14 Chapter 7 Web Server Scalability
Improving Scalability by Optimizing IIS 6.0 Caches 29

Chapter 7

Web Server Scalability

Internet Information Services (IIS) 6.0, running on the Microsoft® Windows® Server 2003 operating system, includes a new architecture and new features to help your application server scale. Scaling is the ability of a system to handle increasing demands at an acceptable performance level. If an application server and the underlying infrastructure scale, the application can handle steady traffic growth, in addition to occasional peaks in traffic volumes, while maintaining good performance. If an application server and the underlying infrastructure do not scale, clients connecting to that application can experience poor response times, errors, or other problems that might ultimately frustrate end users.

In This Chapter
2 Scaling IIS 6.0

7 Improving IIS 6.0 Scalability and Availability with Network Load Balancing

16 Improving Scalability by Optimizing IIS 6.0 Queues

25 Improving Scalability by Optimizing IIS 6.0 Caches

39 ISP Scaling — Strategies for Hosting Thousands of Sites

44 Improving Scalability Through UNC–Based Centralized Content Storage

53 Case Study: Scaling an ASP.NET Web Application on IIS 6.0

59 Additional Resources

Related Information

· For information about performance monitoring and tuning, see “Optimizing IIS 6.0 Performanceiisrg_per_OVERVIEW” in this book.

Scaling IIS 6.0

Changes in the Internet Information Services (IIS) 6.0 architecture have led to dramatic improvements in how IIS scales. During preliminary testing, IIS 6.0 scaled better than earlier versions of IIS. Those preliminary results showed that on a default installation, while running in worker process isolation mode, IIS 6.0 was capable of the following:

· Hosting as many as 20,000 static-content sites.

· Hosting as many as 2,000 application pools.

· Processing 25,000 requests per second for a 15-KB cached static file with Hypertext Transfer Protocol (HTTP) Keep-Alives enabled.

· Running hundreds — or potentially thousands — of simultaneous worker processes.

[image: image1.wmf]
Note

Performance and scalability results vary depending on hardware and software configurations. Microsoft does not make any warranties or guarantees about these preliminary results.

Additionally, processing throughput has greatly improved for installations with up to eight processors. Default thread pool, queue, and cache settings have all been tuned to increase throughput. Startup and shutdown times are faster than earlier versions. Simply put, your IIS Web server installation should scale better on a default installation of IIS 6.0 than on any earlier version of IIS. However, there are many variables in a Web server installation that can affect how IIS 6.0 scales. Scalability is dependent on the least scalable part in your server installation. Factors such as network latency, slow back-end processing, a shortage of RAM on your servers, or poorly designed and untested applications can all undermine how IIS 6.0 scales. If one part does not scale, the whole installation suffers.

This section provides a brief overview of the many changes and features that help IIS scale, and also describes some of the changes and features in the Microsoft® Windows® Server 2003, Standard Edition; Windows® Server 2003, Enterprise Edition; Windows® Server 2003, Web Edition; and Windows® Server 2003, Datacenter Edition operating systems that can increase the scalability of your server installation. Be aware that scaling an application server is a process much like tuning the performance of your server. Performance and scalability are intricately linked, and both goals require long-term planning, testing, and monitoring. For more information about performance monitoring and tuning, see “Optimizing IIS 6.0 Performanceiisrg_per_OVERVIEW” in this book.

Scalability Features in IIS 6.0

This section describes features in IIS 6.0 that can improve the scalability of your application server.

[image: image2.wmf]
Important

Do not enable the features described in this chapter on a production server before you establish a performance baseline in a test environment. If enabling any of these features degrades performance, continue testing or disable the feature and return your server to the pre-change configuration.

Worker process isolation mode

IIS 6.0 introduces worker process isolation mode, which runs all Web applications in an isolated environment. When you run IIS in worker process isolation mode, you can configure applications to run in separate application pools. An application pool is a grouping of URLs routed to one or more worker processes. An application pool allows specific configuration settings to apply to these worker processes.

Worker processes operate independently: if one fails, it does not affect other worker processes. The pooling of applications protects applications from the effects of worker processes that support other application pools. In this way, applications are protected from each other.
When a worker process enters an unhealthy state and stops processing requests, the HTTP protocol stack (HTTP.sys) continues to queue requests. The World Wide Web Publishing Service (WWW service) detects that the worker process is unhealthy and shuts it down, starting a new worker process if requests are waiting in the queue or if new requests arrive. Hence, even when a worker process fails, the WWW service, by means of HTTP.sys, continues to accept requests and shields the user from loss of service because the client can still connect to the WWW service.

For more information about IIS 6.0 application isolation modes, including how to enable and configure worker process isolation mode, see “Running IIS 6.0 as an Application Serveriisrg_was_OVERVIEW” in this book. For more information about how IIS 6.0 processes requests, see “IIS 6.0 Architectureiisrg_arc_OVERVIEW” in this book.

On-demand process start

IIS 6.0 does not allocate resources at initialization time; instead, it allocates resources as needed, which increases site scalability. In particular, IIS 6.0 application pools only start processes when the first request for a URL is served by the application pool.

HTTP Keep-Alives

IIS 6.0 supports HTTP Keep-Alives, an HTTP specification that can significantly improve server performance. Most Web browsers request that the server keep the connection open across multiple requests; this is called a Keep-Alive. Without this feature, a browser must make numerous connection requests for a page that contains multiple elements, such as graphics. A separate connection might need to be made for each element. HTTP Keep-Alives increase server efficiency by reducing server activity and resource consumption. HTTP Keep-Alives can also increase browser responsiveness across a slow connection. For more information about HTTP Keep-Alives, see “Optimizing IIS 6.0 Performanceiisrg_per_OVERVIEW” in this book.

Web gardens

When running in worker process isolation mode, IIS can be configured to have multiple worker processes servicing requests for an application pool. This configuration is known as a “Web garden.” When a worker process in an application pool is busy processing a request, other worker processes can accept and process requests for the application pool. For more information about Web gardens, including how to enable or configure this feature, see “Running IIS 6.0 as an Application Serveriisrg_was_OVERVIEW” in this book.

Processor affinity

To efficiently use resources on large multiprocessor servers, IIS 6.0 enables you to configure application pools to establish affinity between worker processes and individual processors. When set, processor affinity forces worker processes to run on specific microprocessors or CPUs. This affinity applies to all worker processes that serve the Web sites and applications of an application pool. For more information about processor affinity, including how to enable or configure this feature, see “Optimizing IIS 6.0 Performanceiisrg_per_OVERVIEW” in this book.

Idle timeout for worker processes

An IIS 6.0 application pool can be configured so that its worker processes request a shutdown if they are idle for a configurable amount of time. Shutting down worker processes frees up unused resources and reduces CPU load. For more information about idle timeout, including how to enable or configure this feature, see “Running IIS 6.0 as an Application Serveriisrg_was_OVERVIEW” in this book.

Bandwidth throttling

If the network or Internet connection used by your Web server is also used by other services, such as e-mail or news, you can limit the bandwidth used by your Web server so it is available for those other services. If your Web server hosts more than one Web site, you can individually throttle the bandwidth used by each site. For more information about bandwidth throttling, including how to enable or configure this feature, see “Optimizing IIS 6.0 Performanceiisrg_per_OVERVIEW” in this book.

HTTP compression

HTTP compression allows faster transmission of pages between the Web server and compression-enabled clients. In addition, HTTP compression makes the best use of available bandwidth and can significantly increase site performance. For more information about HTTP compression, including how to enable or configure this feature, see “Optimizing IIS 6.0 Performanceiisrg_per_OVERVIEW” in this book.

64 GB cache capacity

For workloads that require large amounts of cached data, the IIS 6.0 kernel-mode driver, HTTP.sys, can be configured to cache up to 64 gigabytes (GB) on an x86-based or compatible processor–based system. For more information about IIS caches, see “Improving Scalability by Optimizing IIS 6.0 Cachesiisrg_sca_MKGE” later in this chapter.

Centralized binary logging

IIS 6.0 supports centralized binary logging, where multiple Web sites send binary, unformatted log data to a single log file. When many Web sites are hosted on the same server, the process of creating hundreds or thousands of formatted log files and writing the log data to disk can quickly consume valuable CPU and memory resources, thereby creating performance and scalability problems. Centralized binary logging in IIS 6.0 minimizes the server resources that are used for logging, while providing detailed log data for organizations that require it. For more information about centralized binary logging, including how to enable or configure this feature, see “Analyzing Log Filesiisrg_log_GADT” in this book.

Scalability Features in Windows Server 2003

This section describes features in Windows Server 2003 that can improve the scalability of your application server.

[image: image3.wmf]
Important

Do not enable features described here on a production server before you establish a performance baseline in a test environment. If enabling any of these features degrades performance, continue testing or disable the feature and return your server to the pre-change configuration.

