
[image: image1.jpg]Microsoft

Windows Server2003

Migrating UNIX and Other Applications to Windows Server 2003
Microsoft Corporation

Published: November 2002
Abstract

This white paper outlines the many system management tools and the advanced development environment that make it easy for IT professionals and developers to migrate UNIX and Java applications to a Microsoft® Windows®-based solution.

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2002 Microsoft Corporation. All rights reserved.

Microsoft, Active Directory, Visual Basic, Visual Studio, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Contents

4Introduction

5Integrating UNIX Systems with Services for UNIX

5Merging User Information

6Using NFS Tools

7Integrating NIS information with Active Directory

8Password Synchronization options

8Table 1: Supported platforms for the Password Synchronization component

9Choosing Telnet Servers

9Managing SFU Services with MMC

11Migrating UNIX Applications to Interix

12Porting Applications

13Migrating Java Applications to the .NET Framework

13Developing with Visual J#

14Converting Java Code to C#

15Conclusion

16Related Links

Introduction

One of the daunting problems that IT professionals and developers face is the challenge of integrating applications on disparate platforms. UNIX has been around for years, so there are many applications running on it. Many times you may need to either integrate those applications with Microsoft® .NET Framework applications. At other times you may need to migrate the applications to the Microsoft Windows® platform.

The “Integration Inside the Firewall” white paper covers techniques for integrating data, applications, and processes in a heterogeneous environment. One of the tools discussed there, Host Integration Server, helps you connect to and integrate with mainframes applications. Microsoft has long provided tools for UNIX through Services For UNIX (SFU). SFU is a set of services that connect Windows and UNIX networks, unifying their user information and providing seamless access to file systems, print spoolers, and other network resources to users on whichever system is being used.

In September 1999, Microsoft purchased UNIX vendor Softway Systems, maker of Interix, a UNIX/NT interoperability tool that replaces the Windows' POSIX subsystem. The Interix subsystem, now combined with Services For UNIX 3.0, provides a UNIX environment that runs on top of the Windows kernel. UNIX application scripts run natively on the Windows platform alongside Windows applications. These tools ease both the integration and migration of UNIX code either with or to Windows. Using these technologies, you can migrate applications slowly over time and still run the application on Windows Server.

Migration is also the point of the Java User Migration Path to .NET (JUMP to .NET.) The JUMP initiative encompasses two tools for Java developers interested in migrating to .NET, or IT Managers who would like their Java programmers to program for .NET. The first tool is J#, a clean room implementation of the Java 1.1.4 language that targets the .NET Framework. While not supporting the newer features of Java 1.2 and 1.3, J# does provide a familiar environment to Java programmers. Visual J#, supports the same features Visual J++ did, though it will not compile code that will run on the Java Virtual Machine. Microsoft's other migration tool for Java converts existing Java code into corresponding C# code.

Integrating UNIX Systems with Services for UNIX

The key factor in understanding how Services For UNIX (SFU) works is to gain an understanding of the SFU components.
The primary components of are:

· User Name Mapping Server: Maps Windows user names to UNIX user names and vice versa. It maps user credentials as well, allowing users access to NFS resources without having to explicitly provide their UNIX credentials.

· NFS Tools: Provides Windows resources to UNIX Systems, and UNIX resources to Windows systems.

· Server for NIS: Allows your Primary Domain Controller to act as a NIS Master or Slave and merges NIS mapped information to the Active Directory® service.

· Password Synchronization: Provides two-way password synchronization between Windows domains and UNIX systems.

· Telnet Server and Client: Provides enhanced Telnet services.

· Remote Shell Service: provides RSH access to Windows Server 2003.

· Services For UNIX MMC Console: an MMC Snap-in gives you administrative control over most server components of Services for UNIX.

· Interix Subsystem: A multi-user UNIX subsystem built on top of the Windows kernel. It replaces the default POSIX subsystem on the Windows system. Interix comes with over 350 UNIX utilities and provides over 1900 UNIX APIs so you can run UNIX applications natively.

