
[image: image1.png]

[image: image2.png]Microsoft®
% SQL Server200g

What’s New for XML in SQL Server 2008?
White Paper

Published: August 2008

Summary: Microsoft® SQL Server™ 2008 builds on the extensive support for XML by extending support for XML schema validation and XQuery, and by enhancing the xml data type.
.
Contents

1Introduction

The Evolution of SQL Server XML Capabilities
1
XML Functionality in SQL Server 2000
1
XML Functionality in SQL Server 2005
2
XML Functionality in SQL Server 2008
5
XML Schema Validation Enhancements
5
Lax Validation Support
6
Full xs:dateTime Support
7
Union and List Types
8
XQuery Enhancements
10
XML DML Enhancements
11
Conclusion
12

Introduction
Microsoft introduced XML-related capabilities in Microsoft SQL Server 2000 with the FOR XML and OPENXML Transact-SQL keywords, which enabled developers to write Transact-SQL code to retrieve a query result as a stream of XML, and to shred an XML document into a rowset. These XML capabilities were extended significantly in SQL Server 2005 with the introduction of a native xml data type that supports XSD schema validation, XQuery-based operations, and XML indexing. SQL Server 2008 builds on the XML capabilities of previous releases and provides enhancements to meet the challenges that customers have faced when storing and manipulating XML data in the database.
The Evolution of SQL Server XML Capabilities
The XML features of SQL Server have evolved with each version of SQL Server since SQL Server 2000. Before we examine the enhancements in SQL Server 2008, it might be useful to chart the evolution of XML functionality through the previous versions.
XML Functionality in SQL Server 2000

In SQL Server 2000, Microsoft introduced the FOR XML and OPENXML Transact-SQL keywords. FOR XML is an extension to the SELECT statement that returns the query results as a stream of XML as shown in the following example.
SELECT ProductID, ProductName

FROM Products Product

FOR XML AUTO

This query returns an XML fragment like the following example.
<Product ProductID="1" ProductName="Widget"/>

<Product ProductID="2" ProductName="Sprocket"/>

The OPENXML function performs the opposite function to the FOR XML clause by creating a rowset from an XML document, as shown in the following example.
DECLARE @doc nvarchar(1000)

SET @doc = '<Order OrderID = "1011">

<Item ProductID="1" Quantity="2"/>

<Item ProductID="2" Quantity="1"/>

</Order>'

DECLARE @xmlDoc integer

EXEC sp_xml_preparedocument @xmlDoc OUTPUT, @doc

SELECT * FROM

OPENXML (@xmlDoc, 'Order/Item', 1)

WITH

(OrderID integer '../@OrderID',

 ProductID integer,

 Quantity integer)

EXEC sp_xml_removedocument @xmlDoc

Note the use of the sp_xml_preparedocument and sp_xml_removedocument stored procedures to create an in-memory representation of the node tree for the XML document. This Transact-SQL code returns the following rowset.
	OrderID
	ProductID
	Quantity

	1011
	1
	2

	1011
	2
	1

XML Functionality in SQL Server 2005

In SQL Server 2005, the FOR XML feature was enhanced with new options for root elements and element names, the ability to nest FOR XML calls so you can build complex hierarchies, and a new PATH mode that enables you to define the structure of the XML to be retrieved by using XPath syntax, as shown in the following example.
SELECT ProductID AS '@ProductID',

ProductName AS 'ProductName'

FROM Products
FOR XML PATH ('Product'), ROOT ('Products')
This query returns the following XML.
<Products>

<Product ProductID="1">

<ProductName>Widget</ProductName>

</Product>

<Product ProductID="2">

<ProductName>Sprocket</ProductName>

</Product>

</Products>

In addition to enhancing the existing XML features that had been introduced in SQL Server 2000, SQL Server 2005 added a new, native xml data type that enables you to create variables and columns for XML data, as shown in the following example.
CREATE TABLE SalesOrders

(OrderID integer PRIMARY KEY,

 OrderDate datetime,

 CustomerID integer,

 OrderNotes xml)

You can use the xml data type to store markup documents or semi-structured data in the database. Columns and variables can be used for untyped XML or typed XML, the latter of which is validated against an XML Schema Definition (XSD) schema. To define the schemas for data validation, developers can use the CREATE XML SCHEMA COLLECTION statement, as shown in the following example.
CREATE XML SCHEMA COLLECTION ProductSchema AS

'<?xml version="1.0" encoding="UTF-16"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <!-- schema declarations go here -->

</xs:schema>'

After creating a schema collection, you can associate an xml variable or column with the schema declarations it contains by referencing the schema collection as shown in the following example.
CREATE TABLE SalesOrders

(OrderID integer PRIMARY KEY,

 OrderDate datetime,

 CustomerID integer,

 OrderNotes xml(ProductSchema))

Typed XML is validated against the declarations in the associated schema collection when values are inserted or updated, which makes it possible to enforce business rules about the structure of XML data for compliance or compatibility reasons.

