[image: image1.png]Microsoft*

SQL Server 2005

What’s New in SQL Server 2005 Integration Services

Authors: Mark Chaffin and Brian Knight

Published: April 2005

Summary: This white paper provides a practical guide to exploring the new features of the SQL Server Integration Services (SSIS) platform.

Copyright

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

 2005 Microsoft Corporation. All rights reserved.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Table of Contents

1Introduction

1Wizards for SSIS

5The Business Intelligence Development Studio

6Visual Studio 2005

7The Solution Explorer Window

9The Toolbox

9The Properties Window

10Other Windows

11Pan and Scroll Control

12UI Customization

12The SSIS Package Designer

12Control Flow

15Logical Task Grouping

16Annotations

17Connection Managers

17Variables

18Data Flow

19Executing a Package

20Architecture

21The Data Source Elements

21Data Source

22Data Source View

23Connections

24The Control Flow Elements

24Tasks

24Shared Architecture

35Precedence Constraints

35Constraint Value

35Conditional Expressions

36Containers

40Variables

40Changing Properties Dynamically

42Property Expressions

42The Data Flow Elements

43Sources

43OLE DB Source

44Flat File Source

45Raw File Source

45XML Source

46DataReader Source

46Destinations

47SQL Server Destination

47Raw File Destination

48OLE DB Destination

48Recordset Destination

48DataReader Destination

50Data Transformations

50Extend or Modify Data

52Character Map

53Distribute, Merge or Extract Sample Data

54Business Intelligence Transforms

58Miscellaneous Transformations

59The Event Handling Elements

61The Error Handling Elements

63The Logging and Auditing Elements

66Development and Testing

66Debugging

67Tutorial: Creating Your First SSIS Package

76About The Authors

Introduction

Microsoft® SQL Server™ Integration Services (SSIS) has gone through a complete redesign and rewrite from Data Transformation Services (DTS) in SQL Server 2000. As part of that process, many of the product design and administration paradigms were rethought. SSIS is now no longer a stand-alone designer; SSIS adopts Microsoft Visual Studio® as its development environment, but continues to leverage the standard management tool for SQL Server 2005. The new development environment is called the Business Intelligence (BI) Development Studio, while the administration environment is aptly named SQL Server Management Studio. The separation of the two environments allows developers and database administrators (DBAs) to focus on specific tasks of development or administration.

Both environments are capable of executing packages, but the BI Development Studio can only execute on the developer console, while the Management Studio executes those packages on the server that have been imported. BI Development Studio solutions contain one or more projects, while projects contain data sources, data source views, SSIS packages, and other miscellaneous files. For example, a new project can contain the SSIS package you’re developing and also any packages that you may be calling out to. It also might contain all of your supporting files such as data definition language (DDL) and data manipulation language (DML) files for databases you’re working with. When it comes time to deploy to a production environment, you’ve got all the necessary files in one location.
BI Development Studio doesn’t require a direct connection to the SQL Server RDBMS to design packages, nor does it require a connection to save your work. BI Development Studio saves projects into project folders, just like Visual Studio does. BI Development Studio can also have direct integration to Visual SourceSafe (and other source control systems) from the design environment. As changes are made to projects, they can be immediately checked into VSS.
Management Studio, unlike BI Development Studio, is aimed primarily at DBAs and is used to manage SQL, Analysis Services, and Reporting Services servers. It supports the executing and scheduling of SSIS packages, but not the editing or designing of them. However, it does allow users to use the SSIS framework to import and export data and to perform routine maintenance tasks.

Wizards for SSIS

Microsoft has updated the Import/Export Wizard from SQL Server 2000 that was used to help DBA and developers automate the repetitive tasks of moving and copying data from one location to another.
Import/Export Wizard

The simplest and most commonly used wizard in DTS 2000 was the Import/Export Wizard. It allowed DBAs, developers, and novice users to move data from a source of any type to a target of any type, very quickly, with no code and very little hassle. It also provided a starting point for learning how to build and design DTS packages. The Import/Export Wizard makes an encore appearance in SQL Server 2005 with some improvements including:

· Improved flat-file control for both source and destination.

· Real-time preview of data.

· Optimization of processing when a large number of tables and views is desired.

· Creation of a new database directly from the wizard.

Figure 1 shows the opening screen of the wizard while the next several figures show subsequent steps in the wizard.

[image: image2.png]5515 Import and Export Wizard.

5

ssdf

>

Welcome to SSIS Import and
Export Wizard

This wizard helps you to create simple packages that import
and export data belween many popular deta formals
including databases, spreadsheets, and te fes. The
wizard can aka create the destinaion database and the.
tables into which the data s inseted.

T Do ot show this starting page again

=lolx|

<Beck

i |_owes |

Figure 1

Along with the new features, the user interface has been updated and should save time for those who frequently use the wizard.

One of the more pleasant improvements includes the capability of creating the target database directly from the wizard. In DTS 2000, the user would have to stop the Import/Export process, return to Enterprise Manager, and create the database. Now, the administrator can create and configure a new database using the dialog box shown in Figure 2.

[image: image3.png]Create Database.

Speciy the name and propetis fo the SOL Server database.

Nae:

Data e name:

Logfie name:

Newbatasaurce
[CProgiam Fiesticrosoft SOL =
Server\MSSOL T\MSSOL\DATANewDataS ource_Dat =
[CProgiam Fiesticrosoft SOL =
Server\MSSOL 1\MSSOL\DATANewDataSource_Log =

[Datafiesize
Inital size

' No growth allowed

' Grow by percentage:

B = meosbytes
=

€ Nogowth albowed
" Grow by percentage:

& Growby size

© Growby s [messhtes
~Logfiesize
il sz [= messhtes

=
[=] mesebyies

Figure 2

When the package is being built, saved, or executed, the status dialog box that is displayed is significantly different than the one in DTS 2000. Figure 3 shows the progress dialog box.

[image: image4.png]=lolx|

The execution was successful 1
b |
20 Total 0 Eror
@ succem Do Dveres
Detais
Acton Status Message
@ Create a TransferProvider. Success
@ Create a temporary file for destructive SOL. Success.
@ Create a temporary file for constructive SL. Success.
@ Create a temporary XML file for table metadata. Success
@ Configure the TransferProvider with fles and So... Success
@ Evecute the transfer with the TransferProvider. Success
@ Execue the destuctive SGL. (dop tobles) Success
@ Execule the consnuctve SOL. create tables) Sucoess
@ Cieate atemporan table anster package for[d... Success
@ Esecule tanster package for[dbol DimAccour] Success
@ Copying o dbol(DimAccount] Success 98 1os arfered
@ Cieate atemporany table anster package for[d... Success
@ Esecule tanster package for [dbol DinCurency] Success
@ Copying to [dbol [DinCurrency] Success 105 rows anstened
@ Cieate atemporan table anster package for[d... Success
@ Esecule tanster package for[dbol DinCustomer] Success
@ Copying to [dbo] DimCustomer] Success 18484 rows tarstened
@ Cieate atemporany table anster package for[d... Success
@ Esecule tanster package for[dbol DinDepat.. Success
© Copying to [dbol[DimDepartmentGrour] Success Zrows anstered

C=d

top. Bepott_ v,

Figure 3

After the package is saved to the SQL Server or to a file, you can open the package. Figure 4 shows the control flow part of the Import/Export Wizard package.

[image: image5.png]Y

I

I

1 Connecton anagers

DestratnComecionOLEDS
U soucecoredtorotes

Figure 4

In contrast to a package created with the Import/Export Wizard in DTS 2000, all of the CREATE TABLE DDL is included in the first ExecuteSQL task, the Preparation SQL task. The data movement actually happens in the Pipeline task after the tables are created.

After opening the Data Flow task, the data flow components are visible. In Figure 5, three tables are being exported, and as a result, three sources and three destinations are created (one set for each table).

[image: image6.png]Data Flow Task: 0 Data Flow Task

Saurce - DinCu.

I

Destination - i,

I I

& (@ |® @

1L Connections

[DestinatonConnecionOLEDD
[Sourceconmectonotene

Figure 5

Just like in SQL Server 2000, the Import/Export Wizard is a great way to get a first look at what the new SSIS is really doing under the covers.

The Business Intelligence Development Studio

In the Business Intelligence Development Studio, you develop SSIS packages in an Integration Services project within a solution. The solution is a container that enables you to simultaneously work with multiple Visual Studio projects using a set of tools for developing enterprise-level, tightly integrated BI solutions, including SSIS solutions.
Visual Studio 2005

BI Development Studio is built around Visual Studio 2005, which helps you design, build, test, deploy, and extend SSIS packages in an integrated development environment. BI Development Studio also supports using the .NET Framework with the other Microsoft development tools (Microsoft Visual Basic®. NET, C#, C++, J#). Because of its integration with Visual Studio 2005, BI Development Studio comes with integrated development features including a robust debugger, integrated source code control for multi-developer environments, and integrated help. The BI Development Studio is targeted at developers so they can use the same programming model, development tools, and skills to build packages and custom tasks that they’ve used in the past to build applications.

Several benefits of working in this project-based mode include the fact that you are no longer tied to a server that is running SQL Server to do development, and that you have automatic and integrated access to source control for all of the files in your solution or project.
When you open the BI Development Studio for the first time and create a new Integration Services project, you see a simple view of the environment. You won’t see any tasks or objects or packages, because you’ve only created an empty solution. You’ll notice that there are several windows already open: the Toolbox, the Solution Explorer, Properties, and possibly the Output window and a Search Results window. All of these windows can be undocked from their current location, redocked elsewhere, moved or closed, or set to auto-hide to free up space on the screen and boost productivity. If you ever close a window that you want to reopen, select View on the main menu and then select from one of menu options to reopen. You can also reopen the Solution Explorer, Properties window, Toolbox, or several other windows directly from the toolbar. Just click on one of the icons from this group (Figure 6).

[image: image7.png]A E R

Figure 6

Figure 7 is similar to what you will see when you open BI Development Studio for the first time.

[image: image8.png]o Start Page - Microsoft Visual Studi

[——————
CHEHE B9 -F-8[) g

| start Page| ¥ X

a dio 200 (|

S Adventuretiorks Sample Reports

[Introduction to Team Architect Edition Application De..
AReport rojectl ied, 02 Mar 2005 08:00:0 GT - Get a pracical ntroduction
(3 Adventure Works DW o Applcation Designer, starting with the design of a
service-ariented system.

|xoqio01 3¢ | 4aio|dx3 sseqeieq

Introduction to Team Architect Edition Application De..
ied, 02 Mar 2005 0E:00:0 GNT - Get a practical ntroduction
to Application Designer, moving from design to mplementation of
a service-oriented system,

New Project, Open Project.

Installing the December CTP Release of ¥isual Studio ...
Mo, 28 Feb 2005 08:00:00 GMT - Use this step-by-step guide
and Virtual PC 2004 o install and configure the latest release of
Team System n a vitual environment.

New Project From Existing Code.
Import and Export Settings.
Developer Center

Show output rom: ML=

=181]

=% B

Error List |] Output

Ready

Soton Exlrer |2 Class View

Figure 7

Notice the default organization of the Development Studio with support windows surrounding the main work area in the center. Much of this can be customized and is discussed in the upcoming sections.

The Solution Explorer Window

To start working in the BI Development Studio, you must first open or create a new project or solution. If you begin by creating an Integration Services project, a default solution is created to contain the new SSIS project. You can also begin by creating a blank solution and adding several projects to it, such as a SSIS project along with an Analysis Services project, a Reporting Services project, or even a Visual Basic. NET project. This solution/project association allows the developer to group different units of work together for deployment and testing purposes.

Figure 8 shows what organizational possibilities exist inside the BI Development Studio. The example groups three ETL projects (Source 1 to Stage, Source 2 to Stage, Staging to EDW) and one Analysis Services project together. Because the environment is integrated into Visual Studio, many developers can be working on all parts of the solution simultaneously.

[image: image9.png][Solution ‘Adventure Works D' (4 projects)
S Ly Adventure works W
& 5 Dsta sources
G Adverture Works.ds
5 [Dsta Source views
Adverture Works.dev

Chstored Customers.cev
Subcstagery Gasket Andyss. v
o L Cubes
B Adverturs Works.cube
3 Mined Customerscube
25 Dimensions
5 Miing tructures
5 Roles
5 Assenbles
5 Micelaneous
5 |, SourcetTostagng
25 Dsta sources
5 Dsta Source Views
5 [5515 acksges
| Sourcet Tostaging.chox
25 Mscelaneous
& |, SoucezTostagng
(25 Dsta sources
5 Dsta Source Views
5 [5515 acksges
| SourcezTostaging.chox
25 Mscelaneous
-, StagingzEow
25 Dsta sources
5 Dsta Source Views
5 [5515 packsges
|
25 Mscelaneous

7 soton Explorer |23 GRaE VW

Figure 8

However, you should only see the example shown in Figure 9 if you right-click the SSIS Packages folder and select New SSIS Package.

[image: image10.png][Solution 'Integration Services Project’ (1 project)
", Integration Services Projectl
(25 Dsta sources
5 Dsta Source Views
- [SSisPackages
) Package.dtsx
25 Mscelaneous

T -) E—

Figure 9

The file with the .dtsx extension is the core package that all of your information will be saved in. The solutions and projects that contain .dtsx files are only there for grouping and organizational benefits. You can open a .dtsx file just by creating a SSIS project and adding an existing .dtsx file to the project.

The Toolbox

As you look around the BI Development Studio, you will also notice another window called the Toolbox, probably along the left side of the window. The Toolbox is organized into many tabs, depending on the type of project you’re working on. It contains many tabs that don’t apply to SSIS projects. The two tabs that apply to SSIS are the Control Flow Items and the Data Flow Items tabs. We’ll cover the tasks and objects that appear in the Toolbox later in this paper. Depending on your screen resolution, you’ll also notice two scroll arrows next to the tab names. If you don’t have enough room for all of the tasks to be displayed, the scroll arrows will be enabled and you can navigate up and down the list of items (see Figure 10).