Kernel-mode driver

Windows Server 2003 introduces a new kernel-mode driver, HTTP.sys, for HTTP parsing and caching. IIS 6.0 is built on top of HTTP.sys. HTTP.sys is specifically tuned to increase Web server throughput by directly processing requests in the kernel (in specific circumstances) or by efficiently routing requests to user-mode worker processes. The combination of kernel request processing and efficient user-mode routing have dramatically improved how IIS 6.0 scales and performs. For more information about HTTP.sys, see “IIS 6.0 Architectureiisrg_arc_OVERVIEW” in this book.

64-bit support

The complete Windows Server 2003 code base is compiled for both 32-bit and 64-bit platforms. Organizations that need highly scalable applications can take advantage of an operating system that runs — and is supported — on these two platforms.

WSRM

Windows System Resource Manager (WSRM) is a feature of Windows Server 2003, Enterprise Edition and Windows Server 2003, Datacenter Edition.

With WSRM, you can control how CPU and memory resources are allocated to applications, services, and processes. Managing resources in this way improves system performance and reduces the chance that applications, services, or processes will interfere with the rest of the system; it also creates a more consistent and predictable experience for users of applications and services running on the computer.

WSRM can be installed from the Windows Server 2003, Enterprise Edition or Windows Server 2003, Datacenter Edition operating system CD. For more information about WSRM, see the Help files that are included in the WSRM snap-in.

DFS

Distributed File System (DFS) unifies files on different computers into a single namespace, making it easy to build a single, hierarchical view of multiple file servers and file server shares on a network. To use DFS as the file system for IIS, select the root for the Web site as a DFS root. You can then move resources within a DFS tree without affecting any HTML links. For more information about DFS, see Help and Support Center for Windows Server 2003.

FRS

The File Replication service (FRS) provides multimaster file replication for designated directory trees between designated servers running Windows Server 2003. The designated directory trees must be on disk partitions formatted with the version of the NTFS file system used with Windows Server 2003. FRS must be used with DFS. DFS uses FRS to automatically synchronize content between assigned replicas. The combination of DFS and FRS can also work with the Active Directory® directory service to automatically synchronize the content of system volume information across domain controllers. For more information about FRS, see Help and Support Center for Windows Server 2003.

Improving IIS 6.0 Scalability and Availability with Network Load Balancing

The best way to guarantee the scalability and availability of your Internet services is to host your site with more than one computer. Microsoft Windows Server 2003 includes the Network Load Balancing service. Network Load Balancing enhances the availability and scalability of Internet server applications such as those used on Web, File Transfer Protocol (FTP), firewall, proxy, and virtual private network (VPN) servers, in addition to other mission-critical servers. A single computer running Windows can provide a limited level of server reliability and scalable performance. However, by combining the resources of two or more computers running Windows Server 2003 into a single cluster, Network Load Balancing can deliver the reliability and performance that Web servers and other mission-critical servers need. Figure 7.1 shows two connected Network Load Balancing clusters. The first cluster consists of two hosts and the second cluster consists of four hosts.

Figure 7.1 Load Balanced Clusters

[image: image4.wmf]
Each host runs separate copies of the server applications, such as those for a Web, FTP, or Telnet server. Network Load Balancing distributes incoming client requests across the hosts in the cluster. The load weight to be handled by each host can be configured as necessary. You can also dynamically add hosts to the cluster to handle the increased load. In addition, Network Load Balancing can direct all traffic to a designated single host, called the default host.

Network Load Balancing allows all of the computers in the cluster to be addressed by the same cluster IP address (but also maintains their existing unique, dedicated IP addresses). For more information about Network Load Balancing, see Help and Support Center for Windows Server 2003.

[image: image5.wmf]
Note

FrontPage® Server Extensions from Microsoft do not work in a Network Load Balancing environment. Also, FrontPage Server Extensions do not work side-by-side with SharePoint™ Team Services from Microsoft on the same virtual server or Web site. For more information about upgrading your FrontPage-extended Web sites, see the SharePoint Team Services Administrator’s Guide link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources.

IIS Responses to Load-Balanced Application Pool Behaviors

IIS 6.0 is designed to work with a variety of hardware and software network load balancers. However, the introduction of application pools and health-monitoring features such as rapid-fail protection in IIS 6.0 has the potential to confuse load balancers when an application pool fails to respond to a request, or when IIS health-monitoring features act on a faulty application pool. This section describes how HTTP.sys and IIS respond to load balancers for various application pool failures or problems.

For Layer 3 and Layer 4 load balancers (that is, basic load balancers such as Network Load Balancing), when an application pool fails, IIS causes the load balancer to run a TCP reset command. For Layer 7 load balancers (more advanced load balancers that balance the load based on higher-level application data, such as URLs, session data, and cookies) HTTP.sys sends a 503 error and attempts to connect to the application pool again after a specified period of time. IIS can also be configured to shut down the faulty application pool altogether. These responses can remedy application failures at the application pool level instead of forcing the load balancer to fail over the entire server. These responses also allow healthy application pools to continue processing requests without forcing the load balancer to fail over the entire server.

Table 7.1 summarizes how HTTP.sys and IIS respond to load balancers for various application pool failures.

Table 7.1 IIS Responses to Load-Balanced Application Pool Behaviors

	Condition
	Auto-Shutdown of Application Pool?
	Layer 7 Load Balancer Behavior
	Layer 3 and Layer 4 Load Balancer Behavior

	The application pool entered rapid-fail protection.
	Yes
	HTTP 503 error
	IIS resets the TCP connection.

	The application pool CPU threshold was exceeded.
	Yes
	HTTP 503 error
	IIS resets the TCP connection.

	An administrator disabled the application pool or shut down the WWW service.
	No
	HTTP 503 error
	IIS resets the TCP connection.

	The kernel-mode request queue is full.
	No
	HTTP 503 error
	IIS resets the TCP connection.

By default, the IIS metabase property LoadBalancerCapabilities is configured for Layer 7 responses (LoadBalancerCapabilities = 2). If your organization uses Layer 3 or Layer 4 load balancers, you will need to change this property in the IIS metabase to a value of 1.

[image: image6.wmf]
Important

It is recommended that you back up the IIS metabase before you change the metabase. For additional information, see “Working with the Metabaseiisrg_met_KKED” in this book.

For more information about configuring load balancing, see the LoadBalancerCapabilities property in the “Metabase Property Reference” in IIS 6.0 Help, which is accessible from IIS Manager. For more information about the IIS 6.0 metabase, including how to change a metabase property, see “Working with the Metabaseiisrg_met_KKED” in this book.

IIS Response When a Load-Balanced Application Pool Enters Rapid-Fail Protection

When an application pool enters the rapid-fail protection state, HTTP.sys responds to requests with a 503 error. If IIS is configured to shut down the application pool when the application pool enters the rapid-fail protection state, IIS executes the auto-shutdown application pool command. For more information about rapid-fail protection, see “Running IIS 6.0 as an Application Serveriisrg_was_OVERVIEW” in this book. For load-balanced applications, HTTP.sys responds to requests in one of the following ways:

· Layer 7 response. When HTTP.sys receives requests for an application pool that is in the rapid-fail protection state, HTTP.sys sends a 503 error. If IIS is configured to shut down the application pool when it enters the rapid-fail protection state, IIS executes the auto-shutdown application pool command. When the error has been resolved, the administrator must restart the application pool.

· Layer 3 and Layer 4 response. When HTTP.sys receives requests for an application pool that is in the rapid-fail protection state, HTTP.sys resets the TCP connection that carried the request. If IIS is configured to shut down the application pool when it enters the rapid-fail protection state, IIS executes the auto-shutdown application pool command. When the error has been resolved, the administrator must restart the application pool.

For information about rapid-fail protection, see “Running IIS 6.0 as an Application Serveriisrg_was_OVERVIEW” in this book.

IIS Response When a Load-Balanced Application Pool Exceeds a Configured CPU Threshold

The IIS CPU monitoring feature allows you to configure a CPU threshold for a specific application pool. The IIS CPU monitoring feature includes the option to shut down an application pool if the CPU exceeds a configured maximum. For load-balanced applications, HTTP.sys responds to requests in one of the following ways:

· Layer 7 response. When HTTP.sys receives subsequent requests for an application pool that has exceeded the configured CPU maximum, HTTP.sys sends a 503 error. If IIS is configured to shut down the application pool when it exceeds its CPU threshold, IIS executes the auto-shutdown application pool command. When the error has been resolved, the administrator must restart the application pool.

· Layer 3 and Layer 4 response. When HTTP.sys receives requests for an application pool that has exceeded the configured CPU maximum, HTTP.sys resets the TCP connection that carried the request. If IIS is configured to shut down the application pool when it exceeds its CPU threshold, IIS executes the auto-shutdown application pool command. When the error has been resolved, the administrator must restart the application pool.

For information about CPU monitoring, see “Running IIS 6.0 as an Application Serveriisrg_was_OVERVIEW” in this book.

