10 Scripting Security Descriptors
Managing Security Descriptors 27

[image: image1.png]I
oy

Wlndows Server 2003

Scripting Security Descriptors
Microsoft Corporation

Published: October 2004

Abstract

Every securable resource on a Microsoft® Windows™ Server operating system has an associated security descriptor that specifies which security principals can access the resource and what actions those security principals can perform on the resource. Security descriptors can be managed by using scripts. This paper provides enough background to get you started writing such scripts.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft, Windows, and Windows Server are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Contents
4Scripting Security Descriptors

4Overview of Security Descriptors

5Security Identifiers

6Components of a Security Descriptor

10Managing Security Descriptors

10Security Descriptor Scripting Techniques

16Security Descriptor Scripting Tasks

Scripting Security Descriptors

Security descriptors are associated with every system resource that you can secure in Microsoft® Windows Server™ 2003. When you manage the set of all security descriptors on your systems, you manage who can access which resources and what they can do with those resources.

The mechanism that Windows uses to protect system resources is like the mechanism used to control who can enter an exclusive nightclub. Anyone attempting to enter must first produce identification, which a door attendant checks against a guest list. If you are not on the list, you do not get in. If you are on the list, you get in, but how you are treated and where you can sit depends on whether you are listed as a special guest, a co-owner of the club or an ordinary customer. Security descriptors are like guest lists for resources managed by an operating system. They control access to those resources such as files, folders, shared folders, and Active Directory objects.

Securing your systems requires you to ensure that the numerous security descriptors associated with the resources you want to protect all have the appropriate “guest lists.” You can use GUI tools to manage security descriptors, and if you are managing a small number of resources, the GUI tools work well. If, however, you are managing hundreds or thousands of security descriptors, then the GUI tools are not adequate. Using the scripting techniques this paper describes, you can manage large numbers of security descriptors.

Overview of Security Descriptors

Security descriptors are associated with securable resources in Windows. Securable resources include files, folders, shared folders, Active Directory objects, registry keys, and Windows Management Instrumentation (WMI) namespaces. A security descriptor stores information that identifies the accounts and the type of accounts that can access the associated securable resource.

Every process that runs on a Windows Server computer is associated with an account. When a process attempts to access a securable resource, the request is made to Object Manager, a component of the operating system. .Object Manager acts as a gatekeeper. Before allowing the process access to the securable resource, Object Manager checks the resource’s security descriptor to determine whether the requesting process has sufficient permissions to access the resource. For example, when a process attempts to read a file, it requests read-only access to the file from Object Manager. The Object Manager then queries the file’s security descriptor to determine whether the account associated with the requesting process has the right to read that file.

Figure 1 shows the components involved when a process accesses a securable resource:

Figure 1 Process accessing a securable object

[image: image2.png]Requests Checks security
acoess descriptor,

Associated Security
sccount (SID) Object descriptor.
Manager

Process Securable object

Grants or
denies acsess

Notice that, in the diagram, the account associated with the process has a security identifier (SID) attached to it. Typically, accounts have names such as Administrator or Network Service. Internally, Windows references accounts by using their associated SIDs.

[image: image3.wmf]
Note

The process has more information than just an account SID associated with it. There is a token associated with the process and it includes an account SID.

Security Identifiers

A SID is a unique, large number associated with every Windows account and group. When a new account or group is created, an algorithm is used to generate a new, unique SID that represents the account or group. Here is an example of a SID: S-1-5-21-833815213-1531848612-156796815-1105. Working with account and group names is more convenient than working with SIDs. However, you need to work with SIDs when scripting security descriptors.

Several accounts are present in a new installation of Windows Server 2003. Table 1 lists the predefined SIDs associated with those default accounts. This is useful information to have available when scripting security descriptors.

Table 1 Well-Known SIDs

	Account or Group
	SID

	Everyone
	S-1-1-0

	Nobody
	S-1-0-0

	Anonymous
	S-1-5-7

	Authenticated Users
	S-1-5-11

	Administrator
	S-1-5-<domain SID>-500

	Guest
	S-1-5-<domain SID>-501

For more information about Security Identifiers, see “Security Descriptors” in the Platform Software Development Kit (SDK), on MSDN.

Components of a Security Descriptor

Each securable object managed by Windows has an associated security descriptor. The content of that security descriptor determines whether a process can access the securable object. The security descriptor also describes how a process that has access to an object can manipulate that object.

A security descriptor includes:

· Header information

The header information provides metadata about the discretionary access control list (DACL). For more information about DACLs, see “Access Control Lists” later in the paper.

· The SID associated with the account that owns the object

Each securable object has an associated account that owns the object. The SID associated with that account is stored in the security descriptor.

· The SID associated with the default group of the account that owns the object

Typically, this SID is not used unless you are running the Portable Operating System Interface for UNIX (POSIX) subsystem.

· A discretionary access control list, (DACL)

The DACL is a list of access control entries, (ACEs). Each ACE describes the permissions that a given account has on the object. The list of ACEs in the DACL is of primary interest to you when you script security descriptors.

· A system access control list, (SACL)

Like the DACL, the SACL is a list of ACEs. The difference is that the DACL controls which accounts can access the object, while the SACL controls which attempts to access the object are recorded.