[image: image11.png]L

~ 7 X
8 Update Statitics Task N

ControlFlow Ttems
O Forker

¥ For Loop Container

1 Foreach Loop Contaner
7] seauence Container

5 Aciver Scrpt Task
67 BulkInsert sk
] Data Flow Task
A, Data g Query Task
2 Execute Package Task
% Execute Process Task.
3 Breaute saL Task
3] Fie System Task
4] Fie Transfer PrtocolTask
1) Message Queue Task
5 scrpeTask

Send v Task

S Server AnsyssServices
S Server AnsyssServices
Web ervice Task
W Daks Reader Tk
W Evert Watcher Task
LTk

s b bl 5 G ¥ L

Database Explorer | 5 Toolkbox

Figure 10

As you use the Toolbox, you may want to customize your view by removing tasks or tabs from the default view. Right-clicking a particular task will display a shortcut menu that you can use to customize your view by adding or removing tabs and adding, renaming, or removing items. You can also change the order in which the items or tabs appear by dragging them from the source to the destination.

The Properties Window

By default, the Properties window is displayed in the lower-right corner of the BI Development Studio. This window will appear as you begin to use Visual Studio to create packages in the BI Development Studio and click on the drawing surface, tasks, or objects. The Properties window is context sensitive, so you will notice that the window changes depending on the item you’ve clicked on.
If you want to test this out, click on the main designer window. The Properties window will display the property page for the package as shown in Figure 11.

[image: image12.png]~ 8 X

Package Package 5
B2y
O -
PackageType DrsDesinersn
B visc
Configurations. {Collection)
Forcebceasioniosst None
LocaleID English (United States)
Loganghiode UseparentSeting
Offnetiode Fase
SuppressConfgurationhe Fase
B Securky
Packagepasswond
Protectiontvel EncryptsenstiveWiUserk:
B Transactions
otontevel sersizae
Transactonoption supported
B version
Versongud 0
Nome

Specifies the name of the abject.

Figure 11

Other Windows

In design time, the BI Development Studio has several other windows that you can choose to dock, undock, show, hide, or auto-hide. They include the following windows:

· The Task List window shows narrative tasks that a developer can create for descriptive purposes or as a follow-up for later development.

· The Error List window shows errors and warnings that have been detected in the package. Double-clicking on an entry in this window will open the editor of the object causing the error.

· The Output window shows the results from most build or execute activities that occur in the BI Development Studio. For example, the Output window will show any errors that occur during building or deploying, or that occur during run time.
· Two Search windows (for Help) and one Results window allow for searching SQL Server Books Online and for showing the results of searches.

When you test your packages, you will want to execute them inside of the BI Development Studio. This will shift the mode into run-time mode. During this time no editing is allowed until the package has completed execution. During run time, several other windows appear as follows:

· The Call Stack window shows the names of functions or tasks on the stack.

· The Breakpoints window shows all of the breakpoints set in the current project.

· The Command window is used to execute commands or aliases directly in the BI Development Studio.

· The Immediate window is used to debug and evaluate expressions, execute statements, and print variable values.

· The Autos window displays variables used in the current statement and the previous statement.

· The Locals window shows all of the local variables in the current scope.

· The Watch windows allows you to add specific variables to the window that can be viewed as package execution takes place. You can also directly modify read/write variables in this window.

Pan and Scroll Control

If the packages you’re designing become spread out over the Designer surface and require scrolling, you will see a small cross-arrow appear in the lower-right corner of the design surface (see Figure 12).
[image: image13.png]Product
Dimensi

L, Time
1 cure
(25 Miing Vo
£ Roles
& Assemtie
(& Miscelane
& & sourcetTosta
e &3 Datasar
3 Dataar
£ G DTS Pack:
1 Saurc
£ E3 Miscellne

Cross-Arrow

Properties

DTSPackage1 pack
e

MaxConcurrentExec

MaximumErrorCaunt

Figure 12

If you click on the cross-arrow, a popup window will appear that shows a smaller representation of the entire package and a dotted line representing the current viewable area (see Figure 13).

[image: image14.png]

Figure 13

UI Customization

One of the best features of BI Development Studio is the capability of its user interface to be almost completely customizable to the individual users’ wishes. All of the windows we’ve discussed can be undocked and moved around. They also can be docked in many different screen locations and be combined with other windows to display as tabs. They can be set to auto-hide so that when you’re done using them, they scroll out of sight until you need them again.

The SSIS Package Designer

The SSIS Package Designer is built into the BI Development Studio and is the main surface for package development. The Designer contains a set of graphical tools that make data movement, workflow, and complex data transformations available with minimal or no coding. The Designer has several windows that are used for control flow, data flow, connection creation, and variable creation.

Unlike DTS 2000 where control flow and data flow were intermingled, Control flow and Data flow editors in SSIS are completely separate. The separation of control flow and data flow provides you with greater ease and control when developing complex SSIS packages. This separation provides a more intuitive user interface, better control of package execution, increased visibility of data transformation, and enhanced extensibility of SSIS by simplifying the process of developing and implementing custom tasks and transformations. In addition to simplifying complex SSIS packages, you can create simple import and export data flows without worrying about control flow.

The separation of these two editors also means that you have different sets of tasks for each. The only way that the two flow editors work together is through a Data Flow task container. All data movement and transformation occurs inside of one or more of these data flow tasks.

Control Flow

The Control Flow designer is similar to DTS 2000 in that it contains tasks and precedence constraints, but it also introduces some new container objects that you should be aware of. These containers, For Loop, Foreach Loop, Sequence, and the data flow task, all contain other components that perform work of some kind. The workflow of a package is built using the Control Flow designer. The designer is a drawing surface that lets you graphically define how tasks interact with each other and the order in which they get executed.
Once you add a task to the Control Flow designer, the designer automatically adds an arrow, or precedence constraint, to the task that allows you to connect it to another task. This is illustrated in Figure 14.

[image: image15.png]

Figure 14

When you click once anywhere on the arrow or line, the Package Designer will change it to a dotted line. You can then drag it to another task and click again with the mouse over the successor task. The Designer will link the two tasks so that the task with the arrow leading into it will execute when its predecessor successfully completes as shown in Figure 15.
[image: image16.png]eeeeeeeeeeeeeee

Figure 15

If you want the successor task to execute only if the predecessor fails, you can double-click on the line that connects the two tasks to bring up the Precedence Constraint dialog box. In this dialog box, you can change the execution result several values, but if you change it to OnFailure and click OK, the line will change to red. Figure 16 shows the Precedence Constraint Editor dialog box with the configuration options.

[image: image17.png]A precedence canstraint defines the workflow between tuo executables, The precedence.
canstraint can be based on a combination of the execLtion results and the evaluation of
expressions.

~Contraint options
Evalustion operation:

i =

value: Success <
Expression Test

[~ Mulile constraints

f the constrained task has muliple constraints, you can choose haw the canstraits
interoperate to control the execution of the constrained task.

& Logical AND. All constraints must evaluate to True

 Logical OR. One constraint must evaluate to True

Cancel Help

Figure 16

If you wish for the successor task to execute regardless of the predecessor’s result, you can change the constraint to OnCompletion, which will change its color to blue.

Having only two tasks in your package means that you can only have one constraint between the two tasks. If your package requires additional tasks, you can add several constraints between many of the tasks to support as much complexity as your package needs. Figure 17 shows a slightly more complex workflow and how SSIS can enable more control over execution.

[image: image18.png][30—

5 s s

[

l_T

[~

Figure 17

New in SQL Server 2005 is the option of a logical AND or OR when a task has multiple constraints. In DTS 2000, a task with multiple constraints would only execute if all constraints evaluated to True. This, of course, was a problem when a task had two or more error constraints that preceded it because both tasks had to fail before the subsequent task would execute. In SQL Server 2005, if you double-click on the constraint itself, a dialog box will open that allows you to configure whether it’s a Success, Failure, or Completion constraint, but also whether multiple constraints are ‘AND’ed or ‘OR’ed together. A logical ‘AND’ means that all conditions have to be met for the subsequent tasks to execute. A logical ‘OR’ allows subsequent tasks to execute if one or more conditions are met. If a constraint is a logical AND, the line is solid. If it is set to OR, the line is dotted. Figure 18 shows the configuration for a failure constraint, but would allow subsequent tasks to execute.

[image: image19.png]A precedence canstraint defines the workflow between tuo executables, The precedence.
canstraint can be based on a combination of the execLtion results and the evaluation of
expressions.

~Contraint options

Evalustion operation: [Constrant =

value:

Expression

[~ Mulile constraints

f the constrained task has muliple constraints, you can choose haw the canstraits
interoperate to control the execution of the constrained task.

 Logical AND. All constraints must evaluate to True

& Logical OR. One constraint must evaluate to True

Cancel Help

Figure 18

This capability in SSIS makes the logical flow shown in Figure 19 possible. In this example, any package task that fails execution will prompt the Error Handler task to execute. This will enable a design where groups of tasks can be handled by a single “error handler” task. Figure 19 shows an example of this.

[image: image20.png][
H

[R = —

N N

vy

8 e

I’y

[

Figure 19

Logical Task Grouping

One other usability feature that the Control Flow designer has is task grouping. If you wish to collapse several tasks into one graphically, you can select all the tasks you wish to add, right-click to open the shortcut men, and click Group. This will create a logical container around the selected tasks. Once created, the group can be collapsed into a single task, which may simplify complex packages. Unlike the container objects, this grouping has no effect on execution, logging, variable scope, or anything else. It is only for graphical representation purposes.

In Figure 20, a SSIS package must clean out a table and a file system directory before beginning to load data. However, we want to logically group these tasks into a container called Cleanup.

[image: image21.png][I ERrrS——

Figure 20

Select the first task, Truncate Source 1 Staging Tables, and then select the second task. You can either hold down the Ctrl key and click each task or you can drag around the tasks to select them. Then, right-click either task to display the shortcut menu and click Group as shown in Figure 21.

[image: image22.png]o a:

0

[T) E—

Disable

Gow

E

Autgsize

2Zoom
=

Cony.

Delete
Select 4l

Properties

Figure 21

SSIS will create the logical group box called Groupbox around the two tasks. You can click on the name to change it to Clean Up as shown in Figure 22. Then click on the two chevrons to the right of the name to collapse the group. You can then size it to fit better within your package.

[image: image23.png]aaaaaaaa

Figure 22

Annotations

If, after grouping tasks together, your package is still too complex to be intuitive or if you wish to document the packages behavior, you can add textual annotations directly to the package layout. Right-click where you want to put a text box and click Add Annotation. The designer will create a text box that you can type directly into and resize as necessary. You can also change the font, size, and color by selecting the annotation box, right-clicking and choosing Set Text Annotation Font. Note that you can also add annotation to the Data Flow designer, which we’ll discuss in just a bit. Figure 23 shows an example text annotation.

[image: image24.png]o o
| IThiisa text amnotation to
CleanUp ¥ | describe this step, which
Eruncates ol o the staging
tables and deltes the
Fle drectary,
& o

Figure 23

Connection Managers

A tab at the bottom of the Control Flow design window contains a list of data connections that both control flow and data flow tasks can use. These connections can be referenced as either source or target in any of the data flow operations, and can connect to relational or Analysis Services databases, flat files, or other data sources.

When you create a new package, there are no connections defined. You can create connections by right clicking in the Connections area and choosing the appropriate data connection type as shown in Figure 24. There are several connection types to choose from. These are discussed later in this paper. Once the connection is created, it can be renamed to more aptly fit your naming conventions or to better describe what is contained in the connection.

[image: image25.png]L1, connection ansgers |

ocoos Aherta aro®] D setings
3 AventuoWartsDTest ot

7 Varites |

Scope

Data Ty

Hew OLE DB Connestion
Hew FlaFie Canection,

Hew AD.NET Connestion

ew Analyss Services Cannection.
Hew e Connection.

Hew Cannection From Data Source

Nep Connection.

Figure 24

Variables

One of the optional design-time windows can display a list of variables. Variables are used throughout the package to pass values between tasks, and to dynamically control how the package executes at run time. The Variables window (Figure 25) shows the variable name, its scope and data type and value.

[image: image26.png]Variables |

a

ERlEEE]

[Scope Dtatyee [vake

[o0 Pacage =3 g

[Tastoome package B De-Dupe Cutomer
[sermome LoadData sring MCHAFEIN

Figure 25

The main difference between global variables in DTS 2000 and variables in SSIS is that in SSIS each variable now has scope. Scope allows variables to be associated with packages and objects in a more defined and controlled manner.

Each package, task, event handler, and the For Loop, For Each Loop, and Sequence containers all can have variables that are within their respective scope. This means that an Execute SQL task and a For Loop container can both define a variable with the same name that only the respective object can reference.
Variables are covered in greater detail in more detail in subsequent sections.

Data Flow

The Data Flow designer manages all of the data movement and transformations between a source and target. In order to include data flow within your package, you must manually add a Data Flow task to the Control Flow designer or let SSIS do it for you when you open the Data Flow designer window. Inside this Data Flow task is where your data movement and transformations are encapsulated. Although the Data Flow task is a logical container of data movement and transformation steps, if one of these movement or transformation steps fail, the entire Data Flow task fails (depending, of course, if the data flows are configured to Fail Component). Figure 26 shows a sample parallel data flow.

[image: image27.png]Data Flow Task

OLE DB Destinatior

[LoadData

B ccvorere

Ty

This s a path ->

[asooe.. &

n Error Output

B cesoo

7 nomesme

B cesoo

- This i a transformation

Figure 26

A package can have more than one data flow task. Within each data flow task there may in fact be several “flows” between sources and destinations. Each of these source-destination flows within a data flow task is called a graph. A graph may have multiple stages of transformation. A graph usually has both a source adapter that supplies data, and a target adapter that consumes data. Between the adapters is where the transformations would be created. If the data is being changed between the source and destination, it’s being done inside a transformation. If data is only being moved between the source and destination adapters, the process uses a path, which is similar to a precedence constraint in the Control Flow designer.

You can view the column properties in a path by double-clicking on the arrow between the adapters and then clicking Metadata in the left pane as shown in Figure 27.

[image: image28.png]l Data Flow Path Editor —[ol x|

£ View an i pth propetie, view cokn mtcats, and add or rmove cata viewers rom the

path.

R
o

£ Das Vewers

Path metadata:

ame DotaType | Precisin | _5cale | Length | Codt
TimeKey o1 o o o o
rganizationkey DT_14 o o o o
DepertmentGr... DT_14 o o o o
Scenarokey DTM4 o o o o
Accotkey DT o o o o
amount o1 e o o o o

e —|

Copy to Clpboard

o |

Y

Figure 27

These control and data flow container objects are discussed in more detail in subsequent sections.