IIS Response When a Load-Balanced Application Pool Is Disabled by an Administrator or an Administrator Shuts Down the WWW Service

When an application pool is shut down, the requests that have already been queued in kernel mode are lost. A shutdown of this nature indicates serious application failure and presents a potential threat to the rest of the system if the application continues processing. Such an application failure can affect the integrity of data in custom applications. For this reason, all requests to that application pool should be stopped.

· Layer 7 response. When HTTP.sys receives requests for a disabled application pool, or if the administrator shuts down the WWW service, HTTP.sys sends a 503 error. When the error has been resolved, the administrator must restart the application pool.

· Layer 3 and Layer 4 response. When HTTP.sys receives requests for a disabled application pool, or if the administrator shuts down the WWW service, HTTP.sys resets the TCP connection that carried the request.

IIS Response When the Kernel-Mode Request Queue Is Full

A full kernel-mode request queue is a temporary state. After application queues finish processing other requests, the kernel-mode request queue will begin accepting new requests.

· Layer 7 response. When HTTP.sys receives requests for an application pool but the request queue is full, HTTP.sys sends a 503 error.

· Layer 3 and Layer 4 response. When HTTP.sys receives requests for an application pool but the request queue is full, HTTP.sys resets the TCP connection that carried the request.

Preserving Session State in Network Load Balancing Web Server Clusters

IIS enables a Web application to maintain user session data (also called session state) across multiple requests. For example, an online ordering application might maintain the user’s shopping cart as part of the user’s session. IIS uses session cookies, which are text files supplied by the user’s browser and stored on the user’s computer for each request to keep track of which session belongs to which user.

[image: image7.wmf]
Note

Worker processes lose session state if the worker process is recycled. The ideal configuration for storing session state with IIS 6.0 is to store user session data in a back-end database.

Ideally, Network Load Balancing always routes connections from a user who has an active session to the server where that session is stored. However, Network Load Balancing and other Layer 4 network load balancers do not use sessions or cookies to decide which Web server should handle an incoming request. For this reason, sessions can be lost between requests in a Network Load Balancing server cluster.

There are several ways to avoid losing sessions:

· Design the Web site application to store session state on the client. For more information, see “Preserving Session State with ASP Web Applications in Network Load Balancingiisrg_sca_MRNZ” and “Preserving Session State with ASP.NET Web Applications in Network Load Balancingiisrg_sca_KWLH” later in this chapter.

· Store session state on a central server-side store, such as a database.

· Use the client affinity feature. When client affinity is enabled, Network Load Balancing directs all TCP connections to the same cluster host. This allows session state to be maintained in host memory. You can enable client affinity in the Add/Edit Port Rules dialog box in Network Load Balancing Manager. Choose either Single or Class C affinity to ensure that only one cluster host will handle all connections that are part of the same client session. This is important if the server application running on the cluster host maintains session state (such as server cookies) between connections. For more information about Network Load Balancing affinity, see Help in the Network Load Balancing snap-in.

Preserving Session State with ASP Web Applications in Network Load Balancing

You can enable session state persistence for Active Server Pages (ASP) applications. If you enable session state, the server creates a new Session object for each connection, session state is accessible, session storage is allowed, Session_OnStart and Session_OnEnd occurs, and the ASPSessionID cookie is sent to the client. If you do not enable session state, state access and storage are not allowed, events are not processed, and no cookie is sent. By default, session state is enabled with the session timeout set to 20 minutes. The corresponding metabase property is AspAllowSessionState.

[image: image8.wmf]
Important

You must be a member of the Administrators group on the local computer to perform the following procedure or procedures, or you must have been delegated the appropriate authority. As a security best practice, log on to your computer by using an account that is not in the Administrators group, and then use the runas command to run IIS Manager as an administrator. At a command prompt, type runas /User:Administrative_AccountName “mmc %systemroot%\system32\inetsrv\iis.msc”.

[image: image9.wmf]
To enable session state for an ASP application

1. In IIS Manager, expand the local computer, right-click the starting-point directory of the application you want to configure, and then click Properties.

2. Click the appropriate tab: Home Directory, Virtual Directory, or Directory.

3. In the Application settings area, click Configuration, and then click the Options tab.

4. On the Options tab, under Application configuration, select the Enable session state check box.

5. In the Session timeout box, set the number of minutes until the session expires.

6. Click OK.

Preserving Session State with ASP.NET Web Applications in Network Load Balancing

If you use SqlServer or StateServer session state mode, session state might be lost when you run an ASP.NET Web application in a Network Load Balancing server cluster. To maintain session state across different Web servers in the cluster, the application path of the Web site (for example, \LM\W3SVC\2) in the IIS metabase must be the same for all of the Web servers in the cluster.

On one Web server, the instance ID of the Web site where the ASP.NET application is hosted might be 1 (where the application path is \LM\W3SVC\1). On another Web server, the instance ID of the Web site might be 5 (where the application path is \LM\W3SVC\5).

[image: image10.wmf]
Note

Web sites created on a clean installation of IIS 6.0 will maintain their individual site numbers, as determined by the ServerComment metabase property, across the load-balanced installation. For more information about the ServerComment metabase property, see the “Metabase Property Reference” in IIS 6.0 Help.

For SqlServer or StateServer session state mode to properly store session state, you must synchronize the application path for the Web site in the IIS metabase for all Web servers in the Web farm. You can change the Web site instance ID by manually editing the metabase on each Web server or by using the script Moveinstance.vbs as described in this section. For more information about manually editing the IIS metabase, see “Working with the Metabaseiisrg_met_KKED” in this book.

[image: image11.wmf]
Important

You must be a member of the Administrators group on the local computer to run scripts and executables, or you must have been delegated the appropriate authority. As a security best practice, log on to your computer by using an account that is not in the Administrators group, and then use the runas command to run your script or executable as an administrator. At a command prompt, type runas /profile /User:MyMachine\Administrator cmd to open a command window with administrator rights and then type cscript.exe ScriptName (including the full path with parameters, if any).

[image: image12.wmf]
To synchronize the application path of a Web site

7. Create a text file, and then name the file Moveinstance.vbs.

8. Add to Moveinstance.vbs the following script code, which modifies the instance IDs of the Web sites so that they are the same:

Dim WebService

Dim oldstr

Dim newstr

Dim args

Set args = WScript.Arguments

If args.Count < 1 Then

 Wscript.Echo "Must have original instance id and new instance id" & chr(10) & chr(13) & _

 "usage: moveinstance.vbs 1 5" & chr(10) & chr(13) & _

"Moves instance 1 to instance 5"

 WScript.Quit()

End If

Set WebService = GetObject("IIS://LocalHost/W3SVC")

oldstr = args(0) 'old instance

newstr = args(1) 'new instance

WebService.MoveHere oldstr,newstr

WebService.SetInfo

Set WebService = nothing

Set args=nothing

WScript.echo "DONE"

9. Save Moveinstance.vbs.

10. From the same directory in which you saved Moveinstance.vbs, run the script from a command prompt. For example, at the command prompt, type the following:

cscript moveinstance.vbs 1 5
and then press ENTER. This changes the instance ID of a Web site from 1 to 5 in the metabase.

[image: image13.wmf]
Note

When you use StateServer mode, make sure that the [machineKey] section in the Machine.config file has the same keys on every server in the Web farm.

Improving Scalability by Optimizing IIS 6.0 Queues

A request queue holds a collection of one or more requests waiting to be executed. Request queues can develop when your site experiences high traffic volumes, or if your site blocks to wait for database processing. Large queues, or queues that are not cleared quickly, impact scalability by limiting the number of requests the server can process and by reducing throughput. More importantly, if users are forced to wait for a response from your server, they might perceive that the site is not available and click the Stop button on their Web browser. In this situation, the queuing problem grows because clicking the Stop button can fill a queue with requests that are no longer connected to a client’s browser. If your site routinely develops queues, you might dramatically improve scalability and availability by adjusting the number of requests that can wait in a queue. You can set limits for the following request queues:

· TCP/IP queue

· Kernel request queue

· ASP request queue

· ASP.NET request queues

TCP/IP Queue

At the TCP/IP layer, high-priority threads respond to client requests by validating that the server is or is not accepting and processing requests. If the server is accepting requests, the thread maintains the customer connection and attempts to hand off the request to HTTP.sys. The only reason you might need to adjust the TCP/IP queue is if users cannot connect to your site on the Web. Monitor the TCPv4\Connection Failures and TCPv4\Connections Reset counters (for TCPv6, use the same counters for the TCPv6 object). If the Connection Failures and Connections Reset counters increase steadily, examine your TCP/IP settings. For more information about TCP/IP, see Help and Support Center for Windows Server 2003.

Kernel Request Queue

After HTTP.sys detects the TCP/IP thread, it either begins serving the request with content stored in the HTTP.sys cache, if available (this is called a cache hit), or puts the request in a kernel request queue for the designated application pool. Because the request is still in the kernel, but is waiting in a queue for a specific application pool, this queue is sometimes called the application pool queue. In IIS Manager, this queue is called the kernel request queue.