Figure 2 shows the components of a security descriptor.

Figure 2 Components of a security descriptor

[image: image4.png]Security descriptor

Header

Owner SID

Group SID

Access Control Lists

Access control lists (ACLs) are the components of a security descriptor that you are most likely to want to manage. The two types of ACLs are discretionary ACLs (DACLs) and system ACLs (SACLs). A DACL controls access to a securable object, and a SACL controls the auditing policy on the object.

In both cases, an ACL consists of a list of ACEs. An ACE is the element that describes a single access or auditing rule that applies to a single account or group. A list of ACEs grouped together in a DACL or SACL (shown in Figure 3) describes the complete access or auditing policy for a securable object.

Figure 3 ACEs in DACLs and SACLs

[image: image5.png]

Access Control Entries

An access control entry (ACE) maps to the access or auditing policy for an account on a given securable object. As shown in Figure 4, each ACE includes:

· A SID that identifies a trustee, which is a single account or a security group.

· An access mask that codifies the access rights that the trustee has on the securable object. The access mask is stored in the form of a bitmask. For more information about bitmasks, see the section “Bitflags and Bitmasks” later in this paper.

· A set of bitflags that determines whether child containers or objects can inherit the ACE from the primary object to which the ACL is attached. For more information about bitflags, see the section “Bitflags and Bitmasks” later in this paper.

· A flag that indicates the type of ACE.

Figure 4 Components of an Access Control Entry

[image: image6.png]=3

Trustee SID

Aosess mask

Inheritance
bitflags

ACE type
flag

ACE types

There are six types of ACEs, three of which are supported on all securable objects. The other three, called object-specific ACEs, are only supported on certain objects, as their name implies. The ACE type flag shown in Figure 4 is stored as an unsigned 8-bit integer. The value of that integer determines what type of ACE is represented. When you script security descriptors, you will often need to create ACEs and that requires setting the ACE type flag to an appropriate value.

The three types of ACEs that apply to any securable object include the following: Access-allowed, Access-denied and System-audit. The other three ACEs apply only to Active Directory objects and they enable a more precise level of access control. Using object-specific ACEs, you can set access and auditing controls at the property level. Table 2 lists the six types of ACEs along with their corresponding integer values.

Table 2 ACE Types and Corresponding Integer Values

	ACE Type
	Integer Value

	ACCESS_ALLOWED_ACE_TYPE
	0

	ACCESS_DENIED_ACE_TYPE
	1

	SYSTEM_AUDIT_ACE_TYPE
	3

	ACCESS_ALLOWED_OBJECT_ACE_TYPE
	5

	ACCESS_DENIED_OBJECT_ACE_TYPE
	6

	SYSTEM_AUDIT_OBJECT_ACE_TYPE
	7

Access mask

The meaning of the access mask component of an ACE depends on the type of ACE and the type of securable object. For example, the access mask that allows read-only access to a registry key is different from the access mask that allows read-only access to a file. The bits within an access mask have very different meanings when they are part of an ACE within a SACL than when they are part of an ACE within a DACL. In the case of a SACL, the bits represent types of audits, while in the case of an ACL, the bits represent individual permissions. A description of how bitmasks work is included in the section “Security Descriptor Scripting Techniques” later in this paper. Tables of access mask values for the various securable objects are included at the beginning of each set of sample scripts.

Discretionary Access Control Lists

A discretionary access control list DACL is a list of ACEs that together describe the access rights on a given securable object. Each of the ACEs contained within a DACL must be one of the four ACE types listed in Table 2 that begin with ACCESS_.

System Access Control Lists

A system access control list (SACL) is a list of ACEs that together describe the auditing policy on a given securable object. Each ACE contained in a SACL must be one of the two ACE types listed in Table 2 that begin with SYSTEM_.

Managing Security Descriptors

To manage security descriptors by using scripts, you need to be acquainted with the interfaces based on the Component Object Model (COM).Using COM-based interfaces with WMI and Active Directory Service Interfaces (ADSI) you can manipulate the various components of security descriptors. In addition, you need to know the ways that security descriptors can be represented. Unfortunately, WMI and ADSI each use different representations, and there is a raw binary representation that scripts cannot work with directly. Finally, because security descriptors make use of bitflags, you need to understand what bitflags are and how to manipulate them within scripts.

Regardless of your purpose for writing a script, it is typically more efficient to modify an existing script to suit your needs instead of creating a new script. This is certainly the case with scripts that manipulate security descriptors. For most tasks, it is easy to find a script or a set of scripts to start with. Searching the Web or newsgroups typically result in several options. However, you will find fewer scripts that manipulate security descriptors. The last section of this paper provides you with scripts that you can use as starting points.

Security Descriptor Scripting Techniques

Scripting security descriptors involves the use of two primary technologies: WMI and ADSI. Both technologies provide COM-based libraries that enable you to write scripts to manage the various components of security descriptors. Although the object models implemented by the libraries differ, the underlying security descriptors that you are managing remain the same, so it is easy to work with either, provided you understand the structure and purpose of the underlying components.

