
[image: image1.png]Microsoft*

SQL Server 2005

Choosing Between
SQL Server 2005 Compact Edition and
SQL Server 2005 Express Edition

White Paper

Published:
November 2006

Author:
Steve Lasker, Microsoft

http://blogs.MSDN.com/SteveLasker

For the latest information, please see http://www.microsoft.com/sql/
Contents

3Overview

3Data Service and Embedded Database Engines

4Selecting the Right Database

4XML

4Access (Jet) and FoxPro (dbf)

4Microsoft Data Engine (MSDE)

4Microsoft SQL Server Express Edition and SQL Server Compact Edition

4Local Data Feature Comparison

4Deployment & Servicing

4ClickOnce Support

4Central Servicing via Microsoft Update

4SQL Server Express Edition Deployment

4SQL Server Compact Edition Deployment

4Programmability and Data Access Model

4Data Service Engine Model

4Embedded Database Engine Model

4Stored Procedures and Views

4Delegation and Micro Management

4Features Unique to a Local Database

4Securing Your Local Data

4Physical Security

4Security Design Principal of SQL Server Compact Edition

4Security Design Principal of SQL Server Express Edition

4SQL Server Express Edition User Instances – A Short Course

4Other Security Threats

4Phishing & Media Attacks

4SQL Server Compact Edition Data Files Are Document Safe

4Securing Data from the Stolen Laptop

4Leveraging the Security Features of Windows

4Windows Encrypted File System (EFS)

4Measuring Performance

4Conclusion

Overview
Even in this new age of Internet connectivity, online services and wireless everywhere, architects, developers, and end users are realizing that betting their business and user productivity on a constant connection to a central location is a risky, frustrating, and costly endeavour. When the connection goes down for any reason, can you afford to have your business stop? Building resiliency, redundancy and the ability to work independently within your application architecture provides the ability to shield your users and company bottom-line from inevitable problems. Having a local data store to cache online data, enable offline functionality, or enable that stand alone application that just doesn’t need to serve data to the world asks the question; “What should I use for local storage?”
The SQL Server family offers two products suitable for local storage: Microsoft SQL Server 2005 Compact Edition and Microsoft SQL Server 2005 Express Edition. With the release Compact Edition for desktop scenarios, Microsoft is positioning Compact Edition as the default local database. However, both editions are free to download and deploy. Choosing between the SQL Server Express and SQL Server Compact edition of SQL Server 2005 can be difficult because they seem to target the same scenarios. This paper helps developers understand the benefits of each edition and when each edition should be used for local data storage.

As you read this paper, it is important to remember that you need to choose the right tool for the right job. One size does not fit all. SQL Server 2005 is available in multiple editions because each is designed to fit a specific purpose. As you will learn from this paper, if you are looking to decide which database to use for your central data service, or the local database for your Windows Mobile device, your choices are easy, and you can read this paper for casual information.
If you’re looking for a local data store for a Tablet PC, laptop, desktop in a remote office, or simply looking to add some local caching features to your connected call center application, you’ll discover some interesting features and issues that may not be obvious when you first look at the features of SQL Server Express Edition and the “not so new engine on the block” — SQL Server 2005 Compact Edition.
Data Service and Embedded Database Engines

Microsoft ships two different types of SQL Server database engines. A data service database engine is typically designed to run as a service in a client/server environment, serving many clients simultaneously. An embedded database engine typically runs in-process with the application, may ship as a component of the application, and serves one client at a time
.

Data Service Database Engine Family:

· SQL Server Express Edition – The entry point to the data service platform. Express Edition runs on server and desktop versions of the Windows platform. Express Edition has the typical functionality of a data service engine, and has been extended to support usage as a local data store.

· SQL Server Workgroup Edition – Data service engine targeting small offices and branch offices. Workgroup adds additional functionality such as merge replication publishing, unlimited database size, and can utilize dual CPU machines with memory up to 3GB.
· SQL Server Standard Edition – Data service engine targeting small and medium-sized organizations and includes entry point features for business intelligence.

· SQL Server Enterprise Edition – Data service engine targeting large enterprises with advanced tools, analytics, data warehousing features, fault-tolerance and other enterprise-level features.

Embedded Database Engine Family:

· SQL Server Compact Edition – A lightweight, in-process database engine designed to run on devices and desktops and is geared toward local data storage. Compact Edition includes a subset of SQL Server 2005 data types and shares common elements of the Transact-SQL (T-SQL) language with the data service engines.

Selecting the Right Database
When you develop an application that stores and displays data, there are a number of important factors to consider ranging from centralized storage, performance on the client, and enabling users to be productive when the network isn’t available. Developers have used a number of different technologies to meet the specific needs of their applications, but each technology has inherent limitations.

XML
XML and other text-based technologies work well as a persistence and serialization format, but they lack the rich query functionality, data manipulation, and transactional functionality offered by database engines.

Access (Jet) and FoxPro (dbf)
Many applications offer integrated storage engines that are designed to meet the specific needs of their users. Access and FoxPro, being part of Microsoft Office, are examples of products that have integrated database engines that work well within their context but were never fully integrated into the Visual Studio development environment, as they weren’t considered general purpose data storage engines.

