Asynchronous Functions in C#
Asynchronous operations are methods and other function members that may have most of their execution take place after they return. In .NET the recommended pattern for asynchronous operations is for them to return a task which represents the ongoing operation and allows waiting for its eventual outcome.
Asynchronous operations are useful for instance when multiple flows of control need to share the threads they run on. For instance they can be used to share a single user interface thread between multiple ongoing operations, or to service thousands of simultaneous ongoing requests on a server with a much smaller pool of threads.
 Traditionally, writing and composing asynchronous operations is very difficult and error prone. It involves installing callbacks – so called continuations – on other asynchronous operations to express all the logic that needs to happen after those operations completes. This completely alters, and severely complicates, the structure of asynchronous code as compared to a corresponding synchronous program.
Asynchronous functions is a new feature in C# which provides an easy means for expressing asynchronous operations. Inside asynchronous functions await expressions can await ongoing tasks, which causes the rest of the execution of the asynchronous function to be transparently signed up as a continuation of the awaited task. In other words, it becomes the job of the programming language, not the programmer, to express and sign up continuations. As a result, asynchronous code can retain its logical structure.
An asynchronous function in C# must either return void or one of the types Task or Task<T>. C# does not dictate a specific type for the representation of tasks that are await’ed, as long as they satisfy a certain pattern. The types Task and Task<T> satisfy this pattern, and will be used in subsequent examples. The reliance on the pattern allows other representations of asynchronous operations to be awaited, for interoperability purposes and to allow APIs to produce tasks with special semantics different from those of Task and Task<T>.
The following example demonstrates a few simple asynchronous operations:
Task<Movie> GetMovieAsync(string title);
Task PlayMovieAsync(Movie movie);
async void GetAndPlayMoviesAsync(string[] titles)
{
 foreach (var title in titles)
 {
 var movie = await GetMovieAsync(title);
 await PlayMovieAsync(movie);
 }
}

