
[image: image1.png]

[image: image2.png]Microsoft®
% SQL Server200g

Managing Unstructured Data with
SQL Server 2008
White Paper

Published: July 2008

Summary: The proliferation of digital content has significant implications for the way in which organizations store and access business data. Increasingly, databases that are at the core of business applications must be integrated with unstructured data in the form of documents, images, video content, and other multimedia formats. Organizations increasingly need to be able to store and manage digital data of all formats in order to manage the information lifecycle, meet compliance requirements, and implement content management solutions.

Microsoft SQL Server™ 2008 provides a flexible solution for storing unstructured data and combining it with relational data to build comprehensive solutions that encompass the full range of data across an organization.
For the latest information, see Microsoft SQL Server 2008.
Contents

1Introduction

Business Drivers for Unstructured Data
1
Challenges for Storing Unstructured Data
2
Challenges for Using Unstructured Data
3
Goals for Unstructured Data in SQL Server 2008
3
Storing Unstructured Data in SQL Server 2008
3
SQL Server BLOBs
4
The FILESTREAM Attribute
4
The Remote BLOB Store API
5
Comparing BLOB Storage Options
6
Searching Unstructured Data in SQL Server 2008
7
Conclusion
7

Introduction

In recent years, there has been an explosion in the volume of digital data created and stored by both individuals and organizations. Historically, businesses have used computer systems and databases to store most of their business data in structured formats such as relational tables or fixed format files, and software applications have used these structured data stores to perform business tasks. Today however, a large proportion of an organization’s data is typically stored in documents created with productivity tools such as Microsoft® Office Excel® and Microsoft Office Word, and advances in digital photography, document scanning, video production, and audio formats have further extended the range of unstructured data formats that are used for business data. Additionally, dramatic reductions in the cost of storage hardware and memory have significantly affected the amount and type of data that is stored in computer systems, and led to the emergence of a new generation of business application that merges traditional relational data structures with unstructured digital content. This profusion of digital content means that organizations are now seeking to manage both relational data and unstructured data at the enterprise scale, and require a solution that comprehensively meets the needs of relational and non-relational data storage while reducing the cost of managing and building applications for that data.
For example, consider how an insurance claim application is likely to have changed in the last fifteen years. Fifteen years ago, the application would most likely have maintained a list of insurance claims records that were stored as simple rows and columns. Today, an insurance claim application is more likely to manage a set of claims records that have reference pictures, photos, and documents. It will probably also need to export claims data in XML-based formats to integrate with other systems, and it might also include higher-level capabilities like spatial visualization, reporting, and analysis.

Microsoft SQL Server® 2008 provides a number of capabilities that move beyond the traditional database system, towards a data platform to store, manage, and query all kinds of data; including unstructured binary data, XML, and spatial data. This whitepaper focuses on unstructured data, and describes the options for storing, managing, and using unstructured data with SQL Server 2008.

Business Drivers for Unstructured Data

Most organizations rely on business-critical data that is stored in databases, and have invested heavily in data management systems and applications to store and manipulate that data. However, increasingly businesses are amassing large volumes of non-relational, unstructured data in the form of digital images, documents, videos, and other multimedia formats—and these new data formats are quickly becoming a key component in formal and informal business processes that integrate with existing business applications, comply with regulatory requirements, or simply provide a richer user experience.
For example, consider the following business scenarios:

· An insurance company needs to store policy documents and retrieve them for claims processing.

· An online retailer needs to store video footage of its products for display in an e-commerce site.

· A telephony system needs to store voicemail messages as audio streams so that they can be retrieved remotely.

· A radio station needs to make a searchable library of podcasts available for download from its Web site.

· A legal practice needs to store electronic copies of documents as images, and easily retrieve the documents relating to an individual client or case.

· An architect partnership needs to store and retrieve digital plans with the associated client data.

· A library needs to convert and archive large volumes of existing paper and analog content for indexing and use in a digital research tool.

These are a few examples of the way in which unstructured digital data is used in businesses throughout the world; and as it becomes increasingly easy to create digital content, organizations are finding new, innovative ways to use this digital content to improve or extend their business capabilities.

While the proliferation of new kinds of unstructured, digital content brings many benefits and opportunities to businesses, it also brings challenges to the systems architects, administrators, and application developers who need to incorporate these unstructured data sources into computer applications and services.

Challenges for Storing Unstructured Data
The first challenge to be considered, and perhaps the most obvious, is the storage of large volumes of unstructured data. It is desirable to have a system that gives you the flexibility to meet the specific requirements of storing unstructured data, with minimal cost and management overhead. Key issues that you must consider when you plan the storage of unstructured data include:

· The cost of storing your unstructured data, including not only the hardware costs, but also management overhead costs.

· Physical storage locations for unstructured data, such as file servers and network attached storage (NAS) devices.

· Managing retention and archival policies.

· Integrating unstructured data files with associated relational data, and maintaining transactional integrity between structured and unstructured data sources.

