[image: image1.png]

Hands-On Lab
Lab Manual

C# 3.0 Language Enhancements
Please do not remove this manual from the lab

Information in this document is subject to change without notice. The example companies, organizations, products, people, and events depicted herein are fictitious. No association with any real company, organization, product, person or event is intended or should be inferred. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarked, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2005 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, MS, Windows, Windows NT, MSDN, Active Directory, BizTalk, SQL Server, SharePoint, Outlook, PowerPoint, FrontPage, Visual Basic, Visual C++, Visual J++, Visual InterDev, Visual SourceSafe, Visual C#, Visual J#, and Visual Studio are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names herein may be the trademarks of their respective owners.

Contents
1Lab 1: C# 3.0 Language Enhancements

1Lab Objective

2Exercise 1 – Using Implicitly Typed Local Variables

2Task 1 – Creating the ‘NewLanguageFeatures’ Project

3Task 2 – Declaring Simple Implicitly Typed Local Variables

4Task 3 – Using Implicitly Typed Local Variables to Declare Collections

5Task 4 – Understanding Restrictions of Implicit Type declarations

6Exercise 2 – Extending Types with Extension Methods

6Task 1 – Declaring Extension Methods

8Task 2 – Using Extension Methods with Generic Types

9Exercise 3 – Working with Lambda Expressions

10Task 1 – Replacing an Anonymous Method with a Lambda Expression

11Task 2 – Defining a Lambda Expression with Multiple Parameters

12Exercise 4 – Using Lambda Expressions to Create Expression Trees

12Task 1 – Creating an Expression Tree using a Lambda Expression

13Exercise 5 – Easy Initialization with Object and Collection Initializers

13Task 1 – Using Object Initializers

14Task 2 – Using Collection Initializers

15Exercise 6 – Using Anonymous Types

16Task 1 – Creating Anonymous Types

17Exercise 7 – Understanding Queries and Query Expressions

18Task 1 – Using Queries with in-Memory Collections

19Task 2 – Additional Query Expressions

20Task 3 – Implementing a Join Operation Using Query Expressions

Lab 1: C# 3.0 Language Enhancements
The LINQ project provides a single, general purpose declarative query facility that can be applied to all in-memory information and information stored in external sources, such as XML files and relational databases. The C# 3.0 language enhancements are part of the LINQ project and are a coherent group of new language features that form the foundation for this effort and, together, help make working with data as easy as working with objects.
The new language features consist of:

· Implicitly typed local variables which permit the type of local variables to be inferred from the expressions used to initialize them.
· Extension methods make it possible to extend existing types and constructed types with additional methods.
· Lambda expressions, an evolution of anonymous methods that provides improved type inference and conversions to both delegate types and expression trees.
· Expression trees, which permit lambda expressions to be represented as data (expression trees) instead of as code (delegates).
· Object and collection initializers to conveniently specify values for one or more fields or properties for a newly created object, combining creation and initialization into a single step.
· Anonymous types, which are tuple types automatically inferred and created from object initializers.
· Query expressions, which provide a language-integrated syntax for queries that is similar to relational and hierarchical query languages such as SQL and XQuery.
Realize that The LINQ Project relies on new keywords and syntax introduced with C# 3.0, but which is not yet fully understood by Visual Studio 2005. This may cause some features to give incomplete information or stop functioning entirely; for example IntelliSense™ will not always be correct and error messages can be confusing. Keep in mind that the IDE support and compiler are preview releases, and still have many flaws. A consequence is that incorrect code may result in an abundance of error messages. It is important to address errors top-down, then recompile as spurious errors will often disappear once valid ones are addressed.

Lab Objective
Estimated time to complete this lab: 60 minutes
The objective of this lab is to provide you with a clear understanding of the new language features in C# 3.0. You will learn about each of the features in isolation and also see how they work together to provide a rich, expressive way to work with data.

This lab consists of the following exercises:
	· Using Implicitly Typed Local Variables
· Extending Types with Extension Methods
· Working with Lambda Expressions
· Using Lambda Expressions to Create Expression Trees
· Easy Initialization with Object and Collection Initializers

· Using Anonymous Types

· Understanding Queries and Query Expressions

Exercise 1 – Using Implicitly Typed Local Variables
The implicit typing of local variables is a general language feature that relieves the programmer from having to specify the type of the variable. Instead, the type is inferred by the compiler from the type of the variable’s initialization expression. As you will see later in this lab, LINQ query expressions can return types created dynamically by the compiler containing data resulting from the queries. Implicit typing, or type inference, frees the developer from having to explicitly define all of the types that the queries might return, saving a lot of tedious effort.