Microsoft Data Engine (MSDE)
As the first attempt to meet both local data storage and small scale data service needs, MSDE offered a rich set of SQL Server functionality in a smaller package size. Despite this, developers were still challenged with the deployment requirements of a data service engine.

As the requirements for local data storage became more refined, it became clear that a “one size fits all” approach had too many compromises for developers and users. Sometimes it takes a bit to realize that getting what you asked for isn’t really what you wanted. The revised approach divides the family of products into data services and embedded databases allowing developers to choose the appropriate product family for their application needs and maintain compatibility within the product family.

Microsoft SQL Server Express Edition and SQL Server Compact Edition

SQL Server Express Edition is the evolution of MSDE and addresses many of the common problems of MSDE related to ease of packaging and deployment. Requiring administrative rights to install, Express Edition dramatically smaller than MSDE, but at approximately 53MB, is still quite large for most client deployment scenarios. Express Edition has also been extended to better support local data storage when the full functionality of a data service engine is required.

SQL Server Compact Edition isn’t a new product but rather the evolution of the SQL Server family of products that have been shipping on the Microsoft Mobile platform for several years. Originally launched in 2000, SQL Server CE 1.0 shipped with Embedded VB (eVB) and Embedded VC (eVC). Visual Studio 2003 shipped SQL Server CE 2.0 as the local store for the compact framework. Responding to customers who wanted a common local store from device to Tablet PC, SQL Server CE became SQL Server Mobile 3.0 and shipped with Visual Studio 2005. In November 2006, SQL Server Mobile became SQL Server Compact Edition enabling the SQL Server CE engine for the entire desktop platform and removed the restriction to devices and the Tablet PC. SQL Server Compact Edition is designed to meet the needs of applications where it is important to embed a lightweight data engine directly into the application.

While several Microsoft products shipped MSDE, several other Microsoft products were quietly shipping the SQL Server Compact Edition engine, such as Media Center PC, MSN Client, and several applications within Windows Vista. The product teams recognized the need for a core set of database features and decided to ship the SQL Server Compact Edition engine as their local data store to millions of users. The SQL Server Compact Edition engine wasn’t visible to the user as it was considered part of the application. That’s the key differentiator.

The data store features discussed in this paper go beyond the traditional server-centric measurements of Transaction Processing Council (TPC) benchmarks and multi-user security. A local database needs to share its environment with a different set of challenges. We don’t suspend, resume, or hibernate servers. We don’t watch movies, play games, run Outlook or present Power Points from our servers. We don’t think about the power usage characteristics and whether the server would last a day on batteries, charging nightly. And we don’t measure the installation and disk footprint of a server as critically as we tend to install and configure far fewer servers compared to each client.

Figure 1 shows two scenarios that have a single solution. When you require data service functionality, such as the ability to support multiple, remote users, you should start with SQL Server Express Edition and work up the data service family tree. If you need a data store for the Pocket PC, Smart Phone platform, or you need the same data store ranging from Smart Phone to desktop, SQL Server Compact Edition is the appropriate choice. This paper focuses on the core features that are important for a local data store and differentiates SQL Server Express and SQL Server Compact editions based on those features.

[image: image2.emf]START

HERE

S

C

E

N

A

R

I

O

S

D

A

T

A

S

T

O

R

E

S

Clear choice for

Database Server

category

Data Service

{

Local

Data Store

Focus of this

white paper

Desktop

XP, TabletPC, Vista,

Windows 2000

{

Windows Mobile

PocketPC

SmartPhone

{

Clear choice for

Embedded

Database

category

Compact Edtiion

Compact Edtiion

Figure 1: Decision Tree for SQL Server Compact Edition and SQL Server Express Edition.

Data Services

A Data Service is a database engine that provides database functionality to clients from remote connections. If your application provides central data services to remote clients, Figure 1 shows the SQL Server data service products available: SQL Server 2005 Express, Workgroup, Standard, or Enterprise Edition. Here you can range from the small and free data service to the full scale, fault tolerant data services of SQL Server Enterprise Edition.
Local Data Stores

A local data store provides core functionality needed from a relational database engine, including rich query functionality, transactions, persistence, and the common datatypes used on a data service platform. The database is accessed from one client, although isn’t limited to a single connection. Examples may range from caching product catalogs, states, and status codes to rich personal accounting applications. The application may communicate with a central data service, but it needs local storage to increase performance or the application must function when connectivity isn’t available. Microsoft Outlook 2003 demonstrates the blur between local and central storage. As you interact with Outlook, most of your operations are performed against the local data store. When a connection to the Exchange server is available, the local store is synchronized with the central data service. The user may never notice if the connection drops.

Mobile Devices

For the purposes of this paper, a mobile device is any piece of hardware that runs on the Windows Mobile or Windows CE platforms. Referring to Figure 1, you’ll see that for an application that requires a local data store and targets a mobile device, SQL Server 2005 Compact Edition is your clear choice.

