[image: image8.png]4% Windows

Firmware Support for PCI Express Hot-Plug and Windows - 2

Firmware Support for PCI Express Hot-Plug and Windows

January 4, 2006
Abstract

ExpressCard is the standard for fully hot-pluggable PC modular expansion for desktop and mobile systems. ExpressModule is the standard for fully hot-pluggable server and workstation class computer systems.

To implement a PCI Express (PCIe) hot-plug solution for ExpressCard or ExpressModule on a computer system, the vendor must ensure that the appropriate ACPI firmware is provided for managing the hardware and also account for the different capabilities of Microsoft® Windows® operating systems. This paper provides recommendations for firmware developers and platform manufacturers who are implementing ExpressCard support on systems that run Windows operating systems.

This information applies for the following operating systems:

Microsoft Windows Vista™ and future versions

Microsoft Windows Server™ 2003

Microsoft Windows XP

Microsoft Windows 2000

The current version of this paper is maintained on the Web at:
http;//www.microsoft.com/whdc/system/bus/pci/BIOS_HotPlugPCIe.mspx
References and resources discussed here are listed at the end of this paper.

Contents

3Introduction

3Firmware Implementation for ExpressCard

3Bus Scope Initialization

4Eject Dependencies

5Platform-Specific INF

5_OSC Method

6ExpressCard Insertion and Removal in Windows Vista

7ExpressCard Insertion for PCIe-aware Windows

8ExpressCard Removal in PCIe-aware Windows

9ExpressCard Insertion and Removal and Resource Allocation in Windows XP

9How to Handle ExpressCard Insertion and Removal

10ExpressCard Insertion in non-PCIe-aware Windows

11ExpressCard Removal in non-PCIe-aware Windows

12Resource Allocation in Windows XP

12Allocation of Resources in Windows XP

13Allocating Resources to Downstream Bridges

14Summary

15Resources

Disclaimer

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2005 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Windows Server, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Introduction

ExpressCard is the standard for fully hot-pluggable PC modular expansion for desktop and mobile systems, as developed by the Personal Computer Memory Card International Association (PCMCIA). Under the ExpressCard standard, device vendors can implement support under either Universal Serial Bus (USB) 2.0 or Peripheral Component Interconnect (PCI) Express (PCIe). Platform manufacturers must implement support for both USB and PCIe.

To implement a Microsoft® Windows®-compatible PCIe hot-plug solution on a computer system, the platform manufacturer must provide the appropriate Advanced Configuration and Power Interface (ACPI) firmware for managing the hardware. The firmware implementation must also ensure adequate resource allocation for PCI bridges to support the solution. The supporting solution must also account for the different capabilities of the Microsoft Windows Vista™ operating system, which is PCIe-aware, and the Microsoft Windows XP, Microsoft Windows Server™ 2003, and Microsoft Windows 2000 operating systems, which are non-PCIe-aware operating systems.

This paper provides recommendations for firmware developers and platform manufacturers who are implementing ExpressCard support on systems that run Windows operating systems. This paper also provides a conceptual overview of how Windows operating systems handle ExpressCard insertion and removal.

Firmware Implementation for ExpressCard

The ACPI Operating System Capabilities (_OSC) method is the mechanism that is used to define the parent-child dependencies of hardware and to convey these relationships to the operating system. This method is defined by firmware because of the host platform design.

By default during power-on self test (POST) time, firmware creates and loads the methods and tables that are discussed in the following sections. The methods and tables are described in greater detail in all revisions of the ACPI specification. For information, see “Resources” at the end of this paper.

Any host platform that includes ExpressCard sockets with ports that are provided by motherboard-resident host controllers must implement and support the ACPI _OSC method as required by the ExpressCard specification. The series of code fragments in the following sections provides an example of an _OSC method implementation.

Bus Scope Initialization

To support the _OSC method, firmware first builds a table for each port to declare the PCIe and USB ports that are implemented in the ExpressCard socket. This is done through a Bus Scope Initialization method, _SB.INI. The following code fragment shows an example of building tables for two ports:

SCOPE (_SB

Method (_INI) {

LoadTable (“OEM1”, “OEMID”, “Table1”, “_SB-EXC1”,,)

LoadTable (“OEM1”, “OEMID”, “Table2”, “_SB-EXC2”,,)

} // end _INI

) // end _SB scope

In this example:

· OEM1 and OEMID are manufacturer-specific ACPI identification terms that associate each table with a particular manufacturer.

· The Tablex terms (Table1 and Table2) define a unique table for each slot. If only one slot is implemented, only one table entry is required.

