.

State of Washington
Department of Licensing

Mainframe Migration Project

- Technical Case Study -
TABLE OF CONTENT

31. Introduction

42. Background

42.1 State of Washington Department of Licensing

42.2 Business Imperatives

52.3 Scope of the Replatforming Project

62.4 Requirements

62.5 Constraints

83. Solution Architecture

83.1 Migration Options

113.2 Migration Solution

113.2.1 Data

123.2.2 Programs and Codes

123.2.3 Batch

133.3 Summary

143.4 Key Design Options/Decisions

143.4.1 Database Access Technology

143.4.2 Database Migration

153.4.3 Language Selection

153.4.4 Database Access Instruction

163.4.5 Job Control Language

163.4.6 External Interfaces

173.4.7 File Structure

173.5 Key Technical Challenges

173.5.1 Database

183.5.2 COBOL Applications/ Batch Jobs

193.5.3 User Interface

214. Execution Architecture

215. Operational Architecture

216. Development Approach

216.1 Development Methodology

226.2 Project Team

226.3 Phased Implementation Approach

236.4 Development and Migration Tools

246.5 Development Process

257. Testing

257.1 Test Team

267.2 Test Process

267.2.1 Online Testing

267.2.2 WebService Testing

277.2.3 Batch Testing

278. The Outcome

1. Introduction

The State of Washington Department of Licensing (DOL) originally built its IT infrastructure around a Unisys mainframe. Over the last 30 years, the infrastructure has grown and now supports a significant number of applications. DOL employees developed all of the Unisys application code, and they are still actively maintaining it today. These applications consist of over one million lines of COBOL code that access countless files, databases, middleware, and user interface screens.

In the last several years, DOL application development has branched out to include Microsoft Windows and SQL server. Maintaining the existing Unisys infrastructure presented DOL with ever increasing technical, operational, and development challenges. In an effort to reduce costs and improve overall productivity, it was decided that the exiting applications and data should be ported to a Microsoft Windows-based environment. After an extensive proposal process, Fujitsu was selected as the primary vendor for what has now become known as the “Unisys Application Replatforming (UAR) Project.”

Replatforming is the process of moving an application from one hardware platform to another while maintaining the same application source code. Replatforming does not involve rewriting or reengineering applications using a new programming language.

The purpose of this document is to outline some of the decisions and processes required for the UAR Project. In addition, this document outlines some of the specific components of the project, including the customer requirements, the selected approach (based on the customer requirements), key design decisions, the solution architecture, and some of the technical challenges. While the details are specific to the DOL project, the concepts and issues relate to the majority of mainframe migration projects.

2. Background

2.1 State of Washington Department of Licensing

The Department of Licensing is the state agency responsible for the licensing of businesses, vehicles, and vessels, and individuals for various activities. Licensing ensures public safety and provides the state with revenue. The licensing process requires access to other state and federal computer systems, and, in turn, state and federal agencies outside of the DOL need access to information maintained by DOL.

The DOL is composed of three independent business units:

· Driver Services – Issues driver licenses, renewals, and ID cards.

· 63 offices, 4 traveling units

· Vehicle Services – Provides title and registration services for 5 million vehicle and 300,000 vessel licenses.

· 185 offices

· Businesses and Professions – Provides one-stop business licensing and registration for 74 different licenses and registrations that are administered by 11 state agencies.

These three business units are served by the following two internal business units:

· Information Services – Develops and maintains automated systems and IT infrastructure to support the department and automated inquiries from federal, state, and local law-enforcement agencies.

· Management Services – Provides centralized staff services to other divisions, for example procurement of supplies, facilities management, revenue and expenditure accounting, and administrative services such as mail, forms, and records management.

Of the five business units listed above, only the three (Driver Services, Vehicle Services, and Management Services) have applications on the Unisys mainframe. The Unisys 2200 environment (a MVS-like platform) is operated by the State of Washington, Department of Information Services, and consists of a production system and a separate development system. Both systems are Unisys Clearpath systems and are shared with the State of Washington Department of Social and Health Services. The database is DMS, and the online transaction systems are TIP and DPS.

2.2 Business Imperatives
The three main factors driving the urgency of the UAR Project were:

· The reduced availability of support resources and the increased cost for supporting the existing Unisys system

· The increased complexity to support current and future business requirements

· The need to replace the key interface for the collection of motor vehicle and tax revenues due to the pending discontinuation of the HP 3000 line upon which it is based

While the above factors primarily related to the required timing for completing the project, there were additional business drivers that added to the need to migrate from the Unisys environment. The key business benefits were identified as follows:

· Reduction in operating costs through:

· Elimination of IT support services for the Unisys environment

· Improvements in developer productivity

· Improvements in the ability to recruit and retain IT employees

· Enablement regarding the use of “off-the-shelf” products

· Improvements in system integration

· Ability to support requirements of DOL into the future, such as:

· Responding to legislative requirements

· Improving the security of its system

· Access to information for inquiry purposes

· Integration with other systems

· Improvement in service delivery by providing:

· Improved access to information

· More-reliable data

· A fault-tolerant environment
· Reducing interface complexity
2.3 Scope of the Replatforming Project

The scope of the UAR Project encompassed the migration of all data from Unisys to the Microsoft SQL server. In addition the project was responsible for the resynchronization of the Windows-based data with current data before deployment of replatformed applications.