Executing a Package

Up to this point, we’ve only discussed designing packages. If wish to execute a package, you can click on the play icon on the toolbar, or press F5, or click Start and then Debug on the menu. This puts the design environment into execution mode, opens several new windows, enables several new menu and toolbar items, and begins to execute the package. When the package completes running, BI Development Studio doesn’t immediately go back to design mode, but rather stays in execution mode to allow developers to inspect any run-time variables or to view any execution output. This also means that you can’t make any changes to the objects within the package, but you can modify variables and object read/write properties.

To get back to design mode, you can click the Stop icon on the debugging toolbar, or press Shift+F5, or select Debug and then Stop Debugging on the menu.

Architecture

During the evolution of SQL Server 2000 Data Transformation Services into SQL Server 2005 Integration Services, the architecture was overhauled to accommodate a more robust, enterprise-ready extraction, transformation, and loading (ETL) environment. Figure 28 shows the architecture for SSIS in a quick visual way.

[image: image29.png]Custom Applications

SSIS Designer
SSIS Wizards

Command Line Utilities

Tasks

Object Model

—
Log [Container ,
Providers Enumerators
— Task
3

Data Flow Task

Data Flow Task

SSIS Data Flow

Source Adapter | | Source Adapter
L 20 7
Transformation

Transformation

v ¥
Destination Destination
Adapter Adapter

Transformations 3 ¥
Transformation Pipeline

Custom
Transformations|

Figure 28

The Data Source Elements

The primary reason that individuals use SSIS is for lifting data from a data source, transforming it, and loading it into another location. Data sources are the connections that can be used for the source or destination.

Data Source

Data sources contain the information that SSIS will need to connect to an OLE DB-compliant system like SQL Server, Oracle, DB2, or Microsoft Access to name just a few. You can also create a connection to less traditional data sources like Analysis Services, XML-based sources, or the Microsoft Directory Services. Your data sources can be shared by multiple packages in your Business Intelligence Development Studio project or be used once in a single package. Creating a connection can easily be done through the Connection Manager dialog box shown in Figure 29. In this dialog box, you can create a connection to nearly any type of data source. The dialog box shown in the figure is for a SQL Server OLE DB data source. Other connections may vary in their look and feel.

[image: image30.png]Provider:

[Fative OLE DBlhoset LE 5 Frovier o 5L server

Server name;
Comnection | og on to the server
 Use Windows Authentication
A

IS0z my passierd

~Connect to a database.

5 select or enter & database name:
[

© attach 3 database fl:

Logicalrame)

¥

Figure 29

Once you create the connection in your Business Intelligence Development Studio project, it doesn’t mean you’re actually connecting to the data source. This is all done disconnected until you actually go to utilize the connection in the package. The nice thing about this is that you can develop the majority of your SSIS package while you are in the airport, far from the actual connection to your database, and then later deploy the package and all of its connections to the server running SQL Server.

Data Source View

A data source view (DSV) is a logical view of your data source or data sources. Simply put, it is a collection of database objects (tables, views, and stored procedures) that are logically grouped together and can be shared across your project. Data source views can be reused in Analysis Services and Report Builder.

Data source views closely resemble SQL Server relational views and can present a business logical view to your data model. Where these are especially useful is with complex schemas such as are found in some large Enterprise Resource Planning (ERP) software packages like SAP, Seibel, or Peoplesoft. In order for these software vendors to develop an application that is flexible to work across any corporation, they had to have a vast data model with perhaps thousands of objects. Sometimes these ERP models have columns with very complex column names like A54210. This creates an environment where you must become an expert at the entire data model and spend valuable time translating the columns into business names, which gives you less time to spend doing your primary job.

In this Enterprise Resource Planning tool (ERP) example, data source views (DSV) provide a way to segment those thousands of objects into logical groupings like Accounting, Human Resources, and Inventory. Most importantly, it gives you an opportunity to assign friendly names to each column so you can translate the column from a confusing name like A54210 once and make it available to other tools across your enterprise environment in the future. This speeds up your time to market and alleviates the needs for data source specialists to translate the column names.

There are a few key things to remember with data source views. Like data sources, DSVs allow you to define the connection logic once and reuse it across SSIS packages. Unlike connections though, DSVs are disconnected from the source connection and are not refreshed as the source structure changes. For example, if you change the Employee table in a connection to Resources, the DSV will not pick up the change.

Where this type of caching is a huge benefit is in development. DSVs allow you to utilize cached metadata in development, even if you’re in an airport where your computer is disconnected. It also speeds up package development. Since your DSV is most likely a subset of the actual data source, SSIS connection dialog boxes will load much faster. A DSV looks like the example in Figure 30 that shows a subset of the AdventureWorks database. In the figure you can see that in the Employee table I have added a friendly name to the VacationHours column to add a space between words. This will help with data usability later down the road when I allow business users to use the package or we expose the data to Analysis Services.

[image: image31.png]}_Development » Default

—
jCisgam Organkas)) Addresstine1
AT Adresstine?
City
Steterrovnceld
sostdcace
rongud
VodfecDste
e
adress (Person. Address) s
| Contact (Person.Contact) =] M"& esEs
Department (rumarResources Dz L sreoee -
Srployee (umanResources Ensioy o Wi I emmloyeeaddre...
Eloyeedress (umarResouces| [e 7 Enployesd
EnpiorecDepartnentistory (e [. § addressd
Enployeepayistory (HumanResourd P ——H ssleriecriag _ rowguid
JobCandidate (HumarResources.Jof Lo oo Vacation Hours (VacationHo... ModifiedDate
BV ———— Sck Leave Hours (Sckeave..
Sslesperson (sses ssespersor) Sy
ongu
VodfecDste
i
EE
I
TertoryD
selsquots
Sons
Commssorect
SsiesrD
e
o

& i, FirstPackage
& By Deta Sources
G Adventure Works.ds
& By Deta Source Viens
3 Adventure Works.dsy.
B SSIS Packages
| Package disx
[Micslzneous

VacationHours DataColumn g

Ready

Figure 30

If I develop a SSIS package that utilizes the DSV, it will still continue to function even if the DSV no longer exists in production. This is because the SQL representation for the DSV is bound to the transformation.

Connections

Connections in SQL Server Integration Services have evolved significantly from the days of DTS. Instead of localizing a connection to a single DTS package, you can now make the connection shared across multiple packages inside the project. The advantage to this in the real world is that you can deploy a set of packages that are needed by an application to production and only have to change connections in a single spot to point to the production data. In SQL Server 2000, you had to go to each package and perform that task and risk missing a connection and causing a problem in your deployment.

Even though you can create connections that are external to the package, it is not required. You still have the ability to create a connection inside your SSIS package if you foresee yourself only using the connection once and don’t want to clutter your project.

The Control Flow Elements

Control flow is the SSIS component that coordinates the execution and the conditional flow of the SSIS package. The control flow contains tasks, which handle a unit of work like sending a file through FTP and constraints, which link the various tasks together in a logical order.

Tasks

Just as in SQL Server 2000, the task is the cornerstone of your SSIS package. A SSIS task is an object in your Toolbox that handles a unit of work. For example, there are tasks that handle copying a file and other tasks that handle data flow.

Shared Architecture

Each task in SSIS contains a standard set of properties. The SSIS environment can be extended to handle any custom tasks written by vendors or by you as long as the task contains these properties. Some of the essential shared properties that each task has are:

· Disable – If set to true, then the task is disabled and will not execute.

· DelayValidation – If set to true, SSIS will not validate any of the properties set in the task until run time. This is useful if you are operating in a disconnected mode and you want to enter a value that cannot be validated until the package is deployed. The default value for this property is False.

· Description – The description of what the instance of the task does. The default name for this is <task name>. This does not have to be unique and should accurately describe what the task does for people that may be monitoring the package in your operations group.

· ExecValueVariable – Contains the name of the custom variable that will store the output of the task’s execution. The default value of this property is <none>, which means that the execution output is not stored.

· Fail Package on Failure – If set to true, the entire package will fail if the individual task fails. By default this property is set to false.

· Fail Parent on Failure – If set to true, the task’s parent will fail if the individual task reports an error. The task’s parent can be a package or container. You’ll read more about containers later.

· ID – A unique ID that is associated with an instance of a task. The ID is in GUID format and looks like this: {R438HJI-7DN3-I8EF-NFUF-JF83AFFJ83A}

· IsolationLevel – Specifies the isolation level of the transaction if transactions are enabled in the TransactionMode property. The values are: Chaos, ReadCommitted, ReadUncommitted, RepeatableRead, Serializable, Unspecified. The default value of this property is Serializable.

· LoggingMode – Specifies the type of logging that will be performed for this task. The values are: UseParentSetting, Enabled, and Disabled. The default value of this property is UseParentSetting, which tells the task to use the logging mechanism for the package or container.

· Name – The name associated to the task. The default name is <task name>. As a SSIS designer, you probably want to change this name to make it more readable to at run time. This name must be unique inside your package.

· TransactionOption – Specifies the transaction attribute for the task. The values are: NotSupported, Supported, and Required. The default value of this property is Supported, which utilizes transactions in your task.

Now that you know the common properties that can be seen when selecting a task, let’s look at some of the common tasks that you can use in SSIS. It’s also important to note that Maintenance Plan tasks also appear in the same toolbar but are collapsed by default.

Bulk Insert Task

The Bulk Insert task (Figure 31) is almost identical to the SQL Server 2000 DTS task of the same name. This task is the fastest way to bulk load data into SQL Server from a flat file when you do not want to transform the data. One difference between this task and its SQL Server 2000 predecessor is that the SSIS task uses a common source connection. In SSIS you cannot generate format files from this task as you could in the corresponding DTS task. You will now have to do this from the BCP console application.

[image: image32.png]B Bulk Insert Task Editor

‘Configure the properties used toimport text iles nto @ SQL Server table. You cannot validate, clean,
o transform datavith this task.

Stination Connection
Comnection bhknight Adsgntureorks
DestinationTable [AdventureWorks][HumanResou

& Format
Format [Soccity
RowDelmiter (R}

ColumnDelmiter Tab

(5 Source Connectian

File Tnput file

Format

Indicates whether the format of the input dats file i defined by the row and
column elimiter properties selected in this dialog box,or by the formatss ...

= Ce=) (=]

Figure 31

Data Flow Task

Those who are familiar with SQL Server 2000 DTS won’t recognize the Data Flow task in SSIS. This is a very specialized task in SSIS and is treated differently than the other tasks. We’ll cover this in detail in this paper. The largest improvement in SSIS architecture is that you don’t have to create staging tables to perform common tasks such as aggregating data.

Data Mining Query Task

The Data Mining Query task is an evolution of its SQL Server 2000 predecessor. As in the SQL Server 2000 DTS task, the Data Mining Query task allows you to run predictive queries against your Analysis Services data mining models. Unlike DTS, in SSIS you can save the result set to a SSIS parameter and the task can have a parameter as an input variable. You will probably want to use this task to output the results of a query to a table that will be used later in the controller flow.

Execute Package Task

The Execute Package task (Figure 32) allows you to execute a package from within the parent package. There are a few nice enhancements to the SSIS version of this task. One of these is that you now have a new ExecuteOutofProcess property that, if set to true, will execute the package in its own process and memory space. The default value of this property is true. This requires more memory but the task will perform better. Another key difference in this release of the task is that this task no longer pushes parameters to the child package. Instead, the child package will reach into the parent package and pull the configuration values.

[image: image33.png]Execute Package Task Editor

g Confiqueth propertes used o exeutean SSIS package ceated I SQUgrver 205.

General
Package

Expressions

[T s server
Comeion e

PackageName Load Data Warchouse
[y e

ExecuteOutofProcess True

Location
Specifes the storage locationtype of the package to berun.

(o 1 loma | [

Figure 32

Execute Process Task

The Execute Process task (Figure 33), like its SQL Server 2000 equivalent, executes a batch file or executable in the package. This task has been enhanced dramatically to offer more flexibility. For example, you can now specify input variables that will be passed into the process or output variables that will contain the output of the execution. There is also an error output variable that will contain any errors encountered during execution of the process. This allows you handle errors with greater flexibility than in previous releases of SQL Server.

[image: image34.png]B Execute Process Task Editor.

47 Configure the properties sed to un o Wind2 executableor batch file s part of the package

ol |
Process RequireFullFileName. False |
Expressions. Executable ‘\changecontrol.cmd |
Arguments |
e |
Sanda ot Systemestarttime |
oo vl bt |
UeerCommandrieEroroutpit Y
sk TRemCosetaorce: Toe
e
e

Windovistyle

StandardErrorVariable
Specifes the name of the error varizble.

|
J
|

Figure 33

Execute SQL Task

The Execute SQL task (Figure 34) can execute relational queries, DDL, or DML against a connection (not just SQL Server connections). In SSIS you can store the query in a flat file or as a variable in addition to directly inputting the query. This is useful when you want to create an install process from outside DDL files, or if you want to create what amounts to a reusable function library of SQL files outside the SSIS process. As in past releases of SQL Server, you can pass variables in and out with ease from the query. The entire results of the query can also be stored in a variable.

[image: image35.png]JE: Execute SOL Task Editor

Configure the properties required to run SQL statements and stored procedures using the selected

[y et
e | [e trioyees

Parameter Mapping Description Truncate Employees
Result Set
Expressions 0

Full result set

oLEDB
blanight AdventureWorks

SaLSourceType Direct input

SaLstatement TRUNCATE TABLE employees.pen

BypassPrepare False

| Name
‘smns the nameofthe tsk.

we | awnen, [e |

[T =

Figure 34

File System Task

This new SSIS task (Figure 35) allows you to control the file system in what would have required a large amount of scripting in DTS. In most ETL processes, you receive an extract file from a different host and you process it and then archive the files off to a different directory. Before the process runs again, you must purge the directory that contains the extract files.

The File System task can help you with any type of file operation as mentioned in an earlier ETL example. The task can handle directory operations like creating, renaming, or deleting a directory. It can also manage file operations like moving, copying, or deleting files. All of these would have taken elaborate scripting to accomplish in SQL Server 2000.

[image: image36.png]W File System Task Editor

Configurethe properties required to perform filesystem operations, such as creating, moving, or
deletingfiles ordirectories.

General

[T Destination connection
IsDestinationPathVariable

Operation

|EvOptisns

| StopOnOperationFailure

|E1 Soiirce conneetion

| IsSourcePathVariable
SourceVariable

DestinationVariable
‘Specifes the variable that contains the path of the destination directory.