· The _SB-EXCx terms (_SB-EXC1 and _SB-EXC2) create an ACPI device that represents a slot.

Eject Dependencies

Each device has a system-specific Hardware ID (_HID). _HIDs are defined in the PCI and ACPI specifications. The _HID must be unique within the ACPI namespace.

The _SB-EXCx method for each slot defines the PCIe and USB eject dependencies for that slot. The USB dependencies must include the Low-speed, Full-speed, and High-speed ports. An _RMV flag is included and set to “0” to preclude the operating system from displaying a remove-request option when no module is inserted.

The following code fragment shows an example of an _SB-EXCx method, including the _HID and _EJD declarations:

Scope(_SB

{

Device(_SB.EXC1)

{

Name(_HID,("ABC2005")) // example ABC corporation ID

Method (_STA,0),{…}

} // end device

Device(PCI0)

{

Device(PCI Express node)

{

Name(_ADR,…)
 // ACPI path to port

Name(_EJD,"_SB.EXC1")

Name(_RMV,0)

}

Device(USB1.1.1 node) // USB1.1.1 is an example label
 // for USB 1.1 (low- and full- speed), port 1

{

Name(_ADR,…)
 // ACPI path to low- and full-speed port

Name(_EJD,"_SB.EXC1")

Name(_RMV,0)

}

Device(USB2.0.1 node) // USB2.0.1 is an example label for USB 2.0

 // high-speed enhanced host controller, port

 // 1

{

Name(_ADR,…)
 // ACPI path to USB high-speed port

Name(_EJD,"_SB.EXC1")

Name(_RMV,0)

}

}

}

The preceding code fragment shows an eject dependency to only one parent, SB.EXC1, for each port on module slot 1. Each _EJD method refers to SB.EXC1.

A similar device would be implemented for each ExpressCard slot with unique paths, unique _HIDs, and links to each slot and its dependencies, as shown in the following code fragment:

Device (_SB.EXC2) {

Name (_HID, ("ABC2006"))

Platform-Specific INF

To associate each ACPI device with the corresponding ExpressCard slot, the system builder supplies a platform-specific INF file and declares a user-friendly name for each _HID entry in a per-manufacturer [Models] section. For example:

 [Manufacturer]
%Mfg% = ModelABC

[ModelABC]

 ; per-Manufacturer Models section
%*ABC2005.DeviceDesc% = "ExpressCard Slot 1" ; ExpressCard Slot 1
%*ABC2006.DeviceDesc% = "ExpressCard Slot 2" ; ExpressCard Slot 2
; ... more StdMfg entries

Figure 1 shows the relationship between the device names that are declared in the INF file and the _HIDs that are declared in the ACPI namespace.

[image: image1.emf]Operating System

Power Management Kernel

User Interface Namespace

ACPI Namespace

ExpressCard Slot 1 ExpressCard Slot 2

ABC2005

ABC2006

Figure 1. System INF-to-ACPI relationship

_OSC Method

The _OSC method is defined in the ACPI 3.x revision. This method is used only on systems that are running Windows Vista and later versions. The _OSC method is used to support later versions of Windows because it:

· Enables the unloading of tables if Windows performs native discovery and handling.

· Enables the redirecting of ACPI methods that are used to detect the insertion and removal of modules.

_OSC does this by using the Link Detect interrupt redirect that is found in root host controller port registers.

When Windows Vista (or any PCIe-aware operating system) loads, firmware unloads the ACPI tables that are responsible for discovery and disables the ACPI interrupt that was triggered by redirection of the link-detection interrupt.

The following code fragment shows an example of the _OSC method:
Device (PCI0) {

// Root PCI bus

Name(_HID,EISAID(“PNP0A08”))
// PCI Express root bridge

Name(_CID,EISAID(“PNP0A03”))
// Compatible PCI root bridge

Name(SUPP,0)

// PCI _OSC support field value

Name(CTRL,0)

// PCI _OSC control field value contains

// bit flags for capabilities supported

Method(_OSC,4) {

// Check for proper UUID and revision ID

// Disable GPE used to detect insertion / removal

// if supported in the OS

If(And(CTRL,0x01))

// Test for native OS support

Store(0,HPCE)

// Clear hot plug SCI enable bit

Store(1,HPCS)

// Clear hot plug SCI status bit

Unload(EXC1)

// Unload methods and tables for non-native

Unload(EXC2)

// OS support of insertion / removal

}

// end _OSC method

}

// end PCI0 device

ExpressCard Insertion and Removal in Windows Vista

Windows Vista and later versions are PCIe-aware operating systems.