Applications, Web services, batch processes, external interfaces, and data were included in the scope for migration to the Windows based environment. Specific components included:

· 35 applications

· 788 COBOL programs (over 1 million lines of code)

· 907 SSG/ECL job control language scripts used for batch processing (over 52,000 lines of code)

· 1241 common code/procedures (over 417,000 lines of code)

· 323 TIP Screens

· 180 electronic interfaces (primarily FTP)

· Data

· 20 million customer records

· 70 GB DMS database

· 1006 MB RDMS database

· 2,896 flat files equating to approximately 205 GB

· 400+ external interfaces with the Unisys mainframe (primarily outbound batch files)

2.4 Requirements

The primary and most important operational requirement of the UAR Project was that there would be no degradation of service during the replatforming process or in the resulting environment. Other requirements included the following:

· All applications must be migrated off the Unisys environment in two years, by May 31 2005. The funds allocated for the project expire on June 30, 2005, allowing one month of support after the last applications are migrated.

· The implementation process had to be phased. The first phase was to Pilot the application Vessels, that deals with title and registration of vessels.

· There must be minimal impact on end-user departments. Little or no training of end users should be required.

· User interfaces and reports are to retain, to the degree possible, their format, style, and navigation.

· There must be little or no impact with regard to external interfaces.

· The functions currently provided by SSG and ECL (batch job control) will be implemented using Microsoft VBScript to the degree possible.

· Interfaces must be integrated (DOL to complete and test solutions) into the replatformed code and system testing performed on the links. The majority of the interfaces are FTP-based.

· All current imbedded security rules were to be migrated and security controls implemented in the Windows environment.

· The conversion must be transparent to end-users.

· DOL provided the hardware infrastructure for the project
2.5 Constraints

In addition to the requirements specified by DOL, there were a number of constraints and conditions that had to be adhered to in the design and implementation of the UAR Project. The primary constraints included:

· Completing the project with only a limited number of DOL resources allocated to the implementation of the project.

· Accommodating a large number of users, with no impact to those users. The number of users that affected by the replatforming project include:

· Approximately 1250 DOL users plus 585 agents (private sector).
· 200 to 300 active online users/day at the Head Office. In addition, all the DOL agencies throughout the state are indirect users, accessing information through the Field System interface. Technically, they are accessing the system real-time.

· Continuing access to information - Many organizations and agencies, such as the Administrative Office of the Courts, need access to the information through their own front-end interfaces.

· Accommodating existing batch jobs. Batch jobs vary based on schedule and duration.

· Accommodating 85-100,000 transaction per day

· 5-10,000 new transactions per day, remaining transactions for renewals and inquiries

· Meeting service level requirements:

· Availability must be 24 x 7 with a small batch window each day,

· Online response time must be less than 1 second
· Adhering to the maintenance window, including the first and third Sundays of each month which are used to implement changes to production code.

· Complying with Microsoft .NET for all COBOL and Visual Basic code.

· Maintaining existing naming conventions.

· Maintaining the layout/style of existing source code.

· Maintaining or improving the existing modularization of code.

· Retaining comments that currently exist in the application code had to be retained.

· Allowing interfaces to external agencies to remain unchanged.

3. Solution Architecture

The basic elements of the solution architecture were determined by DOL, who mandated that all application servers need to be Microsoft Windows Server 2003 based. IIS 6.0 was to be used for Internet services and Microsoft SQL Server 2000 for database operations. COBOL.Net or Visual Basic.Net was the desired application source code language while Visual Basic Scripting was to be used for batch jobs and job control.

3.1 Migration Options

Given the pre-selected basic elements of the architecture, along with the operational and technical constraints associated with the project, several alternatives were explored as possible approaches for moving off the Unisys environment. The migration options included the following:

· Re-platform (an automated approach) – Automated tools are used as much as possible to move the applications to a Windows/SQL based environment without any application re-design. Re-platforming does not involve any rewriting or re-engineering of the applications using a new programming language.

Advantages

· It is not necessary to understand all of the code. If the code compiles with the tool, it should work.

· Risk is minimized since only a small amount of code would need to be changed.

· The time required to complete the project is less than an approach involving redesign or migration to a different source language.

· Applications can be migrated in a phased approach.

· Less testing is required.
Disadvantages

· May not make the application more agile or extensible

· Existing application bugs will be carried over

· Transformation (automated approach) – This option uses automated tools to transform DOL application code from the COBOL language to a new language (Visual Basic .Net or C#). Code is analyzed, componentized, and then transformed to a new language. Upon completion, the code components then have to be reviewed and put back together using significant in-house resources that understand how the logic should follow the workflow.

Advantages

· Use of automated tools would reduce the amount of time required during development and deployment.

Disadvantages

· A redesign of the database, screens, and other interfaces would be required.

· Even though some code may be “auto-migrated”, some would need to be re-written. Transformation tools available to Unisys 2200 code are still immature, automating approximately 80 to 85 percent of the code.

· Re-writing code and redesign introduces risk into the project.

· Extensive testing is required

· Functional Rewrite (a manual approach) – The process involves changing all or part of a legacy system’s application source code, using a manual process, to another technology. This process would not add any new functionality.

Advantages

· Offshore resources could be used to rewrite the code.

Disadvantages

· To meet DOL’s desired new architecture the applications would have to be redesigned once the code rewrite is complete.

