Summary

The ASP.NET 2.0 Profile feature ships with a single provider – the SqlProfileProvider. This provider is very flexible and automatically works with any serializable type that is stored in a Profile object. However the cost of this flexibility is that Profile data is stored in either an opaque text blob or an opaque binary blob. As a result there is no direct way to query Profile data from inside of the database.

The accompanying zip file contains a project with two sample Profile providers that address the blob issue. The project contains sample code in the App_Code directory for the following provider classes:

1. SqlTableProfileProvider: This provider can be configured to work directly against a table in SQL Server. It stores individual Profile properties in table columns, thus allowing you to access the data directly using your own queries.

2. SqlStoredProcedureProfileProvider: This provider can be configured to work with stored procedures. The provider maps individual Profile properties to stored procedure parameters. You write the logic inside of these stored procedures to map the parameters to whatever tables or custom database logic you need.

The two sections below go into more detail about how each sample provider works as well as how to use them.

SqlTableProfileProvider

The most common request for Profile providers is a way to be able to query the Profile data in the database. The SqlTableProfileProvider enables this functionality by storing individual Profile properties in table columns. The sample provider currently supports mapping commonly used simple and primitive .NET types to their corresponding data types in SQL Server. The provider implements all of the methods defined by the ProviderBase abstract base class. This means that in addition to retrieving and updating Profile data, you can also use the administrative Profile methods defined on ProviderBase. Note that the current sample provider has only been tested against Sql Server 2005.
You configure the SqlTableProfileProvider with the following two configuration entries:

<connectionStrings>

 <add name="TestDatabase"

 connectionString="points at your DB” />

</connectionStrings>

The provider requires a connection string

<profile defaultProvider="TableProfileProvider">
 <providers>
 <add name="TableProfileProvider"

 type="Microsoft.Samples.SqlTableProfileProvider"

 connectionStringName="TestDatabase"

 table="ProfileTable_1"

 applicationName="DatabaseProfileProviderTest"/>
 </providers>

<profile>
Sample provider configuration
Since the provider works with a database just like the SqlProfileProvider, the provider requires a connection string to be defined in the <connectionStrings /> section. The provider configuration element references this connection string with the “connectionStringName” attribute. As with the SqlProfileProvider, the SqlTableProfileProvider also has an “applicationName” attribute. Since the sample SqlTableProfileProvider is intended to integrate well with the existing SQL providers from other features like Membership and Role Manager, it exposes “applicationName” so that it can store Profile data for many different ASP.NET applications in a single table.

The new provider attribute “table” tells the provider which database in SQL Server it should work with. Whenever the provider retrieves data or updates data it will do so against the SQL table defined in the “table” attribute. In the sample above the provider has been configured to read and write data from a SQL table called ProfileTable_1. You can create your own custom tables (or use existing tables subject to some schema requirements described a little later) with whatever names you want to use.
To make use of the provider you need to associate it with one or more Profile properties. In the sample configuration above, the “defaultProvider” attribute on the <profile /> element has been set to an instance of the table based provider. As a result, any Profile properties that do not explicitly define a “provider” attribute will automatically store and retrieve their data using the SqlTableProfileProvider.

The last set of required configuration information is on the individual Profile properties. Since the SqlTableProfileProvider stores each Profile property in a separate column of a table, it needs additional information.

<properties>

 <add name="FirstName"
 type="string"
 defaultValue="[null]"
 customProviderData="FirstName;nvarchar"
 />
 <add name="LastName"
 type="string"
 defaultValue="[null]"
 customProviderData="LastName;nvarchar"
 />

 <add name="Age"
 type="int"
 customProviderData="Age;int"
 />
</properties>
Sample profile properties mapped to the table provider
The Profile feature allows definition of the “customProviderData” attribute on each Profile property. If you use the SqlProfileProvider you may not be aware of this attribute since it has no utility with this provider. However the “customProviderData” attribute was included in ASP.NET 2.0 precisely for cases like the SqlTableProfileProvider where you need to add extra metadata to a Profile property. The SqlTableProfileProvider requires that this attribute contain two pieces of information separated by a semi-colon: the database column name and the ADO.NET database type.
The sample Profile property configuration shown above defines the following behavior when used with the SqlTableProfileProvider.