The xml data type also provides a number of methods, which you can use to query and manipulate the XML data in an instance. For example, you can use the query method to query the XML in an instance of the xml data type, as shown in the following example.

declare @x xml

set @x=

'<Invoices>

<Invoice>

<Customer>Kim Abercrombie</Customer>

<Items>

<Item ProductID="2" Price="1.99" Quantity="1" />

<Item ProductID="3" Price="2.99" Quantity="2" />

<Item ProductID="5" Price="1.99" Quantity="1" />

</Items>

</Invoice>

<Invoice>

<Customer>Margaret Smith</Customer>

<Items>

<Item ProductID="2" Price="1.99" Quantity="1"/>

</Items>

</Invoice>

</Invoices>'

SELECT @x.query(

'<CustomerList>

{

for $invoice in /Invoices/Invoice

return $invoice/Customer

}

</CustomerList>')

The query in this example uses an XQuery expression that finds each Invoice element in the document and returns an XML document that contains the Customer element from each Invoice element, as shown in the following example.
<CustomerList>

 <Customer>Kim Abercrombie</Customer>

 <Customer>Margaret Smith</Customer>

</CustomerList>

Another significant XML-related feature that was introduced in SQL Server 2005 is support for XML indexes. You can create primary and secondary XML indexes for columns of type xml to enhance XML query performance. A primary XML index is a shredded representation of all of the nodes in an XML instance, which the query processor can use to quickly find nodes within an XML value. After you have created a primary XML index, you can create secondary XML indexes to improve the performance of specific types of query. The following example creates a primary XML index, and a secondary XML index of type PATH, which can improve performance of queries that use XPath expressions to identify nodes in an XML instance.
CREATE PRIMARY XML INDEX idx_xml_Notes

ON SalesOrders (Notes)
GO

CREATE XML INDEX idx_xml_Path_Notes

ON SalesOrders (Notes)
USING XML INDEX idx_xml_Notes

FOR PATH

GO

XML Functionality in SQL Server 2008

The XML functionality that was introduced in SQL Server 2000 and SQL Server 2005 has been enhanced in SQL Server 2008. Key XML-related enhancements in SQL Server 2008 include:
· Improved schema validation capabilities

· Enhancements to XQuery support

· Enhanced functionality for performing XML data manipulation language (DML) insertions

The rest of this whitepaper examines these enhancements and demonstrates how you can use them to implement better XML solutions in SQL Server 2008.
XML Schema Validation Enhancements
You can validate XML data by enforcing compliance with one or several XSD schemas. A schema defines the permissible XML elements and attributes for a particular XML data structure, and is often used to ensure that XML documents contain all of the required data elements in the correct structure.

SQL Server 2005 introduced validation of XML data through the use of XML schema collections. The general approach is to a create schema collection that contains the schema rules for your XML data by using the CREATE XML SCHEMA COLLECTION statement, and then to reference the schema collection name when you define an xml column or variable that must conform to the schema rules in the schema collection. SQL Server then validates any data that is inserted or updated in the column or variable against the schema declarations in the schema collection.

XML Schema support in SQL Server 2005 implemented a broad subset of the full XML Schema specification, and covered the most common XML validation scenarios. SQL Server 2008 extends that support to include the following additional schema validation requirements that have been identified by customers:

· Support for lax validation

· Full support for dateTime, time and date validation, including preservation of time zone information

· Improved Support for union and list types

Lax Validation Support

XML Schemas support wildcard sections in XML documents through the any, anyAttribute, and anyType declarations. For example, consider the following XML schema declaration.
<xs:complexType name="Order" mixed="true">

 <xs:sequence>

 <xs:element name="CustomerName"/>

 <xs:element name="OrderTotal"/>

 <xs:any namespace="##other" processContents="skip"

minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

</xs:complexType>

This schema declaration defines an XML element named Order, which must contain sub-elements named CustomerName and OrderTotal. Additionally, the element can contain an unlimited number of other elements that belong to a different namespace than the one to which the Order type belongs. The following XML shows an XML document that contains an instance of an Order element as defined by this schema declaration. Note that the order also contains a shp:Delivery element, which is not explicitly defined in the schema.