· Functional rewrite would provide no immediate benefits, take longer to implement, and would be more costly than an approach where at least some code is auto-migrated.

· The degree of quality using the manual method of converting the program language from, for example, COBOL to Visual Basic, is dependent on the skills of the programmer.
· A manual rewrite is more time consuming and less consistent than using an automated method to transform the code.
· Risk of not re-producing business logic exactly requires extensive planning and testing.
· Application Redesign (a manual approach) – Based on a business analysis for each functional area a gradually rewrite of the particular code will be performed. This gradually rewrite targets the .net platform for all applications. For this option, two robust platform environments would have to be maintained for the entire duration of this alternative for testing and validation of functionality.

Advantages

· Would not require migration of existing code.

· Applications can be redesigned to meet current needs as part of the migration process.

Disadvantages

· The redesign of the Licensing Application Migration Project (LAMP) project was estimated at $55 million 10 years ago (high cost).

· Using Application Redesign as a migration strategy, for an application this large and this critical to operations, adds risk to the cost, timeline and ultimate success of the project.

· It would take much longer to develop from scratch, wouldn’t meet the timelines specified.

· It would need to maintain two platforms (old and new) throughout the project.

· Greater project risk, extensive testing required
· Mixed Strategy (mostly manual, some automated) – This strategy would combine Replatforming with Application Redesign. Application Redesign would be the preferred method for those applications where the rewrite or redesign could be completed before 2007. For larger applications that would take longer to rewrite, the Replatform strategy would apply. Each DOL division and the migration project “core team” would meet to discuss the groups of applications determined and select their desired alternative from the migration alternatives. For the Application Redesign strategy, two robust platform environments would have to be maintained for the entire duration of this alternative for testing and validation of functionality.

Advantages

· Benefit from redesign without requiring redesign of large applications.

· Ability to customize migration strategy based on department schedules.

Disadvantages

· Would require complex coordination between migration team and departments.

· Increase in risk due to the interdependencies within the organization, with some applications potentially being migrated while others were not.

· There is a possibility that with two methodologies, additional funding may be required to establish temporary “intermediary” support structures throughout the migration.

· Greater project risk, extensive testing required
3.2 Migration Solution

As the name of the project indicates, Replatforming was selected as the migration solution. In a nutshell, the replatforming solution involves the migration of three major components from the legacy platform to the new platform:

· Data

· Program and code (screen and printer interfaces)

· Batch scripts

In the context of the DOL project, the legacy components consist of DMS and RDMS databases, sequential and indexed flat files, online and batch COBOL programs and batch ECL and SSG scripts.

3.2.1 Data

The conversion of DMS and RDMS databases into SQL server databases was probably one of the most intensive migration activities in the project. DMS is a database built on hierarchical and network technology. A hierarchical database design is usually easy to convert into a relational design. The only real issue that requires a decision is to determine how many fields in the legacy database records will become columns in the new database tables and how many indexes were needed to maintain the performance (flexibility versus performance). A network database design (a.k.a. set relationship) is tricky and usually requires the addition of extra columns in the tables and additional code to implement those relationships. The major issue is usually not as much the addition of the extra columns but more the management of this new content. RDMS is a database built on relational technology and as such is the most straightforward to convert into SQL server. The only problem with RDMS is the usage of a non-standard query language that needs to be adapted into regular SQL or ADO logic.

In order to preserve the data logic of the WDOL COBOL programs and also minimize the number of changes required to implement the new database design, it was decided to code a Data layer (Data Access Routine - DAR) that would emulate the logic and behavior of DMS and RDMS calls instead of replacing them with SQL commands. A translation tool is used to massively convert the calls to the Data layer within the COBOL program.

Once the conversion of the database design is complete, a series of activities are required to extract the information from the legacy platform and load it on the new Windows platform.

1. First, all binary encoded information must be reformatted into standard display ASCII in order to be transported across the platforms. Most FTP utilities will take care of the differences in the collating sequence between the two platforms but will most likely require changes to any processing that rely on sequencing (sort, validation, etc.).

2. Next, decisions have to be made on the extent of data clean up that is required by the new design (mainly key, date, and numeric fields). The clean up can be accomplished on either platform.

3. Finally, the data needs to be loaded either by creating load utilities or using integrated SQL server import features such as DTS.

The major issue related to these activities was the likelihood of having to run the entire cycle within the short time frame of an implementation weekend.

Legacy flat-files, another data component, also had to be migrated. Legacy flat-files come in many flavors such as text files (cr/lf delimited), fixed or variable length sequential files (no delimiters), and indexed files (key access). There are really only two choices with this data: convert it into SQL server tables or keep it as flat file. Indexed files, which are accessed or updated by many applications or servers, are definitely good candidates for conversion to database tables. Files that are produced via batch runs, like database extracts, exchange files and reports, probably need to be kept as flat-files. Like the database data, some of the flat-files need to be transported across platforms using a technique similar to the one described in the first point above. In the context of DOL, most of the flat-files were kept as is because of the extensive support of this feature with the Fujitsu NetCOBOL compiler and utilities.

Flat files also require the creation of a folder and file naming convention which allows retaining their meaning and usage of the legacy platform, while preserving easy access and search ability on the Windows platform. The design must also accommodate for legacy features like cycle files (GDG) that have no counterpart on Windows.