Figure 35

File Transfer Protocol Task

The File Transfer Protocol task allows you to perform file operations using FTP. This task is a descendant from SQL Server 2000 but with many new features added. The complaint in the previous version of the SQL Server File Transfer Protocol task was that you could only receive files using FTP. In the SQL Server 2005 version of the task, you can send, receive, and create directories locally and remotely all through FTP. The task can also register FTP connections using the FTP Connection Manager Editor much like any other connection in SSIS (see Figure 36). A key enhancement is that you can perform actions in FTP passive mode. Because this was missing in SQL Server 2000, you had to use FTP.exe from an Execute Process task as a workaround.

[image: image37.png]Bl FTP Connection Manager Editor

Server setings
Serves name:

Server port:

Credenials
User name:

Password:

Use paseive mode
Retries:

Churksize (in KB)

Figure 36

The task can now set the remote and source directories to variables inside SSIS as shown in Figure 36.
[image: image38.png]%5 File Transfer Protocol Task Editor

Configure the properties used to send and receivefiles from an FTP server and to manage.
directories and files onlocaland remote servers.

General BT Remote Parameters

Fie Transfer IsRemotePathVariable

Expressions Remotevariable

| OverwriteFileatDest

Bl Local Parameters
IsLocalPathvariable
Localvariable

|3 operation
Operation

| B

IsTransferascil
‘Specifes whether the files are transferred in ASCII mode.

Figure 37

Message Queue Task

The Message Queue task has been improved significantly from its SQL Server 2000 equivalent. Like its predecessor, the task can send a data file or string message to a Microsoft Message Queue. In addition, you can now send a SSIS variable to the queue in SSIS. You can now encrypt the data that is sent to the queue and you can use certificates for authentication.

A powerful application of the Message Queue task (Figure 38) is when you use it to send messages from package to package to parallelize your package operations. For example, each SSIS package can handle a segment of the work and then check in with the driving package once its subset of the work is complete. Another good application for message queues is in a distributed environment where each of the regional offices processes their data and sends their extract to the corporate server for processing via message queues. The corporate SSIS package would in this case be listening for all the regional offices to check in before it began to aggregate the data.

[image: image39.png]Message Queue Task Editor

Configure the properties used to send or receive string, variable, and datafile messages when
ececuting s DTS package.

General
Send
Expressions

|
True |
Encyptionalgoritim RC2 |
UseAuthentication False |
|
|

MessageType Variable message

I >vstemachnetame]

VariableMessage
‘Specifies the DTS variables contained n the message to be sent.

Figure 38

Script Task

One of the primary reasons to migrate to SSIS from SQL Server 2000 in many ETL developer’s eyes will be the Script task (known as the ActiveX Script task in SQL Server 2000 DTS). The new Script task has a rich design interface (seen in Figure 39) in Visual Studio including IntelliSense and the color coding of your script.

[image: image40.png]Fle Edt Vew Project Debug Tooks Window Help

sanado.d I
il

6 (References
1] Scrptain

1000 K|

Scriptitain® |

a

i (General)

| [eclarations)

B Cass vi.. | S Progect .|

B’ Microsoft Data Transformation Services (DIS) Script Task
' Write scripts using Microsoft Visual Basic

' Tne

3])| *

ScriptMain class is che entry point of cthe Scrips Task.

Inporcs System
mports Syscem.Data
Imports System.Mach
mports Microsoft.SglServer.Des.Runtime

End Class

B Public Class ScriptMain

The DTS exscution engine calls this method when the task exscuses.
To access the DIS object model, use the Dts object. Connections, variables, e
=nd logging festures sre available as static members of the Dis class.

Before recurning from this method, set che value of Dus.TaskResult to indicat

To cpen Code and Text Editor Help, press Fl.
To open Object Browser, press Corl+Alv+d.

B Eublic Sub Main()

* Add your code here

Dts.TaskResult = Dts.Results.Success

=2d sup

Ready

Lng col1 ch1 5

Figure 39

Send Mail Task

The Send Mail task (Figure 40) allows you to send an e-mail message to a user or distribution list. Unlike the task in SQL Server 2000, it uses SMTP rather than MAPI. This means you will not have to install Microsoft Outlook® on the server running SQL Server to run this task. The e-mail message can be typed using an interface that looks like Notepad. The message body can be an input file or a variable from DTS.

[image: image41.png]= Send Mail Task Editor.

Configure theproperties for the -mal message sent by the DTS packege.

[EET |
SmtpConnection |
From |
o |
« |
scc |
Subject ETL Reports Success |
MessageSourceType Varisble |
Messagesouree UsersErrorOutput |

Hormal |
Cllog.bxt =)

Microsoft. DataTransformationServil

|

Attachments
Specifes thefile to incluge as attachments to the message.

Figure 40

SQL Server Analysis Services Execute DDL Task

The new SQL Server Analysis Services Execute DDL task allows you to execute DDL to create, modify, delete, or process Analysis Server objects. You can execute DDL code that is stored inside the task itself, as a variable, or in a file outside the scope of the package.

SQL Server Analysis Services Processing Task

The SQL Server Analysis Services Processing task is a descendant of the Analysis Services Processing task in SQL Server 2000 but with much more functionality. The task processes Analysis Services cubes and dimensions but now has added layers of parallelism, allowing you to process many objects at the same time. You can also now specify how to handle errors in your keys. It is important to note that this task is not backwards compatible against SQL Server 2000 cubes and dimensions.

Web Service Task

The Web Service task is a new task in SSIS to execute a Web service method. Once you execute the method, you can write the results from the Web service to a file or to a variable. This would be useful for trading information with third-party applications. For example, you can execute a Web service method to retrieve a list of updated products at Amazon. Then, write those products to a file and input them into your database to make them live.

The Web Service task connects to the Web service by using the HTTP Connection Manager. The HTTP Connection Manager lets you connect to a Web site using proxy or even authenticate to it. In Web Service task, you can point to an internal or external website. You can also point to a local Web Service Description Language (WSDL) file, which will list the methods that can be called. If you point to an external Web site, you must copy the WSDL file locally.

The Web service you connect to may or may not require input parameters. Input parameters are passed to the task by using variables. For example, you may send the Web service a category of books to Amazon and Amazon would then return a list of new titles that are ready to be displayed. This is configured using the Input tab in the task. The outputting results are configured in the Output tab. This would be where you configure the task to output to either a variable or a file. If you output to a file, you would use the File Connection Manager.

WMI Data Reader Task

Windows Management Instrumentation (WMI) is one of the best-kept secrets in Windows. WMI allows you to manage Microsoft Windows® servers and workstations through a scripting interface. The WMI Data Reader task (Figure 41) allows you to interface with this environment by writing WMI Query Language (WQL) queries against the server or workstation. For example, you could use this to look at the application event log. The output of this query can be written to a file or variable for later consumption.

[image: image42.png]§ WMI Data Reader Task Editor

Confiurethe propetes uaed runto 3 I Query anguzge (HQL) auerythtretums indovs
S Management rtrumeniaton (WMI) data aboi 8 system:

VIMI Options
Expressions

[E WIGptions
| WMIConnectionName bknight
WQLQuerySourceType Directinput
SELECT * from Win32_HTLogévenl
OuputType Data table
OveruriteDestinston Append to destination
Destnationtye Variable
Destination User:NTApplicationLog

‘Wm,.mmmq_,w,gemm_v

Figure 41

WMI Event Watcher Task

The WMI Event Watcher task (Figure 42) empowers SSIS to wait for and respond to certain WMI events that occur in the operating system. For example, you can set the task to respond to a given error when it is written to the application event log. Another excellent use for this task would be to have SSIS to perform a function after a series of files are written to a directory. This is very common in ETL procedures. As in the WMI Data Reader task, you can query WMI using the WQL query language. The WQL query can be read from a file or variable or it can be directly input into the task.

[image: image43.png]El WMl Event Watcher Task Editor

Write 3 WMI Query Language (WQL) query and configure the properties to watch for and respond
to Windowis Management Instrumentation (WMI) events.

General
VM Options
Expressions

[ET w1 Options
WMIConnectionName
WQLQuerySourceType
WQLQuerySource
ActionatEvent
AfterEvent
ActionatTimeout
AfterTimeout

bknight
Direct input

'SELECT * FROM WIN_NTLogEvent WF
Log the event and fire the SIS evel
Return with success |
Log the time-out and fire the SSIS ¢
Return with failure

1

| Tmeout
| Spedifies the time-out.

Figure 42

XML Task

The XML task is a new comprehensive task that can perform many different functions with your XML files. It allows SSIS to dynamically modify, merge, or create XML files at run time. Some of the uses this task can accomplish are:

· Take a series of XML files and merge them into a single file.

· Prepare an XML file for a report by applying a XSLT style sheet to it.

· Select pieces of an XML file using XPATH.

· Compare two XML files and write the differences to a XML DiffGram.

· Validate the XML files against a document type definition (DTD).

This very large task’s dialog box changes based on the OperationType that you select. Figure 43 shows you how the XML Task Editor would look when using the task to validate the XML. You would then output the results of the validation to a variable.

[image: image44.png][XML Task Editor

Configurethe properties used to apply an XML operationto aretrieved XML document.

o e
5 coremors pmmantyos e
Eoey T o
B Customen stacportrdl
i
e e
|El OperationResutt
i e T
Castnatonype Ve
N e e
|E validation Options
[Lcidatomne T3

FailonvalidationFai False

ValidationType
Specifes thetype of validation to perform on the input XML document.

[T ="

Figure 43

There are other tasks that SQL Server uses for SQL Server Maintenance Plans and those can be accessed by expanding the Maintenance Plan Tasks pane.

Precedence Constraints

Precedence constraints direct the workflow of your SSIS package based on given conditions. Precedence constraints have been enhanced dramatically in SQL Server 2005 Integration Services to allow for looping.

Constraint Value

As in SQL Server 2000 DTS, precedence constraints can fall into one of three conditions:

· Complete. A complete constraint means that the next task will not execute until the preceding task executes, whether the task succeeded or failed.

· Success. A successful constraint means that the next task will not execute until the preceding task executes with the status of successful. If the preceding task executes with the status of failure, then further tasks in the branch will not execute.

· Failure. A failure constraint means that the net task will only execute if the preceding task executes with the status of failure. This constraint is typically used for failure e-mails.

Conditional Expressions

The largest enhancement made to precedence constraints is the ability to add conditional expressions to chain your tasks together or even loop them until defined conditions are met. I’ll give plenty of examples of how you can use this feature later in this section.

Evaluation Operators

Evaluation operators give the programmer the ability to create a true workflow in a package to conditionally direct the flow of tasks. Once you create a precedence constraint, you can set the EvalOp property to any one of the following settings to determine if the precedence constraint criteria have been met:

· Constraint. This default setting will only evaluate the constraint.

· Expression. Will evaluate only the expression.

· ExpressionAndConstraint. Will evaluate both the expression and the constraint before moving to the next task.

· ExpressionOrConstraint. Will determine if either the expression or the constraint have been successfully met before moving to the next task.

Logical Evaluation

The last setting that needs mentioning is the LogicalAnd property for precedence constraints. This property controls whether multiple tasks must execute with the specified conditions met before the next task will proceed. The default value of this property is true, which ensures that multiple constraints will work together as a single AND condition in SQL terms.

Containers

Containers are a core component of the Controller Flow architecture and SSIS object model. They help you logically group tasks together into units of work or create complex conditions. There are four types of containers: task host, sequence, for loop, and foreach loop containers. These allow you to:

· Set grouping on your precedence constraints to where a group of tasks must complete successfully or fail before the next task executes.

· Loop through a series of tasks until a given condition is met.

· Loop through a series of tasks for each item in a collection.

Task Host Containers

The task host container is the default container that single tasks fall into. If you don’t specify a container for a task, it will be placed in a task host container. The SSIS architecture extends variables and event handlers to the task through the task host container.

Sequence Containers

Sequence constraints handle the flow of a subset of a package and can help you logically divide a package into smaller manageable pieces. Some nice applications that you can use sequence containers for are:

· Disable a functional area of a package.

· Narrow the scope of variables to a container instead of the package.

· Help with manageability by setting the properties of the container versus each individual task in the container.

Sequence containers show up like any other task in your Controller Flow. Once you drag-and-drop the Sequence container from your Toolbox, you drag the tasks into the container. Figure 44 gives you an example of two containers. The left container is a Sequence container where two tasks must execute successfully before the For Each Loop container will be executed. We’ll cover more about that container type in a moment.

[image: image45.png]=
Prepare Environment

»

P Execute Pack,

l |

Iy csavers

Figure 44

For Loop Container

The For Loop container loops through a container of tasks until a given condition is met. For example, in Figure 45, the Send Mail task is executed four times. While this example may seem impractical, it illustrates the power of the For Loop container. This container can also have other containers inside of it to create nested loops.

[image: image46.png]] s s

»

= send i Taskc.

Figure 45

There are three main elements to the task that can be seen in Figure 46. The first is the IntExpression parameter, which is where you initialize the parameter to its first value. The EvalExpression is the condition that will cause the SSIS runtime engine to break out of the For Loop container. Finally, AssignExpression is an optional property that iterates the parameter that you earlier initialized in the InitExpression property.

[image: image47.png]L1 For Loop Editor

| The For Loop executes 2 set of items repeatedly untilthe evaluation condition s fase..

For Loop e

Expressions InitBxpression @intCount = 1
Evalpression @intCount<s
Assignecression @intCount = @intCount +1

8

Name Send 4 Emails.

For Laop Contaner

Description
Species the description of the task.

Figure 46

A more practical use of the container is to loop through a WMI Event Watcher task or a Message Queue task watching for an event. In the Message Queue task example, you could wait for a series of packages from different servers to check in before you move on to the next series of tasks in the branch. Here, you would loop through the Message Queue task using the For Loop container, waiting for the Message Queue task to write to the SSIS variable stating the success of the other packages. After that, an On Success precedence constraint would direct the package to the next branch of the SSIS package.

Foreach Loop Container

The most exciting new container is the Foreach Loop container. This container might save traditional DTS developers the most amount of time. The Foreach Loop container allows the SSIS developer to loop through a collection of files, rows in a Microsoft ActiveX® Data Objects (ADO) recordset, or variables and perform a series of tasks in the container.