1. The FirstName Profile property is defined to be a string type on the auto-generated Profile type. When it is stored and retrieved in the database by the SqlTableProfileProvider though, the provider maps it to a database column called “FirstName”. Remember from the earlier provider definition that there is an instance of the provider pointed at a table called “ProfileTable_1”. As a result the SqlTableProfileProvider will read and write the Profile property to the “FirstName” column in the table called “ProfileTable_1”. The “customProviderData” attribute has a second piece of information that tells the provider the type of the database column – in this case the “FirstName” column is of type nvarchar. The table provider does not currently support defining a length for the database type since it really isn’t needed by ADO.NET when writing data into a table.
2. The LastName Profile property is also defined as a string type on the auto-generated Profile type. When it is stored and retrieved in the database by the SqlTableProfileProvider, the provider maps it to a database column called “LastName”. As with the FirstName property, the SqlTableProfileProvider will read and write this Profile property to the “LastName” column in the table called “ProfileTable_1”. The “customProviderData” attribute also has a second piece of information that tells the provider the database column is of type nvarchar.

3. The Age Profile property is defined as an integer type on the auto-generated Profile type. When it is stored and retrieved in the database by the SqlTableProfileProvider, the provider maps it to a database column called “Age”. The SqlTableProfileProvider will read and write this Profile property to the “Age” column in the table called “ProfileTable_1”. The “customProviderData” attribute also has a second piece of information that tells the provider the database column is of database type int.
The two string Profile properties also define a defaultValue of “[null]”. This tells the Profile feature that if the provider does not initialize a Profile property with information from the database, that it should treat the properties as being null valued. This is an important configuration point because in the database, columns can contain null values. The sample provider interprets a null column value as meaning that no data exists for the corresponding Profile property. As a result the Profile feature looks at the defaultValue attribute on a Profile property to determine the specific .NET value that should be returned. In the case of the integer property, since this is a value type, the Profile feature will automatically return zero (the default value for an integer as defined by the .NET Framework) in the case that a null value was found in the database for the Age column.

The .NET Framework type to ADO.NET data type mappings that have been tested successfully with the SQLTableProfileProvider are shown below:

	.NET Framework Type
	ADO.NET Database Type
	SQL Data Type

	String
	Varchar
	Varchar()

	String
	Nvarchar
	Nvarchar()

	String
	NChar
	Nchar()

	String
	NText
	NText

	String
	Text
	Text

	Double
	BigInt
	Float

	DateTime
	DateTime
	Datetime

	DateTime
	SmallDateTime
	Smalldatetime

	Int
	Int
	Int

	Int64
	BigInt
	Bigint

	Int16
	SmallInt
	smallint

	Byte[]
	Binary
	Binary()

	Byte[]
	Image
	Image

	Byte[]
	VarBinary
	Varbinary()

	Byte
	TinyInt
	Tinyint

	Bool
	Bit
	Bit

	Decimal
	Decimal
	Decimal

	Decimal
	Money
	Money

	Decimal
	SmallMoney
	SmallMoney

	Float
	Float
	Float

	Guid
	UniqueIdentifier
	Uniqueidentifier

	Real
	Real
	Real

With the sample provider configuration and Profile configuration shown above you need to setup a table in the database to work with the SqlTableProfileProvider. Unlike the SqlProfileProvider, the SqlTableProfileProvider currently requires you to create the necessary table in the database. Furthermore the table must include a few required columns in addition the columns used for storing Profile property data. A SQL table definition that works with the previous configuration is shown below:

create table dbo.ProfileTable_1
(

 UserId

uniqueidentifier not null Primary Key,

 FirstName

nvarchar(50) null,

 LastName

nvarchar(50) null,

 Age

int null,

 LastUpdatedDate
datetime not null
)

