	DeviceId
	A unique identifier provided to the frame. that is bound to the Windows Live ID authenticated at ClaimURL.
	string

	ResponseCode
	Is always an integer.
	int

Sample request
<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <DeviceBind xmlns="http://frameit.live.com/service/device/1.0/">
 <claimToken>EM4T-ZUB3J</claimToken>
 <manufacturerId>Contoso</manufacturerId>
 <serialNumber>0123456789</serialNumber>
 </DeviceBind>
 </soap:Body>
</soap:Envelope>

Sample response
<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <DeviceBindResponse xmlns="http://frameit.live.com/service/device/1.0/">
 <DeviceBindResult>
 <DeviceId>L4J01B4N6PVBY45SFRR7C5TTHD-90</DeviceId>
 <ResponseCode>0</ResponseCode>
 </DeviceBindResult>
 </DeviceBindResponse>
 </soap:Body>
</soap:Envelope>

ResponseCodes
	Number
	Description
	Troubleshooting help

	0
	Success
	

	1
	Fail
	Ensure input values are valid and request is properly formatted.

GetCollectionInfo
GetCollectionInfo returns a list of collections managed by the Windows Live ID bound to the provided deviceID. The GetCollectionInfo method requires the following parameter.
	Input value
	Description
	Type

	deviceId
	A unique identifier that is provided to the frame and
bound to the Windows Live ID authenticated at ClaimURL.
	string

The following table describes the response values for the GetCollectionInfo method.
	Response value
	Description
	Type

	CollectionInfoList
	An array of one or multiple CollectionInfo.
	array

	CollectionInfo
	Includes paired response values Name and FeedUrl.
	array

	Name
	An identifier used to differentiate collections in the FrameIt Web user interface. This is a user-provided value.
	string

	FeedUrl
	The URL to the FrameIt RSS feed for the collection.
The feedID and secret number, if necessary, are included and do not have to be appended.
Note: The contents of XML may be HTML encoded. You might have to decode the XML content before the URL can be used to fetch the collection content.
Append the correct query string parameters to request the correct resolution and RSS feed type for the device.
	string

	ResponseCode
	Will always be an integer.
	int

Sample request
<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <GetCollectionInfo xmlns="http://frameit.live.com/service/device/1.0/">
 <deviceId>L4J01B4N6PVBY45SFRR7C5TTHD-90</deviceId>
 </GetCollectionInfo>
 </soap:Body>
</soap:Envelope>

Sample response
<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <GetCollectionInfoResponse xmlns="http://frameit.live.com/service/device/1.0/">
 <GetCollectionInfoResult>
 <CollectionInfoList>
 <CollectionInfo>
<Name>Demo</Name>
<FeedUrl>http://frameit.live.com/genrss/genrss.ashx?id=5SQ1VQ34Q9X2Y29RG9N0GZ3GPF-90</FeedUrl>
 </CollectionInfo>
 <CollectionInfo>
<Name>living room</Name>
<FeedUrl>http://frameit.live.com/genrss/genrss.ashx?id=Y56TVSDHXZHBYF91Q2N0992HBG-13B&pin=12345</FeedUrl>
 </CollectionInfo>
 </CollectionInfoList>
 <ResponseCode>0</ResponseCode>
 </GetCollectionInfoResult>
 </GetCollectionInfoResponse>
 </soap:Body>
</soap:Envelope>

ResponseCodes
	Number
	Description
	Troubleshooting help

	0
	Success
	

	1
	Fail
	Ensure input values are valid and request is properly formatted.

Other Device Pairing Scenarios
Expired claimToken
If the claimToken is expired, request a fresh claimToken by using GetClaimToken.
Binding an additional user to a device
The Device Bind process may be repeated to bind an additional Windows Live ID account to the device. The service does not limit the number of Windows Live ID accounts that can be bound to a single device.
Unbinding a Windows Live ID from a device
To unbind a Windows Live ID from a device, delete the associated deviceID from the device. The Windows Live ID account owner must visit the FrameIt Web site to remove the binding shown in the FrameIt UI. If a frame is regifted or sold, the user should remove the binding before releasing the frame. Certified devices must offer the ability to remove the binding to the user Windows Live ID.
User Experience and Data Flow in Device Pairing
The following diagram demonstrates the user experience and Web service calls.
[image:]