An example use of the Foreach Loop container is a situation found often in ETL processes. This is where you write a package to loop through a directory of files and you execute a child package once per extract file found. In SQL Server 2000 DTS, this would take a hefty amount of coding in an ActiveX Script task. In SSIS, you need only create the container and set the Enumerator option to For Each File Enumerator as shown in Figure 47. You then point the Enumerator Configuration section to the folder you’d like to loop through and the type of file. Once the enumerator finds a file, it can map that file name to a connection or a variable in SSIS that can be used to dynamically drive the package inside the loop.

[image: image48.png]Foreach Loop Editor.

Ej The Foreach Loop container allows execution iteration over an enumeration.

General [Ei Foreach Loop Editer

Colletion Enumerator For Each File Enumerator
Mapping ressions.

varizble Mappings
Expressions

Expressions
‘Specy expressions for containerproperties.

Enumerator configuration
Folder:
(CoProgram Fies Vicrosoft SQL Server |801Todls Samples\

Files:
=sa

Retrieve fie name
©Fuly quaified
O tiame only

[Recurse subfoiders

Figure 47

The information displayed in the Collection tab changes based on what you set the Enumerator property to. Some enumerator types are:

· For Each File Enumerator loops through a collection of files on which an action will be performed.

· For Each ADO Enumerator loops through a collection of records in an ADO recordset. The recordset is stored as a variable in SSIS.

· For Each From Variable Enumerator loops through a SSIS variable.

· For Each NodeList Enumerator loops through an XML file and requires XPATH information.

· For Each SMO Enumerator loops through a list of SQL Server objects at almost any level.

As you loop through the collection, the container will assign the value from the collection to a task or connection inside the container as shown in Figure 48. You can also map the value to a variable.

[image: image49.png]ek fue QRSN W Vi punnwtiv: S i ko the SoRection vl

Tesk. Property.
CreateTablesqL Connectionstring

Figure 48

Variables

Since the inception of DTS in SQL Server 7.0, global variables (now just simply called variables) have been an important element used to dynamically configure a package so that nothing has to be hard-coded. In SSIS, this functionality has been extended immensely to handle more robust variable processing and scope.

In SQL Server 2000 there was only one type of variable, global variables. These scope of these variables is the entire package. Now in SSIS, the scope of variables can be the package, container, or system. This helps packages share variables better with other packages. It also helps keep the variable in scope for its unit of work. Because of this native flexibility, creating a single ETL process for your product is more simple to do and requires very little coding in the Script task.

Since variables now have a given scope, you should fully qualify variables. Variables are qualified with their variable type and then name. For example, a system variable would be called System::VariableName while a user variable would be called User::VariableName.

Changing Properties Dynamically

You may have noticed the absence of the SQL Server 2000 Dynamic Properties task. That task has now been dropped because the properties of each task or constraint can be configured to dynamically change based on a variable. This is useful when you wish to execute a task to connect to a data source that is unknown until run time. You can see an example of that type of function in Figure 49, where the XML task’s connection is set to use the variable XPathResult.

[image: image50.png]£ XML Task Editor

Configure the properties used to apply an XML operationto aretrieved XML document.

e B
e o =5
 SourceType. Variable
TR oo hesit v
e e
 SaveOperationResult [umberiidgets
H ooestomen
e i
oestnatonype Fie Comection
e
=
e e e e ot

Lo J(lom J (e]|

Figure 49

You can use variables with precedence constraints to drive the workflow of the package conditionally based on certain criteria being met. To do this, you double-click on the precedence constraint and change the properties of the constraint as shown in Figure 50. You would first set the Evaluation Operation (the EvalOp property) to include the expression in its evaluation. You can evaluate the expression or you can specify that the preceding task must succeed and the criteria in your expressions must be met before continuing. Lastly, specify the expression that you’d like to evaluate. Variables are specified using the @ symbol.

[image: image51.png](8 precedence Constraint Editor

A precedence constraint defines the wiorkflow between two executables. The precedence.
‘constraint can be based on 2 combination of the execution results and the evaluation of
expressiors.

Constraint options
Evaluation operation:

Value: [success

expression: [enumbertiagets < 18

Multple constraints

1 the constrained task has multiple constraints, you can choose how the constraints
interoperate to control the execution of the constrained task.

O Logical AND. All constraints must evaluate True,

(®Logial OR. One constraint must evaluate True.

Figure 50

In my example, you can see I’m testing to see if the @NumberWidgets variable is less than 10. If it is, I have received bad XML from the vendor and I will send out a message to that effect. If I have more than 10 products, then the data is valid and I can write the XSLT file out. When it executes, you can see that if the XML is valid, only the single XSLT to Text File task executes. The Send Mail task is ignored in the following package execution.

[image: image52.png]@iumbervidgets < 10

@humberitidgets >= 10

= =] send essage

Figure 51

Another feature worth mentioning is the ability to set variables to read-only. By setting a variable to read-only, you essentially make the variable a constant. This allows the variable to be changed by the developer at the package design time but not during package run time.

Property Expressions

Property expressions allow you to dynamically set variables at run time. These expressions, which are built into the expression language, allow you to easy change the properties for tasks, connections, log providers, and ForEach enumerators. Previously, you would have to use the Dynamic Properties task to change properties at run time but property expressions are much, much more powerful. You can use them to change the properties of objects at certain events like:

· Tasks

· Before Saving

· After Loading

· Before initialization

· Before Validation

· Before Execution

· Connection Managers

· Before Saving

· After Loading

· Before initialization

· Before returning from AcquireConnection calls

· Log Providers

· Before Saving

· After Loading

· Before Initialization

· ForEach Enumerators

· Before Saving

· After Loading

· Before Initialization

· Before returning from GetEnumerator calls

For example, if you receive a file from the mainframe daily and you’d like to move it to a Processed directory and timestamp the file, you can use property expressions in conjunction with the File System task to dynamically set the target file name.

The Data Flow Elements

Just as the Controller Flow handles the main workflow of the package, the data flow handles the transformation of data. Almost anything that manipulates data falls into the data flow category. To spawn the data flow, you add a data flow task to your Controller Flow.

The biggest enhancement to the data flow engine is that most data operations can be done in memory. For example, you can take a flat file source of detail order data, aggregate it, sort it, and output it to another flat file without first going into SQL Server as previously required.

Sources

A source is where you specify the location of your source data in the data pump. Sources will generally point to Connection Manager in SSIS. By pointing to the Connection Manager, you can reuse connections throughout your package, because you need only change the connection in one place. In SQL Server 2000, the source or destination was the actual connection itself.

OLE DB Source

The OLE DB Source is the data item that you’ll probably be using most in your Toolbox. As in SQL Server 2000 DTS, an OLE DB connection can go to nearly any relational data source such as SQL Server, Access, Oracle, or DB2 to name just a few. In SQL Server 2005, when you add an OLE DB Source, you will be prompted to supply the connection to use. You will have the option to point to a Data Source View as if it were a regular database. You can see that in Figure 52 where the mouse pointer points to the Transactions DSV instead of the Adventure Works main shared connection that contains all the unmodified objects.

[image: image53.png]Source Editor

Configurethe properties used by a data flow to obtain datafrom any OLE DB provider.

Specify an OLE DB connection manager, a data source, or data source view, and select the
data access mode. I using the SQL command access mode, speciy the SQL command ether by

typing the query or by using Query Builder.

Connection manager:
Nen.

Jadventure worksirransactons bsv

T s

3. locsbost Adventufyorts

]

=

Figure 52

Once you have the data source selected (Figure 53), you can go to the Columns tab and select a subset of the columns you’d like to pass to the next data item in the chain by checking the columns you’d like to be available to the data flow as shown below. You can optionally rename the way the columns will be presented to the data flow by modifying the Output Column entry.

[image: image54.png]Source Editor

Configurethe properties used by a data flow to obtain datafrom any OLE DB provider.

Specify an OLE DB connection manager, a data source, or data source view, and select the
data access mode. I using the SQL command access mode, speciy the SQL command ether by

typing the query or by using Query Builder.

Connection manager:
Nen.

Jadventure worksirransactons bsv

T s

3. locsbost Adventufyorts

]

=

Figure 53

Flat File Source

The Flat File source provides a data source for connections that are not relational. Flat File sources are typically comma- or tab-delimited files although they can also be fixed width. You specify a Flat File source the same way you specify an OLE DB one. Once you add it to your data flow pane, you point it to a Connection Manager connection that is a flat file. After that, you go to the Columns tab to specify what columns you want to be presented to the data flow. All the specifications for the flat file, such as the delimiter type, were previously set in the Flat File Connection Manager.

Raw File Source

The Raw File source is a specialized type of flat file that is optimized for quick usage from SSIS. A Raw File source is created by a Raw File destination earlier. Columns cannot be added to a Raw File source but unused columns can be removed from the source as in the other sources. Because the Raw File source requires little translation, it can load data much faster than the Flat File source. The price of this is that you have little flexibility.

XML Source

The XML source allows you to make an XML file or data item a source inside your data pump. Once the data item has been added, you can hard code the XML file into the XML location property (Figure 54) or you can specify that the location will be specified from a variable. You can also specify that the XML data itself is stored in a variable. This source is very useful when used in conjunction with the Web Service task or the XML task. Once you point the data item to an XML file, you must generate an XML Schema (XSD) file by clicking Generate XSD or point to an existing XSD file. The rest of the source resembles the other sources where you can filter the columns you don’t want to see down the chain.

[image: image55.png] Configure the properties used to obtain datafrom an XML document.

|| Data access mode:

Figure 54

DataReader Source

The DataReader source is an ADO.NET connection much like you see in the .NET Framework when you use the DataReader interface in your application code to connect to a database. The DataReader source allows you to connect to a managed connection manager source and pass it to an SQL query. The results of that query can be used later in the data flow. The main consideration to keep in mind when using this source is that you’ll have to enter the SQL query manually and you won’t have the query building tools that the other sources give you.

Destinations

Inside the data flow, destinations accept the data from the data sources. The flexible architecture can send the data to nearly any OLE DB-compliant data source or to a flat file. There are a few more minor destinations that fall out of the scope of this introductory paper. Almost every destination shares the same properties in the primary two screens. Typically, in the Connection Manager tab of the destination, you’ll set the source to a connection that has already been established in the Connection Manager. Next, you’ll map the data that has been worked on in the data flow to the destination in the Mappings column as shown in Figure 55.

[image: image56.png][501 Destination Editor

Configure the properties used to bulk copy datainto 2 localinstance of the SQL Server Database Engine.

o
FosD

pe— e

TotalCostByID TotalCostBylD

FvgCostByiD | AvgCostByiD

Toput Columny Destination Column
ProductlD ProductlD
GuariySom QuanttySum
TotalCostByID TotalCostByID
AvaCostByID AvgCostBylD

Figure 55

SQL Server Destination

The SQL Server destination is a destination item that is optimized for SQL Server. It gains its speed advantages by using the bulk insert features that are built in to SQL Server. On the Advanced tab in the destination, you can configure the same features that you have available to you in the bulk insert feature such as executing triggers or locking the table. Figure 56 shows you the options that are turned on by default. It’s very important to note that this destination can only be used if the package is running on the same machine as SQL Server, because it uses an in-memory interface.

[image: image57.png][501 Destination Editor

Configure the properties used to bulk copy datainto 2 localinstance of the SQL Server Database Engine.

Mappings
Ad

Connecton Manager

Specfy the options for a bulk nsert.

O keepidentty

Okeepnuls
Eirst row:

Last rou:

Madmum number of errors:

Order columns:

Teble lock

Check constrants

[fire triggers.

Figure 56

Raw File Destination

The Raw File destination (also called the Append destination) writes data in raw format to a file. Since this is in native format, the export is the fastest way to export data to a file. This task can be used to write data into a temporary format that can later be picked up and transformed by another package’s Raw File source.

OLE DB Destination

This is the OLE DB “catch-all” for data. The OLE DB destination can be used to send data to almost any relational data source. It’s configured in much the same way as the other destinations. A nice addition to this destination is the ability to redirect failed rows to a different table or fail the component altogether as shown in Figure 57. To redirect the rows, you add another destination that is connected to this destination so that it can receive the problem rows.

[image: image58.png][OLE DB Destination Editor

Configure the properties used to insert datainto arelational database using an OLE DB provider.

Connecton Manager Input or Output Eror
Mappings
Eror Output

Fai compo... ¥,

[lenore foire
lRedirect ron

EE=ra

Figure 57

Recordset Destination

The Recordset destination is a very flexible destination that allows you to stream data to a recordset that’s stored in the SSIS in-memory. When your package runs, SSIS populates a variable with your streamed data. This can later be looped through in a Foreach Loop task.

DataReader Destination

The DataReader destination (no relation to the DataReader source) is a powerful destination that exposes the output of a pipeline to be read by ADO.NET applications such as Reporting Services or custom applications that you may be developing by using the DataReader interface. To help yourself later with usability, make sure that the name of your destination is something that’s easy to recognize later in your program. In Figure 58 you can see the name of my destination is OutputAfterAggregation.

[image: image59.png]K. Advanced Editor for DataReaderDest

The advanced editor provides access to thelowrlevel properties of data flow components. Additionaly,the advanced
‘editor can be used to configure components that do nothave a custom user nterface.

[[ComponentPropertes | input Columns | Input and Outout Properts |

‘Specify advanced properties for the data flow component.

Properties:

Engish (United States)

T o:tsutaftragregaton

ValidatebtemalMetadata

& Custorm prop
FailonTimeout Fase
ReadTimeout 30000 L]
UserComponentTypeName Microsoft.SqServer.Dis Ppelne. DataReaderDestnaton v

| Spedifies the name of the component.

Figure 58

If you’d like to use this data now in Reporting Services, you’d have to ensure that it has the SSIS type of connection available to it. In Reporting Services, ensure that the SSIS extension is in the <DATA> section of the RSReportDesigner.config file. The Beta 3 installation of SQL Server 2005 will perform this task for you. In the Report Designer, you’ll see a new connection type called SSIS. Select this data source, then type the fully qualified name of the package like this:

-f C:\SamplePackages\RSSFeedFromPartner.dtsx

In the Query box for the connection, specify the DataReader destination that you’d like to retrieve data from. Each time the report needs data, the DTS package will be executed and you would see DataReader destination data wherever it is exposed in the pipeline. To do this as you can imagine, you must have a Data Flow task in the package.

This would be especially useful for displaying non-SQL Server data in Reporting Services or in your application after the data was transformed. For example, this function would be useful to display a RSS feed in a clean tabular format in Reporting Services. Users could then subscribe to the RSS feed in Reporting Services and have their data pushed to them using subscriptions.