go

A user created table for storing Profile data

grant SELECT,INSERT,UPDATE,DELETE on dbo.ProfileTable_1 to [YOURMACHINENAME\ASPNET]

go
Required security grants to be able to read and write the data
Notice that the table defines three columns that correspond to the Profile properties FirstName, LastName, and Age. In addition the table defines two required columns: UserId and LastUpdateDate. When the SqlTableProfileProvider access rows from this table, it uses the UserId column as the primary key. The provider converts from the current user’s username and the current provider’s application name to a unique user identifier. This is the exact same logic currently used inside of other SQL providers like the SqlMembershipProvider and SqlProfileProvider. In this way the SqlTableProfileProvider is able to work seamlessly with the existing SQL providers.

The LastUpdatedDate column is always updated by the SqlTableProfileProvider so that you know the last time a user updated the Profile information in the table. This approach is consistent with how the ASP.NET 2.0 SqlProfileProvider works. You can point the provider at pre-existing tables as long as you add the UserId and LastUpdatedDate columns to them.
Since the SqlTableProfileProvider accesses the table directly, you need to make sure that you grant SELECT, INSERT, UPDATE and DELETE rights on the table to the appropriate web server account. In the sample code above, the ASPNET account is used since this is the ASP.NET process account on a Windows XP machine. With integrated database security it is the process identity that is used when accessing the database. If you are running on Windows Server 2003 and IIS6, then NETWORK SERVICE would be the correct account. If you happen to be running with an explicitly configured impersonation identity in the <identity /> configuration element, you would use that account instead. Lastly if you are just using SQL standard security, you would grant the rights to the appropriate SQL user account.
 The last piece of database configuration work is to grant rights to some ASP.NET 2.0 stored procedures that are automatically installed in your database when the schemas for Membership, Role Manager, Profile or Web Parts Personalization are installed.

grant EXECUTE on dbo.aspnet_Applications_CreateApplication to [YOURMACHINENAME\ASPNET]
grant EXECUTE on dbo.aspnet_Users_CreateUser to [YOURMACHINENAME\ASPNET]
grant SELECT on dbo.aspnet_Users to [YOURMACHINENAME\ASPNET]

grant UPDATE on dbo.aspnet_Users(LastActivityDate) to [YOURMACHINENAME\ASPNET]

go
Other security grants required by the sample provider
As with the security grant on the database table, you should edit these stored procedure grants to reference the appropriate user account. The reason these special grants are required is that the logic inside of the SqlTableProfileProvider follows the behavior of the SqlProfileProvider. The sample provider will automatically setup a row in the common application table that corresponds to the “applicationName” attribute on the SqlTableProfileProvider. Similarly, if you use the SqlTableProfileProvider with a user that does not currently have a row in the users table (e.g. you are using Windows authentication, so Membership has not been used to create a user in the database), the provider will automatically create a row for that user in the aspnet_Users table. The SqlTableProfileProvider also needs update privileges on the LastActivityDate column in the aspnet_Users table in order to keep track of active versus inactive users. This information is what allows you to delete Profile data from the ProfileTable_1 table for inactive users.

At this point you have completed all of the necessary configuration and database setup required to get the SqlTableProfileProvider working. From here you can use the Profile feature inside of your pages, and the SqlTableProfileProvider will take care of moving data between the Profile properties and the database.
txtFirstName.Text = Profile.FirstName;

txtLastName.Text = Profile.LastName;

int foo = Profile.Age;
Reading Profile data
Profile.FirstName = txtFirstName.Text;

Profile.LastName = txtLastName.Text;
Updating Profile data

SqlStoredProcedureProfileProvider
While the table based provider should work well for sites that just need to store Profile data in an easily query-able manner, some websites may need to perform more complex data mappings in order to work with the Profile feature. The SqlStoredProcedureProfileProvider allows you to map individual Profile properties to stored procedure parameters. You need to write a get and a set stored procedure that the provider calls. Using a stored procedure though gives you maximum flexibility when mapping Profile properties though. Inside of your stored procedure you can carry out additional business logic as well as complex mappings to arbitrary table structures.