Desktop Databases

For the purposes of this paper, a desktop database simply refers to the non-mobile Windows platform, including Windows XP, Windows Tablet PC, Windows 2000, Windows Vista, and Windows 2003 Server. If your application requires a local data store that targets the desktop platform, you can select SQL Server 2005 Compact Edition (which belongs to the embedded database family) or SQL Server 2005 Express Edition (which belongs to the data service family of products). Microsoft recommends SQL Server Compact Edition as the default local database. However, if your application requires some of the data service features, SQL Server Express Edition may be necessary.

The rest of this paper focuses on helping you decide whether SQL Server 2005 Compact Edition or SQL Server 2005 Express Edition is the correct choice for your local desktop application data store.

Local Data Feature Comparison
Using the feature list shown in Table 1, you can see how SQL Server Compact and Express editions focus their features on their mainline scenarios: local storage and data services respectively. The feature list isn’t meant to be an exhaustive list of features, especially those of the SQL Server Express Edition. The features listed are specific to ones that are needed to compare local data stores only. For example, SQL Server Express Edition can utilize up to 1GB of RAM to optimize query processing. That’s great for a data service that may need to process complex queries for many concurrent clients. However, in a local database, there is a practical limit to how much data a user could physically enter or scan with a barcode reader within a given slice of time.
	Feature
	SQL Server Compact Edition
	SQL Server
Express Edition

	Deployment/Installation Features

	Installation size
	1.7mb download size
1.8mb expanded on disk
	53.8mb download size
~197mb expanded on disk

	ClickOnce deployment
	[image: image3.png]

	[image: image4.png]

	Privately installed, embedded, with the application
	[image: image5.png]

	[image: image6.png]

	Non-admin installation option
	[image: image7.png]

	[image: image8.png]

	Runs on Windows Mobile platform
	[image: image9.png]

	[image: image10.png]

	Installed centrally with an MSI
	[image: image11.png]

	[image: image12.png]

	Runs in-process with application
	[image: image13.png]

	[image: image14.png]

	64-bit support
	[image: image15.png]

Version 3.1

[image: image16.png]

Native 64 in next version

	[image: image17.png]

Windows on Windows (WOW)

	Runs as a service
	[image: image18.png]

In process with the application
	[image: image19.png]

 N + 1

	Data file features

	File format
	Single file
	Multiple files

	Data file storage on a network share
	[image: image20.png]

	[image: image21.png]

	Support for different file extensions
	[image: image22.png]

	[image: image23.png]

	Database size support
	4GB
	4GB

	XML storage
	[image: image24.png]

stored as nText
	[image: image25.png]

	Code free, document safe, file format
	[image: image26.png]

	[image: image27.png]

	Programmability

	Transact-SQL
Common Query Features
	[image: image28.png]

	[image: image29.png]

	Procedural T-SQL

Select Case, If, features
	[image: image30.png]

	[image: image31.png]

	Remote Data Access (RDA)
	[image: image32.png]

	[image: image33.png]

	ADO.NET Sync Framework
	[image: image34.png]

Enabled with Visual Studio Orcas
	[image: image35.png]

Planed support with a future version

	Subscriber for merge replication
	[image: image36.png]

	[image: image37.png]

	Simple transactions
	[image: image38.png]

	[image: image39.png]

	Distributed transactions
	[image: image40.png]

	[image: image41.png]

	Native XML, XQuery/QPath
	[image: image42.png]

	[image: image43.png]

	Stored procedures, views, triggers
	[image: image44.png]

	[image: image45.png]

	Role-based security
	[image: image46.png]

	[image: image47.png]

	Number of concurrent connections
	256
	Unlimited

Table 1: Feature Comparison Between Compact Edition and Express Edition.

Comparing features of the two database engines doesn’t really tell the full story. A number of philosophical and functional questions need to be answered to make the right choice for local data storage. Some of the important factors to consider when choosing your local data store are discussed in the following sections.

Deployment & Servicing

As the evolution of Web-based applications have demonstrated, deployment is one of the most challenging aspects for client applications. Whether your application is deployed via the Internet or installed from a CD, the installation experience and complexity of the installation process have a direct impact on the user’s perception of the product and direct costs related to support calls. The ability to easily uninstall an application and its dependencies can have big impact on support costs and user perception as well.

ClickOnce Support

Both SQL Server Express and SQL Server Compact editions can be incorporated into the setup of your application. ClickOnce can assist in deploying either engine as a pre-requisite for your application. SQL Server Express Edition which runs as a Windows Service must be installed with an MSI. SQL Server Compact Edition has an MSI deployment model to centrally install the engine, which requires administrative rights as well. However SQL Server Compact Edition, being a set of DLLs that run in-process with the hosting application, can be privately deployed with the application. Private deployment does not require administrative rights.

Central Servicing via Microsoft Update
Both SQL Server Express and SQL Server Compact editions can be serviced by Microsoft Update when installed with the MSI. When SQL Server Compact Edition is privately deployed, the DLLs aren’t registered with the Add/Remove Programs applet and won’t be serviced by Microsoft Update. Some application vendors see this as a benefit. While service packs and hotfixes go through stringent backwards-compatibility testing, sometimes the issues addressed by them cannot avoid affecting the operation of an application. By privately deploying SQL Server Compact Edition with the application, the application owners can test the service release and then deploy the updated SQL Server Compact Edition components with an updated and tested version of their application. Privately deploying SQL Server Compact Edition with each application does mean you have multiple copies of the engine. Considering the entire runtime is less then a few digital pictures, the size is typically less of a factor compared to the benefit of application level servicing and providing the ability to install your application and its components without administrative rights.