Data Transformations

SSIS includes a number of new objects that transform data in various ways including cleansing, converting, distributing, and merging data as well as transformations that accelerate development of common business intelligence tasks.

Extend or Modify Data

The following transformations all extend data, either by adding or cleansing, or by directly modifying data during the transformation process.

Aggregate

The Aggregate transformation takes a data set as input and applies sum, average, count, distinct count, maximum, or minimum functions across the data set. It can group by one or more columns. The transformation can be used to summarize large sets of data without having to first write the data to a relational store, or put additional load on the source system to perform these tasks. The example in Figure 59 performs several aggregation functions (Sum, Average, Max, Min) on the AdventureWorks Data Warehouse on the Employee Dimension table and groups by Department:

[image: image60.png][y P

Configure the propertiss used to perform aroup by operations and to calculate agaregate values. Optionally,
pply comparison options to the operation. To configure muliple group by operations, clck Advanced.

==

=lolx|

ame

1[maaaa=n

PayFrequency
BaseRate
Vacationtiours
SickLeaveHours
CurentFlag
SalesPersonFlag
Departmentiiame

.

Input Columm

Output Alas

Operation

Compari

BaseRate
Departmentiiame.
BaseRate
BaseRate
BaseRate

SunBaseRate
Departmentiiame
AvgBaseRate
MaxBaseRate
MinBaseRate

Sum
Group by
Average
Maxinum
Minimum

Cancel

Figure 59

The data viewer in the following figure shows the result of the Aggregate transformation on the data that’s inserted into the destination:

[image: image61.png][Aggregate Output 1 Data Viewer 1 at Aggregate.Aggreg:

O = ==

Departmenthame AvoBasefiate | Mard
Desgod | (Executive a1a97s 1255 600

SunBaseRiate

1746924 Research and Development 43.6731 504... 405,
20865 Engieering 01442 63.4... 326,
3415863 Information Services 34,1586 504... 27.4

539.495 Sales 209719 721... 230,
138536 ToolDesign 27,7077 298.. 25
29,3509 Fance 23,9351 432 134

279528 Purchasing 19.9945 w127
1875 Marketing 18.75 75 134
1250769 Production Contral 18.2967 245.. 16

101489 Human Resources 18,0248 27.1... 139,
92,7884 Qualty Assurance 15,4647 284... 105,
719423 Document Contral 143885 17.7... 1025
2532984 Production 14.1508 841, 95
12212 Facites and Maintenance 13,0316 260.. 925
65,2308 Shipping and Receiving 10718 182..9

[attached Totalrows: 16, buffers: 1 Rows displayed

Figure 60

Audit

This transformation enables access to environment and package data in the data flow. To configure the transformation, add columns to the destination that can store the attributes you wish to audit. Audit data attributes that can be inserted into the data flow include:

· ExecutionInstanceGUID

· PackageID

· PackageName

· VersionID

· ExecutionStartTime

· MachineName

· UserName

· TaskName

· TaskID

This is really useful for auditing purposes to determine who ran a given package and when. For example, for compliance purposes you may need to add columns to your billing table to determine how the record was added into the table.

Character Map

The Character Map transformation can apply string transformations to columns, either as new columns or in-place changes. Character Map transformations include:

· Lowercase – converts characters to lower case.

· Uppercase – converts characters to upper case.

· Byte reversal – reverses byte order.

· Hiragana – maps Katakana characters to Hiragana.

· Katakana – maps Hiragana characters to Katakana.

· Half width – maps double-byte characters to single-byte characters.

· Full width – maps single-byte characters to double-byte characters.

· Linguistic casing – applies linguistic rules of casing instead of the system rules.

· Simplified Chinese – maps characters to Traditional Chinese.

· Traditional Chinese – maps characters to Simplified Chinese.

Copy Map

The Copy Map transformation allows duplicate copies of columns to be sent to the destination. A typical use for the Copy Map transformation would be to keep an original copy of the column while adding transformations to the copied column.

Data Conversion

The Data Conversion column can convert the data in a source column to a different data type in the destination.
Derived Column

The Derived Column transformation enables in-line transformations using SSIS expressions to transform the data. For example, you can apply the CEILING function to a numeric column in the transformation and send the output to a new column. You can also create conditional if statements within the expression.

Fuzzy Grouping

The Fuzzy Grouping transformation enables data cleansing activities during the transformation by identifying similarities between data rows. The output of the transformation includes three additional columns for a unique identifier for each row, the group identified and the relative score of probability of the match (0 to 1). Based on your defined threshold of probability within the task, you can have a high level of confidence in the accuracy of the matches. For example, if the configured confidence level is 80%, anything above that probability would likely be a match. Anything below may require manual acceptance of the matches. A typical use of this transformation would be to group company names together when the source is likely free-form text (i.e., Microsoft = Micro soft = MicroSoft, etc…).

Note that this transformation requires a connection to a SQL Server 2005 database to create temporary staging tables for the grouping algorithms to operate.

Fuzzy Lookup

The Fuzzy Lookup transformation enables data cleansing activities including standardizing data, correcting data, and providing missing values. The input data is compared to an existing set of reference data using algorithms that can find similarities between non-exact data.
A typical use of this transformation would be to follow a standard Lookup transformation for records that do not find a match. This transformation differs from the Lookup transformation in its use of fuzzy matching, rather than equi-join matching.
Lookup

The Lookup transformation uses equi-join matching to lookup against a reference set of data. The Lookup transformation has been greatly improved over the DTS 2000 capabilities and can be fine-tuned by modifying caching and memory restrictions. Also, lookups can be added to the data stream as new columns to preserve the original natural key values.

A typical use of this transformation would be to perform surrogate key lookups in a dimension load of a data warehouse.
Pivot

The Pivot transformation takes a normalized data set and transforms it into a denormalized version by pivoting the input data on a column value. The function is similar to functionality in Microsoft Excel, but can be applied to data in the pipeline.

Sort

The Sort transformation sorts input data before it’s sent to the destination. It can sort on multiple columns in ascending or descending order as well as perform the sort based on several comparison flags including case sensitivity, single/double byte data, and punctuation.

Unpivot

The Unpivot transformation performs the inverse of the pivot transformation.

Distribute, Merge or Extract Sample Data

The following transformations distribute, merge or extract data.

Conditional Split

The Conditional Split transformation can route data to different outputs based on whether programmatic conditions are met. If no conditions are met, data is automatically routed to the destination specified for the default condition. The BI Development Studio will annotate each case with the case ordinal as well as the default output. Each condition must have unique destinations.

Multicast

The Multicast transformation can distribute copies of the same data flow to multiple destinations. The copy is a logical copy, but a typical use would be to multicast a data set to an aggregate transformation while the detail data goes through normal transformations. Note that the Multicast transformation does not support an error output as no actual transformation is being performed.

Merge

The Merge transformation combines two sorted data sets into a single output, based on values in their key columns. This transformation requires that the inputs are both sorted and that the merged columns have matching data types. Data types with different lengths are acceptable as long as the corresponding column in the second input is less or equal in length. A typical use for the Merge transformation would be to take data that’s been through a standard lookup transformation and a fuzzy lookup transformation and merged back into a single data flow.

Merge Join

The Merge Join transformation is similar to the Merge transformation, but it allows an output that is generated by joining two sorted datasets using a FULL, LEFT or INNER join. The requirements for the Merge Join transformation are the same as those of the Merge transformation in that both require sorted data and matching metadata.

Union All

The Union All transformation combines multiple inputs into a single output. It differs from the Merge and Merge Join transformations because it doesn’t require sorted input. However, the output is not sorted. The first input is the reference input that all subsequent inputs must match using the following criteria:

· Data type

· Code page

· Precision

· Scale

· Length

· Comparison flags

Columns in a secondary input that aren’t mapped to reference columns are set to NULL in the output.

Business Intelligence Transforms

Data Mining Query

The Data Mining Query transformation performs prediction queries against data mining models. It contains a query builder for creating Data Mining Extensions (DMX) queries that are built on mining models, the transformation input data, prediction functions, and custom expressions.

If the models are built on the same data mining structure, one transformation can execute multiple prediction queries.

The Data Mining Query transformation requires a connection to the Analysis Services database that contains the mining structure and mining models.

Slowly Changing Dimension

The Slowly Changing Dimension transformation, or SCD Transform, is the most sophisticated of the transforms included in SSIS. It automates and standardizes the common, yet complex problem of how to address changing attributes in dimensions in a data warehouse. Thankfully, it is configured as a wizard to guide a developer through the steps of configuring the transformation.

The first step of the SCD Wizard configures the destination for the dimension data and the business key. Columns are automatically mapped by name and data type initially, but the user can map them manually. However, data types must be compatible. Figure 61 shows one of the first dialog boxes in the wizard where Input Columns are mapped.

[image: image62.png]Slowly Changing Dimension Wizard

Select a Dimension Table and Keys
Select 2 dimension table to load and map colnns i th transformation input o colanns inthe

dmension table

Connection manager:

[Lacaast.AdventureWorksDw

Table or view:

3 [dbo] [DimEmployee]

Input Columns

Dimension Columns

Key Type 2

BaseRate
BirthDate

CurentFlag

Departmentiiame

Emaliddress
EmergencyContacthiame
EmergencyContactPhone
EmployeeNationallDAkernatekey
EndDate

Frsthiame

Gender

HreDate

Lasthame

LogniD

Martalstatus

Middetiame
<

BaseRate
BirthDate

CurentFlag

Departmentiiame

Emaliddress
EmergencyContacthiame
EmergencyContactPhone
EmployeeNationallDAkernatekey
EndDate

Frsthiame

Gender

HreDate

Lasthame

LogniD

Martalstatus

Middetiame

ot a key column
ot akey column
ot akey column
ot akey column
ot akey column
ot akey column
ot akey column

Business key -
ot akey column
ot akey column
ot akey column
ot akey column
ot akey column
ot akey column
ot akey column

ot a key columny
I»

o e e

/)

Figure 61

The next step takes you into the tedious task of choosing which dimension columns are Fixed, Type I, or Type II changing dimensions. In this section of the wizard, you choose how the ETL will react when it encounters a change in the source as compared to the destination. For example, if you had a employee dimension that had three columns, Birth Date, Home Phone Number and Department, the business may choose to track changes on the three columns differently:

· The business wouldn’t expect the Birth Date to change (and if it did, raise an error).

· The business may expect changes in Home Phone Number, but the business doesn’t care about keeping the historical changes in Home Phone Number.

· The business expects the Department to change and is interested in keeping historical changes.

The SCD Transformation supports this exact scenario and more by allowing the designer to choose the appropriate business rules for each attribute, as shown in Figure 62.

[image: image63.png]Slowly Changing Dimension Wizard o x|

Slowly Changing Dimension Columns -
Wanage the changes o colunn data i your sl changing dimensins by
seting the change typefor dimension coumns 7

Fixed Attiibute

Select this type when the valus in &
calumn shouid not change. Changes:
are treated as errors.

Changing Attribule.
Select this type when changed
Valles shauld avervirie existing
values.

Historical Attrbute.
Select this type when changes in
calumn values are saved innew
records, Previous values are saved
in recards marked as outdated, This
is 3 Type 2 change.

<Back

Select a change type for sl changing dmension
Calumn:

Dimension Colamns___| Change Type
BirthDate Fixed atribute

Phane. Changing attribute
Departmentiiame Historcal attribute

S [el |

Figure 62

The new few steps in the wizard configure options about what happens if a change in a fixed attribute occurs, what happens to the rest of the record when a changing attribute is detected, and how to track historical attribute changes using current/expired flags or start/end date stamps.
The last step is to address the configuration of Inferred Members. Inferred Members are loaded into a dimension table when associate fact records appear, but no other information about the dimension member is known. A common example of this behavior is in a retail scenario when a data warehouse receives a transaction about a product that is sold, but has no record of the product in its master product dimension. The SCD Transformation loads the dimension anyway (with the key value from the fact table). If or when the supporting dimension data arrives, it will update the existing inferred member record. Figure 63 shows the Inferred Dimension Members dialog box in the SCD wizard.

[image: image64.png]Slowly Changing Dimension Wizard

=loix|
Inferred Dimension Members »
Use iferred members when a Fact tabe may reference dimensian mebers
that ae o yetoadsd 7

Wthen data for the inferred member isloaded, you can update the exsting record rather than
create anew ane,

¥ {Erable nferied mamber URBtk

& all columns with a change type are nul

" Use a Boolean colurn to indicate whether the current record is an inferred mermber

Inferred merber indicstor

<Back Next >

=

Figure 63

The last step in the wizard allows for review of the output or outputs (up to six outputs are allowed!) that will be created. The SCD Wizard will create a new OLE DB Destination for each output along with several other transformations to enable SCD support. The output will look similar to that shown in Figure 64, with each output automatically annotated.

[image: image65.png]3 control Fow[17 DataFlon | (3] Event Handlers | %3 Package Explorer

Data Flow Task: [Data Flow Task

1 oo

Changing Attrbute Updates
Slowly Changin

T Inferred Member Updates Output

[Z T ——

.

EF vorn

Historcal Attrbute Inserts OutpLt

L 2

Derived Column

Derived Calumn 1

1 wesoor

e evocomme

Figure 64

Note that while you can restart the SCD Wizard, any changes to the screen will overwrite the layout of the tasks on the drawing surface.

Miscellaneous Transformations

File Extractor

The File Extractor transformation can take TEXT, NTEXT, or IMAGE data directly from a flow and insert it into a file. Each row in the source can be output to a different file. Destination files can be created on the fly and data can be appended or truncated to the files.

File Inserter

The File Inserter transformation is similar to the file extractor except that the file inserter can open and read data from files for each row in a dataset. Destination data types for the file data must be TEXT, NTEXT, or IMAGE types.

OLE DB Command

The OLE DB Command transformation can execute SQL statements for each row in a data set. The SQL statements can contain parameters. A typical use of this transformation would be to replace Transact-SQL cursor functionality when performing unique Transact-SQL operations over a recordset.

Row Count Transformation

The Row Count transformation counts rows as they pass through and stores the count in a variable that can be used for data and process verification. It can also be used as a way to update a conditional split transformation or to loop containers programmatically.

Script Component

The script component enables data to be manipulated via script in the data flow. It has characteristics similar to a Script task used in control flow. One typical use for a script component in a data flow would be to apply multiple script-based transformations on each row, rather than by using multiple task-based transformations. Another typical use would be to apply similar business transformations from an existing piece of code. An alternative approach would be to create a custom transformation.