In this exercise, you will learn to define implicitly typed local variables, both simple declarations and more complicated declarations where the value of this language feature becomes apparent.
Task 1 – Creating the ‘NewLanguageFeatures’ Project
1. Click the Start | Programs | Microsoft Visual Studio 2005 Beta 2 | Microsoft Visual Studio 2005 Beta 2 menu command.

2. Click the Tools | Options menu command

3. In the left hand treeview select Debugger | General
4. In the right hand pane find the option “Redirect all output to the Quick Console window” and uncheck it

5. Click OK
6. Click the File | New | Project… menu command.

7. In the New Project dialog select the Visual C# | LINQ Preview project type.
8. Select the LINQ Console Application template.
9. Provide a name for the new project by entering “NewLanguageFeatures” in the Name field.

10. Click OK.

Visual Studio creates the new project, including a Program class and an empty Main method. Visual Studio 2005 Beta2 with LINQ technology preview displays a dialog box warning you that you are using an unsupported version of Visual C# 3.0.

11. Click OK to dismiss the warning dialog box.

Task 2 – Declaring Simple Implicitly Typed Local Variables

12. In the Solution Explorer, double click on Program.cs to open the source code.
13. Add a method to the Program class that initializes and prints several types of local variables:
static void InitAndPrint()

{

int x = 7;

string s = "This is a string.";

double d = 99.99;

int[] numbers = new int[] { 0, 1, 2, 3, 4, 5, 6 };

Console.WriteLine("x: " + x);

Console.WriteLine("s: " + s);

Console.WriteLine("d: " + d);

Console.WriteLine("numbers: ");

foreach (int n in numbers) Console.WriteLine(n);

}
14. In Main, add a call to the new method:
static void Main(string[] args)

{
 InitAndPrint();
}

15. Press Ctrl+F5 to build and run the application, displaying the output in a console window:
[image: image2.png]ress any key to continue .

16. Press any key to close the console window and terminate the program.

In C# 3.0, local variables like these, declared with initialization expressions can be declared with the new keyword var instead of an explicit type. var instructs the compiler to infer the type of the variable from its initializer.

17. Change the InitAndPrint method to use implicitly typed variables:

static void InitAndPrint()

{
var x = 7;

var s = "This is a string.";

var d = 99.99;

var numbers = new int[] { 0, 1, 2, 3, 4, 5, 6 };

Console.WriteLine("x: " + x);

Console.WriteLine("s: " + s);

Console.WriteLine("d: " + d);

Console.WriteLine("numbers: ");

foreach (int n in numbers) Console.WriteLine(n);
}
18. Press Ctrl+F5 again to rebuild and run the application again and you’ll see that the application displays the same output.

19. Press any key to close the console window and terminate the program.

Note: Implicitly typed variables shouldn’t be confused with scripting languages such as Perl where a variable can hold values of different types over its lifetime in a program. Instead, this feature affects only the declaration of variables at compile time; the compiler infers the type of the variable from the type of expression used to initialize it. From then on throughout the program, it is as if the variable was declared with that type; assigning a value of a different type into that variable will result in a compile time error.
Task 3 – Using Implicitly Typed Local Variables to Declare Collections

Implicitly typed variables become very useful as the type of the initialization expression becomes more complicated; in particular, when instantiating a complex generic type.
20. Add a new method to the Program class, InitCollectionDemo, as follows:
static void InitCollectionDemo()

{

Dictionary<string, List<int>> testScores = new Dictionary<string, List<int>>();

List<int> scores = new List<int>();

scores.Add(93);

scores.Add(95);

scores.Add(88);

testScores.Add("Michael", scores);

scores = new List<int>();

scores.Add(97);

scores.Add(92);

scores.Add(91);

testScores.Add("Jennifer", scores);

int sum = 0;

foreach (int i in testScores["Michael"])

sum += i;

foreach (int j in testScores["Jennifer"])

sum += j;

double classAverage = sum / (testScores["Michael"].Count + testScores["Jennifer"].Count);

Console.WriteLine("class average: {0}", classAverage);

}
21. In Main, replace the call to InitAndPrint with a call to the new InitCollectionDemo method:

static void Main(string[] args)

{
 InitCollectionDemo();
}
22. Run the program using Ctrl+F5 to view the class average, then press any key to close the console window.