SQL Server Express Edition Deployment

SQL Server Express Edition, being a server based product with a rich set of data service features, includes a number of components that you may want to configure during installation. SQL Server Express Edition was designed to be secure by default, so the default installation is optimized to work for the local data storage scenario. The SQL Server Express Edition installer does include a comprehensive command-line interface to allow developers to install and configure SQL Server Express when the default installation doesn’t meet their needs.

SQL Server Compact Edition Deployment

SQL Server Compact Edition, starting from the other end of the spectrum, was designed to be small and easy to deploy from its inception. Mobile devices, such as the Pocket PC and Smartphone, don’t have complex installation environments, nor do they have many resources. SQL Server Compact Edition, which runs in-process with the hosting application, doesn’t have any services or other options to be configured during installation. SQL Server Compact Edition exposes its configuration options within the connection string, allowing each instance to specify parameters specific to that application usage scenario. These DLLs can be centrally installed on a user’s computer with an MSI. However, using the MSI does require administrative rights to register the ADO.NET managed provider within the Global Assembly Cache (GAC). The same DLLs can also be privately deployed within the hosting application. Client applications, such as those deployed with ClickOnce are typically installed under the user’s Documents & Settings folders, which means the installation process does not require administrative rights.
One of the other benefits of private deployment is dependency tracking. Should a user decide to uninstall your application, there are no additional steps for the application and data store to be completely uninstalled. Using the central MSI deployment model requires your application to either reference count the usage of the database engine, or to simply require the user to know that uninstalling the product doesn’t return the environment to its original state.

Programmability and Data Access Model
Programmability features and priorities for a local database can be quite different than those available in a data service. SQL Server Express Edition offers a number of features that don’t exist in SQL Server Compact Edition; however SQL Server Compact Edition has a few features that don’t exist in SQL Server Express Edition, which are unique to a local programming model.
Data Service Engine Model

Classic data service database engines such as SQL Server 2005 are designed to serve multiple users and even multiple applications simultaneously. Because of this, data service engines are typically optimized to provide performance, abstraction and complex role management.
Embedded Database Engine Model

The embedded database engine is designed around the concept of a single user and data that is not directly shared with other users. Performance is measured across all applications the user may be running and data is typically partitioned for each user.
Stored Procedures and Views

If you must have the same programming model as a data service, then this fact alone may drive your decision to use SQL Server Express Edition. It enables the same T-SQL and procedural constructs support for stored procedures as it does for other data service editions. SQL Server Compact Edition does not support stored procedures, views, or triggers. Because of this, some developers may not consider SQL Server Compact Edition to be a “real” data store. However, there are a few things to keep in mind before arriving at this conclusion.

When you think about common practices, many companies have standardized on using stored procedures to access data within the database and they expect stored procedure support for a common programming model between their local database and their data service. However, sometimes you have to re-examine why these standards were created, and question if they still apply.
While stored procedures can range from simple to complex, developers and DBAs typically refer to three core reasons they standardize on stored procedures: performance, abstraction and security. Consider the fact that many service databases can be used by several applications at the same time. As the database grows in its usage, columns and tables are added to the ever-expanding data requirements. Load on the database may increase in certain “hot-spots,” requiring the DBA to tune the database with schema changes. Since a data service doesn’t always “own,” or even know which individual applications are utilizing its data, any internal changes to the schema must be abstracted from any interacting applications. This is why many DBAs remove table level interaction and only enable access via stored procedures and views.

Likewise, many different users, and types of users access the data service simultaneously. Users may have different roles and therefore should have different access levels to the data. Stored procedures and views provide a safety gate to limit the role of a user to certain data operations. A given role is given a set of permissions to different stored procedures and views.
Performance issues are often managed with stored procedures to cache query plans, and tune queries within stored procedures to avoid having to make changes to the application.
When you consider an embedded database is by definition part of the application, the same rules don’t necessarily apply. The database is versioned with the application, therefore the abstraction issues don’t apply and the benefits for having to author and maintain stored procedures aren’t realized. Since the local data should already be partitioned to the data allowed by a user’s role, the security issues don’t necessarily apply either. Performance of cached query plans are realized when many concurrent operations are occurring from a large number of users. The overhead of maintaining query plans aren’t an issue in a server environment as servers tend to have larger amounts of dedicated memory. As query plans change, a DBA can optimize these query plans on the server.
Another category of issues covered by stored procedures relate to procedural operations. These may range from maintaining a last edit column, maintaining a star-schema table, or implementing business rules. Certainly these operations may still exist within a local database. However, given the choice, you may not want to limit your ability to write code in only T-SQL, even if the full T-SQL language is supported. Instead, you may opt to take advantage of the full breadth of your favourite .NET managed code language. Additional innovations such as LINQ and the ADO.NET Entity Data Model provide an even broader set of functionality at your disposal.
Delegation and Micro Management