· Minimizing the management overhead associated with maintaining both relational and unstructured data.

· Performance and scalability.

· Securing unstructured data, and ensuring consistent security with associated relational data.

· Availability and recoverability of unstructured data.

Challenges for Using Unstructured Data

As well as the issues related to storing unstructured data, you must consider how that data will be used by applications in your organization. Some typical considerations include:

· The development challenge in building applications that use structured and unstructured data, including writing code to create, retrieve, update, and delete unstructured data, and maintaining transactional consistency between associated relational and unstructured data sources.

· Indexing and searching unstructured data.

· Extracting explicitly available metadata (for example from form fields or file attributes) and exposing it to users.

· Converting document content into formats that can be searched and queried (for example, converting audio files into text that can be searched by a database query or full-text engine.)

Goals for Unstructured Data in SQL Server 2008

The challenges associated with unstructured data reflect a number of common concerns for organizations that have started to build solutions for digital content:

· Managing multiple different platforms to deal with relational and non-relational data causes unneeded complexity.
· These separate data stores lead to greater application complexity for developers and deployment challenges for managers.
· Developers and database administrators need to compensate for the lack of services that are not available uniformly across these different types of data.

SQL Server resolves these concerns by:

· Reducing the cost of managing these different types of data.
· Simplifying the development of applications that use relational and non-relational data.
· Extending the capabilities that are currently available only to relational data to non-relational data.
Storing Unstructured Data in SQL Server 2008

Applications that rely on relational and non-relational data typically use one of three architectures.

· Relational data in the database and non-relational binary large object (BLOB) data in file systems and file servers.

· Relational data in the database and non-relational data in a dedicated BLOB store.

· Relational data and non-relational data in the database.

Each approach has its own benefits and drawbacks. For example, storing unstructured data in file servers or dedicated BLOB stores can reduce costs in terms of dollars per gigabyte, but typically adds complexity for managing and building applications, because the application has to maintain integrity between records in the database and the separate system that contains the BLOBs to which those records are associated. On the other hand, storing BLOBs in the database conveniently centralizes data storage, but typically comes at higher cost and can result in reduced performance.
SQL Server 2008 introduces two new capabilities for storing BLOB data:

· FILESTREAM: An attribute you can set on a varbinary column so that the data is stored on the file system (and therefore benefits from its fast streaming capabilities and storage capabilities) but is managed and accessed directly within the context of the database.

· Remote BLOB Storage: A client-side application programming interface (API) that reduces the complexity of building applications that rely on an external store for BLOBs and a database for relational data.

Additionally, SQL Server 2008 continues support for standard BLOB columns through the varbinary data type.

SQL Server BLOBs

SQL Server 2005 introduced the varbinary (max) data type, which enables you to store large binary data values of up to 2,147,483,647 bytes in a SQL Server column or variable. When using the max modifier, you can control how the data is physically stored in the data pages of the table by setting the large value types out of row table option. When this option is set to ON, all values are stored on separate linked pages and a 16-byte root pointer to these ages is stored on the data page for the row. When this option is set to OFF, values of up to 8,000 bytes are stored inline in the data page for the row, and larger values are stored on separate linked pages.

Although the newer FILESTREAM and Remote BLOB capabilities are designed to provide better performance and manageability than standard varbinary BLOB columns, there may be some scenarios in which a varbinary column is appropriate (typically when BLOB sizes average less than 250 KB in size.)

The FILESTREAM Attribute

In SQL Server 2008, you can apply the FILESTREAM attribute to a varbinary column, and SQL Server then stores the data for that column on the local NTFS file system. Storing the data on the file system brings two key benefits:

· Performance matches the streaming performance of the file system.
· BLOB size is limited only by the file system volume size.

However, the column can be managed just like any other BLOB column in SQL Server, so administrators can use the manageability and security capabilities of SQL Server to integrate BLOB data management with the rest of the data in the relational database—without needing to manage the file system data separately. Defining the data as a FILESTREAM column in SQL Server also ensures data-level consistency between the relational data in the database and the unstructured data that is physically stored on the file system. A FILESTREAM column behaves exactly the same as a BLOB column, which means full integration of maintenance operations such as backup and restore, complete integration with the SQL Server security model, and full-transaction support.

Application developers can work with FILESTREAM data through one of two programming models; they can use Transact-SQL to access and manipulate the data just like standard BLOB columns, or they can use the Win32 streaming APIs with Transact-SQL transactional semantics to ensure consistency, which means that they can use standard Win32 read/write calls to FILESTREAM BLOBs as they would if interacting with files on the file system.

In SQL Server 2008, FILESTREAM columns can only store data on local disk volumes, and some features such as transparent encryption and table-valued parameters are not supported for FILESTREAM columns. Additionally, you cannot use tables that contain FILESTREAM columns in database snapshots or database mirroring sessions, although log shipping is supported.