There are cases where only one of the technologies enables you to manage security descriptors on a particular type of object. For example, you must use ADSI to manage security descriptors on registry keys and you must use WMI to manage security descriptors on WMI namespaces. In other cases, you can use either technology. You can manage security descriptors on files and folders using either technology as long as you are working with Windows Server 2003 or Windows XP. If you are working with older versions of the operating system, you must use WMI.

Bitflags and Bitmasks

Bitflags and bitmasks are commonly used by developers, but are often unfamiliar to system administrators. You need to have at least a basic understanding of them to write scripts that manipulate security descriptors.

Computers store and manipulate information that is represented as a series of binary digits or bits. You can think of an individual bit as being like a switch. It can be either on, represented by 1, or off, represented by 0. A series of those bits together can represent a decimal number. The series 1011, for example, represents the number 11. You can also use a series of bits as a compact way of representing a number of properties that can take on the value of either true or false. Each position within the sequence corresponds to one of the properties, and if the digit in that position is 1, then the property is true or set. If the digit in that position is 0, then the property is false or not set. Each of the digits acts like a flag. If the flag is raised (1), the corresponding property is set. If the flag is not raised (0), the corresponding property is not set. When you use a sequence of bits in this way, you are working with a bitflag.

When you write scripts that manipulate security descriptors, you work with integer values that are meant to be interpreted as bitflags. If you store one of these values in a variable, and then display the variable by using WScript.Echo, it is interpreted and displayed as a decimal number. When you work with a sequence of bits that you need to interpret as a bitflag, knowing what decimal number they represent is not useful. Instead, you need to be able to tell whether the bit is set or not set. Suppose, for example, that the third bit from the right represents the property, User Account Expires. You need to determine that from within your script, which you can do by using bitmasks.

A bitmask is a sequence of bits, where bits of interest to you are set to 1, and the other bits are set to 0. For example, if you try to determine whether the third bit is set, you construct a bitmask with all its bits set to 0, except the third bit, which is set to 1. After you construct the appropriate bitmask, you then use it along with logical operators, like AND and OR to mask out the bits that do not interest you. As a result, you know that the only bit value contributing to the value of the logical expression is the bit you are interested in. You can use a bitmask and the VBScript AND logical operator to determine whether an individual bit is set.

The VBScript keyword AND performs a bitwise comparison of bits occupying the same position in two numeric expressions. If both bits are 1, then the result is 1; otherwise, the result is 0. Because you constructed your bitmask so that the 0s are in all positions other than the one you are interested in, you can be certain that the result will contain 0s in all positions except the position of interest. If the bit of interest in the bitflag is 1, then the result of the AND operation will be 1. If the bit of interest is 0, then the result will be 0. VBScript interprets a positive number as a true value and zero as false. If the result of the AND operation evaluates to true, then it must include a non-zero bit, implying that the bit of interest was set. If the result evaluates to false, then the bit of interest was not set as shown in Figure 5.

Figure 5 Using bitmasks to interpret bitflags
[image: image7.png]Bifag 11O [0][0][2
On O O Off On
anD

Bitmask with first bit set

Bitlag ° °
On OF OF Off on

Bitmask with third bit set
Off Off on O Off

WMI Model

Windows Management Instrumentation (WMI) provides three classes that represent security descriptors and their components: Win32_SecurityDescriptor, Win32_ACE, and Win32_Trustee (see Figure 6). WMI does not provide classes to represent ACLs. Instead, DACLs and SACLs are represented as arrays of Win32_ACE classes accessed by means of the DACL and SACL properties of the Win32_SecurityDescriptor class.

Figure 6 WMI classes representing a security descriptor

[image: image8.png]Ouner SID Win32_Trustee

wins2_Seasiypesrtor || Group s10 wins2_Trustes

f—f wins2_seaurityDescriptor.sacL

Win32_SecurityDeseriptor DACL |

Win32_ACE

Creating a Default Security Descriptor That Uses WMI

A security descriptor is modeled by the Win32_SecurityDescriptor class in WMI. Creating and populating an instance of the Win32_SecurityDescriptor class to represent the security descriptor that you want to apply to a securable object is a scripting technique that you often use when scripting security descriptors.

In Figure 6, you can see that the Win32_SecurityDescriptor class is a container for other classes, including Win32_Trustee and Win32_ACE. Creating and populating a Win32_SecurityDescriptor instance will involve creating and populating instances of those contained classes as well.

To construct a default security descriptor, you first create an instance of the Win32_Trustee class and then use it as a component in the construction of an instance of the Win32_ACE class. Once you have an instance of the Win32_ACE class, you can use that in the construction of a Win32_SecurityDescriptor.

Begin by creating an instance of the Win32_Trustee class.

Set objWMIService = _ GetObject("winmgmts:{impersonationLevel=impersonate}!\\.\root\cimv2")

Set objTrustee = objWMIService.Get("Win32_Trustee").SpawnInstance_()

Connect to the WMI service. Then call the Get method along with the SpawnInstance_ method to create a new instance of the Win32_Trustee WMI class. Next, you must set the properties of the Win32_Trustee class.

objTrustee.Domain = Null

objTrustee.Name = "Everyone"

objTrustee.SIDString = "S-1-1-0"

objTrustee.SID = Array(1,1,0,0,0,0,0,1,0,0,0,0)

objTrustee.SidLength = 12

[image: image9.wmf]
Note

You can use the wbemtest.exe tool to determine the properties of any class, including the Win32_Trustee class. For more information about wbemtest.exe, see the chapter “WMI Scripting Primer” in Microsoft® Windows® 2000 Scripting Guide, at http://go.microsoft.com/fwlink/?LinkId=31965, and click “Scripting Concepts and Technologies for System Administration,” and then click “WMI Scripting Primer.”