<Invoice xmlns="http://adventure-works.com/order"

xmlns:shp="http://adventure-works.com/shipping">

 <Order>

 <CustomerName>Graeme Malcolm</CustomerName>

 <OrderTotal>299.99</OrderTotal>

 <shp:Delivery>Express</shp:Delivery>

 </Order>

</Invoice>

Validation for wildcard sections depends on the processContents attribute for the wildcard section in the schema definition. In SQL Server 2005, schemas can use processContents values of skip and strict for any and anyAttribute declarations. In the previous example, the processContents attribute for the wildcard element has been set to skip, so no attempt to validate the contents of that element is made. Even if the schema collection includes a declaration for the shp:Delivery element (for example, defining a list of valid delivery methods), the element is not validated unless the declaration for the wildcard in the Order element has its processContents attribute set to strict.

SQL Server 2008 adds support for a third validation option. By setting the processContents attribute for a wildcard section to lax, you can enforce validation for any elements that have schema declarations associated with them, but ignore any elements that are not defined in the schema. To continue the previous example, if you set the processContents attribute for the wildcard element declaration in the schema to lax and add a declaration for the shp:Delivery element, shp:Delivery element in the XML document is validated. However, if instead of the shp:Delivery element, the document includes an element that is not defined in the schema, the element is ignored.

In addition, the XML Schema specification defines that the anyType declaration has lax processing of its content model. SQL Server 2005 does not support lax processing, so the content is validated strictly instead. SQL Server 2008 does support lax processing of the anyType contents, and so the content is validated correctly.

Full xs:dateTime Support

You can use the dateTime data type in an XML schema to define date and time data. Date and time data is expressed in the format 2007-08-01T09:30:00:000Z, which represents the 1st of August 2007 at 9:30 in the morning in the coordinated universal time zone (UTC), which is indicated by the Z. Other time zones are represented by the time difference from UTC, so for example you can represent 6:00 in the morning on December 25th 2007 in Pacific Standard Time (which is 8 hours behind UTC) with the value 2007-12-25T06:00:00:000-8:00.

The XML Schema specification defines the time zone component of the dateTime, date and time data types as optional. However, in SQL Server 2005 you must provide a time zone for dateTime, time and date data. Additionally, SQL Server 2005 does not preserve the time zone information for your data for dateTime or time, but normalizes it to UTC (so for example, if your XML contains the value 2007-12-25T06:00:00:000-8:00, SQL Server 2005 normalizes this as 2007-12-25T14:00:00:000Z.) In SQL Server 2008, these limitations have been removed, so you can omit the time zone information when you store dateTime, date or time data, and any time zone information that you do provide is preserved.
Union and List Types

You can use XML schemas to define data types for your XML data that allow a limited set of values to be assigned to multi-value elements and attributes. For example, you might define a sizeListType type that restricts the list of possible values that can be assigned to an AvaliableSizes element in the product definition to S, M, and L. SQL Server 2005 supports XML schemas that contain these simple type definitions and restrictions. For example, you can use a list type to define the valid sizes for a product as shown in the following example.
<xs:simpleType name="sizeListType">

 <xs:list>

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="S"/>

 <xs:enumeration value="M"/>

 <xs:enumeration value="L"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:list>

</xs:simpleType>
This schema declaration enables you to create an element that lists all of the sizes in which a product can be purchased as a list of values separated by white space, as shown in the following example:
<AvailableSizes>S M L</AvailableSizes>

However, what if you want to support two different ways to express the size of a product? For example, suppose a cycling equipment retailer sells cycling clothes in small, medium, and large sizes, but also sells bicycles in numerical sizes relating to the frame size (such as 18, 20, 22, and 24)? To enable you to accomplish this, SQL Server 2008 adds support for union types that contain list types, which you can use to merge multiple list type definitions and restrictions into a single type. For example, the following Transact-SQL code creates an XML schema collection that defines a productSizeType type in which valid values include a list of numeric sizes (18, 20, 22, and 24) and a list of named sizes (S, M, and L).
CREATE XML SCHEMA COLLECTION CatalogSizeSchema AS

N'<?xml version="1.0" encoding="UTF-16"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:simpleType name="productSizeType">