When DBAs use stored procedures to limit access to the database, they also limit the types of questions an application or a user can ask from the data. In a client server environment, it may be advantageous to limit the complex questions an application may ask of the database. In a shared database, complex equates to expensive as all users may be “penalized” because multiple users can ask complex and expensive questions simultaneously. In a local database, complex questions only affect the current user. Complex questions can also be very important or meaningful questions that must be asked. That’s not to say you shouldn’t create the right set of indexes, design your database for performance, or simply write queries with performance in mind. It simply means when the database is local to the application, the developer has a lot more flexibility to perform complex queries that would be highly problematic in a data service environment, but highly productive and insightful to a user. In a local database, complex switches from being expensive to highly valuable.
The point here doesn’t actually suggest that stored procedures couldn’t be used locally as well. The point is that the stored procedures you create on the server would likely not represent the types of queries that you would write on the client. Consider a similar scenario closer to home. How do you keep your home stocked to prepare specific meals for your family? You would synchronize the food in your kitchen with a filtered set of raw materials at the store. While your local food market may provide some pre-packaged meals, it could never maintain the variety of foods and different varying levels of spices for each customer. Similarly, the server may not actually answer many of the specific questions. The server may expose a set of stored procedures and services to keep the local database in sync with the server. The stored procedures return deltas of the data locally compared to the data on the server enabling the client application, and the application developer to provide a broad range of questions without requiring a DBA to optimize each and every question.
Features Unique to a Local Database

Data access to a data service requires developers to think about scalability and concurrency. Developers expecting their application to scale to hundreds and thousands of concurrent users would never maintain an open connection to the database or utilize an updateable cursor allowing the user to view and edit data. FoxPro and Access developers referred to this as the “Lunch Lock.” A user would open a form, start making some change, and go to lunch. They may even leave on vacation. Other users who need to make a change to that data are locked out. To resolve the deadlock, someone would broadcast a message asking the person who has the customer form open to close it.
Data service programming involves retrieving a snapshot of data, returning a copy to the client and releasing any server side resources. This is often referred to as stateless or disconnected programming. The client edits the copy of data, returning the changes to the server with the original values. The code applying the changes uses the original values to detect if another user had changed the data while the user was working with the disconnected copy. This is often referred to as programming for concurrency. Features in ADO.NET, such as the DataSet and DataAdapter model, enable this by providing disconnected programming model services within the DataSet. Other object / relational (O/R) mapping technologies must implement similar services to provide a scalable solution.
When applications work with a local database, the database itself may be the disconnected copy. Rather than create yet another disconnected copy with a DataSet or some other O/R technology, often it is easier to just open a connection and databind the result of an updateable query. Since the database is embedded within the application, there’s no need to maintain a complex stateless programming model. SQL Server Compact Edition not only supports an updateable, scrollable cursor with the SqlCeResultSet, it also supports ISAM-like file access leveraging indexes on the table to move directly to a specific row.

As the changes to the local store are applied to the server, the stateless model becomes a factor. This is where stored procedures that abstract the local data schema compared to the server schemas come back into play.

Using the right tool for the right job, you can continue to benefit from stored procedures on the server, but leverage features like the SqlCeResultSet or new innovations such as LINQ and the ADO.NET V3 Entity Model.

Securing Your Local Data

Security is always a big part of any application’s design. SQL Server Express and SQL Server Compact editions are both secure platforms that are designed to help you protect your sensitive data. The way each edition manages security is different, and the differences should be considered when making your engine choice for local data storage. This section contains an overview of the security design principles for each engine and then contrasts how that design impacts different security threats your local data store may face.

Physical Security
Both database engines being discussed store data in one or more files. The most significant way for anyone to protect their data is to limit physical access to the file so that only users who require access to the data can actually get to the file. Physical security includes using appropriate Windows-based security to control access to the file on disk and security of the facility and equipment where the data file resides. There are too many current news stories about confidential data being lost that resulted from criminals having improper access the physical files or equipment where the files were stored. Therefore, physical file security is too important to be ignored.
Security Design Principal of SQL Server Compact Edition

SQL Server Compact Edition was designed from the beginning assuming the user had access to the physical file. Without an additional security mechanism, the user could bypass your application and use tools such as MSQuery to view and edit the raw data. SQL Server Compact Edition supports the ability to password protect and encrypt the data file, thereby limiting access to your application which embeds the password. The password protection of the database file adds a layer of protection that travels with the file, making it harder to access the data in the event a rogue user obtains the file.

There are no additional levels of data access offered with file based security. A single password gives total access to the file. However, local data files typically partition the data before it arrives on the local user’s machine. Even in the event of multiple people sharing a particular laptop, each user would have their own local data file with their partition of data. Just as with any other file, Windows security is used to limit each user’s access to data files. Once a user has their data file, why would the application store all sales contacts, as opposed to the particular user’s contacts? Why would you store salary information locally if the user doesn’t have permissions to view or edit it? In addition to the security aspects, this is also a way to partition the amount of data maintained locally. In this model, the concept of role-based security is meaningless. Rather than implement and maintain a complex set of roles locally, most applications would maintain a role-based security model on the server, and use the roles to synchronize the appropriate data down to each user’s local data store.