Windows Vista relies on the mechanisms that are defined in the PCI Express Base Specification for detecting the insertion and removal of hot-plug modules. These mechanisms are the Hot-Plug Surprise and Hot-Plug Capable values that are defined in the Slot Capabilities register.

As indicated in the _OSC method, when Windows Vista loads, firmware unloads the ACPI tables that are responsible for discovery and disables the ACPI interrupt that was triggered by redirection of the link-detection interrupt. Windows Vista learns about the insertion and removal events when an in-band PCIe host controller sends the Slot Status Register’s Presence Detect Changed interrupt to the bus driver, the Windows PnP manager, and the Windows power manager.

ExpressCard Insertion for PCIe-aware Windows

Figure 2 provides a conceptual illustration of an ExpressCard insertion on a PCIe-aware operating system such as Windows Vista.

 [image: image2.wmf]ExpressCard

PCI

Express

Root Host

Controller

OS PnP

Kernel

OS PCI Bus

Driver

Discovery and

Enumeration

Process

OS Device

Driver

3

2

4

5

USB

Hub

USB

EHC / HC

OS PnP

Kernel

OS USB Bus

Driver

Enumeration

Process

OS Device

Driver

3

4

5

6

Device

Attach

Detected

2

1

Figure 2. Conceptual illustration of ExpressCard insertion with PCIe-aware Windows

Starting at the bottom of Figure 2:

1.
The user inserts an ExpressCard in a slot.

2.
The PCIe root host controller issues a Slot Status Register’s Presence Detect Changed interrupt to the bus driver, the Windows PnP manager, and the Windows power manager.

3.
Windows PnP manager sends a request to the PCI bus driver to enumerate devices on the bus.

4.
In Windows, the PCI bus driver enumerates devices until all devices have been discovered.

5.
Windows loads the driver for the newly inserted device.

6.
The driver for the device initializes the device and prepares it to handle I/O.

USB function discovery is handled entirely by the USB functionality in Windows and is not used within the firmware method except when a device is requested to be removed.

ExpressCard Removal in PCIe-aware Windows

The removal event that follows a remove request on Windows Vista is similar to the process on Windows XP and Windows 2000 except that the stop request handled within the Windows power manager relies on the common serial number that the ExpressCard module provided. The common serial number—as required by the ExpressCard specification for modules that implement both the USB and PCIe interfaces on a single physical module—is the only method that Windows Vista uses to understand the dependency relationship between the two interfaces.

Figure 3 provides a conceptual illustration of an ExpressCard removal on a PCIe-aware operating system such as Windows Vista.

 [image: image3.wmf]User

Interface

OS PnP

Kernel

OS Power

Management

Kernel

Common S/N

PCI Express

USB 2.0

or

USB 1.1

Resources

PCI Express

Device

Driver

USB 1.1

Device

Driver

USB 2.0

Device

Driver

Stop Request

OS Bus

Drivers

ExpressCard

PCI

Express

Root Host

Controller

USB

Hub

USB

EHC / HC

2

3

4

5

6

7

8

or

PCI Express

Bus Driver

USB Bus

Driver

1

Figure 3. Conceptual view of ExpressCard removal within PCIe-aware Windows

Starting at the upper left of Figure 3:

1.
The user requests removal of an ExpressCard device (for example, through a PCIe function).

2.
The remove request is sent to the Windows PnP manager.

3.
Windows PnP manager sends a stop request to the Windows power manager.

4.
The Windows power manager notes a dependency between the PCIe port that is being requested to stop and the USB 1.1 or USB 2.0 ports that use the common serial number (labeled "Common S/N" in Figure 3) that the ExpressCard module provided.

5.
The appropriate device drivers send stop requests to each additional port in the namespace.

6.
Each device driver handles the stop request as appropriate and forwards it to the correct bus driver.

7.
The bus drivers notify the PCI Express root host controller and USB controller that the device is being removed.

8.
When the process is finished, all ports are stopped, the appropriate driver has processed any notifications to the user, and the “approved” remove request is granted.

ExpressCard Insertion and Removal and Resource Allocation in Windows XP

The following conceptual overview shows how ExpressCard insertion and removal are handled by a non-PCIe-aware operating system such Windows XP. This information also applies for Windows 2000 and Windows Server 2003 operating systems.

Windows XP, Windows Server 2003, and Windows 2000 are not PCIe-aware operating systems.