23. Update the InitCollectionMethod to use implicitly typed variables:
static void InitCollectionDemo()

{
var testScores = new Dictionary<string, List<int>>();

var scores = new List<int>();

scores.Add(93);

…
Using implicitly typed local variable declaration with long and complicated type simplifies the variable declarations, reducing the amount of code required and associated coding errors.
24. Run the program again using Shift+F5 to see that the program produces the same output then press any key to close the console window.

Task 4 – Understanding Restrictions of Implicit Type declarations
There are some restrictions on the use of implicitly typed local variables. In particular, because the type of the variable is inferred from its initializer, an implicitly typed declaration must include an initializer.
25. In the Program class, add the following code:
static void MalformedInitializations()

{

var x;
// Error: what type is it?

}
26. Press Ctrl+Shift+B to build the solution
27. Click on the Error List tab to view the compiler error output.

[image: image3.png]Er
© 2rors [A0 warmings

Description Fie Line Column Project

o R . T E—

@2 ;expeced Program.cs

0 Messages

28. Replace the variable declaration in the MalformedInitializations method with the following code:

static void MalformedInitializations()

{

var x = { 1, 2, 3};
// Error: collection initializer not permitted

}

The initializer cannot be an object or collection initializer by itself, but it can be a new expression that includes an object or collection initializer.
29. Press Ctrl+Shift+B to build the solution and view the resulting compiler error.
30. Delete the MalformedInitializations method.

Exercise 2 – Extending Types with Extension Methods
Extension methods provide a way for developers to extend the functionality of existing types by defining new methods that are invoked using the normal instance method syntax. Extension methods are static methods that are declared by specifying the keyword this as a modifier on the first parameter of the methods. In this exercise, you will extend the string class, adding an extension method to perform “camel casing” of an input identifier (e.g., convert the input identifier some_method_name to SomeMethodName). In addition, you will extend the List<T> generic class, adding an extension method to combine the list with another.

Task 1 – Declaring Extension Methods

31. Add a new static class, Extensions, to the NewLanguageFeatures namespace:
namespace NewLangageFeatures
{
 public static class Extensions

 {

 }
}
32. In this new class, add a method, CamelCase, that converts an input identifier using the lowercase/underscore naming convention (“some_method_name”) to the camel case naming convention that uses uppercase letters at the beginning of each word (SomeMethodName):
public static class Extensions

{

public static string CamelCase(string identifier)

{

string newString = "";

bool sawUnderscore = false;

foreach (char c in identifier)

{

if ((newString.Length == 0) && Char.IsLetter(c))

newString += Char.ToUpper(c);

else if (c == '_')

sawUnderscore = true;

else if (sawUnderscore)

{

newString += Char.ToUpper(c);

sawUnderscore = false;

}

else

newString += c;

}

return newString;

}

}

33. Replace the InitCollectionDemo call in Main with code that tests the new CamelCase method:
static void Main(string[] args)

{
string[] identifiers = new string[] {

"do_something",

"find_all_objects",

"get_last_dict_entry"

};

foreach (string s in identifiers)

 Console.WriteLine("{0} becomes: {1}", s, Extensions.CamelCase(s));
}
The previous code demonstrates how you might extend a type for with new functionality in C# 2.0.
34. Press Ctrl+F5 to build and run the application which displays its output in a console window, then press any key to close the console window.
[image: image4.png]do_something becomes: DoSomething
ind_al1_objects becomes: FindAllobjects
jget_Tlast_dict_entry becomes: GetLastDictEntry
Press any key to continue . . . _

With C# 3.0, you can now define an extension method that can be invoked using instance method syntax. An extension method is declared by specifying the keyword this as a modifier on the first parameter of the method.