Security Design Principal of SQL Server Express Edition

SQL Server Express Edition, being part of the data service family, was designed to apply security at the service boundary. When securing data on servers, the main line of defense is physical security. There’s a physical door, and often many high-tech security gadgets between your enemy and the computer room housing your data servers. If your enemy manages to get in the computer room, and didn’t freeze to death, they must then log into the computer using valid user credentials. If the user has administrative rights and gains access to the server, and certainly if they have administrative rights, it’s typically “game over”. If the user has gotten this far, it’s likely easier to simply walk away with the physical drive or the whole computer. SQL Server Express Edition, like the rest of the data service SKUs rely heavily on physical security to prevent unauthorized people from getting to the database file. Breaking into a computer room is not easy; however, connecting to a data service remotely is a feature. Connecting remotely is a feature that is off by default in SQL Server Express Edition.

The data service family of SQL Server products implements role-based security and offer several security options related to how connections are made to the server. The data service editions can implement table, column, and row-level encryption. The connection to the database must be authorized before any data can be returned. The HR manager may have permissions to view and edit salary information but can’t change product pricing. Sounds pretty secure; doesn’t it? Absolutely! The SQL Server data service family of products has some of the best security features in the industry by securing data before and while it travels across the wire.

Permissions in a role-based security model are assigned by special users in the data service editions including System Administrators, Database Administrators and Database Owners. These high level users have no, or few, restrictions regarding access to a database, which has some implications when using SQL Server Express Edition as a local data store. For example, a System Administrator has full access to any SQL Server Express Edition database file that they posses. If the database file used for the local store is not physically protected and can be stolen by a criminal, that criminal could then access your data by attaching the database to their own copy of SQL Server Express Edition where they are a System Administrator.

SQL Server Express Edition User Instances – A Short Course

A complete description of User Instances is beyond the scope of this paper, but detailed information can be found on MSDN. Here we discuss only the security implications of User Instances as they impact choosing a local data store.

One of the challenges developers faced with MSDE was the difficulty of attaching a database to one of the MSDE instances. Attaching a database to MSDE required Database Owner rights for the user running the application. This made it very difficult for developers to deploy MSDE database files, and also made it difficult to manage their local database files with their projects.

As described earlier, provisioning accounts on each machine enabling users to attach database files effectively gives the users high level access to all databases attached to SQL Server Express Edition. Having to configure users in this way limits the ability to prevent different users from having access to other user’s data attached to the same server. Keeping each user’s data separate is often a driving requirement for local data storage.

To implement this separation of user data and to overcome the problems of attaching database files, SQL Server Express Edition introduced a new feature in 2005 called User Instances. User Instances work by using a special connection string when an application connects to SQL Server Express Edition. When the main instance sees this special connection string, it verifies and/or creates a new instance of SQL Server Express in the context of the user and attaches the database to the new process. This additional process runs as an additional Windows Services under the user’s credentials. This new Windows Service is a completely independent instance from the main instance of SQL Server Express Edition and has its own copies of the system databases (Master, TempDB, and Model). These “user instance” databases exist in folders specific to the user. Since the User Instance runs in the context of the user, that user is considered to be the Database Owner and can accomplish all the necessary tasks related to working with Express Edition. Additional users on the same machine will not have access to other user instances — only their own.
User Instances allow separation of users by providing a unique instance of Express Edition for each user, but it also gives the user complete control over the databases attached to the User Instance. Once running, the owner of the User Instance can view and edit every part of the database including schema, data and feature configuration regardless of permissions, passwords or encryption applied to the database objects. Again, protection of the database file using physical security is important. For local data scenarios where laptops are regularly stolen, it’s important to understand that Express Edition User Instances could be another avenue that could allow rogue users access to your database if they can get possession of the file.

Other Security Threats

Preventing unauthorized users from connecting to your database is the primary concern of most database developers, but there are other threats that can result in illicit access to your data. Examples of these alternative threats include media attacks, where the actual database file is used run illicit code on your computer, and stolen hardware, where the physical computer containing your data file is stolen.

Phishing & Media Attacks
Typically, we think about securing data files from theft. Another aspect of security is how your enemy can get information from you. Sure, they can steal your database and you’ve prepared for that, but what if they put some code in a database you just happen to open? We’ve all seen the email saying, “Check this out.” Media attacks are perpetrated by including illicit code within a file and convincing a user that the file is from a trusted source. When the file is opened, the illicit code runs and completes what ever task it was designed to accomplish. An example of a media attack is a Word macro virus.

SQL Server Express Edition supports a rich eventing model that allows developers to create applications to respond to specific events within the database. For example, you can perform a custom logging action every time specific types of data are added to the database or even run a stored procedure when a database file is attached. The advanced programming features of SQL Server Express Edition provide significant power for application development, but can also be used to run illicit code that could perform actions such as sending data to unauthorized person.

Microsoft considers SQL Server MDF files to be the security equivalent of .EXE files, and should be treated with the same sense of concern when receiving EXEs from unknown sources. To minimize the possibility of illicit code running, SQL Server Express Edition data files must always use an MDF file extension.
Users should not attach database files from unknown sources. You should also take efforts to ensure that you are not tricked into thinking a database file is from a trusted source when it is not.