When IIS 6.0 runs in worker process isolation mode, by default HTTP.sys checks the number of requests for a designated application pool queue before it adds a new request to the queue. If adding the new request to the queue exceeds the queue limit, the server rejects the request, logs a QueueFull error in the HTTP error log, and sends a 503 error (Service Unavailable) to the client. This 503 error response cannot be customized. During times of high traffic, if you experience this 503 error, try adjusting the number of requests that wait in the queue. Increase the number to a large value such as 16,000 and test to see if the 503 errors persist.

Requests in the application pool queue remain in the queue if you lower the queue maximum to a number less than 1,000 by using the following procedure.

[image: image14.wmf]
Important

You must be a member of the Administrators group on the local computer to perform the following procedure or procedures, or you must have been delegated the appropriate authority. As a security best practice, log on to your computer by using an account that is not in the Administrators group, and then use the runas command to run IIS Manager as an administrator. At a command prompt, type runas /User:Administrative_AccountName “mmc %systemroot%\system32\inetsrv\iis.msc”.

[image: image15.wmf]
To adjust the number of requests that can wait in the kernel request queue

11. In IIS Manager, right-click the Application Pools folder, and then click Properties.

12. Click the Performance tab.

13. Under Request queue limit, select the Limit the kernel request queue to check box, and then set the maximum number of queued requests.

[image: image16.wmf]
Note

If you clear the Limit the kernel request queue to check box, or if you set the AppPoolQueueLength metabase property to zero, IIS does not enforce a kernel request limit. Without a kernel request limit, IIS could queue an unlimited number of requests and your server could potentially run out of memory. For this reason, you should set kernel request-queue limits on all production servers.

14. Click Apply, and then click OK.

ASP Request Queue

For requests to ASP pages, after the worker process picks up the request in the application pool queue, the request is sent to the Internet Server API (ISAPI) handler, which passes the request along to Asp.dll. If a thread is available, the ASP request is processed. If a thread is not available, the request waits in the ASP request queue. Requests are processed in the order in which they are received. If the ASP request queue fills to 3,000 requests (the default metabase value of AspRequestQueueMax) the server rejects the request, logs the error in the IIS log, and sends a 500 error (Server Too Busy) to the client.

If the number of queued requests is under 3,000, users with the last requests are forced to wait (called queue latency) as other requests are pulled from the queue and executed. This is an acceptable condition if the queue is cleared within a few seconds. After a few seconds, most users believe the server is not responding and click the Stop button on their Web browser. High queue latency results in poor performance for all ASP requests for the entire time the queue is saturated, because all ASP requests in a worker process share the same queue. Additionally, CPU utilization tends to spike when the queue is saturated, which results in slower response times.

You can improve ASP queuing by adjusting the default values for the AspProcessorThreadMax and AspRequestQueueMax metabase properties. AspProcessorThreadMax represents the maximum number of threads per processor, and AspRequestQueueMax represents the maximum size of the request queue. For more information about these metabase properties, see “AspProcessorThreadMax” and “AspRequestQueueMax” in IIS 6.0 Help.

Table 7.2 describes performance counters and their ideal values for ASP queuing. Monitor these counters in System Monitor by using a chart with one-second intervals before you change any metabase properties on your server. For more information about IIS 6.0 counters, see “Performance Counters Reference” in IIS 6.0 Help.

Table 7.2 Preferred Values for Active Server Pages Queuing Performance Counters

	Object\Counter
	Preferred or Ideal Value

	Active Server Pages\Request Wait Time
	As low as possible. This counter determines how long clients connecting to your site must wait before the page starts executing. If this number is high, users connected to your site might be frustrated by slow response times.

	Active Server Pages\Requests Queued
	As low as possible. If large queues develop, or if this number fluctuates, you might need to adjust the metabase properties that affect ASP queuing, as described later in this chapter. This counter is not as important as the Request Wait Time counter. Queues can clear quickly, but long wait times can frustrate users connected to your site.

	Active Server Pages\Requests Rejected
	As low as possible. If this number is high and Requests Queued is high, you might be reaching the ASP request queue default maximum of 3,000. You might need to adjust the metabase properties that affect ASP queuing, as described later in this chapter.

	Active Server Pages\Requests/second
	Application-specific. You want this number to be as high as possible. If Requests Queued is high, this number will typically be lower. Adjusting the metabase properties that affect ASP queuing can increase it.

	Processor\% Processor Time (for each processor)
	Application-specific. If Requests Queued never increases and % Processor Time is low, it is likely that ASP queuing is not affecting the performance of your site.

Tuning AspProcessorThreadMax

If the number of requests in the ASP queue is fluctuating and your CPUs are running below 50 percent, your requests might be blocking. Blocking occurs when a request that is being processed is forced to wait for an available thread to perform component processing or back-end processing. For example, an ASP page using ActiveX® Data Objects (ADO) to access a computer running Microsoft® SQL Server™ located on a separate computer will typically be blocked. If the SQL request executes a query that takes five seconds, and if dozens of requests arrive every second to execute this same query, soon all available threads will be allocated and each thread will wait five seconds for the query to be completed. Typically, you can reduce blocking by increasing the number of threads. Increasing the number of threads increases concurrency, which means that the server has more threads available to process requests (especially nonblocking requests), which might reduce queuing and improve response times. On a site with minor blocking (that is, the queue only occasionally reaches the value of ASPRequestQueueMax), increasing the threads can have a dramatic effect; in fact, it might eliminate all ASP queuing, because there are always enough threads to handle the blocking and nonblocking requests.

[image: image17.wmf]
Important

It is recommended that you back up the IIS metabase before you change the metabase. For additional information, see “Working with the Metabaseiisrg_met_KKED” in this book.

[image: image18.wmf]
To increase the number of ASP threads

15. In the IIS metabase, change ASPProcessorThreadMax from 25 (the default) to 50 threads.

16. Restart the WWW service.

You should expect to see a slight increase in CPU utilization, and the queue should fluctuate more quickly. If, after increasing the number of threads, Requests Queued increases and stays high and % Processor Time decreases, a significant percentage of your requests are being blocked. You might want to reexamine your application code and determine whether the source of the blocking can be mitigated or worked around. Or you might want to simply add more servers to your Web farm to reduce contention.

If your queue decreases and CPU utilization increases, continue increasing AspProcessorThreadMax until you hit your target CPU utilization (do not exceed 70 percent, and keep AspProcessorThreadMax below 100). Ultimately, you might discover that the network input/output (I/O) or another factor is placing a limit on your server’s performance. You might not be able to improve this limit.

Tuning AspRequestQueueMax

The goal of tuning AspRequestQueueMax is to ensure good response time while minimizing how often the server sends the HTTP 503 error (Server Too Busy) to clients when the ASP request queue is full. If the value of AspRequestQueueMax is too low, the server will send the HTTP 503 error too often. If the value of AspRequestQueueMax is too large, users might perceive that the server is not responding when in fact their request is waiting in the queue. By watching the queue during periods of high traffic, you should see a pattern of ups and downs. Make note of the peak value, and set the value of AspRequestQueueMax just above the peak value. Use the queue to handle short-term spikes, ensure response time, and throttle the system to avoid overload when sustained, unexpected spikes occur. If you do not have data for adjusting AspRequestQueueMax, a good initial setting seems to be a one-to-one ratio of queue to total threads. For example, if AspProcessorThreadMax is set to 25 and you have four processors (4 × 25 = 100 threads), set AspRequestQueueMax to 100 and tune from there.

[image: image19.wmf]
To adjust the number of requests that can wait in the ASP request queue

17. In the IIS metabase, change the value of AspRequestQueueMax.
18. Restart the WWW service.

Additional Metabase Properties

The following metabase properties also affect queuing.

AspQueueTimeout

The AspQueueTimeout property specifies the amount of time (in seconds) that an ASP script request is allowed to wait in the queue. When requests are pulled from the queue, they are checked to see if they have expired (that is, they have waited longer than the value of this property). Expired requests are rejected with a 503 error (Service Unavailable). By default, ASP does not reject requests from valid connections, no matter how long they have been in the queue.

AppPoolQueueLength

The AppPoolQueueLength property indicates to HTTP.sys how many requests to queue up for an application pool before it rejects future requests. When the limit for this property is exceeded, IIS rejects the additional requests with a 503 error. Setting the AppPoolQueueLength value to 0 means there is no maximum request queue length. This is not recommended.

For more information about these properties, see the “Metabase Property Reference” in IIS 6.0 Help.

ASP.NET Request Queues

ASP.NET uses two request queues:

· The global queue, which is managed by the process that runs ASP.NET (Aspnet_wp). The global queue is configured in the Machine.config file by the <processModel requestQueueLimit> property.

· The application queue, or virtual directory queue, which is managed by the HttpRuntime class. The HttpRuntime class provides run-time services for ASP.NET applications. There is one queue for each virtual directory. The application queue is configured in Machine.config by the <httpRuntime appRequestQueueLimit> property.