35. Add the modifier this to the parameter accepted by CamelCase:

public static class Extensions

{

public static string CamelCase(this string identifier)

{

string newString = "";

…

36. In Main, change the invocation of CamelCase to use the instance method syntax, making CamelCase appear as a method of the string class (remember to remove s from the parameter list):
static void Main(string[] args)

{

string[] identifiers = new string[] {

"do_something",

"find_all_objects",

"get_last_dict_entry"

};

foreach (string s in identifiers)

 Console.WriteLine("{0} becomes: {1}", s, s.CamelCase());
}
37. Press Ctrl+F5 to build and run the application again and verify that it displays the same output, then press any key to close the console window.
Task 2 – Using Extension Methods with Generic Types
Extension methods can be added to any type, including the generic types such as List<T> and Dictionary<T>.
38. Add an extension method, Combine to the Extensions class that combines all elements of two List<T> objects into a single List<T>:
public static class Extensions

{

public static List<T> Combine<T>(this List<T> a, List<T> b)

{

 var newList = new List<T>(a);

 newList.AddRange(b);

 return newList;

}

}

39. Replace the body of the Main method with the following code that initializes two lists then uses the new Combine extension method to combine them:
static void Main(string[] args)

{
var odds = new List<int>();

odds.Add(1);

odds.Add(3);

odds.Add(5);

odds.Add(7);

var evens = new List<int>();

evens.Add(0);

evens.Add(2);

evens.Add(4);

evens.Add(6);

var both = odds.Combine(evens);

Console.WriteLine("Contents of 'both' list:");

foreach (int i in both)

Console.WriteLine(i);
}
40. Press Ctrl+F5 to build and run the application, then press any key to close the console window.

Extension methods provide an elegant way to extend types with functionality you develop, making the extensions appear to be part of the original types.

Exercise 3 – Working with Lambda Expressions
C# 2.0 introduces anonymous methods, which allow code blocks to be written “inline” where delegate values are expected. For example, in the following statement,
List<int> evenNumbers = list.FindAll(delegate(int i) { return (i%2) == 0); }

the FindAll method requires a delegate parameter. In this case, the delegate determines whether the input integer is an even number.
C# 3.0 introduces lambda expressions, to provide a more concise, functional programming syntax for writing anonymous methods. In this exercise, you will replace a method invocation which currently takes an anonymous method with a lambda expression.

Task 1 – Replacing an Anonymous Method with a Lambda Expression
A lambda expression is written as a parameter list, followed by the => token, followed by an expression. For example,
(int x) => x + 1

// parameter list, expression

The parameters of a lambda expression can be explicitly or implicitly typed. In an explicitly typed parameter list, the type of each parameter is explicitly stated:

(int x) => x + 1

// explicit parameter list, expression

In an implicitly typed parameter list, the types of the parameters are inferred from the context in which the lambda expression is used. In addition, if a lambda expression has a single, implicitly typed parameter, the parentheses may be omitted from the parameter list:
x => x + 1

// implicit parameter list, expression
(x,y) => return x * y;

// implicit parameter list, expression
41. Add a TestLambdaExpression method to the Program class that uses C# 2.0’s anonymous method syntax:
class Program

{
static void TestLambdaExpression()

{

List<int> list = new List<int>();

list.Add(1);

list.Add(2);

list.Add(3);

list.Add(4);

List<int> evenNumbers = list.FindAll(delegate(int i) { return (i % 2) == 0; });

foreach (int evenNumber in evenNumbers)

{

Console.WriteLine(evenNumber);

}

}
…

42. Replace the current body of Main to call the new method:
static void Main(string[] args)

{
TestLambdaExpression();
}
43. Build and run the program to test that the even numbers in the list are displayed.
44. Now, replace the anonymous method with an equivalent lambda expression (and change to use implicitly typed local variables as well):

static void TestLambdaExpression()

{

var list = new List<int>();

list.Add(1);

list.Add(2);

list.Add(3);

list.Add(4);
var evenNumbers = list.FindAll(i => (i % 2) == 0);

foreach (int evenNumber in evenNumbers)

45. Build and run the program again to test that the even numbers are displayed correctly.
Task 2 – Defining a Lambda Expression with Multiple Parameters

Lambda expressions can take multiple parameters in the parameter list, as the following example demonstrates.
46. Add a new delegate type to the NewLanguageFeatures namespace:
namespace NewLanguageFeatures

{

public delegate bool KeyValueFilter<K, V>(K key, V value);

47. Define an extension method for the Dictionary<K, V> type in the Extensions class:

public static class Extensions

{

public static Dictionary<K, V> FilterBy<K, V>(this Dictionary<K, V>
 items, KeyValueFilter<K, V> filter)

{
 var result = new Dictionary<K, V>();

 foreach(KeyValuePair<K, V> element in items)

 {

 if (filter(element.Key, element.Value))

 result.Add(element.Key, element.Value);

 }

 return result;