For simplicity the current sample provider only supports the GetPropertyValues and SetPropertyValues overrides from ProviderBase. These are the two methods that are necessary to get the runtime aspect of the Profile feature working. Currently the sample stored procedure provider just throws a NotSupportedException from all of the other administrative methods defined on ProviderBase.
The provider configuration for the SqlStoredProcedureProfileProvider is similar to the configuration used for the table based provider. You configure the SqlStoredProcedureProfileProvider with the following two configuration entries:

<connectionStrings>

 <add name="TestDatabase"

 connectionString="points at your DB” />

</connectionStrings>

The provider requires a connection string

<profile defaultProvider=" StoredProcedureProfileProvider">
 <providers>
 <add name=" StoredProcedureProfileProvider"

 type="Microsoft.Samples.SqlStoredProcedureProfileProvider"

 connectionStringName="TestDatabase"

 setProcedure="setCustomProfileData"

 readProcedure="getCustomProfileData"
 applicationName="DatabaseProfileProviderTest"/>
 </providers>

<profile>
Sample provider configuration

Since the provider works with a database just like the SqlProfileProvider, the provider requires a connection string to be defined in the <connectionStrings /> section. The provider configuration element references this connection string with the “connectionStringName” attribute. As with the SqlProfileProvider, the SqlStoredProcedureProfileProvider also has an “applicationName” attribute. Since the sample SqlStoredProcedureProfileProvider should integrate well with the existing SQL providers from other features like Membership and Role Manager, it exposes “applicationName” so that it can store Profile data for many different ASP.NET applications in a single table. However, since it is up to you to write the get and set stored procedures that work with this provider, you could potentially ignore the application name when it is passed to your custom procedures. The sample stored procedures shown a little later should make this concept clearer.
The new attribute “setProcedure” tells the provider which stored procedure in SQL Server it should call when saving Profile data to the database. The new attribute “readProcedure” tells the provider which stored procedure in SQL Server it should call when retrieving Profile data from the database. In the sample above the provider has been configured to read Profile data by calling the getCustomProfileData stored procedure and write Profile data by calling the setCustomProfileData stored procedure.
To make use of the provider you need to associate it with one or more Profile properties. In the sample configuration above, the “defaultProvider” attribute on the <profile /> element has been set to an instance of the table based provider. As a result, any Profile properties that do not explicitly define a “provider” attribute will automatically store and retrieve their data using the SqlStoredProcedureProfileProvider.

The last set of required configuration information is on the individual Profile properties. Since the SqlStoredProcedureProfileProvider maps each Profile property to parameters on a stored procedure, it needs additional information.

<properties>

 <add name="FirstName"
 type="string"
 defaultValue="[null]"
 customProviderData=" FirstName;nvarchar;50"
 />
 <add name="LastName"
 type="string"
 defaultValue="[null]"
 customProviderData=" LastName;nvarchar;50"
 />

 <add name="Age"
 type="int"
 customProviderData=" Age;int;1"
 />
</properties>
Sample profile properties mapped to the stored procedure provider
The SqlStoredProcedureProfileProvider requires that the customProviderData attribute contain three pieces of information separated by a semi-colon: the stored procedure parameter name, the ADO.NET database type, and the size (i.e. length) that should be used with the ADO.NET parameter.
The sample Profile property configuration shown above defines the following behavior when used with the SqlStoredProcedureProfileProvider.