1.	Frame requests a ClaimToken.
2.	User enters ClaimToken at FrameIt Web site.
3.	User confirms pairing on the device.
4.	Frame requests a DeviceID.
5.	Frame requests a list of the user’s collections.
Categories Specification
Each item in the FrameIt XML includes a <category> node. The content in this node is created by the user to describe the source of which this image is a member. All images from this source will have the same category:
<item>
<title>Weather</title>
<link>http://frameit.live.com</link>
<category>Weather</category>
<description><![CDATA[
Weather]]></description>
<pubDate>Tue, 12 Aug 2008 15:33:20 -07:00</pubDate>
<enclosure type="image/jpeg" url="http://image.frameit.com/GenImage/item.ashx?t=0&g=3bc8c49b-ba2d-45c4-95e8-861fc373a32d&h=369&s=0&th=0&ti=633537814859900000" />
</item>

[bookmark: _Toc211737829][bookmark: _Toc212894810]Step 3: Apply for device certification.
To apply for device certification, contact FrameIt@microsoft.com.
Successful device certification qualifies your device for the following benefits:
Promotion on the Windows Live FrameIt Web site.
Logo licensing and marketing collateral opportunities.
Evaluation for potential inclusion in Microsoft promotions.
[bookmark: _Toc211737830][bookmark: _Toc212894811]Other Integration Options
[bookmark: _Toc211737831][bookmark: _Toc212894812]Integrating with FrameIt via the PC
If your digital display device does not support Wi-Fi Internet connectivity, it might support connectivity to a local PC. FrameIt can provide client software that synchronizes a directory on the PC with images in a FrameIt RSS feed. Contact frameit@microsoft.com to integrate this solution.
We are actively seeking device developers who are interested in creating a USB tethered frame for non-Wi-Fi scenarios. Contact frameit@microsoft.com to discuss opportunities.
[bookmark: _Toc211737832][bookmark: _Toc212894813]Integrating with FrameIt on Windows CE Devices
Our research labs have developed a Windows CE reference application for an embedded wireless digital frame. The reference application is now available for commercial licensing.
In fall 2007, Samsung Electronics was the first partner to release a wireless digital photo frame (model #SPF-83V) that took advantage of such Microsoft software running directly on the WinCE platform. Going forward, Microsoft is extending this offer to selected OEDs and ODMs.
As you develop your connected frame strategy, using our reference application might be an effective way to save development time and money and benefiting from the Microsoft intellectual property investment around its implementation.
For more details, visit http://www.microsoft.com/IP and search for the term "photo frame."
[bookmark: _Toc211737833][bookmark: _Toc212894814]About External Content Sources
FrameIt enables users to mix content from a variety of content sources across the Web. Some of these images are created and stored on Windows Live servers. Other images are stored on third-party servers, such as photo-sharing sites.
FrameIt does not examine any of the images that are included in feeds from third-party sources. A FrameIt feed that aggregates content from external sources might include offensive images or content from those third-party sites.
[bookmark: _Toc211737834][bookmark: _Toc212894815]Frequently Asked Questions
Can I use the Microsoft logo on my frame if I integrate with FrameIt?
That depends. We are happy to provide you a logo license if you meet specific conditions and requirements. Use of our logo is governed by a separate license agreement and contractual terms. Use of this software development kit does not provide you rights to use our logos. Contact frameit@microsoft.com to learn more about licensing Windows Live logos for use in your product, packaging, or supporting materials.
How do I become a Windows Live certified partner?
After adequate product integration testing is completed successfully, your device may qualify for certification. To initiate this testing, you should contact frameit@microsoft.com. You will be required to provide at least three sample devices with the proposed software in place. We will conduct the testing on our premises in Redmond, WA USA. If your product supports any language in addition to English, we may also conduct testing in our offices in Dublin, Ireland. We are still developing the testing guidelines, but sample criteria include stable wireless connectivity, user experience ratings, and implementation of the FrameIt device integration guide at the Better level or above.