}

This extension method iterates over all of the key value pairs in the dictionary, and invokes the filter delegate for each. If the filter method returns true, then that key value pair is added to the returned dictionary.
48. Replace the code in Main with the following code:

static void Main(string[] args)

{
var fruit = new Dictionary<string, double>();

fruit.Add("banana", 1.03);

fruit.Add("cherry", 2.55);

fruit.Add("apple", 1.00);

fruit.Add("blueberry", 0.80);
var matches = fruit.FilterBy((string name, double price) => name == "banana" && price < 2.00);
Console.WriteLine("Number of matches: {0}", matches.Count);
}
This code sets up a dictionary containing the names and prices of various fruits. It then calls the new extension method passing a lambda expression that accepts two arguments. The result is to find the number of fruits in the dictionary that are named ‘banana’ and have a price less then $2.
49. Press Ctrl+F5 to compile and run the program and see the number of matches and press any to con close the console window.
Exercise 4 – Using Lambda Expressions to Create Expression Trees
In addition to treating data as objects, LINQ provides the ability to treat expressions as data at runtime. LINQ defines a new type, Expression<T>, that represents an expression tree, an in-memory representation of a lambda expression. Expression trees allow developers to treat lambda expressions as data, allowing for inspection and modification of lambda expressions in code. This feature will be used to enable an ecosystem of third-party libraries that leverage the base query abstractions that are part of LINQ. For example, a database access implementation might leverage this facility to translate expression trees into suitable query statements for a particular kind of database.
Task 1 – Creating an Expression Tree using a Lambda Expression
In this task, you will declare an expression tree and print a representation of the expression body.

50. Add the following using directive to gain access to the types in System.Expressions:

using System.Expressions;
51. Replace the code in the body of the Main method with the following code:
static void Main(string[] args)

{

 Expression<Func<int, bool>> filter = n => (n * 3) < 5;
 BinaryExpression lt = (BinaryExpression) filter.Body;

 BinaryExpression mult = (BinaryExpression) lt.Left;

 ParameterExpression en = (ParameterExpression) mult.Left;

 ConstantExpression three = (ConstantExpression) mult.Right;

 ConstantExpression five = (ConstantExpression) lt.Right;

 Console.WriteLine("({0} ({1} {2} {3}) {4})", lt.NodeType,
 mult.NodeType, en.Name, three.Value, five.Value);

}

This code creates an expression tree representation from the lambda expression. It then initializes objects for each node of the tree. Finally, it outputs a LISP-style representation of the expression, to demonstrate a translation of the lambda expression to the expression tree.
52. Press Ctrl-F5 to run the code and see the following output in the console window:

(LT (Multiply n 3) 5)

Exercise 5 – Easy Initialization with Object and Collection Initializers
In C# 3.0, when declaring an object or collection, you may include an initializer that specifies the initial values of the members of the newly created object or collection. This new syntax combines object creation and initialization into a single step.
Task 1 – Using Object Initializers

An object initializer consists of a sequence of member initializers, contained in { } braces and separated by commas. Each member initializer assigns a value to a field or property of the object. For example, given the following Point class:

public class Point

{

public int x, y;

}

an object of type Point can be initialized using an object initializer, like this:

var p = new Point { x = 3, y = 99 };

This concise initialization syntax is semantically equivalent to invoking the instance constructor then performing assignments into each of the variables.

53. Add the following class definitions to the Program class:
class Program

{

public class Point

{

public int x, y;

}

public class Rectangle

{

public Point p1, p2;

}

54. Replace the code in Main with the following:
static void Main(string[] args)

{

var a = new Point { x = 10, y = 13 };

var b = new Point { x = 33, y = 66 };

var r1 = new Rectangle { p1 = a, p2 = b };

Console.WriteLine("r1: p1 = {0},{1}, p2 = {2},{3}",

r1.p1.x, r1.p1.y, r1.p2.x, r1.p2.y);
}

For each of these objects, the object initializer invokes the object’s parameterless constructor then initializes the named fields to the specified values. Not all fields of the object need to be specified in the list. If not specified, the fields will have their default value.
55. Add two more object initializers that initialize only one of the two values:
static void Main(string[] args)

{

var a = new Point { x = 10, y = 13 };

var b = new Point { x = 33, y = 66 };

var r1 = new Rectangle { p1 = a, p2 = b };
Console.WriteLine("r1: p1 = {0},{1}, p2 = {2},{3}",

r1.p1.x, r1.p1.y, r1.p2.x, r1.p2.y);
var c = new Point { x = 13, y = 17 };

var r2 = new Rectangle { p2 = c };

Console.WriteLine("r2: p1 == {0}, p2 = {1}, {2}",

 r2.p1, r2.p2.x, r2.p2.y);
}

56. Press Ctrl-F5 to run the application and print the values for two of the rectangles.

Task 2 – Using Collection Initializers

The same initialization syntax applies to collections. With C# 3.0, any object that implements System.Collections.Generic.ICollection<T> can have its values initialized with a collection initializer.