SQL Server Compact Edition Data Files Are Document Safe

Because SQL Server Compact Edition data files don’t support stored procedures or other code within the database, this code-free file format is considered to be document safe. Unlike the data service file formats, Compact Edition has no “feature” that enables someone to place code within the database that executes as the result of an event. With a document safe format, Compact Edition data files can use any file extension, enabling you to associate a recipe application with a .recipe extension. Double clicking on your .recipe file from your friend could launch a recipe application, just as you might open a Microsoft Office document. While not as powerful as data service files, with SQL Server Compact Edition files you don’t need to worry about code executing on your behalf.

Securing Data from the Stolen Laptop

Whenever data is exposed or resides in the field, the possibility of it getting in the hands of the wrong person exists. This applies to printed materials as well as electronic materials. Printed data is a bit more difficult to password protect, but electronic materials are more tempting to your enemy as they tend to contain larger datasets and can be quickly used against you. Enabling data to be stored locally increases the opportunities for data to fall into your enemy’s hands. Data can likewise be stolen from a central data service. Stealing local data may actually have less value to your enemy as the data stored locally will likely be a subset of the data available via your data services.

Security is never finite. Companies selling safes never guarantee they are burglar-proof or fireproof. The industry rates safes by the amount of time a professional burglar would take to crack the safe. Given enough time, a professional burglar will get inside. Once a professional thief gets the file, given enough time, they will get the data. However, anyone that has watched any of the criminal reality television shows knows there are lots of criminals that are not considered to be professionals, and won’t get very far if just some basic security layers are in place.

An example I like to give is “the entrapment factor.” If I left a $100 bill taped to my office door over the weekend, I’d just assume it would be stolen, and while disappointed, I wouldn’t be surprised and wouldn’t expect to get much sympathy from my peers. However, if I placed that same $100 bill in an envelope within my locked desk drawer, my peers would likely be supportive and building security might actually take notice.
The best way to secure your data is to never allow anyone to access it, period. As with other “safe” policies, reality sets in. The next best thing is to limit your exposure is by limiting the amount of data your enemy could get access to. Banks and ATMs are insured based on the maximum amount of money they keep on site, minimizing their exposure. They calculate the amount of cash they need to maintain their business. If you limit the amount of data your users need to be the most productive, you minimize your risk exposure. Do your users need all your customers’ credit card numbers? However, just as an ATM machine must have an appropriate amount of cash to be profitable, you don’t want to over constrain your users, or you’ll find they’ll be less productive, and less profitable to your business. Profitable companies work best when their people are empowered.
Leveraging the Security Features of Windows

Once you’ve found the right slice of data for each client, you need to secure that data locally. There are two categories of viewing data. One is through the lens of your application; the other is to view the raw data directly. SQL Server Compact Edition has a slight advantage here as you can password protect the database, and encrypt the file. SQL Server Express Edition data can bypass any passwords you place on the database by attaching the database with the User Instance feature.
However, as with safes, password protecting the database doesn’t ensure your enemy can’t get the data, it just slows them down.

This is where the security features of Windows can be leveraged. Implementing a strong password policy is the first place to start. However, if your users don’t lock their laptop, then your enemy simply needs to grab your laptop and they can view the same data you can. It’s easy to forget to lock you computer when you leave it unattended, but Windows offers two ways to automatically lock a computer. Use the Power Options Properties within the Control Panel to prompt for a password when your laptop resumes from standby. This option is shown in Figure 2.
[image: image48.png]Power Options Properties

Fower Schemes | Alsms | Power Meter | Advanced | Hibemate

by Sotctvepomersmigstings v want 1 s

Options

Always show icon on the taskbar

[Bisip o passiard Whan campUtet tesurnes fam standby

Figure 2: Configuring Power Options Properties.

The second Windows security feature leverages the Screen Saver Properties to lock the laptop after your screen saver kicks in. Setting the wait threshold to low can be annoying as your user must constantly type in their password. Many new laptops, incorporate a fingerprint reader that while not foolproof, balances security with usability slowing down your enemy, while making it easy for your users. This option is shown in Figure 3.
[image: image49.png]Themes | Deskiop | Scieen Saver | appearance | Setings

o |
———

Windaws <P

Setings] [Prexew

Figure 3: Configuring Screen Saver Properties.

Windows Encrypted File System (EFS)

The last security feature worth mentioning is the Windows Encrypted File System (EFS) which allows your data file to be encrypted at the operating system level. Both SQL Server Express and SQL Server Compact editions can take advantage of EFS.

By selecting properties of your data file, you can choose the advanced features and check the option to encrypt the file at the operating system level.

SQL Server Compact Edition data files are always opened in-process with the hosting application, which is running under the context of the current user, so EFS is always available. SQL Server Express Edition can only use EFS when the data file is used in conjunction with User Instances. Database files attached to the main instances of SQL Server Express Edition cannot use EFS because the file is being opened by the SQL Server Express Edition service account, not the current user.