By convention asynchronous operations use the postfix “Async” to show that part of their execution may take place after the method call has returned. Both GetMovieAsync and PlayMovieAsync return tasks, which means that their completion can be subsequently await’ed. By contrast, GetAndPlayMoviesAsync returns void, so its completion cannot be await’ed. Such asynchronous operations are often referred to as “fire and forget”, and are useful e.g. for implementing event handlers asynchronously.
GetAndPlayMoviesAsync is marked by the async modifier as an asynchronous function, containing two await expressions. This fact is an implementation detail to its callers, but fundamentally changes the way the method is executed: As soon as an unfinished Task is awaited, it will return to its caller. When the awaited task completes, it will resume execution of the GetAndPlayMoviesAsync method until the next unfinished Task is awaited, and so on. In between, while awaiting unfinished Tasks, no thread is occupied with the execution of this method: it “borrows time” on threads only when it is active.
Asynchronous functions
An asynchronous function is a method or anonymous function which is marked with the async modifier. A function without the async modifier is called synchronous.
Asynchronous functions are evaluated differently from other functions in that their evaluation is discontinuous: Their evaluation may be suspended at any await-expression until the awaited task determines that it is time to resume their execution.
Syntax
The grammar of C# is extended as follows:
method-modifier:
…
asyncopt
lambda-expression:
asyncopt anonymous-function-signature => anonymous-function-body
anonymous-method-expression:
asyncopt delegate explicit-anonymous-function-signatureopt block
The async modifier is not allowed on method-declarations where the method-body is a ‘;’.
Note that async is a contextual keyword. In all syntactic contexts other than the ones above it is considered an identifier. Thus, the following is allowed (though strongly discouraged!):
using async = System.Threading.Tasks.Task;
…
async async async(async async) { }
Return types of asynchronous functions
The return type of an asynchronous function must be either void, Task or Task<T> for some T. The return type of an anonymous function is the return type – if any – of the delegate or expression type that it is being converted to.
In an asynchronous function with the return type void or Task, return statements must not have an expression.
In an asynchronous function with the return type Task<T> for some T, return statements must have an expression that is implicitly convertible to T, and the endpoint of the body must be unreachable.
Evaluation of asynchronous functions
Invocation of an asynchronous function initially is no different from a synchronous function. However, when reaching an await expression, the asynchronous function may return to its caller, even though its execution is not yet finished.
If the return type of the asynchronous function is not void, a Task or Task<T> will be returned to the caller. It is guaranteed not to be null. If execution of the asynchronous method completes successfully, the returned task will be marked as succeeded, and any value produced through a return statement with an expression will become the result of the returned Task<T>. If an exception occurs and is not caught within the asynchronous method, the task is marked as faulted and the exception stored within it.
If the return type of the asynchronous function is void, nothing is returned to the caller. If execution of the asynchronous method completes successfully, nothing happens. If an exception occurs and is not caught within the asynchronous method, the exception is thrown to whichever method last invoked or resumed it.
When an asynchronous function is invoked it can be seen as being in one of three states: running, suspended at an await expression, or completed.
Await expressions
Await expressions are used to suspend the execution of an asynchronous functions until the awaited task completes.
Syntax
The grammar of C# is extended as follows:
unary-expression:
…
await-expression
await-expression:
await unary-expression
statement-expression:
…
await-expression
An await expression is only allowed occurring in the body of an asynchronous function. Inside of that asynchronous function it may furthermore not occur inside of the body of a synchronous function, in a catch or finally block of a try-statement, inside the block of a lock-statement, or in an unsafe context.
Since an await expression can only occur in an asynchronous context, it can never be confused with uses of await as an identifier.
The await pattern
The expression t of an await-expression await t is called the task of the await expression. The task t is required to be awaitable, which means that all of the following must hold:
· (t).GetAwaiter() is a valid expression of type A.
· Given an expression a of type A and an expression r of type System.Action, (a).BeginAwait(r) is a valid boolean-expression.
· Given an expression a of type A, (a).EndAwait() is a valid expression.
A is called the awaiter type for the await expression. The GetAwaiter method is used to obtain an awaiter for the task.
The BeginAwait method is used to sign up a continuation on the awaited task. The continuation passed is the resumption delegate, which is further explained below.
The EndAwait method is used to obtain the outcome of the task once it is complete.
The method calls will be resolved syntactically, so all of GetAwaiter, BeginAwait and EndAwait can be either instance members or extension methods, or even bound dynamically, as long as the calls are valid in the context where the await expression appears. All of them are intended to be “non-blocking”; that is, not cause the calling thread to wait for a significant amount of time, e.g. for an operation to complete.
Classification
If an await-expression await t is valid, it is classified the same way as the expression (a).EndAwait() above. That is:
· If the expression (a).EndAwait() invokes a method or delegate that returns void, the result is nothing.
· Otherwise, the result is a value of the type returned by (a).EndAwait().
Evaluation of await expressions
During the execution of the body of the asynchronous function, await t is evaluated as follows:
· An awaiter a is obtained by evaluating the expression (t).GetAwaiter().
· The boolean expression (a).BeginAwait(r) is evaluated, where r is a delegate whose first invocation will cause execution of the enclosing asynchronous function to be resumed at the current await expression.
· If the boolean expression yields true then evaluation is suspended, and control is returned to the method that invoked or resumed the asynchronous function.
· Then (either immediately following or upon resumption) the expression (a).EndAwait() is evaluated. If it returns a value, that value is the result of the await-expression. Otherwise the result is nothing.