How to Handle ExpressCard Insertion and Removal

Windows XP relies on a bus check that the firmware issues in response to a PCIe link detection interrupt. This interrupt is issued when the EXCx status method (_STA) is triggered by insertion or removal of a PCIe ExpressCard module. The _STA method sets or clears a “device present” bit when the user inserts or removes an ExpressCard PCIe-enabled device.

The bus check causes Windows XP to run the PNP enumeration operation, which discovers the insertion or removal of the PCI Express function and balances system resources accordingly. When a device is detected, the Safely Remove Hardware applet in Windows contains an entry for the PCI Express function and, if appropriate, the USB function.

ExpressCard Insertion in non-PCIe-aware Windows

Figure 4 provides a conceptual illustration of an ExpressCard insertion on a non-PCIe-aware operating system such as Windows XP.

 [image: image4.wmf]ExpressCard

PCI

Express

Root Host

Controller

SMI

Interrupt

ACPI

Int

Handler

OS PnP

Kernel

OS PCI Bus

Driver

_STA

Link

Train

Detected

Enumeration

Process

OS Device

Driver

2

3

4

5

6

7

8

USB

Hub

USB

EHC / HC

OS PnP

Kernel

OS USB Bus

Driver

Enumeration

Process

OS Device

Driver

3

4

5

6

Device

Attach

Detected

2

Bus Check

1

Figure 4. Conceptual view of ExpressCard module insertion events within non-PCIe-aware Windows

Starting at the bottom of Figure 4:

1.
The user inserts an ExpressCard in a slot.

2.
The PCIe root host controller issues a Link Train Detected interrupt.

3.
The SMI interrupt triggers the EXCx status method (_STA). The Windows PnP manager adds or removes device entries based on the value of _STA.

4.
The ACPI interrupt handler issues a bus check.

5.
The Windows PnP manager sends a request to the PCI bus driver to enumerate devices on the bus.

6.
The PCI bus driver enumerates devices until all devices have been discovered.

7.
Windows loads the driver for the newly inserted device.

8.
The driver for the device initializes the device and prepares it to handle I/O.

In the same way as for Windows Vista, USB function discovery is entirely handled by native USB functionality in Windows and is not used within the _STA method, unless a request to remove the device occurs. If a removal is requested for the device, the ejection dependency (_EJD) entry causes the Windows power manager to request the removal of devices present under both the USB and PCI hardware trees.

ExpressCard Removal in non-PCIe-aware Windows

ExpressCard removal in Windows XP, Windows Server 2003, and Windows 2000 is similar to removal in Windows Vista except that the EXCx method is used to identify dependencies between PCI Express and USB 2.0 or USB 1.1, instead of the common serial number of the ExpressCard module.

Figure 5 provides a conceptual illustration of ExpressCard removal in a non-PCIe-aware operating system such as Windows XP.

[image: image5.wmf]User

Interface

Remove

Request

OS PnP

Kernel

OS Power

Management

Kernel

EXCx

PCI Express

USB 2.0

USB 1.1

ACPI

Namespace

Resources

PCI Express

Device

Driver

USB 1.1

Device

Driver

USB 2.0

Device

Driver

Stop Request

OS Bus

Drivers

ExpressCard

PCI

Express

Root Host

Controller

USB

Hub

USB

EHC / HC

2

3

4

5

6

7

8

1

Figure 5. Conceptual view of ExpressCard module removal events in non-PCIe-aware Windows

Starting at the upper left of Figure 5:

1.
The user requests removal of an ExpressCard device (for example, through a PCIe function).

2.
The remove request is sent to the Windows PnP manager.

3.
Windows PnP manager sends a stop request to the Windows power manager.

4.
The Windows power manager notes a dependency between the PCIe port that is being requested to stop and the USB 1.1 or USB 2.0 ports that the EXCx method names for that slot within the ACPI namespace.

5.
The appropriate device drivers send stop requests to each additional port in the namespace.

6.
Each device driver handles the stop request as appropriate and forwards it to the correct bus driver.

7.
The bus drivers notify the PCI Express root host controller and the USB controller that the device is being removed.

8.
When the process is finished, all ports are stopped, the appropriate driver has processed any notifications to the user, and the “approved” remove request is granted.

Resource Allocation in Windows XP

Windows XP, Windows Server 2003, and Windows 2000 are PCI hot plug aware. However, none of these operating systems natively handles the insertion or removal event request of PCI or PCIe hot plug. These operating systems support the PCI Hot-Plug Controller model of hot-plugging PCI add-in devices, and they also support PCI resource assignment when notified by a bus scan request from the ACPI hot-plug insertion event.

Problems with resource allocation occur when downstream PCIe and PCI bridges are discovered within the ExpressCard module after it is hot plugged.