<xs:union>

<xs:simpleType>

 <xs:list>

<xs:simpleType>

 <xs:restriction base="xs:integer">

<xs:enumeration value="18"/>

<xs:enumeration value="20"/>

<xs:enumeration value="22"/>

<xs:enumeration value="24"/>

 </xs:restriction>

</xs:simpleType>

 </xs:list>

</xs:simpleType>

<xs:simpleType>

 <xs:list>

<xs:simpleType>

 <xs:restriction base="xs:string">

<xs:enumeration value="S"/>

<xs:enumeration value="M"/>

<xs:enumeration value="L"/>

 </xs:restriction>

</xs:simpleType>

 </xs:list>

</xs:simpleType>

</xs:union>

</xs:simpleType>

</xs:schema>'
With this declaration in the schema, any elements based on the productSizeType can contain either kind of list; so both of the product elements in the following example would be valid instances of the productSizeType data type.
<Catalog>

 <Product>

 <ProductName>Road Bike</ProductName>

 <AvailableSizes>22 24</AvailableSizes>

 </Product>

 <Product>

 <ProductName>Cycling Jersey</ProductName>

 <AvailableSizes>S M L</AvailableSizes>

 </Product>

</Catalog>

Similarly, SQL Server 2008 supports schema declarations for list types that contain union types.
XQuery Enhancements
SQL Server 2005 introduced the xml data type, which provides a number of methods that you can use to perform operations on the XML data stored in a column or variable. Most of the operations you can perform use XQuery syntax to navigate and manipulate the XML data. The XQuery syntax supported by SQL Server 2005 includes the for, where, order by, and return clauses of the so called FLWOR expression, which you can use to iterate over the nodes in an XML document and return values.

SQL Server 2008 adds support for the let clause, which is used to assign values to variables in an XQuery expression such as the following example:

declare @x xml

set @x=

'<Invoices>

<Invoice>

<Customer>Kim Abercrombie</Customer>

<Items>

<Item ProductID="2" Price="1.99" Quantity="1" />

<Item ProductID="3" Price="2.99" Quantity="2" />

<Item ProductID="5" Price="1.99" Quantity="1" />

</Items>

</Invoice>

<Invoice>

<Customer>Margaret Smith</Customer>

<Items>

<Item ProductID="2" Price="1.99" Quantity="1"/>

</Items>

</Invoice>

</Invoices>'

SELECT @x.query(

'<Orders>

{

for $invoice in /Invoices/Invoice

let $count :=count($invoice/Items/Item)

order by $count

return

<Order>

{$invoice/Customer}

<ItemCount>{$count}</ItemCount>

</Order>

}

</Orders>')

This example returns the following XML.

<Orders>

<Order>

<Customer>Margaret Smith</Customer>

<ItemCount>1</ItemCount>

</Order>

<Order>

<Customer>Kim Abercrombie</Customer>

<ItemCount>3</ItemCount>

</Order>

</Orders>
Note that SQL Server 2008 does not allow the assignment of constructed elements.

XML DML Enhancements
As well as being able to use XQuery expressions to perform operations on XML data, the xml data type supports the XML DML expressions insert, replace value of, and delete through its modify method. You can use these XML DML expressions to manipulate the XML data in an xml column or variable.

SQL Server 2008 adds support for using an xml variable in an insert expression to insert XML data into an existing XML structure. For example, suppose an xml variable named @productList contains the following XML:

<Products>

 <Bike>Mountain Bike</Bike>

 <Bike>Road Bike</Bike>

</Products>

You could use the following code to insert a new bike into the product list:
DECLARE @newBike xml

SET @newBike = '<Bike>Racing Bike</Bike>'

SET @productList.modify

('insert sql:variable("@newBike") as last into (/Products)[1]')

After running this code, the @productList variable would contain the following XML.
<Products>

 <Bike>Mountain Bike</Bike>

 <Bike>Road Bike</Bike>

 <Bike>Racing Bike</Bike>

</Products>

Conclusion

SQL Server 2008 builds on the already comprehensive support for XML that was present in SQL Server 2005, and extends your ability to build powerful database solutions that combine relational data and XML. The improvements to XML schema support, as well as the enhancements to the xml data type provide benefits that application developers will find immensely appealing.
For more information:

http://www.microsoft.com/sql/
Please give us your feedback:

Did this paper help you? Tell us on a scale of 1 (poor) to 5 (excellent), how would you rate this paper and why have you given it this rating? For example:

· Are you giving it a high rating because it has good examples, excellent screenshots, clear writing, or another reason?

· Are you giving it a low rating because it has poor examples, fuzzy screenshots, unclear writing?

This feedback will help us improve the quality of white papers we release. Send feedback.
1

1