57. Add the following method to the Program class that initializes a List using the pre-C# 3.0 style:
class Program

{

private static List<string> keywords = new List<string>();

public static void InitKeywords()
{

keywords.Add("while");

keywords.Add("for");

keywords.Add("break");

keywords.Add("switch");

keywords.Add("new");

keywords.Add("if");

keywords.Add("else");

}

public static bool IsKeyword(string s)

{

return keywords.Contains(s);

}

58. Add a few calls to IsKeyword from Main to test the new functions:
static void Main(string[] args)

{

InitKeywords();

string[] toTest = { "some", "identifiers", "for", "testing" };

foreach (string s in toTest)

 if (IsKeyword(s)) Console.WriteLine("'{0}' is a keyword", s);
}

59. Press Ctrl-F5 to build and run the program, displaying which of the words in the toTest array is a keyword.
60. Now, use the new collection initializer syntax to simplify the initialization of the keyword list. Modify the keywords field initialization as:

class Program

{

private static List<string> keywords = new List<string> {

"while", "for", "break", "switch", "new", "if", "else"
};

public static bool IsKeyword(string s)

{

return keywords.Contains(s);

}

61. Remove the InitKeywords call from the Main method as it is no longer needed.

62. Rerun the program to verify that it produces the same output.

Exercise 6 – Using Anonymous Types
To facilitate the creation of classes from data values, C# 3.0 provides the ability to easily declare an anonymous type and return an instance of that type. To create an anonymous type, the new operator is used with an anonymous object initializer. For example, when presented with the following declaration

var x = new { a = 3, b = 5, c = “some text” };

the C# compiler automatically creates a new type of the form

class __Anonymous1

{

private int _a = 3;

private int _b = 5;

private string _c = “some text”;

public int a { get { return v1; } set { _a = value; } }

public int b { get { return v2; } set { _b = value; } }

public int c { get { return v3; } set { _c = value; } }

}
where each member of the anonymous type is a property inferred from the object initializer. The name of the anonymous type is automatically generated by the compiler and cannot be referenced from the user code.
Task 1 – Creating Anonymous Types
63. Add a new Contact class to the NewLanguageFeatures namespace:

namespace NewLanguageFeatures

{

class Contact

{

 public string Name;

 public string Phone;

 public string Address;

 public string State;

 public Contact(string name, string phone, string address, string state)

 {

 this.Name = name;

 this.Phone = phone;

 this.Address = address;

 this.State = state;

 }

}

64. Add the following code to Main to create and initialize a list of Contacts, replacing the existing code:
static void Main(string[] args)

{

 var contacts = new List<Contact>();

contacts.Add(new Contact("Michael", "520-331-2718",

 "33140 SW Liverpool Lane", "WA"));

contacts.Add(new Contact("Jennifer", "503-998-1177",

 "1245 NW Baypony Dr", "OR"));

contacts.Add(new Contact("Sean", "515-127-3340",

 "55217 SW Estate Dr", "WA"));

}

65. Next, add a foreach statement that iterates through the contacts, creating a variable of an anonymous type to hold the contact name and phone:
static void Main(string[] args)

{

 var contacts = new List<Contact>();

contacts.Add(new Contact("Michael", "520-331-2718",

 "33140 SW Liverpool Lane", "WA"));

contacts.Add(new Contact("Jennifer", "503-998-1177",

 "1245 NW Baypony Dr", "OR"));

contacts.Add(new Contact("Sean", "515-127-3340",

 "55217 SW Estate Dr", "WA"));
foreach (var contact in contacts)

{

 var a = new { ContactName = contact.Name, Phone = contact.Phone };

 Console.WriteLine("{0} can be reached at {1}", a.ContactName, a.Phone);