The Remote BLOB Store API

Although the FILESTREAM attribute combines the performance and scalability of the file system with the manageability and data consistency of storing BLOBs in the database, there are often scenarios where it is more efficient or cost-effective to store BLOBs in a system like EMC Centera, Fujitsu Nearline, or any other dedicated BLOB store. The Remote BLOB Store API in SQL Server 2008 makes it easier to integrate dedicated, remote BLOB storage solutions with the relational data in your database by offering a provider-based architecture that enables your applications to use any BLOB store without requiring BLOB store-specific functionality or code.
There are two key components to the architecture:
· The client library: A component that enables the use of any provider to work with your BLOB and relational data together. Client applications use the client library and any applicable provider libraries to insert, update, and query data in the BLOB store right alongside data stored in the database.
· The provider library: A component typically provided by BLOB store vendors (although it could be custom-developed). A provider library implements a common interface and exposes a set of standard services that abstract the details of how to perform Create, Fetch, Enumerate, Delete and Garbage Collect operations for that particular store.

The Remote BLOB Store API is ideal when your database BLOBs need to be stored on a different server from the database and interoperability with other systems is required. There are no restrictions on the BLOB store. Any system that offers a Remote BLOB Store provider, or for which one can be built, is supported. Because the details of interacting with the BLOB store are abstracted by the provider library, you can change the store without requiring changes to applications, which offers substantial benefits and reduced complexity to developers and administrators. Microsoft is working with all storage vendors in the industry to ensure that a proper library of providers is available to use with the Remote BLOB Store API.
Using the Remote BLOB Store API gives you the flexibility to use different systems to manage relational and non-relational data. This is particularly useful for an application that uses multiple stores via the same API. For instance, applications can effectively exploit different store attributes to enable tiered storage or an HSM-like hierarchy. The Remote BLOB Store API maintains integrity between rows in the database and BLOBs in the external store through link-level consistency. For example, if you delete the BLOB reference from the database through a delete statement, the system removes the BLOB from the store. However, the use of the Remote BLOB Store API does not provide you with the full data-level consistency that comes with storing BLOBs directly in the database, as you would by using FILESTREAM or varbinary. [Note: For write-once BLOBs, the consistency is very close to that provided by FILESTREAM].

Comparing BLOB Storage Options

The following table compares the storage options for BLOB data in SQL Server 2008.

This range of options shows that SQL Server 2008 provides a flexible solution for storing unstructured data in the way that best suits your business requirements.

BLOB Storage Options
	
	File server or BLOB store only
	SQL Server BLOBs
	Remote BLOB Store API
	FILESTREAM Columns

	Fast Streaming performance
	Depends on the file store
	No
	Depends on the BLOB store
	Yes

	Link level consistency
	No
	Yes
	Yes
	Yes

	Data level consistency
	No
	Yes
	No
	Yes

	Integrated management
	No
	Yes
	No
	Yes

	Use of remote Windows file servers
	n/a
	No
	Yes
	Not in this release

	Interoperability with external BLOB stores
	n/a
	No
	Yes
	No

Searching Unstructured Data in SQL Server 2008

One of the most common requirements for applications that use non-relational data is to enable full-text search over that data.

Prior versions of SQL Server support full-text search in prior versions. However, it has always relied on an external service, the Windows Search Service, for its full-text search engine. Using an external service created of the following two challenges:

· The reliance on an external service created greater deployment complexity and support difficulty.

· Queries that combined full-text search predicates with standard SQL predicates suffered in performance because the entire result set from the full-text portion of the search had to be spooled into the engine before the standard SQL predicates could be applied. The query optimizer could not create plans that incorporated the full-text search predicates.

In SQL Server 2008, full-text search is fully integrated into the database engine. By integrating the full-text engine directly into the SQL core, SQL Server 2008 resolves the challenges that were presented by previous releases, reduces the cost of managing and deploying SQL Server, while improves the performance of searching unstructured data.

Conclusion

SQL Server 2008 provides a flexible solution for storing and searching unstructured data. FILESTREAM enhances the performance of storing non-relational data like BLOBs in the database alongside relational data, without sacrificing manageability. If you need to use a dedicated BLOB store, then the Remote BLOB Store API helps you to integrate your BLOB data with the relational data in your database and provides a consistent programmatic interface for interacting with this data, independent of the system that is used to store the data. Finally, SQL Server 2008 makes searching non-relational data more efficient and easier to manage when you need to store and use large libraries of documents by using any of the solutions discussed in this whitepaper.

For more information:

Microsoft SQL Server 2008
http://www.microsoft.com/sqlserver/2008/en/us/default.aspx
Please give us your feedback:

Did this paper help you? Tell us on a scale of 1 (poor) to 5 (excellent), how would you rate this paper and why have you given it this rating? For example:

· Are you giving it a high rating because it has good examples, excellent screenshots, clear writing, or another reason?

· Are you giving it a low rating because it has poor examples, fuzzy screenshots, unclear writing?

This feedback will help us improve the quality of white papers we release. Send feedback.
1

1