When you have created and populated an instance of the Win32_Trustee class, create an instance of the Win32_ACE class.

Set objACE = objWMIService.Get("Win32_ACE").SpawnInstance_()

The preceding statement is nearly identical to that used to create the instance of the Win32_Trustee class. Only the class name has changed. Next, you must set the properties of the Win32_ACE class.

Const ACCESS_ALLOWED_ACE_TYPE = 0

Const FILE_ALL_ACCESS = 0x1F01FF

objACE.Trustee = objTrustee

objACE.AceType = ACCESS_ALLOWED_ACE_TYPE

objACE.AccessMask = FILE_ALL_ACCESS

objACE.AceFlags = 0

The Trustee property of the Win32_ACE class is an instance of the Win32_Trustee class. Set it to the Win32_Trustee instance you created in the last step. The constants specify the ACE type shown in Table 2 and the access mask as specified (for files and folders) in Table 3.

Finally, you create an instance of the Win32_SecurityDescriptor class and populate its properties.

Set objSD = objWMIService.Get("Win32_SecurityDescriptor").SpawnInstance_()

objSD.DACL = Array(objACE)

objSD.ControlFlags = SE_SELF_RELATIVE OR SE_DACL_PRESENT

You create a new instance of Win32_SecurityDescriptor in the usual manner. You then create a single element array and set the DACL property of Win32_SecurityDescriptor to that array. The array contains a single Win32_ACE instance, but could contain any number of such instances. Lastly, you set the Control Flags property of the Win32_SecurityDescriptor instance.

ADSI Model

The object model implemented by the ADSI COM-based library is slightly different from that provided by WMI. The major difference is that ADSI provides classes that represent an ACL as a distinct entity instead of as an array of ACEs, as is done in WMI.

ADSI provides three classes that represent security descriptors and their components: Win32_SecurityDescriptor, Win32_ACE and Win32_Trustee (see Figure 7). WMI does not provide classes to represent ACLs. Instead, DACLs and SACLs are represented as arrays of Win32_ACE classes accessed by means of the DACL and SACL properties of the Win32_SecurityDescriptor class.

Figure 7 ADSI Classes Representing a Security Descriptor

[image: image10.png]SecurkyDescriptor [—

fccessCantralList |

Owner SID

Group SID

Ouner

Group

| aecesscontrolist
4| AccessControlEntry

Creating a Default Security Descriptor Using ADSI

A common task when scripting security descriptors is creating a new descriptor to apply to a resource. Just as the ADSI and WMI object models differ slightly, the script code you must write to create a security descriptor in ADSI is slightly different from what you use in WMI. You perform the same tasks, but the syntax you use to describe those tasks is different. The following script snippet demonstrates how to create a security descriptor by using ADSI.

Const ACCESS_ALLOWED = 0

Const SHARE_ALL_ACCESS = 0x1F01FF

Set objACE = CreateObject("AccessControlEntry")

objACE.Trustee = "Everyone"

objACE.AceType = ACCESS_ALLOWED

objACE.AccessMask = SHARE_ALL_ACCESS

objACE.AceFlags = 0

Set objACL = CreateObject("AccessControlList")

objACL.AddAce objACE

Set objSD = CreateObject("SecurityDescriptor")

objSD.DiscretionaryACL = objACL

objSD.Revision = 1

objSD.Control = SELF_RELATIVE Or DACL_PRESENT

Representation of Security Descriptors

When you write scripts that manage security descriptors, the underlying entity that you manage is consistent, regardless of the technology you use to manage. The representation you work with, however, varies depending on the library you choose or must use. The particular method you use within a given library also varies.

If you retrieve a security descriptor by using WMI, you cannot easily convert it into the representation that ADSI uses. Similarly, it is not easy to convert from the ADSI representation to the WMI one. In addition, some WMI methods return the security descriptor in raw binary form instead of as a Win32_SecurityDescriptor class, as you might expect. In this case, you need to call on some auxiliary functions of the ADSI library to convert the raw binary format to ADSI format because WMI does not provide you with a way to do such a conversion.

Typically, you should use one library to access security descriptors for a given type of resource, and then manipulate the result by using the capabilities of that library. However, if you must work with a raw binary representation, you need to rely on the ADSI library.

Security Descriptor Scripting Tasks

The sample scripting tasks demonstrate how to script the management of security descriptors on various Windows objects. Included are scripts that manage the security descriptors on shared folders, folders, files, active directory objects, printers, registry keys and WMI namespaces.