When either queue exceeds its default limit, the request is rejected with a 503 error (Service Unavailable).

Worker processes that handle ASP.NET requests might run more threads than needed for ASP requests. Also, ASP.NET might queue requests more readily than ASP queues requests, but this should not be regarded as a scalability or performance issue. ASP.NET requests are executed more quickly than ASP requests. This means that with ASP.NET it is actually better to have fewer concurrent requests and more serial requests. Because ASP.NET maximizes the overall work on the CPU, this leads to fewer context switches.

Overall, ASP.NET is very self-tuning. For the global queue (Aspnet_wp process), the default ASP.NET thread numbers on four-processor and eight-processor servers should not require additional tuning. For servers with more than eight processors, you might want to decrease the default thread numbers by modifying the values of the <processModel maxworkerthreads> and <processModel maxiothreads> properties in Machine.config.

ASP.NET Counters

Use the following counters to monitor queuing for all ASP.NET applications on your server.

Request Execution Time

The value of this counter is the number of milliseconds taken to execute the latest request. In the Microsoft .NET Framework version 1.0, request execution time begins when the worker process receives the request and stops when the ASP.NET ISAPI sends HSE_REQ_DONE_WITH_SESSION to IIS. This counter includes the time taken to write the response to the client for IIS 5.0, but not for IIS 6.0. Consequently, for IIS 5.0, a client with a slow network connection increases the value of this counter considerably.

In .NET Framework version 1.1, request execution time begins when the HttpContext for the request is created and stops before the response is sent to IIS. Assuming that user code does not call HttpResponse.Flush, this means that request execution time stops before any bytes are sent to IIS or to the client.

There is no threshold for this counter. The value of this counter should be stable. Experience will help you set a threshold for a particular site.

Requests Queued

The value of this counter is the number of requests currently in the queue. It includes requests in all ASP.NET queues. The Aspnet_wp process queue is a named pipe through which the request is sent from one process to the other. The number of requests in this queue increases if there is a shortage of available I/O threads in the Aspnet_wp process. When the limit specified by <processModel requestQueueLimit=/> is exceeded, requests will be rejected with a 503 error (Service Unavailable). Note that if a request is rejected for this reason, it will never reach managed code, and error handlers will not be notified. Normally this only occurs when the server is under a very heavy load.

Virtual directory queues maintain the availability of worker and I/O threads. The number of requests in these queues increases if the number of available worker threads or available I/O threads falls below the limit specified by <httpRuntime minFreeThreads=/>. When the limit specified by <httpRuntime appRequestQueueLimit=/> is exceeded, the request is rejected with a 503 error and the client is sent an HttpException with the message “Service Unavailable.”

Requests Rejected

The value of this counter is the number of rejected requests. Requests are rejected when one of the queue limits is exceeded. Back-end latency, such as that caused by a slow computer running SQL Server, is often preceded by a sudden increase in the number of pipeline instances and a decrease in % Processor Time and Requests/second. A server might be overwhelmed during times of heavy load due to processor or memory constraints that ultimately result in the rejection of requests.

The value of this counter should be 0. Values greater than this should be investigated.

Request Wait Time

The number of milliseconds that the most recent request spent waiting in the global queue. This does not include any time the request spent waiting in the application queues.

The threshold for this counter is 1,000. The average request should spend 0 milliseconds waiting in the queue.

ASP.NET Application Counters

Use the following counters to monitor queuing for individual ASP.NET applications.

Requests Executing

The number of requests currently being executed. This counter is incremented when the ASP.NET request pipeline begins to process the request and is decremented after the ASP.NET request pipeline finishes the request.

Requests In Application Queue

The number of requests in the application request queue. In addition to Requests Executing, Requests In Application Queue provides a warning when requests will be rejected. If there are only a few virtual directories, increasing the default value of the appRequestQueueLimit property in the Machine.config file to 200 or 300 might be suitable, especially for slow applications under heavy load.

Pipeline Instance Count

The number of active pipeline instances. Only one thread of execution can run within a pipeline instance, so this number gives the maximum number of concurrent requests that are being processed for a given application. The number of pipeline instances should not fluctuate. Sudden increases are indicative of back-end latency.

Registry Entries for Thread Pool Queuing

The following entries in the Windows registry determine the number of threads in the IIS thread pool. Tuning thread pools can produce dramatic improvement in IIS performance and scalability. For more information about these registry entries, including their locations, see “Optimizing IIS 6.0 Performanceiisrg_per_OVERVIEW” in this book.

MaxPoolThreads

Specifies the maximum number of pool threads per processor. This is not an absolute limit; that is, IIS can increase the number of threads if the current load would benefit from having more threads available. Pool threads monitor the network for requests and process incoming requests. The value of MaxPoolThreads does not include threads that are consumed by ISAPI applications.

PoolThreadLimit

Specifies the maximum number of pool threads that can be created in the system. Pool threads monitor the network for requests and process incoming requests. PoolThreadLimit is an absolute limit that includes all core Web service threads. It is always greater than or equal to the value of MaxPoolThreads.

Improving Scalability by Optimizing IIS 6.0 Caches

A cache is a special subsystem that stores frequently requested data. Without caches or caching, IIS can potentially impose three time-consuming processes on each request, which can cause poor response times. These processes include:

· Reading metadata for each request, which results in a time-consuming remote procedure call (RPC) to the IIS Admin service.

· Retrieving the authentication token for the IUSR_computername account with a time-consuming RPC to Lsass.exe.

· Opening and reading the file.

To mitigate these time-consuming processes, HTTP.sys and IIS use caches. These caches are all enabled by default and should not require much tuning by administrators. If, while monitoring Web Service Cache counters in System Monitor, you begin to see rising numbers of cache misses or very low cache hit rates, you can adjust settings for the following:

· URI cache (user-mode URI cache)

· Token cache

· File cache

· HTTP.sys response cache (kernel URI cache)

· ASP caches, including the ASP template cache and the ASP script engine cache

· Global cache registry entries

For information about Universal Naming Convention (UNC) caching see, “Caching UNC-Based Filesiisrg_sca_SKSZ” in this chapter. For information about IIS cache counters, see the “Performance Counters Reference” in IIS 6.0 Help.

URI Cache

The user-mode URI cache is known as the URI cache. The URI cache stores metadata about a URL. Metadata can include a variety of configuration data, including data about headers and authentication. This configuration data is stored in the IIS Admin service. The URI cache stores the metadata as an object. For each request that reaches IIS user mode, the worker process checks the URI cache to see if the object for the requested URL has been cached. If the object has not been cached, the worker process must call the IIS Admin service for the appropriate metadata. This call is expensive from a performance and scalability standpoint. If the URI cache has a stored object for the URL, the request pulls in the object and continues processing.

The IIS Admin service is responsible for URI cache change notification. If, for example, Default.htm changes, the IIS Admin service tells the worker process to flush the URI cache for that specific URL. Subsequent requests for that URL are cached in the URI cache. Table 7.3 describes the preferred or ideal values for URI cache counters. For more information about IIS 6.0 counters, see the “Performance Counters Reference” in IIS 6.0 Help.

Table 7.3 Preferred Values for URI Cache Counters

	Object\Counter
	Preferred or Ideal Value

	Web Service Cache\URI Cache Hits
	Depends on content. If content cannot be cached in the HTTP.sys response cache, the value of this counter should be as high as possible. If your content can be stored in the HTTP.sys response cache, the value of this counter should be low.

	Web Service Cache\URI Cache Hits%
	Depends on content. If content cannot be cached in the HTTP.sys response cache, the value of this counter should be as high as possible. If your content can be stored in the HTTP.sys response cache, the value of this counter should be low.

	Web Service Cache\URI Cache Misses
	Low is better. The value of this counter increases when IIS cannot locate requested content in either the HTTP.sys response cache or the IIS file cache, and must locate the requested content on the hard disk. If the value of this counter is low, responses are being sent from either the IIS file cache or the HTTP.sys response cache.

Token Cache

When a request is made to the server, the security credentials for the request (or the configured anonymous user) are used to create a user token on the server. The server impersonates this user token when accessing files or other system resources. The token is cached in what is commonly called the token cache, so that the Windows logon only takes place the first time the user accesses the system or after the user’s token has been flushed from the cache. If a token does not exist in the cache for an incoming request, IIS must call the Lsass.exe process to get the token. This call is expensive from a performance and scalability standpoint.

[image: image20.wmf]
Note

Integrated Windows authentication tokens are not cached.

The IIS worker process is responsible for flushing the token cache. The worker process monitors the UserTokenTTL registry entry for change notification (TTL stands for “time to live”). If the token has expired (the default time to live is 15 minutes) or if the token has changed in any way, IIS flushes the token cache. Currently, there are no performance counters that monitor the token cache.

File Cache

The IIS file cache stores file contents in memory. If the file is larger than the 256 KB default maximum file size, IIS creates a file handle, passes the handle to HTTP.sys, and then closes the handle. The maximum file size is controlled by the MaxCacheFileThreshhold metabase property.