3.2.2 Programs and Codes

The next components to migrate are the COBOL programs. The Unisys COBOL programs are divided into two types: COBOL programs and COBOL Procs (common COBOL source code included in the COBOL programs). Both types are supported as is within NetCOBOL with the only difference being that “Procs” are called “copybook.” Because there are some minor differences in COBOL dialects between Unisys COBOL 74 and NetCOBOL, a translation utility is used to massively adapt the code. In most cases the translation is one to one and straightforward. For example, TRANSFORM becomes INSPECT, COMP-4 becomes COMP, etc.

Because the target platform is Windows .NET, COBOL programs must be packaged into different types of components or assemblies. The DOL environment used three different kinds of user interface: batch, online without screen and online with screen.

· The batch COBOL programs were packaged as console applications (.exe). These are to be run on a batch server running a “Tidal” batch scheduler.

· The online COBOL programs without screen were packaged as ASP.NET Web Services applications (.dll). These were run on load balanced IIS web servers.

· The online COBOL programs with screens were packaged as ASP.NET Webform applications (.dll). These were also run on load balanced IIS web servers.

DOL required that the mainframe terminal look and feel of the screens be maintained. As a result, Fujitsu decided to use NeoKicks to simplify the conversion and execution of the mainframe screens into .Net Webform (.aspx) pages. NeoKicks also allowed for the retention of many legacy TP functionalities such as the use of transaction codes and conversational modes to trigger the programs.

3.2.3 Batch

To perform the batch conversion, the Unisys ECL and SSG scripts were converted into VBScript components to be run as part of the “Tidal” batch scheduler environment. To minimize the conversion and training impacts, the VBScripts followed the ECL syntax as much as possible.

Several Unisys tools and utilities such as SORT were also replaced by Windows utilities (e.g. PowerBSort).

3.3 Summary

· DMS and RDMS databases become SQL Server databases;

· Flat files stay as flat files on a Windows file server;

· COBOL online programs become ASP.NET .dll and .aspx files, running on an IIS server;

· COBOL batch programs become .NET .exe, running on a “Tidal” batch server;

· ECL and SSG scripts become VB scripts, running on a “Tidal” batch server;

· Unisys utilities replaced by Windows utilities (BSort, File Utility).

The following diagram highlights the major components of the solution architecture:

[image: image1.emf]Overall Migration Solution

Migration

.NET Platform

Unisys Platform

ECL/SSG

ECL

Conversion

134 SSG

773 ECL

Scripts

Other Utilities

(DolExecECL, FTP, CYCLE, BSORT

VB Scripts

Batch Server

24x7 Scheduler

Fujitsu’s NetCOBOL

Compiler

NetCOBOL

Batch Program

Batch Cobol

Source

Code

Source Code

Analyzer

Source

Documentation

788 COBOL

1241 Procs

323 Screens

134 SSG

773 ECL

Scripts

Fujitsu’s Data Access

Routine (DAR)

(DMS to SQL Call)

Flat

Files

IIS Web Server

Fujitsu’s NeoKicks

ASP.NET

Web forms

Online/Service

Cobol

&

Tip-DPS/BMS

Maps

ASP.NET

Program

DMS/RDMS

Unisys

Flat Files

Data

Migration

Flat

Files

Legacy

Data

Transformed

DMS/RDMS Data

.NET Compatible

Flat File

SQL Server 2000

Source Code

Migration

3.4 Key Design Options/Decisions

With the key elements of the solution architecture defined and the overall migration solution selected, there were a number of key design decisions that had to be made.

3.4.1 Database Access Technology

In the Windows environment, the two supported options considered for database access were ADO and ADO.net. ADO is the defacto feature rich standard for database access. ADO.NET was introduced with the .NET environment but it is not a replacement for ADO. Both technologies have their advantages and their disadvantages.

ADO.net provides better performance than ADO but currently lacks some of the features mainframe programs utilize and rely on–for example pessimistic locking and cursor stability. The disadvantage of ADO, however, is that it is an older technology and would degrade performance in the new environment.

Decision
The initial decision was to use ADO.net. Unfortunately, ADO.net does not contain the features necessary to provide the required functionality. As such, the new environment was implemented using ADO. During testing it was realized that the performance of some of the functions, such as reading the entire database for report generation, was negatively impacted. To address this, some of the simpler functions were implemented using ADO.NET. For operations like reading the entire database, this improved performance by seven times compared to the original Unisys environment.

3.4.2 Database Migration

In the Unisys environment the database design was very simple. It was basically one table that contained all of the information. This did not provide DOL with any flexibility. With the selection of SQL as the database for the replatformed environment, DOL could take advantage of SQL features to gain performance and flexibility. However, the data needed to be migrated from the Unisys platform to some form of a SQL database. The alternatives were to completely redesign the database structure or to preserve the Unisys database design in an SQL database

Redesigning the database would allow DOL to take advantage of SQL query features, as fields can be designed as separate columns. This would provide a flexible structure for reporting and for future enhancements. Unfortunately, it would also require a redesign for most of the COBOL programs. In addition, the new flexibility would only be an advantage if performance was not impacted. For example, a redesign of one application could cause a batch program to exceed the amount of time allowed for the process.

Preserving the Unisys database design in a SQL database would minimize the amount of changes needed to the applications and would maintain the performance of Unisys environment. Unfortunately, it would not allow DOL to take advantage of SQL features such as flexibility for creating reports and performing inquiries.