Merging User Information
The User Name Mapping service maps Windows-based network user names to UNIX-based network user names and vice versa. It acts as a single clearinghouse, providing centralized user mapping services for Interix, Client for NFS, Gateway for NFS, Server for NFS, and Remote Shell service.
User Name Mapping can obtain UNIX user, password, and group information from one or more NIS servers or from passwd and group files located on a local hard drive. The passwd and group files can be copied using PCNFS, either using a PCNFS daemon on a UNIX computer or using Server for PCNFS. If you use PCNFS, you should change the permissions on the stored files to grant only full access to the SYSTEM and Administrators group.

User Name Mapping can be used to map Windows and UNIX users to each other in a variety of ways. In a simple user map, users in a Windows domain are implicitly mapped one-to-one to UNIX users on the basis of user name. When the Windows domain and the UNIX password and group files or Network Information Services (NIS) domain are identified, User Name Mapping maps users and groups who have the same name in both the Windows and UNIX or NIS domain. If there is no match for a user or group name in either place, that user or group is not mapped to anything.

You can use advanced maps to set up one-to-one or many-to-one mappings between UNIX users and groups and Windows users and groups. For example, several Windows user names could be mapped to one UNIX user name, or several Windows groups could be mapped to a UNIX group. Advanced maps can also be used when the same person or group has different names on Windows and UNIX. If the same user appears in both a simple and an advanced map, the advanced map is used for authentication.

Once maps are set up, users can log on to Windows using their Windows user name and password, and can then access UNIX resources without having to supply a UNIX user name and password. User Name Mapping checks the authenticity of the Windows user and issues the appropriate user identifier (UID) and group identifier (GID) for use with the UNIX system. Likewise, UNIX users can log on to their computers and then access Windows files, with User Name Mapping providing the credentials.

You can configure the User Name Mapping Service from the SFU Administration snap in:

[image: image2.wmf]

The User Name Mappings are refreshed from their sources at an interval you specify in hours and minutes. The minimum refresh time is five minutes. You can also request a refresh from the Administration console by selecting Synchronize Now.

The User Name Mapping service is cluster aware, and using DNS round robin, you can also create a pool of computers providing user name mapping services to your wide-area networks.

Using NFS Tools

SFU includes four tools for using existing UNIX network resources provided through NFS, and for providing resources to UNIX systems through NFS:

Client for NFS – Enables Windows clients to access the resources of NFS servers on the network.

Server for NFS – Enables NFS clients on the network to access the Windows Server resources through NFS. The NFS Service is now fully cluster-aware, supporting active/active clusters.

Gateway for NFS – Enables any Windows client to access the NFS resources of the network without any additional components on the client.

Server for PCNFS – Enables Windows NT, Windows 2000, and Windows XP to act as PCNFSD servers, providing user authentication for file access to NFS servers.

To connect to an NFS export with the client for NFS you can use standard Windows syntax (\\server\share) or standard UNIX syntax (server:/share). The command line supports using Windows Server 2003 "net" commands, or you can use the mount command with either syntax, or just browse NFS resources available on the network using Internet Explorer's Network Neighborhood.

NFS Server uses Discretionary Access Control Lists (DACLs) to simulate UNIX and NFS permissions. By default all readers have read/write permissions. To change them, use the Properties dialog box for the folder you want to restrict and set the permissions on the NFS Sharing tab.

The NFS server performs authentication whenever an attempt is made to access NFS resources. When a client makes an NFS call, it sends a UNIX user identifier (UID) to the server. Server for NFS uses the mapping server to map this UID to a Windows user name. Either Server for NIS or Server for PCNFS can provide the authentication to NFS Server. You can also configure a UNIX NIS server to provide the authentication. The server uses the credentials of the mapped user to access the files and provide them to the NFS client.