This section uses Windows XP in the discussion, but the information in this section also applies for Windows 2000 and Windows Server 2003.

Allocation of Resources in Windows XP

At system startup, Windows XP assigns unallocated resources to unprogrammed PCI bridge configuration base register space. However, the operating system algorithm for determining free system resources to allocate to those bridge registers does not always result in optimal assignments. The assigned resources are frequently fragmented and conservative.

When Windows XP finds a bridge with resources that are already assigned, it does not change the bridge assignments. If a device is inserted that requires more or less than the allocated resources, the resources that are assigned to the hot-plug port or bridge during POST by firmware or during the loading of the operating system are the resources that Windows assigns to the end point.

To ensure that PCI bridges receive adequate resources, the firmware should program the bridge base registers that support PCI and PCIe hot-plug insertion as part of the POST process, before the operating system loads. The recommended minimum resources that should be assigned by firmware to hot-plug ports are:

· A 64-MB memory window.
A memory window of 128 MB is often necessary to support graphics adapters.

· An 8-K I/O window.

Allocating Resources to Downstream Bridges
When Windows XP encounters multiple downstream bridges (as might be common when a PCIe switch is hot plugged into a PCIe hot-plug port), all of the memory and I/O resources that are available in the upstream port are allocated to the first downstream bridge that is enumerated, which leaves no resources to assign to additional parallel downstream bridges. Functions attached to those bridges are inoperable because no resources are assigned to them. Figure 6 illustrates this situation.

[image: image6.wmf]PCI Express

Downstream Hot

-

Plug Port

P

-

P

P

-

P

P

-

P

Endpoint

Endpoint

X

PCI Express

Switch

PCI Express Endpoints

No resources

are assigned

to this endpoint.

PCI Express Hot

-

Plug Module

Figure 6. Bridge resource assignments behind a PCIe switch

As shown in Figure 6, all of the resources available in the upstream bridge (and elsewhere—this is a bridge characteristic) are assigned to the downstream port on the left of the diagram. No resources are assigned to the downstream port on the right of the diagram.

To prevent this, the hot-plug module must be inserted before the system is powered on. As firmware enumerates the PCI or PCIe tree, resources are assigned to all functions that are present, thus enabling the previously nonfunctional devices.

If a PCI or PCIe hot-plug module is removed after firmware has enumerated and assigned resources to the hot-plugged bridge configuration registers, Windows XP does not alter the resources that were assigned to the system-board’s downstream hot-plug port. But if the same module is removed and re-inserted during the same power-up session, it demonstrates the same starvation of resources as described earlier.

This is a bridge characteristic. If the hot-plugged device is a PCI bus, PCI devices are enumerated and assigned resources from within the downstream hot-plug port available resources. Only PCI-to-PCI and PCIe switches are affected, as shown in Figure 7.

[image: image7.wmf]PCI Express

Downstream Hot

-

Plug Port

PCI Express

-

to

-

PCI

Bridge

Endpoint

Endpoint

PCI Express Hot

-

Plug Module

Endpoint

PCI bus

All endpoints are assigned resources

from within the downstream hot

-

plug

bridge resource pool.

Figure 7. PCI endpoint resource assignments from downstream hot-plug port resources

Summary

Firmware manufacturers should follow these recommendations to support ExpressCard in firmware on systems that run Windows operating systems:

· For systems that run Windows Vista, implement an _OSC method in firmware, as described in this paper.

· For systems that run Windows XP and Windows 2000:

Define a unique table in the ACPI namespace for each PCIe port.

Define eject dependencies through an SB.EXCx method in the ACPI namespace.

Supply a platform-specific INF that declares a user-friendly name for each _HID entry in a per-manufacturer [Models] section.

To ensure adequate resource allocation for PCI bridges, firmware manufacturers should:

· Design firmware to program the bridge base registers that support PCI and PCIe hot-plug insertion as part of the POST process, before the operating system loads.

· Assign the following recommended minimum resources to hot-plug ports:

A 64-MB memory window, or 128 MB to support graphics adapters.

An 8-K I/O window.

Resources

ACPI – Advanced Configuration and Power Interface
http://www.acpi.info/

ExpressCard - Architecture and Driver Support
http://www.microsoft.com/whdc/system/bus/expresscard/default.mspx

PCI and PCI Express - Architecture and Driver Support
http://www.microsoft.com/whdc/system/bus/pci/default.mspx

PCI Specifications
http://www.pcisig.com/specifications

January 4, 2006
© 2005 Microsoft Corporation. All rights reserved.

[image: image8.png]