The scripts demonstrate the basic scripting steps required to perform each task. They are not enterprise-ready scripts. Many things that you should include in production scripts — error-handling, for example — are omitted to make the samples clear and to emphasize the need to modify the scripts for your requirements. If you are an experienced scripter, modifying the scripts should be easy. To learn more about modifying scripts to make them more enterprise-ready, see “Creating Enterprise Scripts” in Windows 2000 Scripting Guide at http://go.microsoft.com/fwlink/?LinkId=31965 , and click “Scripting for the Enterprise,” and then click “Creating Enterprise Scripts.”
Managing Shared Folder Security Descriptors

Shared folders can be a dangerous convenience. The process of creating a shared folder is relatively easy and a very useful way to share large amounts of information. However, properly securing shared folders is not intuitive and, in many cases, shared folders are left unsecured for any user to examine at leisure.

You can write scripts to identify the shared folders on the computers in your enterprise (search the TechNet script repository for example scripts). You can then use the sample scripts in this section to do the following tasks:

· Retrieve and display current security descriptor information for a shared folder.

· Create a security descriptor and assign it to a shared folder.

· Determine if a given account has read permission on a shared folder.

· Determine if a given account has write permission on a shared folder.

Retrieving and Displaying Current Security Descriptor Information for a Shared Folder

Listing 1 contains a script that retrieves and displays the current security descriptor information for a shared folder. To carry out this task, the script must perform the following steps:

1. Define the constants needed in the script.

2. Create variables in which to store the computer name and the shared folder name.

3. Use the GetObject method to connect to the WMI namespace root\cimv2 and set the impersonation level to impersonate.

4. Use the Get method to retrieve an instance of the Win32_LogicalShareSecuritySetting class. This method returns an object that represents the security settings of the shared folder that is stored in the variable created in step 2.

5. Use the GetSecurityDescriptor method to retrieve the security descriptor associated with the shared folder, storing it in the objSecurityDescriptor variable.

6. Create a variable in which to store the array representing the DACL, which is accessed by using the DACL property of the object stored in objSecurityDescriptor.

7. Use a For Each loop to iterate through the array of ACE objects stored in the arrDACL variable. Use logical AND to determine the settings of the Access Mask and use the Echo method to describe the results to the user of the script.

Listing 1 Retrieve and Display Current Security Descriptor Information for a Shared Folder

	1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50
	ACCESS_ALLOWED_ACE_TYPE = &H0

ACCESS_DENIED_ACE_TYPE = &H1

FILE_SHARE_FULL_ACCESS = &H0C0040

FILE_SHARE_CHANGE_ACCESS = &H010116

FILE_SHARE_READ_ACCESS = &H1200A9

strComputer = "."

strShareName = "scripts"

Set objWMIService = GetObject("winmgmts:{impersonationLevel=impersonate}!\\" &_

strComputer & "\root\cimv2")

Set objSecuritySettings = _ objWMIService.Get("Win32_LogicalShareSecuritySetting='" & strShareName & "'")

intRet = objSecuritySettings.GetSecurityDescriptor(objSecurityDescriptor)

arrDACL = objSecurityDescriptor.DACL

For Each objACE in arrDACL

 WScript.Echo "Principal: " & objACE.Trustee.Domain & "\" &_ objACE.Trustee.Name

 If objACE.AccessMask AND FILE_SHARE_FULL_ACCESS Then

 If objACE.AceType = ACCESS_ALLOWED_ACE_TYPE Then

 WScript.Echo vbTab & "Allowed Full Control"

 ElseIf objACE.AceType = ACCESS_DENIED_ACE_TYPE Then

 WScript.Echo vbTab & "Denied Full Control"

 End If

 ElseIf objACE.AccessMask AND FILE_SHARE_CHANGE_ACCESS Then

 If objACE.AceType = ACCESS_ALLOWED_ACE_TYPE Then

 WScript.Echo vbTab & "Allowed Change"

 ElseIf objACE.AceType = ACCESS_DENIED_ACE_TYPE Then

 WScript.Echo vbTab & "Denied Change"

 End If

 ElseIf objACE.AccessMask AND FILE_SHARE_READ_ACCESS Then

 If objACE.AceType = ACCESS_ALLOWED_ACE_TYPE Then

 WScript.Echo vbTab & "Allowed Read"

 ElseIf objACE.AceType = ACCESS_DENIED_ACE_TYPE Then

 WScript.Echo vbTab & "Denied Read"

 End If

 End If

Next

Creating a Security Descriptor and Assigning It to a Shared Folder. Listing 2 contains a script that creates and assigns a security descriptor to a shared folder. To carry out this task, the script must perform the following steps:

8. Define the constants needed in the script.

9. Create variables in which to store the computer name, shared folder name, user name and user domain.

10. Use the GetObject method to connect to the WMI namespace root\cimv2 and set the impersonation level to impersonate.

11. Use the Get method to retrieve an instance of the Win32_LogicalShareSecuritySetting class. This method call returns an object that represents the security settings of the shared folder stored in the variable created in step 2.

12. Use the SpawnInstance_ method to create a new Win32_Trustee object.

13. Use the Echo method to display the control flags of the security descriptor, which you can access by using the ControlFlags property of the object stored in objSecurityDescriptor.