Decision
DOL decided to redesign the database and work on the redesign in parallel with the replatforming project. The development team met with each division to determine the design of the database. It was clear, however, that for some programs the structure of the old database would still be required. The team developed and implemented a database utility that simulated the structure of the old database for the existing programs. This allowed the team to minimize the amount of code changes for the old programs while still allowing new programs to take advantage of the new design and flexibility.

3.4.3 Language Selection

The applications running on the Unisys mainframe were developed using COBOL. The Windows environment supports COBOL and other programming languages. In selecting a programming language DOL considered the options of continuing with COBOL or switching to Visual Basic.

Continuing to use COBOL in the new environment had several advantages. There are a number of tools available for converting Unisys COBOL to a .NET language. These tools are well developed and as such, the number of errors upon conversion is minimal and any problems can be corrected by existing staff as they are familiar with the COBOL code.

Conversely, while COBOL is still heavily used today, it is a legacy development language better suited to a mainframe environment. Windows applications and a larger pool of skilled labor will decrease the cost for future code development.

The primary disadvantage of converting to Visual Basic is the need for rewriting significant amount of code. There are automated tools for code conversion, but they are not 100% reliable. In addition, the amount of time and energy required to cross-train or retrain developers on Visual Basic would not only increase the cost of the project but it would also add to the amount of time required to complete the project.

Decision
DOL decided to continue to use COBOL as the programming language. For DOL, the time, effort, and cost involved in switching to a different language were greater than the benefits that change would provide.

3.4.4 Database Access Instruction

Restructuring the database from a Unisys based DMS/RDMS structure to a Windows based SQL structure required a decision on how database access instructions would be handled. Two of the options considered were to continue using DMS calls or change over to use SQL calls.

Continued utilization of DMS calls would minimize the amount of code changes and thus reduce the amount of effort required and decrease the risk of error during the rewrite process. However DMS would have to run in a simulated environment that would not be able to access data directly or take advantage of SQL features.

Using SQL calls provides direct access to the data and allows the use of SQL features but requires a rewrite of the code.

Decision

The final decision was to combine the above two options and create a custom data access layer that translated DMS calls into SQL calls.

3.4.5 Job Control Language

One of the requirements of the RFP was to migrate all ECL and SSG scripts to VB Script, while maintaining independence from the scheduler application. The alternatives considered for this, were to either use standard VBScript or use a custom ECL emulator that would translate ECL – like syntax to VBScript.

Using true VBScripts would eliminate the reliance on ECL-like components and would allow the system to be more independent of the scheduling module. However, because DOL programmers are not familiar with VBScript, they would require a significant amount of training to create and maintain the scripts.

Using the ECL emulator would allow DOL staff to continue using ECL syntax while learning VBScript.

Decision

As per the requirement outlined in the RFP, all scripts were migrated to VBScript and the design decision was to use custom ECL emulator to present the VBScript as ECL to the user. This decision provided DOL programmers with a viable transitional tool.

3.4.6 External Interfaces

DOL exchanges information with approximately 180 external systems. In the Unisys environment, most of this is done through a Telnet interface access and the use of a process called “screen-scraping.” In the Windows environment the introduction of HTML made screen-scraping obsolete. The options considered were to build a new interface that would emulate screen-scraping or to utilize web services and provide formatting specific to each interface.

Developing an HTML screen-scraping interface was never really an option, as it would have taken a significant amount of time to develop an interface that would emulate the current process. The second option, while time consuming, would provide the users with a better and more usable interface.

Decision

The decision was to work with each department and external party to provide them with an interface that supplies the information in the format they are currently expecting, therefore minimizing changes by the consumers of DOL services. These services are built as web services and they format the information requested into a string that emulates the format of the legacy interfaces, Using web services provides DOL with more flexibility for future interface development and it renders the Telnet interface obsolete.

3.4.7 File Structure

The applications in the Unisys environment used approximately 2,900 flat-files. The data contained in these files, along with the applications accessing them, needed to be migrated to the Windows platform. There were two options for this migration, either maintaining the flat-file structure or converting them to a database.

Maintaining the flat-file structure, would result in fewer modifications for those applications that utilized flat-files, and would make it easier to meet the file naming requirements.

On the other hand, converting flat-files to a database would provide a more flexible structure for future development, but it would require a significant number of program modifications.

Decision

The decision was made to maintain the flat-file structure primarily because the .Net COBOL compiler accommodates a flat-file structure. Conversion to a database structure, together with the necessary design and programming changes would take too much time.

3.5 Key Technical Challenges

As with any large scale migration project, the migration effort was not without its share of challenging technical issues. To meet the specified requirements and to support the design decisions, there were several technical issues that had to be addressed. This section highlights a few of the major issues encountered during development.

3.5.1 Database

Data Conversion

Issue

The primary issue encountered with the conversion of data from the Unisys environment to the Windows environment was whether or not to clean the data prior to migration. Field definition between the two systems is slightly different and thus migrating some data types to SQL was a problem. For example, if a field is defined in SQL as a “date” field, then the information in that field must contain a valid date. However, there were situations where the existing date fields in the database contained invalid values and resulted in error reports.

Resolution

A test migration was performed as part of the process. If data was found to be in error, a report was sent to the corresponding department for review and correction. In some instances an agreed upon default value was automatically inserted.