1. The FirstName Profile property is defined to be a string type on the auto-generated Profile type. When it is stored and retrieved in the database by the SqlStoredProcedureProfileProvider though, the provider maps it to a stored procedure parameter called “FirstName”. Furthermore the provider will tell ADO.NET that the parameter is an nvarchar that can only be 50 characters long. From the earlier provider definition there were two stored procedures defined. As a result the SqlStoredProcedureProfileProvider will read the first name out of the “FirstName” stored procedure parameter (an ouptput parameter) on a stored procedure called getCustomProfileData. The provider will pass the first name into the “FirstName” parameter of the stored procedure setCustomProfileData when it saves Profile data back to the database.
2. The LastName Profile property is also defined as a string type on the auto-generated Profile type. When it is stored and retrieved in the database by the SqlStoredProcedureProfileProvider, the provider maps it to a stored procedure parameter called “LastName”. The provider will create a parameter in ADO.NET of type nvarchar, and as with the first name, this parameter will only allow a maximum of 50 characters.

3. The Age Profile property is defined as an integer type on the auto-generated Profile type. When it is stored and retrieved in the database by the SqlStoredProcedureProfileProvider, the provider maps it to a stored procedure parameter called “Age”. The provider will create an ADO.NET parameter of type integer. Unlike the first and last name though, the size information is just stubbed out with the value “1”. This is because for primitive types like integers, ADO.NET ignores the size parameter.

As with the table based provider example, the two string Profile properties also define a defaultValue of “[null]”. The SqlStoredProcedureProfileProvider follows the same nullability behavior as the SqlTableProfileProvider. The stored procedure provider interprets a null output parameter value as meaning that no data exists for the corresponding Profile property. As a result the Profile feature looks at the defaultValue attribute on a Profile property to determine the specific .NET value that should be returned. In the case of the integer property, since this is a value type, the Profile feature will automatically return zero (the default value for an integer as defined by the .NET Framework) in the case that a null value was found in the database for the Age output parameter.

The .NET Framework type to ADO.NET data type mappings listed earlier for the table based provider also should work with the SqlStoredProcedureProfileProvider
With the sample provider configuration and Profile configuration shown above you need to setup two stored procedures in the database to work with the SqlStoredProcedureProfileProvider. Although you can include any custom logic you need inside of the stored procedures, you must include a few required parameters in addition to the parameters used for storing Profile property data.
An example of a get stored procedure that works with the previous configuration is shown below:

create procedure getCustomProfileData

 @ApplicationName nvarchar(256),

 @UserName nvarchar(256),

 @FirstName

 nvarchar(50)

OUTPUT,

 @LastName

 nvarchar(50)

OUTPUT,

 @Age

 int

OUTPUT

as

declare
@ApplicationId uniqueidentifier

set

@ApplicationId = NULL

--Get the appid

exec dbo.aspnet_Applications_CreateApplication
 @ApplicationName, @ApplicationId OUTPUT

--Return data for the requested user in the application

select
@FirstName
= FirstName,

@LastName
= LastName,

@Age

= Age

from
dbo.ProfileTable_1 pt,

dbo.vw_aspnet_Users u

where
u.ApplicationId
= @ApplicationId

and
u.UserName

= @UserName

and
u.UserId

= pt.UserId

go
Custom stored procedure for retrieving Profile data
The stored procedure defines three OUTPUT stored procedure parameters that correspond to the Profile properties FirstName, LastName, and Age. The SqlStoredProcedureProfileProvider expects that each mapped Profile property will have its value returned as an OUTPUT parameter from the custom read stored procedure. In addition the stored procedure defines two required input parameters: Username and ApplicationName. It is up to you to decide how you use this information to map a user’s Profile data in your database.
Since this sample stored procedure is simply wrapping the custom Profile table discussed earlier for the SqlTableProfileProvider, the stored procedure converts Username and ApplicationName into a GUID user identifier which is then used to lookup the data from the table. Also note that this stored procedure automatically creates a row in the ASP.NET aspnet_Applications table since the sample code is mirroring the automatic application creation behavior of the SqlProfileProvider. This is not required in your custom stored procedures – if you want this behavior you can use the same coding approach shown above. If application name has no real relationship to your existing data, then your custom stored procedures can ignore it.