Term Extraction

The Term Extraction transformation can extract similar terms from text columns and write the output to a separate destination. For example, the Term Extraction transformation can look for keywords or nouns in text while ignoring articles and verbs. The resulting output would contain a distinct list of words that could be used to determine content.

Term Lookup

The Term Lookup transformation matches terms in an input dataset against a reference data set and counts the number of occurrences in the input set. It can normalize words that include plurals and possessives. An example would be to compare incoming comments fields with a list of key words, so that comments containing the key words could be routed appropriately.

The Event Handling Elements

Within the SSIS architecture, there is an expanded concept of events and event handlers. In prior releases, package-level events could be accessed through the programmatic execution of the package in Visual Basic or Microsoft Visual C++® environments. In SSIS, the package events are exposed in the user interface with each event having the possibility of its own event handler design surface for implementing compound work flows. In fact, events for every executable container task within the package’s run-time environment are exposed. The event handlers, provided within the SSIS runtime are listed below:

	Events
	Description

	OnError
	This event is raised when an error occurs.

	OnExecStatusChanged
	This event is raised when an object’s execution status has changed from True to False or vice versa.

	OnInformation
	This event is raised when an object has information to report.

	OnPostExecute
	This event is raised immediately after an object completes execution.

	OnPostValidate
	This event is raised immediately after an object is validated in design mode.

	OnPreExecute
	This event is raised just before an object starts executing.

	OnPreValidate
	This event is raised when its validation process begins.

	OnProgress
	This event is raised when measurable progress has been made towards completion.

	OnQueryCancel
	This event is raised by an object to determine whether it should stop running.

	OnTaskFailed
	This event is raised if a task fails.

	OnVariableValueChanged
	This event is raised if the variables RaiseChangeEvent property is true and the value changes.

	OnWarning
	This event is raised by an object if a warning condition occurs.

With the multitude of event handlers, the event architecture provides for the development of simpler, generalized handler solutions, such as package- or container-wide error handling and reporting. (Event handlers are described in detail in SQL Server 2005 Books Online.) Additionally, the breadth of the event model, within the architecture, allows deeper solutions to low-level event handling. These low-level solutions can be built on a control flow task or data flow task level to support fine-grained ETL controls.

The Error Handling Elements

Error handing in SSIS is significantly more robust than in DTS 2000. SSIS can manage errors in many different ways using several new features. It can elegantly handle or ignore errors based on the type of error or based on when or where the error occurs. SSIS allows a developer to deal effectively with both procedural and data errors.

Procedural Errors

As in DTS 2000, SSIS supports the OnFailure precedence constraint so that if a task fails, you can graphically route execution flow to an alternate task to handle the error. You can also ignore errors that occur by changing the constraint’s execution result to OnCompletion. In DTS 2000, this meant that the package would report failure to its calling application (i.e., SQL Agent) even though the failure may have been minor and recoverable.
SSIS allows the designer more flexibility by supporting a new property called ForceExecutionResult. This property can be set to None, Success, Failure, or Completion. By setting this property to Success or Completion, you can force SSIS to always return success after executing the task, regardless of what happened.

SSIS also can trap OnError and OnTaskFailed events for any control flow item including the data flow task. By using event handlers, you can simplify your project design and also take advantage of event-level variables. You can write one error handler in the package’s OnError or OrTaskFailed, depending on your needs.

Data Errors

SSIS allows data errors or data inconsistencies to be dealt with directly in the Data Flow designer. Data errors can occur for a number of reasons including inconsistent source data or programming errors. However, SSIS can pass, fail, or redirect problem data without triggering package errors; SSIS can fix and reprocess inline, or save to disk and handle later, all from within the Data Flow designer.

For example, if you insert a row that violates a primary or foreign key constraint, the row can be pushed to an error table for later processing. Figure 65 shows an example of this.

[image: image66.png]5 CortrolFow (1] DataFlaw | {2 Event Handirs

73 Package Explorer

Data Flow Task: [Data Flow Task.

B ccvorere

B cesooe

OLE DB Source Error Output

B cesooe

Figure 65

Error handling can be enabled for a transformation by creating an additional destination (OLE DB, Flat File, or Raw File) for the error rows to flow to. When you click on the target for the transformation, a red arrow appears that resembles an OnFailure precedence constraint. Drag this arrow to the new destination and the Error Dispositions dialog box will appear as shown in Figure 66.

[image: image67.png]=lolx|

Configure the properties used by dats flow to obtain data from any OLE DB provider.

Connection Manager
Columns

Inputor Output Column Eror Truncation | _Deserption
515 oL 0B sourc
; = oot Redrectrow lgnorefalre Conversion
® coz Redrectron lguorefalre Conversion
X Redrectron lgnorefalre Conversion

Figure 66

Here, two different types of data errors can be handled automatically; fatal errors (such as PK violations) and errors of truncation. These errors can be passed, failed, or redirected to an alternate target. In the example above, we’re passing any fatal errors that occur to Col1, Col2, or Col3 to the Error data source, but allowing truncations to pass successfully. The table below describes the disposition options.

	Option
	Description

	Fail Component
	The entire data flow task fails on any hard error.

	Ignore Failure
	The data flow task succeeds regardless of whether an error occurs or not.

	Redirect Row
	The offending data row is redirected to the data error destination.

If you decide to dispose of your errors by pushing them to a new destination (rather than by ignoring or failing the package), you need to set the mappings for the errors. Double-click on the Error destination connection, choose the table you wish to copy the error data to, and then choose the Mapping tab (Figure 67). You’ll notice that there are two additional columns in the list of available input columns: ErrorCode and ErrorColumn. These will contain error information for the particular row that failed transformation and can be pushed to the error table.

[image: image68.png]B OLE DB Destination Editor

Configure the praperties used ko nsert data into a relational database sing an OLE DB pravider,

=lolx|

Connection Manager
Happings
Ermor Output

Name.

B

bl

Name.

o2
o3
EnaiCode

EmaiCalumn |

o2
o3
EnaiCode
EnaiColumn

Input Column

Destination Column

Coll
oz

o3
Enorcade.
EnorCalumn

Colt

o

o3
Enorcade.
EnorCalumn

Figure 67

One last step is to disable the Fast Load property in the transformation destination. If this is enabled, SSIS will attempt to batch insert the rows and row-level errors will be unavailable. This obviously has some performance penalties, but the trade off may be worth it if the intent is to redirect all data errors.

The Logging and Auditing Elements

SSIS logging has been dramatically changed to support much finer grained logging capabilities. SSIS supports package-level and task-level logging as before, but now a designer can define different logging options for each task and for the package. The new logging also supports creating log entries for each of the task’s or package’s events. This means that you can choose to log information each time a task throws an error, a warning, or when a variable’s value changes.
You can enable logging for your package by right-clicking on the control flow designer and choosing Logging or by choosing Logging on the DTS menu. By default, logging is not enabled, so you’ll have to add at least one provider at the package level to start configuration. In the example in Figure 68, there are three providers enabled for the package:

[image: image69.png]8 Configure 5515 Logs: AWDWRefresh

Create and configure a new log to capture log-enabled everts that accur a un time,

Containers:

B [Fn Create tables
[7 1 Execute 501 Task.
1 [7 o Create temp tables
[7 1 Execute 50L Task.
[71 Create udfMinimumate function
7 e Fow Tsk - DinDeparment
757 D Fow Tk DinDeparient
77 Data Flow Tas - DinproduciCateg
7157 Dt Fow Tak- DinCurency
77 Data Flow Task - DinCustomer
751 bt Fow Tk Dimploee
751 Dk Fow Tok - DinGecarephy
77 Data Flow Tosk - Dinbrodct

"} Data Flow Tas - DinReseler
77 Data Fow Task- DinsslesReason
[7 .1 Data Flow Task - DimsalesTerriory,
[7'L.1 Data Flow Task - DimSalesTerritory
77 Data Flow Tak - actCurencyRat
77 Data Flow Tok - Factnteretsal:
L7 Data Flow Task - Factnteretsal:
77 Data Flow Tok - FactResslersaes
[0 Dot Flow Task - FactsalesQuota

=] [/« Drop temp tables

[7 1% Execute SQL Task.
=1 [7 = Drop temp tables 1
[7 1% Execute SQL Task.
7.1 Drop udinimamDate Function
© [7/a Prpare NewbDatabase

7 [Bulk Insert tempstore-MirPayment a] | Providers and Logs | Detais |

[5515 log provider for SQL Profier
[5515 log provider for 5QL Serverl

[5515 log provider for Text fies

[V 5515 log provider for Windos Event Logt.
[5515 log provider for XML st

Generates SQL traces that may b
it log entris for events to 2
Wit log entris for events to 2
Wiites log entriesfor everts tot.
Wit log entris for events to 2

NewPrafier
Lacaiost Newbatasou
LogFilelog

XMLLogFle

oo

_[o| %
-dd anewlog
Provider type: 3515 10g provider for Text fes Ja !
Selec thelogs to e for the contaier:
e Description Corfiquation

Cancel Help

Figure 68

Once enabled, you can choose a specific task to log and then configure the logging details. On the Details tab, you’ll notice a button labeled Advanced. If you click on this, you’ll see the full suite of events and attributes that can be logged as shown in Figure 69.

[image: image70.png]8 Configure 5515 Logs: AWDWRefresh _[o| %

Create and configure a new log to capture log-enabled everts that accur a un time,

Containers:

[171 ok nsert tempstore-MinPaymenta] - proviers andLogs Detals |
o [P —
) [7 w Create temp tables

[7 1 Execute 50L Task.
[7 1% Create udftinmumDate function
[7L.4 Data Flow Task - DinDepartmentG
[7L.8 Data Flow Task - DinDepartmentG
[7.1 Data Flow Task - DinProductCates
[7 .1 Data Flow Task - DimCurrency.
7.1 Data Flow Task - DimCustormer
[7L.8 Data Flow Task - DimEmployes.
[Data Flow Task - DimGeography
[Data Flow Task - DimProduct
7 Data Flow Task - DimProductsubes
7. Data Flow Task - DimPromotion
[7.1 Data Flow Task - DinReseller
[7 .7 Data Flow Task - DimsalesReason
[7 .1 Data Flow Task - DimsalesTerriory,
[7 .1 Data Flow Task - DimsalesTerriory,
[7 .1 Data Flow Task - FactCurrencyRaty
[7 .1 Data Flow Task - Factinternetsales
[7 .1 Data Flow Task - FactinternetSales
[7 .1 Data Flow Task - FactResellrsales
[72.1 Data Flow Task - FactSalesQuota

1 [« Drop temp tables
|7 1 Execute SQL Task
=] [7 = Drop temp tables 1

[7 1 Execute 50L Task.

[7 1% Drop udfMinimumDate Function

|
s FL ™ o =
. [
o | con | oo

Events IZ Computer[17 operator [7 sourcetiame [[7 sourcein | I &
Onrror

OnExecstatusChanged

Onlnformation
OnPipelnePostendOfRowset
OnPipelnepostPrineOUtpUt
OnPipelnePrendOfRowset
OnPipelnePreprineOutput

OnPipelneRowssent
OnPostExectte

OnPostyaldate

OnPreExecute

OnPrevalidate.

OnProgress

OnQueryCancel
OnTaskFalkd

OnvariablevalueChanged

onwarring

RIS SIS IS e e e e SRR S
U B B B e e e e e B
U B B B e e e e e B
U B B B e e e e e B
U B B B e e e e e B

Diagnostc

Figure 69

The events that can be logged at the task level are the same events that already have event handlers. However, you’ll notice a few extra events:

· OnPipelinePostEndOfRowset

· OnPipelinePostPrimeOutput

· OnPipelinePreEndOfRowset

· OnPipelinePrePrimeOutput

· OnPipelineRowsSent

· Diagnostic

The OnPipeline events are only valid for events raised during data flow tasks. The Diagnostic event can log current environment and diagnostic information.

For each of these events, DTS supports any or all of the five logging methods, or providers: Text File, SQL Profiler, SQL Server, Windows Event Log, and XML File.
Once you’ve decided which tasks and events to log, you can choose which attributes to capture in the log. These attributes are:

· Computer

· Operator

· SourceName

· SourceID

· ExecutionID

· MessageText

· DataBytes

In other words, there are literally thousands of different combinations that you can configure within your package. Once you’ve configured logging options that you like, you can save them and load them to or from an external file. This allows for different logging configurations for development, QA, and production if their needs are different.

Lastly, SSIS supports the creation of custom logging providers in which you can develop your own provider to support your exact needs. For more information, see SQL Server Books Online.

Development and Testing

Debugging

Once you’ve created your SSIS packages and resolved build errors, you can begin to address any logic or data errors that may be lurking. You can do this directly in the BI Development Studio using the debugging capabilities of Visual Studio. These features allow you to set breakpoints on tasks or events, check or change variables, examine the call stack, debug across multiple projects and languages (including SQL stored procedures), and get a look at your packages from the inside out.

Debugging tools support step-by-step debugging, breakpoints, and script debugging. You can view and/or modify the data (pre- or post-transformation) while the transformation is executing. You can also view sample data from data sources and insert data values.

Breakpoints

The development environment supports breakpoints on any task’s events. To set a new breakpoint, right-click the task to break on and select Edit Breakpoints. You can configure the breakpoint to break on the first occurrence or after a specified number of executions. In the example in Figure 70, execution only breaks when the hit count for the OnPreExecute event equals two.

[image: image71.png]B Set Breakpoint:

the number of times a breakpoint s ignored before execution is suspended on the breakpoin.

2%

Select the breakpoints n the task, For Loop, Foreach Loop, or Sequence to enable. Optonly, select

Enabled [Bresk condtion it Count Type | Court
¥ @ Breck when the container receives the OnPreExecute event 2
I) Eresk when the container receives the OnPostExecate svent A= o
[V @ Breck when the container receives the OnError event Hways [
[V @ Breakwhen the container receives the OnWarning svert Always [
I) Ereak when the container receives the Onlnformation verk A= o
[V @ Breck when the container receives the OnTaskFailed event Aways [
I) Eresk when the container receies the Onprogress vert. A= o
I) Eresk when the container receives the OnQueryCancel evert A= o
I) Eresk when the container receives the Onivarsblevaluech..._ A= o
I) Eresk when the container receives the OnCustonEventev... A= o

Figure 70

Tutorial: Creating Your First SSIS Package

Now that you have a good background in SSIS, you’re ready to create your first package. In this tutorial, I’ll transform data from a flat file containing about 90,000 records and aggregate the records, group them and sort them before inserting them into a new text file. In SQL Server 2000 DTS, this would have required complex scripting or else you would have to insert data into a staging table to perform this task. In SQL Server 2005, you never have to enter a staging table or know the first thing about coding. This decreases your ETL development time dramatically.