Server for PCNFS works with the User Name Mapping Server. The mapping server can parse files from any PCNFSD server and then provide authentication and mapping to client computers running Client for NFS.

Gateway for NFS allows you to provide NFS resources as gateway shares. They become share points on the server running the gateway. Since they look and behave just like a local share from the gateway computer, Windows clients can connect to them without needing to run an NFS client. Since each gateway uses a drive letter, there is a limit to the number of shares one gateway can provide. If you need to provide more, you will need to set up another gateway. Gateway for NFS is the one SFU server that cannot be managed from the SFU MMC snap-in. Create gateway shares using the Gateway for NFS Sharing application, gwconfig.exe. Manage them using the gwshare.exe utility.

Integrating NIS information with Active Directory

Server for NIS is an implementation of Sun Network Information System (NIS) server that uses Active Directory to store NIS maps. Server for NIS can be used as an NIS server in place of a UNIX-based server. With the NIS namespaces in Active Directory, you can integrate Windows and UNIX namespaces into a single logical namespace. Password, group, and hosts information is migrated to their corresponding Active Directory objects, such as users, groups, and computers. You can manage these objects using the Active Directory Users and Groups MMC snap-in. You can manage a mixed Windows Server 2003-based and UNIX-based network from one directory.

SFU 3.0 includes Migration tools, a graphical migration wizard, and a command-line tool. The tools help migrate existing maps so they do not have to be recreated in Active Directory. The tools flag any migration errors or conflicts; for example, if an entry with the same key value already exists in the Active Directory. An administrator can forcefully overwrite existing entries, preserve existing entries, or manually resolve the conflict by merging the two entries.

While password, group, and host maps are integrated with their corresponding Active Directory objects and can be managed using the Users and Groups snap-in, other maps -- both standard and non-standard -- are manipulated using the nismap tool. Nismap allows administrators to add, delete, and edit entries from NIS maps. Because the maps are in Active Directory, you can also use ADSI, the programmatic interface to Active Directory, to create specialized tools to manage your maps.

Server for NIS can be configured as either a Master or Subordinate server. Changes in the maps are not automatically propagated to other services upon a change. Periodically, the server checks for updates to maps, and if it finds any it propagates those changes to other servers using yppush. An administrator can force a check for updates.

Password Synchronization options

Server for NIS supports password synchronization. The UNIX password is encrypted and kept in a separate attribute from the Windows password. When a user enters a new Windows password, NIS Server can encrypt it and store it as the new UNIX password. Since Server for NIS supports yppasswd, a UNIX user could change their password from the UNIX system and the new password will be encrypted and stored in the UNIX password attribute, but it will not change the Windows password. If you use NIS, advise users they need to use both UNIX and Windows systems to change their password on the Windows system, to keep their passwords in synch. Users that only use UNIX need not change their behavior at all.

Services for UNIX also includes Password Synchronization, a two-way synchronization service that works for accounts that have the same name in both environments. Password Synchronization is not supported on all platforms. The supported platforms are listed in Table 1.

Table 1: Supported platforms for the Password Synchronization component

	
	Windows to UNIX Synchronization module (ssod)
	UNIX to Windows Synchronization module (pam_sso.so)

	Solaris 7 , Solaris 2.8
	Yes
	Yes

	HP-UX 10.2
	Yes
	No

	HP-UX 11.0 3
	Yes
	Yes

	IBM AIX 4.3 and above
	Yes
	No

	Linux (Redhat 6.2 and above)
	Yes
	Yes

Choosing Telnet Servers

Services for UNIX 3.0 comes with two Telnet servers, the Windows default Telnet server' and an Interix Telnet server daemon that runs in the Interix subsystem, Telnetd. Only one of these can be enabled at a time. The Windows default server uses the Windows Command Shell (cmd.exe) as its default login shell. It is very similar to the server included with Windows Server 2003 and Windows XP Professional. The server can be started and stopped from either the Services MMC plug-in or from the Services for UNIX Administration MMC.