The IIS 6.0 file cache uses an algorithm that attempts to cache only frequently requested files. The algorithm requires that a file be requested at least twice in a 10-second activity period, or the file will not be cached. In the case of a request for a Default.htm file, the activity-period algorithm works in this way:

19. The worker process receives the request for Default.htm.

20. The worker process checks to see if the file is in the IIS file cache table. At this point, the file has not been cached yet (that is, no cache entry is found).

21. The IIS file cache checks the activity table to see if Default.htm has been requested within the last 10 seconds. Because the file has not been requested, the file cache enters Default.htm in the activity table and serves out the file handle.

22. Three seconds later, the worker process receives another request for Default.htm.

23. The file cache does not find the cache entry in the cache table, but the activity table contains an entry that is within the 10-second activity period.

24. The file cache again serves out the file handle, but this time the file cache gets the cache entry from the worker process and stores the cache entry in the cache table (the cache table flushes all unused entries every 30 seconds).

25. A third request for Default.htm is served directly from the file cache.

You can configure the activity period (which is 10 seconds by default) by modifying the ActivityPeriod registry entry. If you set the value of ActivityPeriod to 0, IIS always caches files. The ActivityPeriod registry entry is located in the following subkey:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Inetinfo\Parameters

[image: image21.wmf]
Caution

Do not edit the registry unless you have no alternative. The registry editor bypasses standard safeguards, allowing settings that can damage your system, or even require you to reinstall Windows. If you must edit the registry, back it up first and see the Registry Reference on the Microsoft Windows Server 2003 Deployment Kit companion CD or on the Web at http://www.microsoft.com/reskit.
Windows provides file cache change notification at the directory level. This means Windows monitors the parent file directory and informs IIS when a file in the directory or any subdirectory has changed. When IIS gets the change notification, the worker process flushes the file from the IIS file cache.

Table 7.4 describes the preferred or ideal values for file cache counters. For more information about IIS 6.0 counters, see the “Performance Counters Reference” in IIS 6.0 Help.

Table 7.4 Preferred Values for File Cache Counters

	Object\Counter
	Preferred or Ideal Value

	Web Service Cache\Current Files Cached
	Depends on content. A low value can indicate that HTTP.sys is caching a majority of static files, which is ideal. If the content files cannot be cached by HTTP.sys, a high value is good.

	Web Service Cache\File Cache Flushes
	Note that this counter value represents the number of times the cache was flushed, and not the number of files flushed. This value will continue to increase over time. If you edit files or change files often, this value will increase more rapidly.

	Web Service Cache\File Cache Hits
	Depends on content. If the content files cannot be cached by HTTP.sys, a high value is good.

	Web Service Cache\File Cache Hits%
	If the Kernel: Cache Hits % counter is low, this value should be high. If Kernel: Cache Hits % is low and this value is low, examine your file set and determine why your files are not being cached. Note that this counter does not include dynamic content, only static files. If your static files are not being cached, you might want to lengthen the activity period for this cache.

	Web Service Cache\File Cache Misses
	A file cache miss means the request for the file must go to the hard disk. File cache misses negatively impact performance and scalability. This value should be as low as possible. Also note that kernel cache hits will cause this value to be low.

	Web Service Cache\Total Flushed Files
	As low as possible. This value will increase if you edit or change content files, which results in a cache flush.

	Web Service Cache\Maximum File Cache Memory Usage
	The value of this counter and the value of Web Service Cache\Current File Cache Memory Usage should be the same. If the numbers are different, the cache was flushed. If this counter is significantly higher than Web Service Cache\Current File Cache Memory Usage, you might consider recycling the worker process because the application might have a memory leak.

	Web Service Cache\Total Files Cached
	Ideally, this value will be the same as Web Service Cache\Current Files Cached. If you edit or change your content files and subsequently flush the file cache, this value will decrease.

HTTP.sys Response Cache

Kernel caching with the HTTP.sys response cache can be one of the most effective means of scaling and improving Web server performance. Cached responses are served from the kernel, which greatly improves response times and increases the number of requests per second that IIS can serve because requests for cached content never enter IIS user mode.

[image: image22.wmf]
Note

The HTTP response cache is known as the kernel URI cache in System Monitor.

For each request, the IIS worker process tells HTTP.sys whether or not to cache a response based on the activity-period cache algorithm. If a file is requested twice within 10 seconds (the default value for the ActivityPeriod registry entry) the IIS worker process tells HTTP.sys to cache the full response by URI. All subsequent requests for the cached response will be served from the cache. For more information about the activity-period cache algorithm, see “File Cacheiisrg_sca_EZPA” earlier in this chapter.

Every 120 seconds, the HTTP.sys response cache runs a flush algorithm, which flushes cached files that have not been requested within the 120-second interval. The flush algorithm is also called when IIS receives change notification for a file — that is, when the file has been edited or changed in some way.

HTTP.sys Cache Counters

Table 7.5 describes the preferred or ideal values for HTTP.sys response cache counters. For more information about IIS 6.0 counters, see the “Performance Counters Reference” in IIS 6.0 Help.

Table 7.5 Preferred Values for HTTP.sys Response Cache Counters

	Object\Counter
	Preferred or Ideal Value

	Web Service Cache\Kernel: Current URIs Cached
	The value of this counter should nearly equal the total number of cacheable responses on the server (presuming that all cacheable responses have been cached). If this value is considerably lower than the total number of cacheable responses on the server, make sure the corresponding files are not larger than the default size, 256 KB. For information about the criteria that determine which files cannot be cached in the HTTP.sys response cache, see “Events and Conditions That Disable HTTP.sys Response Cachingiisrg_sca_GAKR” later in this chapter.

	Web Service Cache\Kernel: Total Flushed URIs
	As low as possible. The value of this counter represents the number of times a response was flushed. Note that responses are flushed from the cache if the associated file is edited or changed in any way, or if the file is not requested within 120 seconds.

	Web Service Cache\Kernel: Total URIs Cached
	Depends on content, but the value of this counter should nearly equal the total number of cacheable responses on the server (presuming all cacheable responses have been cached). If this value is significantly larger than the total number of cacheable responses on the server, the HTTP.sys response cache is caching responses, flushing responses, and then caching responses again, which can impact performance and scalability. Investigate why responses are being flushed from the cache. If the value of this counter is significantly lower than the total number of cacheable responses on your sites, determine why some of the corresponding content files are not being cached.

	Web Service Cache\Kernel: URI Cache Flushes
	As low as possible. This counter denotes the number of times the flush algorithm has been called. Note that a response will be flushed from the cache if the corresponding file is edited or changed in any way, or if the file was not requested within 120 seconds.

	Web Service Cache\Kernel: Cache Hits
	As high as possible. This counter is incremented continually. If the value of this counter is very low, investigate why requests are not finding the cached response.

	Web Service Cache\Kernel: Cache Hits %
	Depends on content. The value of this counter should reflect the ratio of requests for cacheable content to requests for content that is not cacheable. If, for example, roughly half the requests to your sites are for cacheable content, the value of this counter should be close to 50 percent.

	Web Service Cache\Kernel: URI Cache Hits/sec
	As high as possible.

	Web Service Cache\Kernel: URI Cache Misses
	Depends on content. All requests for content that cannot be cached result in a cache miss. If the value of this counter is high and the value of Cache Hits is low, investigate why your responses are not being cached.

Events and Conditions That Disable HTTP.sys Response Caching

The HTTP.sys response cache will cache any response that has the appropriate flag in the request header; however, HTTP.sys will not cache the response if one the following applies:

[image: image23.wmf]
Note

This cache is disabled on a per-request basis.

· The request is not an anonymous request.

· The request required authentication (that is, there was an “Authorization:” header present in the request).

· The site is configured to use a footer.

· Dynamic compression is enabled and is used for the response. (Static compression can be used for HTTP.sys caching.)

· The static file is a UNC file and the DoDirMonitoringForUnc registry entry is not enabled (the entry is not enabled by default). Note: this default might change in future releases of IIS.

· There is a query string in the request.

· The request verb was not GET.

· The cache is disabled (the MD_VR_NO_CACHE metabase property equals 1).

· The request has an entity body.

· Certificate mapping is enabled for the URL in question.

· Custom logging is enabled for the site in question.

· The request HTTP version was neither 1.1 nor 1.0.

· There was a “Translate: f” header in the request (that is, it was a Web Distributed Authoring and Versioning [WebDAV] request).

· There was an “Expect:” header that did not contain exactly “100 continue.”

· There was either an “If-Range” or “Range” header in the request. HTTP.sys processes only whole responses; it does not attempt to send ranged responses.

· The response spanned multiple SendResponse/SendResponseEntityBody calls. A cacheable response must come down in a single, vectored SendResponse call.

· The total response size was greater than the per-response maximum size, which is set by using the UriMaxUriBytes registry key. The default value is 256 KB.