Where can I get more information on RSS?
For a deeper understanding of RSS, further information is available at http://cyber.law.harvard.edu/rss/rss.html
Additional references can be located through a basic Web search for Really Simple Syndication, such as http://search.live.com/results.aspx?q=really+simple+syndication.
My photo or content site should be listed in the FrameIt content catalog.
We have a partner program for content providers. Contact frameit@microsoft.com to engage.
Are there opportunities for deeper partnership or innovation?
There are many options for a device to integrate with FrameIt, for example, getting more information on an item in a feed, such as details on a weather forecast, and commenting or tagging a photo.
In addition, the first-run experience for many frames is a challenge for many customers. FrameIt is actively pursuing ways to improve the first-run experience and customer satisfaction with the digital display device. True improvements to this experience may require factory preset integration with Windows Live.
If you have feature requests that will require support beyond what is documented in this paper, contact us at frameit@microsoft.com with your request.
[bookmark: _Toc211737835][bookmark: _Toc212894816]Further Information
Send questions to frameit@microsoft.com.
[bookmark: _Toc211737836][bookmark: _Toc212894817]Appendix
[bookmark: _Toc211737837][bookmark: _Toc212894818]Sample FrameIt RSS XML Content
The following sample shows the FrameIt RSS feed that passes the image URL in enclosure tags:
<?xml version="1.0" ?>
<rss version="2.0" >
<channel>
<ttl>-2147483648</ttl>
<title>living room</title>
<link>http://frameit.live.com</link>
<generator>http://frameit.live.com</generator>
<lastBuildDate>Tue, 12 Aug 2008 15:33:20 -07:00</lastBuildDate>
<pubDate>Tue, 12 Aug 2008 15:39:40 -07:00</pubDate>
<description></description>
<item>
<title>Weather</title>
<link>http://frameit.live.com</link>
<category>Weather</category>
<description><![CDATA[
Weather]]></description>
<pubDate>Tue, 12 Aug 2008 15:33:20 -07:00</pubDate>
<enclosure type="image/jpeg" url="http://image.frameit.com/GenImage/item.ashx?t=0&g=3bc8c49b-ba2d-45c4-95e8-861fc373a32d&h=369&s=0&th=0&ti=633537814859900000" />
</item>
</channel>
</rss>
A sample FrameIt RSS feed which sends the image URL in media tags
<?xml version="1.0" ?>
<rss version="2.0" xmlns:media="http://search.yahoo.com/mrss/">
<channel>
 <ttl>174</ttl>
 <title>living room</title>
<link>http://frameit.live.com</link>
<generator>http://frameit.live.com</generator>
 <lastBuildDate>Tue, 12 Aug 2008 15:33:20 -07:00</lastBuildDate>
 <pubDate>Tue, 12 Aug 2008 15:34:00 -07:00</pubDate>
 <description></description>
 <item>
........<title>Weather</title>
<link>http://frameit.live.com</link>
........<category>Weather</category>
........<description><![CDATA[
Weather]]>
</description>
........<pubDate>Tue, 12 Aug 2008 15:33:20 -07:00</pubDate>
........<media:content type="image/jpeg" width="640" height="480" url="http://image.frameit.com/GenImage/item.ashx?t=0&g=3bc8c49b-ba2d-45c4-95e8-861fc373a32d&h=369&s=0&th=0&ti=633537814859900000" />
........</item>
</channel>
</rss>

Table 4 describes the FrameIt RSS feed elements.
Table4. FrameIt RSS Feed Elements
	Node
	Element
	Usage

	Channel
	ttl
	The Channel TTL tells the device how long the feed is valid in minutes. Different feeds may be valid for different periods of time, depending on the content in the feed. The device fetches updates to the feed based on the TTL. It is calculated against the pubDate. The value changes based on the content of the feed.

	Channel
	title
	The Channel Title is the customer-provided name for the RSS feed.

	Channel
	lastBuildDate
	The Channel lastBuildDate specifies when the content of the feed was last generated.

	Channel
	pubDate
	The Channel pubDate specifies when the feed was requested by the device.

	Item
	title
	The Item Title is the customer-provided name for the content.

image6.jpeg