When using EFS, a user cannot copy the file without acknowledging they are loosing their ability to encrypt the data file. Windows EFS also blocks users from opening and copying files that are encrypted by other uses and prevents mounting of hard drives or access via an accidental shared folder exposed via your wireless network card. Figure 4 shows how to configure EFS and the warnings that appear.
	[image: image50.png]Advanced Attributes

Choos th s o wat ol

Archive and Index attributes

e is ready for archiving

or Fast searching, allow Indexding Service to ndex tis fle:

Compress or Encrypt attrbutes

[T Compress contents to save disk space.

	[image: image51.png]Encrypted File

The file MyDatabase.sdf cannot be copied or moved without osing
it encryption.

You can choose to ignore this error and continue, or cancel.

	
	[image: image52.png]@ (oot copy MyDatabase: Access s denied.

Make sure the disk s not full o write-protected
and that the il i not currently in use.

E3

Figure 4: Configuring EFS.

Combining the security features of SQL Server Express or SQL Server Compact editions, with the security features of Windows, provides a higher level of security than either mechanism alone. Improved security allows you to leverage the increased productivity available when data is stored locally and users are not required to be connected to the network for all data access.

Measuring Performance

Typically, when someone asks how well a database performs, they start quoting transactions per second metrics. How many concurrent queries, inserts, updates, and deletes can be performed within a one second interval? When thinking about a local data store, it is important to return results quickly, but a user can only type so fast. Even when using a barcode scanner, there is a practical limit to how much data someone can enter. Likewise, how many questions can a single user ask of their local data store?
Local data stores are components of an overall application: an application that shares the same resources as the database. Users multi-task by running multiple applications at the same time. A typical user may have Outlook opened to monitor their email and calendar. The user may be editing a PowerPoint presentation using Microsoft Word to track their notes. Instant messenger, and/or Office Communicator run minimized in the corner waiting for the latest sales figures. Internet Explorer continually updates the current traffic conditions while you’re listening to your favorite music with Windows Media Player. Outlook reminds you of a meeting with your partner at the local coffee shop. Once you get to the coffee shop, you want to quickly show the progress you’ve made on the presentation, so you close your laptop entering stand-by or hibernate mode without closing any of the running applications. On the way you forgot where the coffee shop is located, so while at the traffic light, you open your laptop to resume your applications and view your calendar.

Can you imagine the reaction you would get from your DBA when you asked them to tune the database for this environment? In a client environment, you measure performance by the overall productivity of the user. Data services are typically hosted on dedicated servers and are tuned to perform thousands of operations per second. They are optimized to leverage any and all resources available. Similarly, tractor trailers can haul enormous loads across country. They take a little longer to start and stop, but once they’re rolling, they are massively powerful. On the other hand, a motorcycle can quickly start and stop on a dime. It can zip in and out of traffic around the city, parking in the smallest of spots, delivering messages within minutes. A 53’ tractor trailer may not be the best thing to deliver messages around the city, but they can transport a lot more materials for longer hauls compared to that motorcycle.

SQL Server Compact Edition runs in-process with the application. Designed for devices, it is very efficient with resources and won’t force applications to page to disk when you start executing queries. Since Compact Edition doesn’t run as a service, it doesn’t consume any resources when it is not being used, which directly affects startup, shutdown, suspend and resume time.
SQL Server Express Edition does spin down when not in use for several minutes. When compared to its siblings, it is much more efficient in reducing the active memory to a surprisingly small working set. However, because SQL Server Express Edition was designed around a server-based environment, it runs recovery on each attached database when it resumes hibernation. When it spins up, it consumes more memory as it is geared to process thousands of transactions and multiple clients concurrently. When you enter hibernate mode, it has to page all that memory to disk, even if no applications were using it at the time.
Conclusion

One size does not fit all. Selecting the right tool for the job is important when choosing a local data storage engine. Both SQL Server 2005 Express Edition and SQL Server 2005 Compact Edition are available for free. SQL Server Compact Edition, designed as the default local data store for client applications, targeting phones, PDA’s, Tablet PCs, and desktops, provides unique features for client deployment and security. SQL Server Express Edition, designed as a data service for applications, provides a consistent programming model as its data service family providing an overlap of scenarios for local storage. This intention of this paper is to describe the local data storage challenges, the functional benefits of each database engine model, and identifying the trade-offs you’ll need to consider when choosing a local data store.
Using the Microsoft platform, businesses and developers are empowered to build people-ready applications that leverage your business data anytime, everyplace, and everywhere.
For more information:
http://www.microsoft.com/sql/
[image: image53.jpg]Ny
Microsoft®
Windows Server System™

Integrated and manageable server software products
designed to reduce IT complexity and total cost of
ownership so you can focus your resources on other
priorities for you and your business.

www.microsoft.com/windowsserversystem

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This white paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written per of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2005 Microsoft Corporation. All rights reserved.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

Microsoft, Visual Basic, Visual Studio, Win32, Windows, and Windows Server, SQL Server are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

All other trademarks are property of their respective owners.

� Serving one client doesn’t imply support for a single connection, rather a single machine establishing a connection.

Choosing Between SQL Server 2005 Compact Edition and SQL Server 2005 Express Edition

15

_1223796231.vsd
text

START HERE

SCENARIOS

DATA STORES

Clear choice for Database Server category

Data Service