14. Use ExecQuery to retrieve account information from Win32_Account for the user stored in strUserName.

15. Use a For Each loop to retrieve the one resulting Win32_Account instance and store the value of the SID property in the SIDString property of the newly-created Win32_Trustee object.

16. Use the Get method to retrieve an instance of the Win32_SID class associated with the SID string stored in objTrustee.SIDString.

17. Set all additional properties of the Win32_Trustee class.

18. Use the SpawnInstance_ method to create a new Win32_ACE object.

19. Set the properties of the Win32_ACE object.

20. Use the SpawnInstance_ method to create a new Win32_SecurityDescriptor object.

21. Set the properties of the Win32_SecurityDescriptor object.

22. Use the SetSecurityDescriptor method to apply the new security descriptor to the shared folder.

Listing 2 Create a Security Descriptor and Assign It to a Shared Folder

	1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

	ACCESS_ALLOWED_ACE_TYPE = &H0

ACCESS_DENIED_ACE_TYPE = &H1

FILE_SHARE_FULL_ACCESS = &H0C0040

FILE_SHARE_CHANGE_ACCESS = &H010116

FILE_SHARE_READ_ACCESS = &H1200A9

SE_DACL_PRESENT = &H4

strComputer = "."

strShareName = "scripts"

strUserName = "fred"

strDomainName = "QUEENSPORT"

Set objWMIService = GetObject("winmgmts:{impersonationLevel=impersonate}!\\" &_

strComputer & "\root\cimv2")

Set objSecuritySettings=_ objWMIService.Get("Win32_LogicalShareSecuritySetting='" & strShareName & "'")

Set objTrustee = objWMIService.Get("Win32_Trustee").SpawnInstance_()

Set colAccounts = objWMIService.ExecQuery("SELECT * FROM Win32_Account" &_

 WHERE Name = '" & strUserName & "'")

For Each objAccount In colAccounts

 objTrustee.SIDString = objAccount.SID

Next

Set objSID = objWMIService.Get("Win32_SID.SID='" & objTrustee.SIDString & "'")

objTrustee.SID = objSID.BinaryRepresentation

objTrustee.SIDLength = objSID.SIDLength

objTrustee.Domain = strDomainName

objTrustee.Name = strUserName

Set objACE = objWMIService.Get("Win32_ACE").SpawnInstance_()

objACE.Trustee = objTrustee

objACE.AceType = ACCESS_ALLOWED_ACE_TYPE

objACE.AccessMask = FILE_SHARE_READ_ACCESS

objACE.AceFlags = 0

Set objSD = objWMIService.Get("Win32_SecurityDescriptor").SpawnInstance_()

objSD.Owner = objTrustee

objSD.DACL = Array(objACE)

objSD.ControlFlags = SE_DACL_PRESENT

objSecuritySettings.SetSecurityDescriptor(objSD)

Managing Folder Security Descriptors

Although individual files are often seen as entities that need to be secured, folders are sometimes overlooked. This is not good practice, as sometimes a malicious user can glean useful information just by listing the names of files, even if they cannot read the contents. In addition, folder-level security provides a mechanism for protecting large groups of files.

Table 3 lists the various file and folder access rights and their corresponding hexadecimal values.

Table 3 File and Folder Access Rights

	File or Folder Access Right
	Hexadecimal Value

	REG_GENERIC_EXECUTE
	0x1200A9

	REG_GENERIC_READ
	0x120089

	REG_GENERIC_WRITE
	0x100116

	FILE_ALL_ACCESS
	0x1F01FF

	FILE_APPEND_DATA
	0x000004

	FILE_DELETE
	0x010000

	FILE_DELETE_CHILD
	0x000040

	FILE_EXECUTE
	0x000020

	FILE_READ_ATTRIBUTES
	0x000080

	FILE_READ_CONTROL
	0x020000

	FILE_READ_DATA
	0x000001

	FILE_READ_EA
	0x000008

	FILE_SYNCHRONIZE
	0x100000

	FILE_WRITE_ATTRIBUTES
	0x000100

	FILE_WRITE_DAC
	0x040000

	FILE_WRITE_DATA
	0x000002

	FILE_WRITE_EA
	0x000010

	FILE_WRITE_OWNER
	0x080000

You can use the sample scripts in this section to do the following tasks:

· Retrieve and display current security descriptor information about a folder.

· Determine if a given account has read permission for a folder.

· Determine if a given account has write permission for a folder.

Retrieving and Displaying Current Security Descriptor Information for a Folder

Listing 3 contains a script that retrieves and displays the current security descriptor for a folder. To carry out this task, the script must perform the following steps:

23. Create a variable in which to store the shared folder name.

24. Use the GetObject method to connect to the WMI namespace root\cimv2 and set the impersonation level to impersonate.

25. Use the Get method to retrieve an instance of the Win32_LogicalShareSecuritySetting class. This method call returns an object that represents the security settings of the shared folder stored in the variable created in step 1

26. Use the GetSecurityDescriptor method to retrieve the security descriptor associated with the shared folder, storing it in the objSecurityDescriptor variable.

27. Use the Echo method to display the control flags of the security descriptor, which you can access by using the ControlFlags property of the object stored in objSecurityDescriptor.