An example of a set stored procedure that works with the previous configuration is shown below:

create procedure setCustomProfileData

 @ApplicationName nvarchar(256),

 @UserName nvarchar(256),

 @IsUserAnonymous
 bit,

 @FirstName

 nvarchar(50),

 @LastName

 nvarchar(50),

 @Age

 int

as

declare
@ApplicationId uniqueidentifier

set

@ApplicationId = NULL

declare @CurrentUtcDate datetime

set @CurrentUtcDate = getutcdate()

--Get the appid

exec dbo.aspnet_Applications_CreateApplication
 @ApplicationName, @ApplicationId OUTPUT

--Create user if needed

declare @UserId uniqueidentifier

select
@UserId = UserId

from
 dbo.vw_aspnet_Users

where
 ApplicationId = @ApplicationId

and

LoweredUserName = LOWER(@UserName)

if(@UserId IS NULL)

exec dbo.aspnet_Users_CreateUser
 @ApplicationId, @UserName, @IsUserAnonymous,
 @CurrentUtcDate, @UserId OUTPUT

--Either insert a new row of data, or update a pre-existing row

if exists
 (select 1 from dbo.ProfileTable_1 where UserId = @UserId)

BEGIN

update dbo.ProfileTable_1

set
FirstName

= @FirstName,

LastName

= @LastName,

Age

= @Age,

LastUpdatedDate
= @CurrentUtcDate

where UserId = @UserId

END

else

BEGIN

insert dbo.ProfileTable_1 (
 UserId, FirstName, LastName, Age, LastUpdatedDate)

 values (
 @UserId, @FirstName, @LastName, @Age, @CurrentUtcDate)

END

Go
Custom stored procedure for saving Profile data
The set stored procedure defines three input stored procedure parameters that correspond to the Profile properties FirstName, LastName, and Age. The SqlStoredProcedureProfileProvider expects that each mapped Profile property will have a corresponding input parameter that matches the dataytype and size configured in the customProviderData attribute. In addition the stored procedure defines two additional required input parameters: Username and ApplicationName. As with the read stored procedure, it is up to you to decide how you use this information to map a user’s Profile data in your database.

Since this sample stored procedure is simply wrapping the custom Profile table discussed earlier for the SqlTableProfileProvider, the stored procedure converts Username and ApplicationName into a GUID user identifier which is then used to lookup the data from the table. The stored procedure automatically creates a row in the ASP.NET aspnet_Applications table if needed as part of this process. Since this is a set stored procedure, it also automatically creates a row in the aspnet_Users tables if necessary (e.g. you are using Windows authentication so no user record exists in the ASP.NET application services tables yet). This behavior mirrors the automatic user creation behavior of the SqlProfileProvider. As with the read stored procedure, this is not required in your custom stored procedures if you have some other logic for determining users in your database.
Because there is only one set stored procedure configured for the SqlStoredProcedureProfileProvider, the stored procedure must properly handle the insert case (the very first time Profile data is created for a user) versus the update case (the Profile data already exists, so it only needs to be updated). The sample procedure does this by inserting a row in the database if one does not already exist. Otherwise the stored procedure updates the data.
The SqlStoredProcedureProfileProvider requires execute rights on the custom read and set stored procedures as shown below.
grant EXECUTE on dbo.getCustomProfileData to [YOURMACHINENAME\ASPNET]
go
grant EXECUTE on dbo.setCustomProfileData to [YOURMACHINENAME\ASPNET]

go

Required security grants for the stored procedures
As with the table based provider, you will need to choose the appropriate account identity – usually one of ASPNET (IIS5), NETWORK SERVICE (IIS6), a custom identity (if using a fixed identity in the <identity /> element), or a SQL Server user account. If you follow the coding approach shown above for the get and set stored procedures, you should also run the grant statements shown earlier for the SqlTableProfileProvider which grant execute access to the aspnet_Applications_CreateApplication and aspnet_Users_CreateUser stored procedures.
At this point you have completed all of the necessary configuration and database setup required to get the SqlStoredProcedureProfileProvider working. You can use the Profile feature inside of your pages, and the SqlStoredProcedureProfileProvider will take care of moving data between the Profile properties and the database.