}

}

66. Press Ctrl-F5 to compile and run the program, displaying the names and phone numbers of the contacts.

In the previous code, the names of the anonymous class members, ContactName and Phone, are explicitly specified. It is also possible to omit the names, in which case, the names of the generated members are the same as the members used to initialize them. This is called a projection initializer. Also note that in this example we have used the var keyword to infer that the type of the foreach local, ‘contact’, is Contact. This is generally applicable for use in foreach.
67. Change the foreach body to omit the property names of the anonymous class:

static void Main(string[] args)

{

 var contacts = new List<Contact>();

contacts.Add(new Contact("Michael", "520-331-2718",

 "33140 SW Liverpool Lane", "WA"));

contacts.Add(new Contact("Jennifer", "503-998-1177",

 "1245 NW Baypony Dr", "OR"));

contacts.Add(new Contact("Sean", "515-127-3340",

 "55217 SW Estate Dr", "WA"));

foreach (var contact in contacts)

{

 var a = new { contact.Name, contact.Phone };

 Console.WriteLine("{0} can be reached at {1}", a.Name, a.Phone);

}

}

68. Build and run to check that the code produces the same output as before.

Exercise 7 – Understanding Queries and Query Expressions
Now that you’ve been introduced to the many new language features introduced in C# 3.0, this exercise will show how they are used together to create an expressive syntax for working with data, raising the level of abstraction over previous data access methods. Previously, developers were actually using two languages when working with data: C# and SQL, embedded in strings. Unfortunately, this approach has its drawbacks, such as no compiler checking of query statements embedded in quotes, no type checking of return values, and so on. For example, a typical database query might look like this:

SqlConnection c = new SqlConnection(…);

 c.Open();

 SqlCommand cmd = new SqlCommand(

@“SELECT c.Name, c.Phone

// queries in quotes

 FROM Customers c

 WHERE c.City = @p0”

);

 cmd.Parameters[“@po”] = “London”;
// arguments loosely bound
 DataReader dr = c.Execute(cmd);

 while (dr.Read()) {

 string name = r.GetString(0);

 string phone = r.GetString(1);
// results loosely typed
 DateTime date = r.GetDateTime(2);
// compiler can’t help catch mistakes
 }

 r.Close();

With C# 3.0, you now have language integrated query, gaining the benefits of strong type checking, and the simplicity of using a single language. For example, given the following Customer class,
public class Customer {

// classes describe data
 public int Id;

 public string Name;

public string Phone;
public string City;
 …

 }

You might create a table of customers and work with data directly as first class objects:
 Table<Customer> customers = …;

// tables are real objects
 foreach(var c in customers.Where(City == “London”)) { // query is part of the

 // language
 Console.WriteLine(c.Name);

 Console.WriteLine(c.Phone);

// results are strongly typed
 }

The database query language is represented by class methods on collection objects. For example, a query might look like this:
(from c in customers

where c.City==”London”

orderby c.Name

select new {c.Name, c.Phone}).Take(5)
A great benefit of this approach is that these query expressions may be used with any enumerable collection, making the query expressions useful beyond database programming.
// Use Where to find the uppercase letters in a string

string s = "ThIs Is A sTriNg";

foreach (char ch in s.Where(c => Char.IsUpper(c)))

{

 Console.WriteLine(ch);

}
Task 1 – Using Queries with in-Memory Collections
The new standard query operators are in the System.Query namespace and are provided by the System.Query.dll assembly.
69. Keep the contact initialization code in Main, but replace the foreach statement with the following code:
static void Main(string[] args)

{

 var contacts = new List<Contact>();

contacts.Add(new Contact("Michael", "520-331-2718",

 "33140 SW Liverpool Lane", "WA"));

contacts.Add(new Contact("Jennifer", "503-998-1177",

 "1245 NW Baypony Dr", "OR"));

contacts.Add(new Contact("Sean", "515-127-3340",

 "55217 SW Estate Dr", "WA"));

var WAContacts =
 from c in contacts
 where c.State == "WA"
 select c;

 Console.WriteLine("Contacts in the state of Washington: ");

 foreach (var c in WAContacts)

 {

 Console.WriteLine(c.Name);

 }

}

70. Build and run the code to see all of the contacts from the state of Washington.

The query expression selects the specified contacts, creating a sequence that is assigned to the variable WAContacts.