28. Create a variable in which to store the array representing the DACL, which you can access by using the DACL property of the object stored in objSecurityDescriptor.

29. Use the Echo method to display a message indicating that the ACEs on the shared folder are about to be displayed.

30. Use a For Each loop to iterate through the array of ACE objects stored in the arrDACL variable. Use the Echo method to display the various properties of the ACE object.

Listing 3 Retrieve and Display Current Security Descriptor Information for a Folder

	1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

	strComputer = "."

strFolderPath = "c:\aprojects\scripting_security\scripts"

Set objWMIService = GetObject("winmgmts:")

Set objSecuritySettings = _

objWMIService.Get("Win32_LogicalFileSecuritySetting='" & strFolderPath & "'")

intRet = objSecuritySettings.GetSecurityDescriptor(objSecurityDescriptor)

WScript.Echo "Domain: " & objSecurityDescriptor.Owner.Domain

WScript.Echo "Name : " & objSecurityDescriptor.Owner.Name

WScript.Echo "SID String : " & objSecurityDescriptor.Owner.SIDString

WScript.Echo "SID: "

arrSID = objSecurityDescriptor.Owner.SID

For i = 0 To UBound(arrSID)

 WScript.Echo "[" & i & "]: " & arrSID(i)

Next

WScript.Echo "Control Flags: " & objSecurityDescriptor.ControlFlags

[image: image11.wmf]
Note

The path specified in line 2 does not include a final backslash character. Including the backslash results in an error.

Creating a Security Descriptor and Assigning It to a Folder

Listing 4 contains a script that creates a security descriptor and assigns it to a folder. To carry out this task, the script must perform the following steps:

31. Create a variable in which to store the computer name.

32. Create a variable in which to store the folder name.

33. Use the GetObject method to connect to the WMI namespace root\cimv2 and set the impersonation level to impersonate.

34. Use the Get method to retrieve an instance of the Win32_LogicalShareSecuritySetting class. This method call returns an object that represents the security settings of the shared folder stored in the variable created in step 2.

35. Use the GetSecurityDescriptor method to retrieve the security descriptor associated with the shared folder, storing it in the objSecurityDescriptor variable.

36. Use the Echo method to display the control flags of the security descriptor, which you can access by using the ControlFlags property of the object stored in objSecurityDescriptor.

37. Create a variable in which to store the array representing the DACL, which you can access by using the DACL property of the object stored in objSecurityDescriptor.

38. Use the Echo method to display a message indicating that the ACEs on the shared folder are about to be displayed.

39. Use a For Each loop to iterate through the array of ACE objects stored in the arrDACL variable. Use the Echo method to display the various properties of the ACE object.

Listing 4 Create a Security Descriptor and Assign It to a Folder

	1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

	strComputer = "."

strFolderPath = "c:\aprojects\scripting_security\scripts"

Set objWMIService = GetObject("winmgmts:")

Set objSecuritySettings = _

objWMIService.Get("Win32_LogicalFileSecuritySetting='" & strFilePath & "'")

intRet = objSecuritySettings.GetSecurityDescriptor(objSecurityDescriptor)

WScript.Echo "Domain: " & objSecurityDescriptor.Owner.Domain

WScript.Echo "Name : " & objSecurityDescriptor.Owner.Name

WScript.Echo "SID String : " & objSecurityDescriptor.Owner.SIDString

WScript.Echo "SID: "

arrSID = objSecurityDescriptor.Owner.SID

For i = 0 To UBound(arrSID)

 WScript.Echo "[" & i & "]: " & arrSID(i)

Next

WScript.Echo "Control Flags: " & objSecurityDescriptor.ControlFlags

Managing File Security Descriptors

Managing the files on a single workstation is a time consuming task. Trying to manage the security descriptors of the huge numbers of files distributed across a typical enterprise is a major undertaking and one that requires an approach such as scripting. Having only the standard GUI tool to manage file security descriptors makes the task impossible.

The script samples in this section demonstrate how to do the following:

· Retrieve and display current security descriptor information.

· Determine if a given account has read permission on a file.

· Determine if a given account has write permission on a file.

Retrieving and Displaying Current Security Descriptor Information for a File

Listing 5 contains a script that retrieves and displays the current security descriptor for a file. To carry out this task, the script must perform the following steps:

40. Create a variable in which to store the computer name.

41. Create a variable in which to store the shared folder name.

42. Use the GetObject method to connect to the WMI namespace root\cimv2 and set the impersonation level to impersonate.

43. Use the Get method to retrieve an instance of the Win32_LogicalShareSecuritySetting class. This method call returns an object that represents the security settings of the shared folder stored in the variable created in step 2.