Database Migration

Issue

In order to implement the migrated application, the corresponding production data also had to be migrated from the Unisys environment into the SQL database. This process involved extracting the data, transporting the data, and then reloading the data. Due to the large volume of information, it took almost 24 hours just to perform the migration. Once the migration was complete, additional time was required to test user interfaces and functionality. This made the implementation process very challenging as a significant number of the departments operate around the clock.

Resolution

It was clear that the database migration could not be completed on a single weekend and thus planning became a critical component of the project. Data was migrated on a department by department (application) basis. To allow sufficient time to both migrate and test all the affected systems, migrations were scheduled over three day weekends or during periods of low activity. To accommodate a department that received requests on a 24x7 basis, inquires from users were redirected as read only requests to the old mainframe system or stored until the implementation was complete.

3.5.2 COBOL Applications/ Batch Jobs
Migrating Batch Jobs

Issue

DOL has a significant number of scheduled batch jobs. The challenge was to migrate them without affecting the schedules or functionality.

Resolution

The solution was to select a scheduler application with the capability of converting the existing schedules to the new application. During the pilot, it was determined that the scheduler initially selected was not robust enough to provide the required functionality. To address this, a decision was made to switch to an enterprise multi platform scheduler called Tidal.

Internal Security Embedded into Applications

Issue

When programmers created the original COBOL applications it was common practice to embed security features in the code itself. As a result many of the DOL applications were expecting specific information, such as a user ID, to be returned before continuing execution. The challenge was to provide the same level of security in the Windows environment without breaking any of the applications.

Resolution

All security information for authentication and authorization is now stored in Active Directory. Before users can access any part of the new application they must be logged in as valid users within the agency domain (integrated security). Authorization is enforced using standard security features (Folders, IIS virtual folders, SQL Server security, etc.). Within the application, access to interface features (Menu options, Inquiry, Update, Delete, etc.) are maintained as on the mainframe, but are now authorized via a call to Active Directory. Authorization rules are implemented via the creation of security groups. Some legacy security information was also migrated and is now associated with the UserID. This information is usually retrieved in many programs and is used to produce consistent audit information.

File-Naming Conventions

Issue

In addition to the customer requirement of maintaining the existing file naming- conventions, users had to be able to browse the directory as they had in the old mainframe environment. This included replicating the versioning mechanism functionality. The issue was not easily resolved as mainframe naming conventions or mappings are not always compatible with Windows folder-naming and file-naming restrictions.

Resolution

A utility was developed that addressed both of the issues. The utility enabled the Unisys naming conventions in Windows and translated version files to a Windows folder/file structure by creating a folder with the original file name. Subsequent files were automatically sequenced as they were moved or saved to the folder.

3.5.3 User Interface

Cursor Behavior—Skip to Next Field

Issue

In the original environment, completion of a field on a data-entry screen automatically advanced the cursor to the next field. Customer requirements dictated that this functionality be maintained in the new environment.

Resolution

This feature did not exist in the Windows environment. Custom code was developed to accommodate this functionality.

Emulating Terminal Fonts

Issue

One of the goals of the project was to retain the usability of the graphical user interface (GUI). To achieve this, it was necessary to find a font that closely matched the current terminal emulation.

Alternatives

The following alternatives were explored:

· Using the current Attachmate UTS font. This would satisfy the requirements, but DOL could only use the Attachmate font by continuing to license the Attachmate product. After the migration, Attachmate would no longer be necessary for the majority of users and licensing it for font usage would be an expensive alternative.

· Using the Microsoft font that most closely matches the Attachmate font. The Microsoft font was a viable solution for non-DOL users, but for DOL users, the font was not consistent, and as a result some of the screens were not readable.

· Searching for a third-party font.

· Purchasing font design software and designing the font internally. In addition to the purchase price of the font software, this alternative required finding an internal resource capable of creating the font.

Resolution

The search for a third party-font led to the selection of a raster font that retained the usability of the interface.

Implementing Multiple Style Sheets

Issue

The Unisys environment provided functionality for screen and browser printing. Browser printing used the COURIER (Microsoft font) as the printer font, the font size was reduced, colors were adapted to produce the expected results on paper, and the bold attribute was used to reproduce the effect of highlighting on the screen. This functionality had to be replicated in the new environment.

Resolution

The Replatforming project introduced multiple style sheets, one designed for the screen, and the other designed for the printer to replicate functionality.

4. Execution Architecture

The migrated production environment consists of the following components:

· Windows 2003 Server Enterprise Edition as the server operating system

· 2 load-balanced Web servers running IIS V6 for Internet services

· 1 batch scheduler with failover

· 2 clustered batch servers

· 2 Microsoft SQL Server 2000 database servers in an Active/Active cluster

· NetCOBOL and NeoKicks for application development

· VBScript and Windows Scripting Host for batch jobs and job control

· Windows 2000 Professional as the client workstation operating system

· Internet Explorer V6.x SPx for client workstations

5. Operational Architecture

The mainframe migration project was not the first project within DOL to introduce Windows into the environment. There were already well established operational procedures for Windows that were required to remain intact. The operational procedures are maintained by DOL and were not modified as a result of the project.

Additional operational features, such as disaster/recovery, would be necessary but not included in the funding for this project.

6. Development Approach

This section describes the approach that was used for this project.