Task 2 – Additional Query Expressions

71. For example, replace the previously introduced code with the following code to create a sequence of a new compiler-created anonymous type:

static void Main(string[] args)

{

 var contacts = new List<Contact>();

contacts.Add(new Contact("Michael", "520-331-2718",

 "33140 SW Liverpool Lane", "WA"));

contacts.Add(new Contact("Jennifer", "503-998-1177",

 "1245 NW Baypony Dr", "OR"));

contacts.Add(new Contact("Sean", "515-127-3340",

 "55217 SW Estate Dr", "WA"));

var WAContacts =

from c in contacts

where c.State == "WA"

select new { c.Name, c.Phone };
 Console.WriteLine("Contacts in the state of Washington: ");

 foreach (var c in WAContacts)

 {

 Console.WriteLine("Name: {0}, Phone: {1}", c.Name, c.Phone);

 }

}

The anonymous type specified in the query expression has two properties, Name and Phone. The foreach statement iterates over the sequence returned by the query expression, outputting the name and phone numbers. You can now see why implicitly typed local variables are a powerful feature: when doing queries like this, it may not be possible to specify the type of the data returned.

72. Build and run the code to see the names and phone numbers of the contacts in Washington.
Many of the query methods accept a delegate parameter. This creates an opportunity to use lambda expressions.
73. Add the following code at the end of Main:

 var num = contacts.Count<Contact>(c => c.State == "WA");

Console.WriteLine("There are {0} contacts in Washington. ", num);

The Count method counts the number of elements in the list that are true for the predicate. In this case, the predicate is the lambda expression that tests for customers in the state of Washington.

74. Build and run the code to see the contacts and a summary of the total number of contacts.
Task 3 – Implementing a Join Operation Using Query Expressions

75. Add a new member, DepartmentId, to the Contact class.

class Contact

{

 public string Name;

 public string Phone;

 public string Address;

 public string State;

 public int DepartmentId;

 public Contact(string name, string phone, string address, string state, int departmentId)

 {

 this.Name = name;

 this.Phone = phone;

 this.Address = address;

 this.State = state;

 this.DepartmentId = departmentId;

 }

}
76. Add a new Department class to the NewLanguageFeatures namespace:

class Department

{

 public string Name;

 public int Id;

 public Department(string name, int id)

 {

 this.Name = name;

 this.Id = id;

 }

}
77. In Main, update the initialization of the contacts to add their department numbers:

static void Main(string[] args)

{

 var contacts = new List<Contact>();

 contacts.Add(new Contact("Michael", "520-331-2718",

 "33140 SW Liverpool Lane", "WA", 1));

 contacts.Add(new Contact("Jennifer", "503-998-1177",

 "1245 NW Baypony Dr", "OR", 1));

 contacts.Add(new Contact("Sean", "515-127-3340",

 "55217 SW Estate Dr", "WA", 2));

78. After the contact initialization, add some code to create and initialize some departments:
static void Main(string[] args)

{

 var contacts = new List<Contact>();

 contacts.Add(new Contact("Michael", "520-331-2718",

 "33140 SW Liverpool Lane", "WA", 1));

 contacts.Add(new Contact("Jennifer", "503-998-1177",

 "1245 NW Baypony Dr", "OR", 1));

 contacts.Add(new Contact("Sean", "515-127-3340",

 "55217 SW Estate Dr", "WA", 2));

 var departments = new List<Department> {

 new Department("Engineering", 1),

 new Department("Marketing", 2)
 };
79. Add the following code to print all contacts and the name of their departments:
var WAContacts =

from c in contacts, d in departments

where c.DepartmentId == d.Id

select new { CustomerName = c.Name, DepartmentName = d.Name };

Console.WriteLine("Contacts and their departments: ");

foreach (var c in WAContacts)

{

Console.WriteLine("Name: {0}, Department: {1}", c.CustomerName,

c.DepartmentName);

}
80. Press Ctrl-F5 to run the application.
Lab Summary

In this lab you performed the following exercises.

	· Using Implicitly Typed Local Variables

· Extending Types with Extension Methods
· Working with Lambda Expressions

· Using Lambda Expressions to Create Expression Trees
· Easy Initialization with Object and Collection Initializers

· Using Anonymous Types

· Understanding Queries and Query Expressions

In this lab, you explored the new language features available in C# 3.0. Many of the features, such as implicitly typed local variables, extension methods, lambda expressions, and object initializers, provide a new level of convenience for C# developers. Together, the features work together to create an expressive language for data access. This lab has provided you with an introduction to the new language features so that you can immediately begin to apply LINQ technology to your work, increasing your productivity as you are able to work with data as objects.

Page 1
Page iii