· The size of the response header was greater than the per-response maximum header size. The default maximum value is 1024 bytes.

· The cache is already full. The default size of the cache is proportional to the physical memory in the computer.

· The response is zero length.

· There is an ISAPI filter installed that is not cache-aware. By default, ISAPI filters are not cache-aware, but you can set the FilterEnableCache metabase property for the filter to make it cache-aware. All filters that are included with IIS 6.0, including FrontPage and ASP.NET filters, are cache-aware.

· The static file is accessed as a default document. For example, Default.htm exists in the root directory. Accessing the specific file by name (Default.htm) causes HTTP.sys to cache the file. Accessing the site by requesting the root folder (/) and no specific file results in an uncached response. Note: this might change in future releases of IIS.

ASP Caching

The process of creating compiled ASP script files (called templates) and script engines each time an ASP page is requested can consume memory and CPU resources, which in turn can impact performance and scalability. The following section describes how you can improve ASP performance and scalability by caching ASP templates and ASP script engines.

ASP Template Caching

ASP processes the templates or template files that contain ASP scripts. ASP stores these templates in a template cache and then serves the cached templates for subsequent client requests. Caching ASP templates enhances performance and scalability, because cached templates are not compiled each time they are called.

The ASP template cache uses a least-recently-used algorithm for determining which templates are cached. This means that if the cache is full, the template that has been in the cache and has not been requested for the longest amount of time is replaced by the next template to enter the cache. Every time a new template is added to the cache, the template goes to the “beginning” of the cache. The ASP template cache stores up to 500 templates by default (as determined by the AspScriptFileCacheSize metabase property). Templates are moved to the beginning of the cache when they are requested. In the case where the 501st template is bumped from the cache, the template is written to disk. By default, the ASP disk cache can hold 2,000 templates (as determined by the AspMaxDiskTemplateCacheFiles metabase property). If a template in the disk cache is referenced, the template is moved back to the ASP template cache.

In worker process isolation mode, AspScriptFileCacheSize and AspMaxDiskTemplateCacheFiles are global settings, which means they apply to all ASP pages on the Web server. (They are process-level settings in IIS 5.0 isolation mode.) ASP pages can contain #include files and these #include files can make the ASP files very large. The default 500-file limit established by the ASP template cache applies only to ASP pages and not #include files. However, ASP files that contain #include files can grow large enough to cause memory shortages and errors. ASP will flush the ASP template cache if IIS runs out of memory. If the ASP template cache is flushed, each subsequent request to an ASP page will need to be recompiled before it is cached again. In these situations, you might see ASP queuing. If you display the Active Server Pages\In Memory Templates Cached counter in System Monitor and see spikes followed by a severe reduction in the number of cached templates, your ASP pages might be too big. This could cause your system to run out of memory, flush the cache, recompile, and then run out of memory again. To remedy this situation, reduce the size of the ASP template cache to a number less than 500. Table 7.6 lists the preferred or ideal values for ASP template cache counters. For more information about IIS 6.0 counters, see the “Performance Counters Reference” in IIS 6.0 Help.

Table 7.6 Preferred Values for ASP Template Cache Counters

	Object\Counter
	Preferred or Ideal Value

	Active Server Pages\In Memory Templates Cached
	The value of this counter should reflect the number of frequently requested ASP files on your site (also known as your hot set).

	Active Server Pages\In Memory Template Cache Hit Rate
	As high as possible.

	Active Server Pages\Templates Cached
	The value of this counter should be close to the value of the AspMaxDiskTemplateCacheFiles metabase property; however, this value represents the total number of templates cached in memory and cached to disk, so this value could be higher than AspMaxDiskTemplateCacheFiles.

	Active Server Pages\Template Cache Hits
	As high as possible.

	Active Server Pages\Template Cache Hit Rate
	If this value is low and the Active Server Pages\In Memory Template Cache Hit Rate is high, a majority of user requests are being served from the memory cache. Performance and scalability should show a positive impact by not having to read the template from disk. If the value of Active Server Pages\Templates Cached equals the value of the AspMaxDiskTemplateCacheFiles metabase property, the cache has reached its maximum value. When the cache has reached its maximum value, this value should be high, otherwise the cache is being flushed.

[image: image24.wmf]
Important

You must be a member of the Administrators group on the local computer to perform the following procedure or procedures, or you must have been delegated the appropriate authority. As a security best practice, log on to your computer by using an account that is not in the Administrators group, and then use the runas command to run IIS Manager as an administrator. At a command prompt, type runas /User:Administrative_AccountName “mmc %systemroot%\system32\inetsrv\iis.msc”.

[image: image25.wmf]
To change the settings for caching ASP templates

26. In IIS Manager, right-click the Web Sites folder, and then click Properties.

27. Click the Home Directory tab.

28. In the Application Settings area, click Configuration, and then click the Cache Options tab.

[image: image26.wmf]
Note

If the Configuration button is not active, the directory or starting point does not contain an isolated application. You can create a new application by clicking Create.

29. In the ASP File Cache section, configure the ASP cache setting by doing one of the following:

· To cache all requested ASP files, select the Cache all ASP files in memory check box. The maximum number of files that can be cached is 2,000,000,000.

· To set the maximum number of files cached in memory, select the Cache limited ASP files in memory check box, and then set the maximum number of files. Files in excess of this number are persisted to the disk cache if you select the Cache remaining ASP files on disk check box. Or you can limit the total number of ASP files cached by selecting the Cache limited ASP files on disk check box, and then setting the maximum number of files.

· To turn off the cache, select the Do not cache ASP files check box.

30. Click OK.

The ASP disk cache begins caching files into a directory when the ASP memory cache is full. Furthermore, a file has to be requested at least twice before it becomes a candidate for the ASP disk cache. The corresponding metabase property, AspMaxDiskTemplateCacheFiles, specifies the maximum number of compiled ASP templates that can be stored. AspDiskTemplateCacheDirectory contains the name of the directory that ASP uses to store compiled ASP templates to disk after overflow of the in-memory cache.

[image: image27.wmf]
Important

In order for disk caching to work, ASP needs a properly configured disk cache directory in which to store the compiled ASP files. This means that the Administrators and IIS_WPG groups have Read/Write and Delete permission on the disk cache directory, and the disk cache directory is a local directory on the Web server.

The default location of the disk cache is systemroot\System32\inetsrv\ASP Compiled Templates. In worker process isolation mode, subdirectories under the disk cache directory are created for each application pool. In IIS 5.0 isolation mode, the default disk cache directory is windir\system32\inetsrv\ASP Compiled Templates.

[image: image28.wmf]
To create an ASP disk cache directory

31. In IIS Manager, expand the local computer, expand the Web Sites folder, right-click the Web site that you want, and then click Properties.

32. Click the appropriate tab: Home Directory, Virtual Directory, or Directory.

33. In the Application Settings area, click Configuration.

34. Click the Cache Options tab, and in the Disk cache directory box, browse to the directory used for disk caching.

35. Click OK.

[image: image29.wmf]
Note

ASP requests might fail unless the IIS_WPG group has Read/Write and Delete permission for the ASP template cache directory.

Script Engine Caching

ASP code is compiled and executed by Microsoft® Visual Basic® Scripting Edition (VBScript) by default. To improve performance and scalability of ASP code, ASP creates script engines. ASP script engines contain the object and marshalling data that VBScript.dll needs to execute the request. Each entry in the ASP script file cache can point to one or more entries in the ASP script engine cache.

Table 7.7 describes the preferred or ideal values for the ASP Script Engine Cache counter. For more information about IIS 6.0 counters, see “Performance Counters Reference” in IIS 6.0 Help.

Table 7.7 Preferred Value for ASP Script Engine Cache Counter

	Object\Counter
	Preferred or Ideal Value

	Active Server Pages\Script Engines Cached
	The value of this counter should be greater than or equal to the value of Active Server Pages\Requests Executing. If this number is low, the server might not have enough memory to store the script engines in the cache. Performance and scalability will suffer because the server must create script engines often.

[image: image30.wmf]
To change the settings for caching ASP script engines

36. In IIS Manager, right-click the Web Sites folder, and then click Properties.

37. Click the Home Directory tab.

38. In the Application Settings area, click Configuration, and then click the Cache Options tab.

[image: image31.wmf]
Note

If the Configuration button is not active, the directory or starting point does not contain an isolated application. You can create a new application by clicking Create.

39. Set the value for Number of script engines cached.

To programmatically change the maximum number of script engines ASP pages will keep cached in memory, use the AspScriptEngineCacheMax metabase property.

Setting the ASP Cache Metabase Property and Registry Entry

The following metabase property and Windows registry entry impact ASP caching on your server. In most cases, these settings should not require tuning or adjusting. If you find it necessary to adjust these settings, monitor performance and scalability after making changes.

AspScriptFileCacheSize

The AspScriptFileCacheSize metabase property specifies the number of precompiled script files to cache. If set to 0, no script files are cached. If set to 4,294,967,295, all script files requested are cached. This property is used to tune performance, depending on the amount of available memory and the number of script file cache hits.