The Windows Telnet server supports NT LAN Manager (NTLM) authentication of client logins. When using a Telnet client that supports NTLM, users can be automatically authenticated to the Telnet server based on their Windows login. When authenticated by NTLM, a user is restricted to drives local to the Telnet server only. If they need to map other networked resources they can do it explicitly. For security you can set the server to accept NTLM only, but this will lock out many users in a mixed environment as UNIX's clients do not usually support NTLM.

The Windows Telnet server provides better integration with the Windows system. It can be managed from the SFU MMC snap-in, or from a command line tool, tnadmin.exe. It also supports Microsoft's VTNT terminal emulation which understands the Win32 Console API.

The Interix Telnet server, Telnetd, will be more familiar to UNIX administrators. It's normally run under the control of INETD and it uses the Interix shell as the default login shell, which will be much more familiar to UNIX users. Only one server can be run at a time, however. To enable the Telnet server, stop the Windows Telnet server from the Services MMC, and set it to manual start up. Edit the /etc/inetd.conf and uncomment the line:

#Telnet stream tcp nowait NULL /usr/sbin/in.Telnetd in.Telnetd –I

Now send a "kill -1" NOHUP to the inetd process so it will re-read its configuration line. From the Interix shell. You could look through a ps listing to find the process, but you can also use grep to find the process in the ps listing, use tr to prepare the line you chose, and cut out the ID for use by the kill command:

$ kill –l $(ps –ef | grep inetd | grep –v grep | tr –s " " " " | cut –f2 –d " ")

See, if you are a UNIX administrator or developer, you'll feel right at home.

Managing SFU Services with MMC

Services for UNIX 3.0 comes with a Microsoft Management Console (MMC) snap-in. MMC is the standard administration graphical interface for all Windows Server 2003 administration tasks. Management Console are developed as MMC plug-ins. SFU's snap-in provides a single point from which you can manage nearly all SFU services on any SFU machine in the network.

[image: image3.wmf]

SFU also supports Windows Management Interface (WMI), and so it can be fully scripted from the command line.

Many of the SFU tools also have command line programs that control them as well, but MMC brings all these tools together.

Migrating UNIX Applications to Interix

The services provided to run UNIX on Windows Server 2003 provide one part of the puzzle. But, how do we actually migrate applications to the Windows Server 2003 program? Migration has always been a painful and costly process, so this part of the puzzle is very important.
The Interix subsystem provides an environment for development that resembles any other UNIX System. It includes case-sensitive file names, job control, compilation tools, and over 350 UNIX command, utilities and shell scripts.

Computers running Windows Services for UNIX provide two different command-line environments: the UNIX environment and the Windows environment. When you use the Korn shell or C shell that come with SFU, or any application compiled to use the Interix subsystem, you get a UNIX environment. When you use the command processor, cmd.exe, you get the Windows environment.

The Interix subsystem is single rooted, so there is no need to convert scripts to support drive letters. Interix maps the root directory (/) to the SFU installation directory, which is typically C:\SFU. Under the Interix root directory, you will find the subdirectories that would usually exist in UNIX, such as /usr and /etc, and symbolic links that map to Windows drive letters, such as /A and /C. There are also special virtual directories, such as /net for network resources and /dev for devices. In addition to entries for the usual devices, the /dev directory includes entries that correspond to Windows drive letters. For example, /fs/A, /fs/C, and /fs/D correspond to drive A:, drive C:, and drive D:, respectively.

Interix also supports symbolic links that are based on the XPG4 version two specification (Single UNIX Specification). Common scripts and programs are located where most UNIX and Linux users would expect to see them.

While the Interix environment is case sensitive, case is not enforced for Windows commands executed from the Korn Shell or C shell, making the system more forgiving of a Windows users expectations of case insensitivity.