The BeginAwait method is intended to either return false, indicating that the task already has completed, or cause the delegate r to be invoked when the task does eventually complete. This allows the await’ing of already-completed tasks to avoid suspending execution only to have it immediately resumed.
If BeginAwait returns true, the awaiter should make sure that the delegate r is invoked at most once. If BeginAwait returns false, the awaiter should make sure that the delegate r is never invoked. If r is invoked beyond these restrictions, its behavior is undefined.
Conversions
In order to account for asynchronous anonymous functions, the rules for conversion of anonymous functions at the beginning of section 6.5 are modified as follows:
An anonymous-method-expression or lambda-expression is classified as an anonymous function (§7.15). The expression does not have a type but can be implicitly converted to a compatible delegate type or expression tree type. Specifically, a delegate type D is compatible with an anonymous function F provided:
· If F contains an anonymous-function-signature, then D and F have the same number of parameters.
· If F does not contain an anonymous-function-signature, then
· D may have zero or more parameters of any type.
· No parameter of D may have the out parameter modifier.
· If F is asynchronous, no parameter of D may have the ref parameter modifier.
· If F has an explicitly typed parameter list, each parameter in D has the same type and modifiers as the corresponding parameter in F.
· If F has an implicitly typed parameter list, D has no ref or out parameters.
· If the body of F is an expression and either D has a void return type, or F is asynchronous and the return type of D is Task, then when each parameter of F is given the type of the corresponding parameter in D, the body of F is a valid expression (wrt §7) that would be permitted as a statement-expression (§8.6).
· If the body of F is a statement block and either D has a void return type, or F is asynchronous and the return type of D is Task, then when each parameter of F is given the type of the corresponding parameter in D, the body of F is a valid statement block (wrt §8.2) in which no return statement specifies an expression.
· If the body of F is an expression, and either F is synchronous and D has a non-void return type T, or F is asynchronous and D has a return type Task<T>, then when each parameter of F is given the type of the corresponding parameter in D, the body of F is a valid expression (wrt §7) that is implicitly convertible to T.
· If the body of F is a statement block, and either F is synchronous and D has a non-void return type T, or F is asynchronous and D has a return type Task<T>, then when each parameter of F is given the type of the corresponding parameter in D, the body of F is a valid statement block (wrt §8.2) with a non-reachable end point in which each return statement specifies an expression that is implicitly convertible to T.
An expression tree type Expression<D> is compatible with an anonymous function F if the delegate type D is compatible with F.
Certain anonymous functions cannot be converted to expression tree types: Even though the conversion exists, it fails at compile-time. This is the case if the anonymous expression:
· contains simple or compound assignment operators
· contains dynamically bound expressions
· is asynchronous
Type inference and overload resolution
Where anonymous functions are treated specially in type inference and overload resolution contexts, special care is also given to anonymous asynchronous functions.
Inferred return type
To express the notion of inferred return types for asynchronous anonymous functions, a helper notion of inferred result type is introduced. It is used only in the definition of inferred return type.
The inferred return type of an anonymous function F is used during type inference and overload resolution. The inferred return type can only be determined for an anonymous function where all parameter types are known, either because they are explicitly given, provided through an anonymous function conversion or inferred during type inference on an enclosing generic method invocation.
The inferred result type of F is determined as follows:
· If the body of F is an expression that has a type, then the inferred result type of F is the type of that expression.
· If the body of F is a block and the set of expressions in the block’s return statements has a best common type T (§7.5.2.14), then the inferred result type of F is T.
· Otherwise, a result type cannot be inferred for E.
The inferred return type of F is determined as follows:
· If F is asynchronous and the body of F is either an expression classified as nothing, or a statement block where no return statements have expressions, the inferred return type is Task
· If F has an inferred result type T:
· If F is synchronous the inferred return type is T.
· [bookmark: _GoBack]If F is asynchronous the inferred return type is Task<T>.
· Otherwise a return type cannot be inferred for F
Better conversion from expression
During overload resolution, the inferred return type is used to determine which conversion is better from an anonymous function to a delegate or expression type. This mechanism is extended to better select between overloads when called with asynchronous anonymous functions, as follows:
Given an implicit conversion C1 that converts from an expression E to a type T1, and an implicit conversion C2 that converts from an expression E to a type T2, C1 is a better conversion than C2 if at least one of the following holds:
· E has a type S and an identity conversion exists from S to T1 but not from S to T2
· E is not an anonymous function and T1 is a better conversion target than T2 (§7.5.3.5)
· E is an anonymous function, T1 is either a delegate type D1 or an expression tree type Expression<D1>, T2 is either a delegate type D2 or an expression tree type Expression<D2> and one of the following holds:
· D1 is a better conversion target than D2
· D1 and D2 have identical parameter lists, and one of the following holds:
· D1 has a return type Y1, and D2 has a return type Y2, an inferred return type X exists for E in the context of that parameter list (§7.5.2.12), and the conversion from X to Y1 is better than the conversion from X to Y2
· E is an asynchronous function, D1 has a return type Task<Y1>, and D2 has a return type Task<Y2>, an inferred return type Task<X> exists for E in the context of that parameter list (§7.5.2.12), and the conversion from X to Y1 is better than the conversion from X to Y2
· D1 has a return type Y, and D2 is void returning
Implementation example
The following shows an approach to implementing asynchronous functions via syntactic expansion.
Asynchronous functions returning Task<T>