6.1 Development Methodology

Throughout the project, the ManagementSuite module of the Fujitsu Macroscope methodology was used as the fundamental project management framework in terms of project organization, planning, and control. Risk, scope and change management techniques along with project performance monitoring techniques defined in Macroscope were particularly useful.

The development and testing approaches, although very particular to this type of project, were based on the ProductivityCentre module of Macroscope. It was used in the way to document areas such as the conversion strategy, testing plans and documentation as well as the implementation strategy.
For more information regarding Macroscope please contact Fujitsu Consulting.
6.2 Project Team

All project personnel were assigned to one of four groups that worked in parallel with each other; online code conversion, batch code conversion, database design and data conversion, and testing. The project team consisted of the following:

· Management Group

· A full time project manager for overseeing the project.

· A testing manager to coordinate and manage the testing effort.

· A manager to oversee the transfer of the system interfaces to the new environment.

· Fujitsu Development Group

· An average of 8-10 people full time on the project over a 20 month period. Only 4-5 resources were on site at any one time. The remainder of the team functioned as a virtual team. Extensive in-house training allowed for the creation of a unified productive team with well established configuration management and issue tracking procedures. Applications ran on laptops with CVS synchronization of all changes.

· DOL provided resources for the following:

· Creation of test scripts and test cases - This involved a varying number of ‘full-time equivalent” (FTE) employees, ranging from 5 to10 depending on the phase of the project.

· Set up and administration of the Windows based server environment - approximately 1 FTE, spread over 5 different people.

· Acceptance testing of the replatformed applications (which involved many people, including end-users) - the user testing included 1 to 2 FTE’s, and acceptance testing was supported by the 5-10 FTE’s who created the test scripts.

· Configuration Management - one person full time, plus 1 additional FTE spread over many people.

· Cross-agency steering committee that included key external stakeholders because the project impacts several agencies and external organizations.

6.3 Phased Implementation Approach

To minimize risk, a phased approach was used for the Project. The phases were as follows:

1. Pilot – Migrated a small application, Vessels, which represented the complexity of the environment and the key technical challenges.

2. The goals of this pilot were to:

a. Confirm technical applicability of the solution.

b. Work out migration issues.

c. Confirm approach.

d. Develop processes and procedures.

e. Judge the vendor’s ability to work and deliver with DOL.

3. Develop Complete Project Plan – Based on the lessons learned during the pilot, refined and further developed the overall project plan and schedule.

4. Replatforming – Migration of the remaining applications by division.

Note: As there was only a minimal amount of application sharing between divisions, it was possible to migrate them one at a time. For the small number of divisions that shared applications, a temporary interface was provided to allow coexistence of the old and the new applications.

6.4 Development and Migration Tools

Migration tools were used to minimize the amount of coding necessary. Using migration tools meant that Fujitsu did not have to understand the program logic, and reduced the testing and debugging effort. Any manual coding is error prone and requires thorough testing, while automated changes are much more reliable once the automated tools are proven to convert correctly. Project migration tools included:

· Fujitsu NetCOBOL to generate native Microsoft .NET executables.

This compiler was created to compile COBOL code specifically for the Microsoft .NET Framework. Once the code is migrated, developers can take advantage of all the features of .NET, such as reuse of code written in other languages, creation of XML Web services, and utilization of Visual Studio tools such as the solution explorer, editor and debugger.

· Fujitsu NeoKicks to migrate TIP/DPS screens into APS.NET web forms to create a thin-client web application (IE)

NeoKicks provides a set of tools and execution support that facilitates the migration of CICS COBOL applications to ASP.NET and NetCOBOL for .NET. This migration can bring many benefits including: cost savings, new life for the applications, and new possibilities such as the publication of XML Web Services

· Custom ECL Emulator to convert ECL/SSG to VB Script.

· Fujitsu NetCOBOL File Utility to create Windows Index data files

· Microsoft Data Transformation Services (DTS) for database loading.

6.5 Development Process

The diagram below is a visual representation of the process followed for each phase of the UAR Project.

[image: image3.jpg]DOL LEGACY MIGRATION OVERALL PROCESS

cope
CONVERSION

Jo
B ConvERSION

SCHEDULING
change req
code freeze

SoLuTIoN TESTING IMPLEVENT

DESIGN

functional infrastuciure
integraion applcation

DATA
B! ConvERSION

oH (pm): ELAY EPUTSA: JROAX FG(DCA: EM(DVITS) oK (SME): DP(SME): FutsuTeam: DL Team:

~Planning Planning Planning “RaDbatch "R&Dgaia (ETL) -ConvToolDevi -UnisysSVE -UnisysSME -Manual Conv - Planning

CSchedulng -R&Donine - Dependencies - DBA -ConvToolDevi -CodeConv -RADcaia (ETL) -Dependencies - Testing - Scheduiing

-implement - Soluion design - Appl Func spec - DAR Funcspec - DAR Devl -Job Conv “oBA - impl SVE -8 tesing

“CiertMngt -Data Archfect - Lead!lesting - Infaarchiect - Appl Dol -UnitTesing -DataConv - Inierface design - Accept Tesiing
-SoftDevilead -BugFixassign -Bugfingappl -DalaConv -Bugfiing Tool -Bug faing ~Prog Implement
~Conv Tool spec. - Implarch - Imp! SHE. - Bug fing data - Impl SME. “Buld intrface
Infra design

- Ciient Mngt

The same basic steps and processes were followed for each phase of the project, and for each type of application. The steps were as follows:

1. Establish a complete inventory of all components to be migrated. Each component will be migrated, packaged, and delivered independently (no notion of application built version – version is per component).