Interix brings several tools to Services For Unix that have been missing in previous versions.

The korn shell included with SFU 3.0 is the Interix Korn shell. The older SFU Korn shell was based on MKS's Korn shell. Interix's Korn shell is based on the public domain Korn shell (pdksh.) which corresponds best to ksh88. Both the Korn Shell and C shell behave exactly as they do in a UNIX environment.

SFU finally ships with awk, older versions only shipped sed. Awk is a pattern-directed scanning and processing language, and is often used in shell scripts. Shell scripts like sed and awk were primary inspirations for the Perl scripting language. SFU includes Active State Perl 5.6 available to the Windows environment, but Perl 5.6 has also been compiled for the Interix subsystem.

As a full UNIX subsystem, Interix provides support for common UNIX server daemons, which can be use in addition to, or in place of Microsoft Windows server applications, including bind (a DNS server,) and Sendmail.

Besides C, the Interix subsystem provides C, Fortran 77, and C++ support for the GNU compilers – gcc, g77, and g++. It also supports the Microsoft Visual C compiler as CC and c89. It includes a rich set of UNIX APIs, including support for several important APIs that were not included in previous versions of SFU, including ulimit, the ever elusive vfork, and syscall. Interix even supports setuid/getuid.
Interix provides several tools for building scripts around Win32 based executables:

· chgpath, ntpath2posix, posixpath2nt, winpath2unix, unixpath2win: convert between path syntax styles.

· cat32: used to handle poorly constructed Win32 command line tool output.

· wvisible: tests whether the user is running on the root window. (Prevent them from running a Win32 GUI app on a Telnet session).

· runwin32: Runs entire command lines from the Win32 world managing command line syntax conversions.

Interix includes development libraries and tools for X11R5, although SFU does not include an X Window Server. Interop Systems, however, has teamed with Hummingbird Communications Ltd, to create a version of Hummingbird's X Server optimized for Microsoft Interix. Interop X Server 7.1.1 provides support for X11R6.6, and Motif. Motif and X11R6 Development tools are available separately from Interop Systems.

For more information, see the following:

· Interop X Server 7.1.1 for Interix
· Hummingbird Exceed Datasheet
· Migrating to Windows from UNIX and Linux
· Services for UNIX (SFU) 3.0
Porting Applications

Most scripts will port directly to Interix, but you will need to watch out for scripts that rely on information from /etc/passwd or /etc/group files. These will need to be modified to use other techniques, for example using a Win32 ADSI script, or invoking the Win32 net users commands. Interix provides access to user information through the getpwent(), setpwent(), getgrent(), and setgrent() APIs.

Most C applications will port well to the Interix environment as well. There are a few exceptions. Programs that use syscall(), manipulate kernel memory, perform ioctl or ioperm operations on anything that isn't terminal or modem on a port. You can't perform raw i/o on a device, or chat on the parallel port. The worst programs to port are ones that rely heavily on threads, such as Apache 2.0. These do not port well.

For more information, see the following:

· Porting Applications in C
· UNIX Code Migration Guide
Migrating Java Applications to the .NET Framework

Another challenge is the need to move Java applications to the .NET Framework. There are many Java developers who are moving to the .NET Framework and want to move their 1.1.4 code to .NET. That’s where migration tools come into play.
As mentioned above, Microsoft provides two migration tools for Java programmers interested in using the .NET Framework, Visual J# and the Java Language Conversion Assistant. These are the two main components of the Java User Migration Path to .NET. Both of these tools provide support for JDK level 1.1.4 syntax and classes, and both of these can be used to rescue Visual J++ projects and code, as well as ease the migration of any Java developer to .NET. Visual J# provides familiar tools for Java developers, compiles most Visual J++ code, and allows developers to use the .NET Framework. The Java Language Conversion Assistant converts a large portion of existing Java code to C#, mapping java class libraries to corresponding .NET Framework classes.