	User code
	Syntactic expansion
	

	async Task<string> Fred(int p)
{
	Task<string> Fred(int p)
{
	exactly the same signature

	
	 var $builder =
 AsyncMethodBuilder<string>.Create();
 var $state = 0;
	get a builder for Task<T>

	
	 TaskAwaiter<…> $a1;
 TaskAwaiter $a2;
	one declaration for each “await” point

	
	 Action $resume = null; $resume = delegate
 {
	

	
	 try
 {
 ... jump table based on $state
	if the user had nested try blocks, then we use nested jump tables; and there’s additional logic so that the bodies of “finally” blocks are skipped where appropriate

	 var x = await e;
	 $a1 = (e).GetAwaiter();
 $state=1;
 if ($a1.BeginAwait($resume))
 return;
 JUMP_LABEL_1:
 var x = $a1.EndAwait();
	these calls are just syntactic expansions – they follow the usual rules for overload resolution &c. It’s a compile-error to await something if the calls can’t be resolved.

	 await s;
	 $a2 = (s).GetAwaiter();
 $state=2;
 if ($a2.BeginAwait($resume))
 return;
 JUMP_LABEL_2:
 $a2.EndAwait();
	In the statement form of “await”, the EndAwait method is allowed to return void.

	 throw new Exception();
	 throw new Exception();
	

	 return r;
	 $builder.SetResult(r);
 return;
	

	
	 }
 catch (Exception $ex)
 {
 $builder.SetException($ex);
 return;
 }
 };

	

	
	 $resume();
 return $builder.Task;
	

	}
	}
	

Asynchronous functions returning Task

	User code
	Syntactic expansion
	

	async Task Fred(int p)
{
	Task Fred(int p)
{
	

	
	 var $builder = AsyncMethodBuilder.Create();
 var $state = 0;
	$builder.SetResult() is now parameterless

	
	 TaskAwaiter $a1;
	

	
	 Action $resume = null; $resume = delegate
 {
	

	
	 try
 {
 ... jump table based on $state
	

	 await s;
	 $a1 = (s).GetAwaiter;
 $state=1;
 if ($a1.BeginAwait($resume))
 return;
 JUMP_LABEL_1:
 $a1.EndAwait();
	

	 return;
	 $builder.SetResult();
 return;
	

	
	 }
 catch (Exception $ex)
 {
 $builder.SetException($ex);
 return;
 }
	

	
	 $builder.SetResult();
	Automatically inserted at the end of the delegate to allow omission of explicit return statement

	
	 };
	

	
	 $resume();
 return $builder.Task;
	

	}
	}
	

Asynchronous functions returning void

	User code
	Syntactic expansion
	

	async void Fred(int p)
{
	void Fred(int p)
{
	

	
	 var $state = 0;
	no builder in this case

	
	 TaskAwaiter $a1;
	

	
	 Action $resume = null; $resume = delegate
 {
	

	
	 ... jump table based on $state
	no enclosing try block

	 await s;
	 $a1 = (s).GetAwaiter();
 $state=1;
 if ($a1.BeginAwait($resume))
 return;
 JUMP_LABEL_1:
 $a1.EndAwait();
	

	 return;
	 return;
	no call to $builder.SetResult()

	
	 };
	no catch block or implicit $builder.SetResult() at the end

	
	 $resume();
	no call to $builder.GetTask()

	}
	}
	