2. Design test plans and test cases for each components

3. Analyze components to determine all exceptions not handled by the automatic translation tools or developer conversion recipe.

4. Design new recipe by Architects and SME to handle exceptions
5. Categorize recipes as batch, on line, and web services

6. Adapt translation tools and developers recipe

7. Put code through automatic translation tools

8. Maintain a version of each components at each step of the conversion

9. Organize and prioritize migration sequence

10. Design and load database

11. Apply conversion recipe for clean compile and execute unit testing
12. Need of specific test case, data and files for most components

13. Perform functional testing (specialized testers - no developers)

14. Use tracking tool to document, assign, and track bugs

15. Document test results

16. Deliver tested components to Client

17. Transfer setup/installation instruction for all components, data, and environment to client

18. Test of script results

19. Test Client QA (specialized testers - no final users)

20. Stress testing using a test harness

21. User Acceptance testing UAT (final users)

22. Delivery of system documentation (deliverables) and training to Client

23. Implementation

7. Testing

The basic approach for testing was predefined by DOL. The objective was to verify that the replatformed applications performed at least as accurately, quickly, and reliably as they did on the Unisys platform, and that the replatforming process had inserted no defects. The key elements of the testing approach are outlined in this section.

7.1 Test Team

Test teams were created based on application type and tester role. The Fujitsu test team consisted of a minimum of three individuals: one assigned to online and Web service testing, one to batch testing, and a test lead to review test results, determine the necessary steps to follow for resolving any issues that may have surfaced during the test and to coordinate delivery of components to Client.

DOL provided resources for acceptance testing that included a Test Coordinator, a Configuration Manager/Inventory Controller, and a Lead Tester.

7.2 Test Process

The actual test process was as follows:

1. Unit Testing was performed by each developer on the modules assigned to them. Testing was minimal if the code was migrated using conversion utilities with no errors; assuming that if the code migrated ok, it must still work.

2. After Unit Testing is done, each converted module is moved to the Fujitsu Functional Testing. This step is performed on an integrated environment composed of Web, SQL, and Batch servers in a configuration similar to that of production. AT this level, testing is performed by testing specialist running pre-prepared user transactions (test scripts).

3. Interface Integration Testing is also performed in the functional test environment. Additional testing of external application interfaces is performed by a functional tester from Fujitsu along with functional testers from the interfaces applications.

4. Performance/Stress Testing was performed once the code was migrated to a test environment. Testing was performed with a large set of customer data. Test scripts from the Functional Testing level are used, and are automatically repeated to generate required transaction volumes

5. Client Quality Assurance Testing to determine how the code interacts with other modules was performed by DOL.

6. User Acceptance Testing was performed on a copy of the production formatted database that was to be used for migration. All functionality of the new modules was tested.

7. Pre-Implementation Testing (conducted by Fujitsu) was a final test using a copy of an already migrated database. This test was similar to a parallel test, but all data was re-loaded upon migration, nothing is saved. The test included all interfaces and external functions along with a final stress test and any necessary performance tuning. The database was re-loaded before actual migration.
7.2.1 Online Testing
As the goal for the replatforming project was to migrate functionality “as is”, testing was performed by specific scripts, provided by the client, that were originally written for the old application. As needed, Fujitsu performed additional ad-hoc testing to ensure the quality of the migrated component.

In some instances, the .NET environment and the use of a browser produced different application behavior. In those cases an explanation for the different behavior was provided and the modified (but still correct) application behavior became part of the training for the users.

7.2.2 WebService Testing
Both unit and functional testing was performed using integrated Internet Explorer WebService testing tools provided by the .NET framework. Integration tests were performed by the client interface team, calling the service directly from the external application. Because these Interface/Service components provided business logic to an outside system, the migrated services also had to be tested by an outside vendor or system (WSP, HP, etc.) using custom developed test harnesses.

7.2.3 Batch Testing

Testing of batch jobs required up-front preparation to provide the necessary platform for performing the tests, and was dependent on:

· Database setup to simulate production jobs

· File synchronization with database setup

· External interfaces process (FTP)

· Validation of outputs (reports and files produced), and comparison of job execution to the Unisys system

A parallel testing approach was used, whereby tests were performed on both the Unisys Windows platforms, then parameter files, reports and other print objects, and data files were compared and validated. The test results were provided to the DOL to support its own Quality Assurance testing.

8. The Outcome

At the time this paper was written, all of the migrated applications were up and running and all external interfaces were functioning properly with no outages and excellent online and batch performance. Approximately 1300 users were accessing the Windows-based system. 1100 of these users are accessing the system from the 185 licensing field offices throughout the state, and about 200 users are working from DOL Head Office in Olympia, WA. More users will be added as additional applications are converted in the upcoming phases. .

To date, the project has been able to meet all of the requirements and address all of the constraints outlined in this document. Some of the key elements that contributed to the success of the overall project were the adherence to a defined methodology, the availability of tools, and the extensive testing performed. Great results in the area of performance and success with code and user interface conversion minimized user impact and resulted in a seamless transition.

[image: image2.png]