To begin the tutorial, open the Business Intelligence Development Studio. On the File menu, click New, and then Project.

For the purpose of this demonstration, type the name of FirstPackage as shown in the following figure.

[image: image72.png]New Project

ErestTypes: Templates:

Busess Intelgence Pojects
& Other Proect Types
8 Aralyss sevies roject

eport Project

Hy Templates
#]add New Onlne Templte..

Visual Studio installed templates

ey o e

5 imvort Anslyss Senvices 8.0 Database
SiRevort Project Wiard
[FlResortoceProject

‘Create a new SQL Server Integraton Services project.

FrstPackage

C:\pocuments and Settngs|Brian Kright |y Documents\yisual Studio Projects

[create new Solution

Solution Nape:

Figure 71

When you click OK, a base project is created as you can see in Figure 72.

[image: image73.png]FirstPackage - Microsoft Development Environment
View Projct Buld Debug Tods Window Heb

L b oevepment

- Default

Cortrol Flow kems toclbox
ecting Ines from 2 selected object to another.
 controllow by doubleclcking the object
For data movement and transfomation, 2dd Data Flow Task and edt .

& Data Source Vews
& B sradanes

¢ B

Right-ickhere to add anew connectionmanagerto the DTS package.

FileName Package.dtsx

Creating project FrstPackage’. .. project restion successfil.

Figure 72

Package.dtsx should be open at this point as part of the project creation. If it is not, in Solution Explorer, double-click on the package to open it.

I’ll start by adding the connections that will be used later.

To add the first flat file as a connection, right-click the Connections tab on the bottom of your screen and select New Flat File Connection. This opens the Flat File Connection Manager Editor (Figure 73).

In the General tab of this editor, you can configure most of the settings for the flat file. For the Connection Manager Name, select Input File. The file name should point to the location and file name where you placed the SampleFile.txt.

Next, make sure that you have a text qualifier of double-quotes (“) and that you check the Column names in first data row option. The text qualifier option tells the SSIS engine that data is encapsulated inside double quotation marks. Encapsulating data inside text qualifiers helps you use a delimiter, such as a comma, inside your text.

[image: image74.png]Bl Flat File Connection Manager Editor

‘Connection manager name:

Descriptio

L General
[coumns
[acvenced
3 previen

inputrie]

Fie contaning cetaled orcer data

Select afile and specifythe file properties and thefile format.

(CoDTSTutoial\SampleText.txt Brous
[Engish (United states) vi| (] unicode:

File names:
Locale:

Code page:

Format:

Text qualfier:

Header row delimiter:

Header rows to skip:

Figure 73

Go to the Columns tab (Figure 74) on the left in the same dialog box to ensure that you see the first few rows of data and the columns. Next, go to the Advanced tab (Figure 74). By selecting each column, you can see which data type SSIS is using for that column in the flat file. Select the column TransactionDate under data type select “date [DT_DATE]”. The Quantity column should also be set to “four-byte signed integer [DT_I4]”.

A really cool feature here is that you can click Suggest Type to have DTS sample the data and predict what you need. When it suggests the data type, it will predict for all the columns and not just the one you have selected. Always proof its selection before clicking OK.

[image: image75.png]Bl Flat File Connection Manager Editor

‘Connection manager name: rputFie

Descriptio

[Colmns
[Acvanced
3 previen

[cenera |

Fie contaning cetaled orcer data

Configure the properties of each column.

R

ReferenceOrderLnehumber” ColumnDelinit Comma {3
“TransactorDate” siputcs
“TransactinType” =

ot Tocquilfied True

“ModifiedDate” =

Nome “TransactionIn”
DataType single-byte signed

Suggest Types..

Figure 74

After you click OK, you’ll see the connection transposed to the bottom Connections tab. Create one additional connection to the SummarybyProductID.txt file. On that connection, accept the default properties with the exception of the text qualifier, which is double-quotes. Name this connection Output File.

In the far-left pane, you should be able to see the Toolbox tab. Drag the data flow task control from the Toolbox to the Control Flow tab.

Note You can pin the Toolbox to your design environment by clicking the push pin.

Right-click the newly created task and select Rename. Type “Transform Flat File” as the new task name. (You can also click on the task and modify the Name property in the Properties pane on the right).

Right-click the Data Flow task you just renamed and select Edit. This displays the Data Flow tab.

On the Data Flow tab, drag the Flat File Source data flow item from your Toolbox to the design pane. You can optionally rename the data flow item by right-clicking the item and selecting Rename. I renamed mine to “Sample File.”

Right-click the Sample File data flow item and select Edit. Under the Connection option in the left pane, make sure that Sample File is selected for your connection. Next, go to the Columns section and uncheck most of the columns, leaving only ProductID, TransactionDate, Quantity, and ActualCost checked. These columns will be what is available downstream to the rest of the SSPI package (Figure 75).

[image: image76.png][Flat File Source Editor

Configure the properties used to connect to and obtain data rom atext file.

Connecton Manager

Columns

Error Outaut
“TransactonlD"

BrodudiD’

" ReferenceOrderD"
“ReferenceOrderLineNumber'
“TransactionDate’
“TransactonType'

“Quartry’
“ActualCost”

Bxtemal Columny Output Column
"FroductiD” “ProductiD”
TransacionDats” " “TransactionDate"
Quartty” “Quantty”
“ActualCost” “ActualCost

Figure 75

We now need to create a new column that will be available downstream. It will take the total items order (Quantity column) times the cost of the product (ActualCost column). To do this, drag the Derived Column task over to the design pane under the Sample File connection. Right-click the Derived Column item and select Rename. Rename it “Total Cost.” Click the Sample File connection and you’ll see a red and green arrow pointing down. The green arrow defines what will occur next if that step is successful. The red arrow defines what task will occur if that step fails. Click the green arrow and drag it onto the Total Cost task.

With the two items are connected, right-click the Total Cost item and select Edit. This displays the Derived Column Editor.

Drill into the Columns tree on the right and drag the Quantity and ActualCost columns into the Expression column as shown in Figure 76. Make the Expression Column Quantity*ActualCost. If you receive a data type error, then you may want to revisit the first part of this tutorial where we defined the data types of each column for this connection.

Change the name of the Derived column to TotalCost and the data type to Currency as shown in Figure 76. After you’ve done this, click OK. This creates an extra column that can be seen by the destination transformation in future tasks and will sum up those two columns.

[image: image77.png][Derived Column Transformation Editor

Specfy the expressions used to create new column values, and indicate whether the values update existing columns o
populate new columns.

3 Varables 23 Mathematical Functions
& [Columns G Sting Functions
"ProductiD" 3 Date/Time Functions
“TransactonDate’” 3 NULL Fnctions
“Quantty” 3 Type Casts
"ActualCos G Operators

Description:

Detved Column Name _| Denved Column presson Data Tipe
TotalCost <add 35 new column> _ ['Quarty’ curency [DT_CY]

Figure 76

With the new derived column defined, you’re ready to aggregate the data at a product-level. Drag the Aggregate task from the Toolbox to the design pane. Connect the Total Cost task to the new task by connecting the green line. Let’s rename this task “Group by Product.”

Go to the Aggregate Editor by right-clicking Group by Product and selecting Edit. You define how you want your data aggregated from the connection in memory in the Aggregate Editor. It’s important to note here that so far we have not committed the first record to any data source. Everything is being done without touching the ground in memory.

In the Aggregate Editor (shown in Figure 77), check the ProductID, TransactionDate, Quantity, and TotalCost columns. This will partially fill in the Input Column area.

Then, specify the type of operation that you’d like to do for each of the columns. We want to group on ProductID so you need to ensure that Group By is selected. For Quantity select Sum and for TotalCost select Sum. Finally, select Maximum for the TransactionDate Input Column. I also changed the Output Aliases for two of the columns to give a unique name to the new data. Essentially, what I’m doing here is grouping all the data by ProductID, determining the maximum date from the TransactionDate column, and summing up all the quantity and cost.

Click OK to save your work. Notice that the TotalCost column is available to you here. So as you add derived columns, they show up in later tasks.

[image: image78.png]iR Output Als Operation Comg
Procuctd ProducD T

Qe TotaQuntty =

oot Totost =

Transactonbate Lostransachonbate s

Figure 77

With the data now aggregated by ProductID, you’re ready to order the data for easy reading in a report. Drag the Sort task (Figure 78) from the Toolbox and rename it “Order by ProductID.” Make sure it’s connected to the Group by Product task by connecting the green arrow from the Group by Product item. Edit this task as we did the other items. Check ProductID and make sure it is in ascending order. Click OK to exit.

[image: image79.png]Sort Transformation Editor

‘Specify the columns to sort, and set their sorttype and their sortorder, Allnonselected columns are copied
unchanged.

Name
ProductD”

" TransactonDate"
“Quantty”
Totalcost

Input Colurm Output Aes Sort Type Sort Oncer
“ProductD” “ProductiD” ascendng 1

<

[JRemove rows with duplcate sort values

Figure 78

Lastly, we need to output all this work to another flat file. Drag the Flat File Destination (it’s not in alphabetical order) over from the Toolbox. Connect it to the Order by ProductID item by dragging the green arrow from that item.

Click Edit to modify the properties of the Flat File Destination.

Click New to create a new flat file connection

Name this connection Output File (see Figure 79 for other information).

Notice that in the Preview section you can see all the output columns from the earlier items.

Click OK. In the Mappings section, make sure that the transformation looks fine. Click OK.

You are done. To execute the package, press F5 or on the Debug menu click Start. You’ll see the record counts increasing. Figure 79 shows an example of my output.

[image: image80.png]Fie Edt Vew Pt Bud Debwo DTS Tods [Window] e
Boim g E @ B0) Devebprent = pefot ™ .
@ a = [= 22 Lo |3
CE%
il =
£ consarron [Qoaimmen | skrantiss | radas s | 3 o BEE
il ‘Solution FirstPackage’ (1 project)
Data FlowTask: [Wransform Fit e ¥ || &° i Frsteackage
B Datn Sorces
B DateSorce Ve
& B ssPadees
| Package disx

B Mscelaneous

89,251 0w

Comnectons

D iputie
Douputrie

T e e P e Ty

Ready

| Bt eiore: By St oae

Figure 79

You can also go to the Progress tab (Figure 80) to see the details of the SSIS execution.

[image: image81.png]& P Package Package
R valdation hes sterted
& P TaskTransform Flat File

R Valdaton has started (2)
) DTS Pipelne] Information: DataFlonTask execution phase: Validate
D Progress: Valdating - 0 percent complete:
D Progress: Valdating - 20 percent complete.
D Progress: Valdating - 40 percent complete.
D Progress: Valdating - 60 percent complete.
D Progress: Valdating - 80 percent complete
D Progress: Validating - 100 percent complete
£ Valdaton s competed (2
% Stert, 8:43:35PM
D DTS Pipelne] Information: DataFlonTask execution phase: Validate
D Progress: Valdating - 0 percent complete:
D Progress: Valdating - 20 percent complete.
D Progress: Valdating - 40 percent complete.
D Progress: Valdating - 60 percent complete.
D Progress: Valdating - 80 percent complete
D Progress: Vaidating - 100 percent complete
D DTS Pipelne] Information: DataFlonTask execution phase: Prepare for Execute:
D Progress: Prepare for Execute - 0 percent complete:
D Progress: Prepare for Execute - 20 percent complete
D Progress: Prepare for Execute - 40 percent complete
D Progress: Prepare for Execute - 60 percent complete
D Progress: Prepare for Execute - 80 percent complete
D Progress: Prepare for Execute - 100 percent complete:
D DTS Pipelne] Information: DataFlonTask execution phase: Pre-Execute:
D Progress: Pre-Execute - 0 percent complete
D Progress: Pre-Execute - 20 percent complete
D Progress: Pre-Execute - 40 percent complete
D Progress: Pre-Execute - 60 percent complete
D Progress: Pre-Execute - 80 percent complete
D Progress: Pre-Execute - 100 percent complete:
P DTS Pipelne] Information: DataFlowTask execution phase: Post Execute:
D Progress: Post Execute - 0 percent complete
D Progress: Post Execute - 20 percent complete
D Progress: Post Execute - 40 percent complete
D Progress: Post Execute - 60 percent complete
D Progress: Post Execute - 80 percent complete
D Progress: Post Execute - 100 percent complete:
D DTS Pipeline] Information: DataFlowTask execution phase: Cleanup
D Progress: Cleanup - 0 percent complete
D Progress: Cleanup - 20 percent complete
P Progress: Cleanup - 40 percent complete
D Progress: Cleanup - 60 percent complete
P Progress: Cleanup - 80 percent complete
P Progress: Cleanun - 100 percent complete:
) DTS Pipelne] Information: component Flat Fie Destination” (416) wrote 437 rows.
€ Fiished, 9:43:36 P, Eapsed tme: 00:00:01,001

£ Valdation s compited

% Start, 3:43:35PM

@ Finished, 9:43:36 PM, Elapsed time: 00:00:01.021

Figure 80

About The Authors

Brian Knight is a SQL Server MVP and MCDBA. He is the co-founder of SQLServerCentral.com and works at Allstate as the development manager. Brian has authored several books including Professional SQL Server 2000 DTS and SQL Server 2000 for the Experienced DBA. He can be reached at bknight@sqlservercentral.com.

Mark Chaffin is the North American Practice Director for Business Intelligence with Avanade (www.avanade.com), the leading, Gold Certified provider of enterprise Business Intelligence solutions on the Microsoft® platform. He has been the primary architect of many business intelligence solutions for clients in many verticals including retail, consumer packaged goods, healthcare, finance, marketing, banking, technology, and sports and entertainment. He has experience in data mining, transactional application architecture, Internet application architecture, database administration and database design. He is also the co-author of SQL Server 2000 Data Transformation Services, from Wrox Press, and has authored many articles on business intelligence, SQL Server, DTS and Analysis Services. He is also a frequent speaker at Microsoft and SQL Server conferences including PASS and TechEd.

Both Brian and Mark are the lead authors of the upcoming Professional SQL Server 2005 Integration Services (Wiley Press).

1