Listing 5 Retrieve and Display Current Security Descriptor Information for a File

	1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

	strComputer = "."

strFilePath = "c:\aprojects\scripting_security\scripts\test.txt"

Set objWMIService = GetObject("winmgmts:")

Set objSecuritySettings = _

objWMIService.Get("Win32_LogicalFileSecuritySetting='" & strFilePath & "'")

intRet = objSecuritySettings.GetSecurityDescriptor(objSecurityDescriptor)

WScript.Echo "Owner Domain: " & objSecurityDescriptor.Owner.Domain

WScript.Echo "Owner Name : " & objSecurityDescriptor.Owner.Name

WScript.Echo "Owner SID String : " & objSecurityDescriptor.Owner.SIDString

WScript.Echo "SID: "

arrSID = objSecurityDescriptor.Owner.SID

For i = 0 To UBound(arrSID)

 WScript.Echo "[" & i & "]: " & arrSID(i)

Next

WScript.Echo "Control Flags: " & objSecurityDescriptor.ControlFlags

Managing Registry Security Descriptors

The registry contains vital configuration and security information that you must use carefully to properly secure your computers. The default security settings on the registry are well planned. However, if you find that you need to audit the security descriptors on registry keys, you can use ADSI to do so from within a script.

Table 5 lists the various registry key access rights and their corresponding hexadecimal values.

Table 5 Registry Key Access Rights

	Registry Key Access Right
	Hexadecimal Value

	REG_GENERIC_FULL_CONTROL
	0xF003F

	REG_GENERIC_READ
	0x20019

	REG_CREATE_LINK
	0x20

	REG_CREATE_SUBKEYS
	0x4

	REG_DELETE
	0x10000

	REG_ENUMERATE_SUBKEYS
	0x8

	REG_NOTIFY
	0x10

	REG_QUERY_VALUE
	0x1

	REG_READ_CONTROL
	0x20000

	REG_SET_VALUE
	0x2

	REG_WRITE_DAC
	0x40000

	REG_WRITE_OWNER
	0x80000

You can use the sample scripts in this section to do the following tasks:

· Retrieve and display current security descriptor information for a registry key.

Retrieving and Displaying Current Security Descriptor Information for a Registry Key

Listing 9 contains a script that retrieves and displays the current security descriptor for a registry key. To carry out this task, the script must perform the following steps:

44. Create a constant in which to store the integer 3 which is used later to indicate to ADSI that the script is working with the registry.

45. Create a constant in which to store the integer 0 which is used later to indicate to ADSI that the script requires the security descriptor to be returned in ADSI format.

46. Create a constant in which to store the integer which is used later to indicate to ADSI that the script is retrieving a DACL.

47. Use the CreateObject method to instantiate the ADsSecurityUtility object storing a reference to the object in the objADsSecurityUtil variable for later use.

48. Set the ADsSecurityUtil object’s SecurityMask property to the constant value set in step 3.

49. Use the ADsSecurityUtil object’s GetSecurityDescriptor method to retrieve an object representing the security descriptor on HKEY_LOCAL_MACHINE\Software and store that object in the variable objSD.

50. Use the ADsSecurityDescriptor object’s DiscretionaryAcl property to retrieve an object representing the DACL associated with HKEY_LOCAL_MACHINE\Software.

51. Use a For Each construct to loop through the collection of ACE objects in the DACL object, calling the Echo method to display the properties of each of the ACEs.

Listing 6 Retrieve and Display Current Security Descriptor Information for a Registry Key

	1

2

3

4

5

6

7

8

9

10

11

12

13

	const ADS_PATH_REGISTRY = 3

const ADS_SD_FORMAT_IID = 0

const ADS_SECURITY_INFO_DACL =

Set objADsSecurityUtil = CreateObject("ADsSecurityUtility")

objADsSecurityUtil.SecurityMask = ADS_SECURITY_INFO_DACL

Set objSD = objADsSecurityUtil.GetSecurityDescriptor_

("HKEY_LOCAL_MACHINE\Software", ADS_PATH_REGISTRY, ADS_SD_FORMAT_IID)

Set objDACL = objSD.DiscretionaryAcl

For Each objACE In objDACL

 WScript.Echo objACE.Trustee

Next

[image: image12.wmf]
Note

It is not currently possible to modify the security descriptor on a registry key using ADSI from a script.

Managing WMI Namespace Security Descriptors

There are many levels of security available to you to secure WMI. For example, each individual WMI namespace has an associated security descriptor. Not surprisingly, you can manage these security descriptors using WMI. You can then use the sample scripts in this section to do the following tasks:

· Retrieve and display current security descriptor information for a WMI namespace.

Retrieving and Displaying Current Security Descriptor Information for a WMI Namespace

Listing 7 contains a script that retrieves and displays the current security descriptor information for a WMI namespace. To carry out this task, the script must perform the following steps:

52. Create a variable in which to store the computer name.

53. Create a variable in which to store the namespace.

54. Use the GetObject method to connect to the WMI namespace stored in step 2 and set the impersonation level to impersonate.

55. Use the Get method to retrieve an instance of the Win32_LogicalShareSecuritySetting class. This method call returns an object that represents the security settings of the shared folder stored in the variable created in step 2.

Listing 7 Retrieve and Display Current Security Descriptor Information for a WMI Namespace

	1

2

3

4

5

6

7

8

9

10

11

12

	strComputer = "."

strNameSpace = "root\default"

Set objWMIService = GetObject("winmgmts:{impersonationLevel=impersonate}!\\" & strComputer & "\" & strNamespace)

Set objWMISecurity = objWMIService.Get("__SystemSecurity=@")

intRet = objWMISecurity.GetSD(arrSD)

For Each element In arrSD

 WScript.Echo element

Next