Developing with Visual J#

Visual J# .NET includes a compiler (vjc.exe), .NET Binary Converter Tool, (JbImp.exe), a set of independently developed class libraries to provide the functionality of most JDK level 1.1.4 class libraries, and support for the Microsoft extensions in Visual J++ 6.0. The Visual J# .NET class libraries run on top of the common language runtime.

[image: image4.wmf]

Using the Visual J# .NET compiler you can compile most JDK 1.1.4 java applications to Microsoft intermediate language (MSIL) managed executable files, without changing them at all. Visual J# .NET does not compile byte code for the Java Virtual Machine, however. The resulting applications will only run in the .NET Framework on machines that have the J# runtime class libraries installed.

Some applications only available in Java bytecode format can be statically converted to an MSIL executable using the Binary Converter Tool.

New Visual J# .NET applications can be developed to target supported JDK level 1.1.4 class libraries, Microsoft extensions in Visual J++ 6.0 (for example, WFC and com.ms.*), as well as the .NET Framework.

A few things might surprise a Java developer. J# .NET does not support using CLASSPATH to find additional references for your project. If you want to add a reference, you must create a library of the files in the existing CLASSPATH and add that library as a reference to Visual J# .NET project.

RMI, RNI, and JNI technologies are not supported by J# .NET. There is no support for applet development, since the compiler does not target the JVM. You cannot load classes from Java bytecode (.class files). You can load classes from MSIL assemblies, however.

Converting Java Code to C#

The Java Language Conversion Assistant (JLCA) converts most Java-language constructs to corresponding C# constructs. It can handle inner classes and anonymous classes, hiding, overriding, overloading, and interfaces. It converts most AWT components to Windows Forms. It understands about 70 percent of the Visual J++ 6.0 classes to C# and the .NET Framework.

You launch the JLCA wizard from the File menu of Visual Studio .NET. Choose the File->Open->Convert menu item. Choose the Java Language Conversion Assistant from the Convert Project dialog. You can add converted files to the current solution or create a new solution. You can use the tool to convert VJ++ 6.0 projects or convert .java files in a specified directory.

Unsupported classes are copied to the C# file unchanged and flagged with comments that refer to useful information in the help files. The Converter writes a log file, _ConversionSummary.txt, listing the number and size of files in the project, the number of unrecognized classes, and the list of JDK Level 1.1.4 classes used in the application. It does not contain the name of the project, the name of any files, classes, or methods in your project. Personal information is kept out of the log file so you can send it to Microsoft so the JLCA can be improved. The last page of the wizard shows the conversion is finished and gives you the option to send a log file containing information about the conversion to Microsoft.

While it won't magically convert all code to C#, it does give you good head start on your conversion project. For a programmer who is familiar with Java, but who wants to learn C#, it can be useful to see how Java idioms can be converted to C#.

For more information, see Microsoft Visual J# .NET Beta 2.
Conclusion

Change is seldom easy and often resisted. But with Services For Unix, providing a complete UNIX subsystem, familiar tools, familiar daemons, and the tools to integrate users and resources, change couldn't get much easier. A UNIX administrator, developer, or power user can play to their strengths when migrating to a Windows solution.

Java developers too, can use their hard earned programming skills with Visual J# .NET and even weave together the Java classes they know with the .NET Framework classes they are learning in the same project, writing in J# .NET. They can enjoy the same Visual development tools that C# and Visual Basic .NET programmers enjoy.

If you thought UNIX and Java was the answer to your problems but are interested in Microsoft's development environment, ubiquitous system management tools, and powerful tools to integrate your diverse investments internally and integrate with business partners, you needn't let the unfamiliarity of the Windows operating system and the .NET Framework slow you down. Microsoft has paved the road you will travel. There may find a few bumps on the way, but the path to Windows Server 2003 and Visual Studio .NET development environment is as easy as it can get.

Related Links

What's New in Application Services
Application Server Technologies