The metabase represents “unlimited” as the DWORD value of 4,294,967,295 (0xFFFFFFFF); however, VBScript represents unlimited in hexadecimal format as &HFFFFFFFF. Earlier versions of IIS represented unlimited as -1.

[image: image32.wmf]
Caution

Do not edit the registry unless you have no alternative. The registry editor bypasses standard safeguards, allowing settings that can damage your system, or even require you to reinstall Windows. If you must edit the registry, back it up first and see the Registry Reference on the Microsoft Windows Server 2003 Deployment Kit companion CD or on the Web at http://www.microsoft.com/reskit.
DisableLazyContentPropagation

Windows registry path: HKLM\SYSTEM\CurrentControlSet\Services\ASP\Parameters

Data type: REG_DWORD

Default value: 0 (lazy propagation enabled)

Range: 0 - 1

Lazy propagation refers to the action that IIS takes when a large amount of content is updated at one time. IIS has an internal limit on the amount of content that can be updated in the in-memory template cache. If the size of the updated content exceeds that limit, IIS marks each of the files in the in-memory template cache as invalid. When it receives the first request to an invalid file, IIS begins to compile a new template, but it serves the expired template until the new template is compiled.

If you set the value of the registry entry DisableLazyContentPropagation to 1, IIS behaves as it does for IIS 5.0 and IIS 5.1 when a large amount of content is updated at one time. IIS flushes the in-memory template cache, and performance can slow to a standstill as each new request to the server forces IIS to compile new templates.

If you are developing Web pages and making changes to a few files at a time, you do not have to refresh your pages twice to see new changes because lazy propagation only applies when a large amount of content is updated at one time.

Global IIS Caching Registry Entries

The following registry entries impact caching on your server. In most cases, these settings should not require tuning or adjusting. If you find it necessary to adjust these settings, use caution and monitor performance and scalability after making changes.

[image: image33.wmf]
Caution

Do not edit the registry unless you have no alternative. The registry editor bypasses standard safeguards, allowing settings that can damage your system, or even require you to reinstall Windows. If you must edit the registry, back it up first and see the Registry Reference on the Microsoft Windows Server 2003 Deployment Kit companion CD or on the Web at http://www.microsoft.com/reskit.
DisableMemoryCache

Windows registry path: HKLM\SYSTEM\CurrentControlSet\Services\InetInfo\Parameters

Data type: REG_DWORD

Default value: 0 (disabled)

Range: 0 - 1

Disables server static file caching, which negatively impacts performance and scalability. It is not recommended that you disable caching unless you are troubleshooting an issue or debugging application code.

MemCacheSize

Windows registry path: HKLM\SYSTEM\CurrentControlSet\Services\InetInfo\Parameters

Data type: REG_DWORD

Default value: approximately one-half of available physical memory, in megabytes (MB)

Range: 0 - 2500 MB

Controls the size of the static file cache. The default value is dynamically adjusted every 60 seconds.

ObjectCacheTTL

Windows registry path: HKLM\CurrentControlSet\Services\InetInfo\Parameters

Data type: REG_DWORD

Default value: 30 (seconds)

Range: 0 - 4,294,967,295 (unlimited)

Controls the TTL setting, which defines the length of time that objects are held in the cache. If an object in the memory cache has not been referenced for the specified period, that object will be phased out of the cache. If system memory is limited, or the contents of the server are dynamic, you can use a lower TTL to prevent system memory from being used to cache a large number of volatile objects. Setting ObjectCacheTTL to 0xFFFFFFFF disables the object-cache scavenger (the process that routinely reads the items in the cache to determine which items should stay in the cache and which items should be flushed) and allows cached objects to remain in the cache until they are overwritten. Disabling the cache scavenger is useful if your server has ample system memory and your data is relatively static.

ISP Scaling — Strategies for Hosting Thousands of Sites

The ability for IIS to scale up to thousands of sites on one server depends on the type of content the site hosts and the number of application pools on the server. Your business model and service agreements with customers will also determine how many sites you can put on one server. There are three common Internet service provider (ISP) installation strategies you can use when IIS is running in worker process isolation mode:

· Shared static hosting

· Shared static and dynamic hosting

· Dedicated hosting

Shared Static Hosting

The shared static hosting strategy involves collecting large numbers of static sites together on one server. These static sites are typically personal home pages or business pages that experience very low traffic volumes on a daily basis, so performance and scalability issues are rarely an issue. Before provisioning your server, consider the following guidelines.

Administer IIS by using command-line administration scripts or batch files

Using IIS Manager to perform tasks such as provisioning thousands of new sites or configuring sites is extremely inefficient. If your server hosts a few thousand sites, IIS Manager can take several minutes to refresh as it reads configuration data from the metabase. In this case, it is more efficient to administer IIS by using command-line tools. For information about command-line administration tools in IIS 6.0, see “IIS 6.0 Administration Scripts, Tips, and Tricksiisrg_adm_NAPF” in this book, or see “Using Command-Line Administration Scripts” in IIS 6.0 Help. For general information about Web site and virtual directory configuration, see “Configuring Internet Sites and Servicesiisrg_cfg_OMKX” in this book.
Create a logical folder structure

A logical folder structure, for example Domain/Username, will alleviate some of the administration overhead in locating sites when they require configuration changes.

Use host header names to create multiple sites on one server

Static IP addresses are in limited supply, and obtaining thousands of static IP addresses can be problematic. Static IP addresses are only necessary when a site requires Secure Sockets Layer (SSL). Also, static IP addresses have performance overhead costs. The WWW service must manage an endpoint for every site identified by a unique IP address, and this consumes memory from the nonpaged pool.

Put all static sites in one application pool

Static sites, if they are truly static, pose little or no crash risk for an application pool because static sites do not execute code. By putting the sites in one application pool, you limit the resource overhead that multiple application pools impose. You also limit the administrative overhead that comes with multiple application pools.

Run all static sites with the same anonymous user account

For static, public Web sites, the anonymous user account provides ample security. Before returning a page to the client, IIS checks NTFS file and directory permissions to see whether the IUSR_computername account is allowed access to the file. If access is not allowed, IIS attempts to use another authentication method. If none is selected, IIS returns an HTTP 403 error (Access Denied) to the browser.

Recycle the application pool worker process (optional)

You will need to monitor site traffic to determine a regular recycle schedule, if a regular recycle is needed. Ideally, you should recycle the worker process during low-traffic times, for example 3:00 A.M. local time. For more information about worker process recycling, see “Running IIS 6.0 as an Application Serveriisrg_was_OVERVIEW” in this book.

Monitor startup times

Although you should not need to restart your server very often, monitor startup times when you do restart the server. When an IIS server hosts thousands of Web sites, the size of the metabase grows significantly and the task of reading configuration data from the metabase while IIS is starting can strain your CPU resources. Your startup times might be a determining factor for when you need to add a new server to your installation.
Monitor performance

As you provision sites, regularly monitor site traffic and resource consumption. In this way, you will be able to see how the system scales and proactively determine when it is time to add a new server to your installation.

Enable centralized binary logging

Centralized binary logging writes all log file data in binary format to one centralized file, and preserves memory and CPU resources by not creating and writing to thousands of individual log files. For more information about centralized binary log files, see “Analyzing Log Filesiisrg_log_GADT” in this book.

Partition log files on multiple disks
If you choose not to use centralized binary logging, partition log files on multiple disks to minimize I/O. With multiple disk controllers writing log data to different disks, you will minimize I/O and preserve memory resources for other needs.

Shared Static and Dynamic Hosting

The shared static and dynamic hosting strategy mixes static and dynamic sites on the same server. If your customer base requires you to host a mix of static and dynamic sites on the same server, the following guidelines can help you maximize the number of sites and application pools you can host on one server. Most of the guidelines in “Shared Static Hostingiisrg_sca_KIHM” earlier in this chapter apply to this strategy as well.

Separate static and dynamic content sites in different application pools
If you need to host static and dynamic sites on the same server, put the static sites in one or more application pools and the dynamic sites in one or more different application pools. By isolating the static sites from the dynamic sites, you mitigate the possibility of a poorly developed application crashing the static content application pool.

Set content quotas for sites
Your business model and customer service agreement should define content quotas, for example 200 MB for each site. Set disk quotas in the properties of each physical hard disk by using the Quota service available in Windows Server 2003.

Consider enabling Quality of Service (QoS) features for sites that are resource-intensive
Features such as CPU monitoring, bandwidth throttling, and idle timeout will ensure that one site does not consume a majority of the resources and cause errors for other sites on the same server. For more information about these features, including how to enable them, see “Optimizing IIS 6.0 Performanceiisrg_per_OVERVIEW” in this book.
Configure one unique anonymous user per site
Configuring one unique anonymous user per site adds a security layer by ensuring that users cannot access content on sites to which they are not permitted access.

Develop processes for handling service packs, security updates, and hotfixes
If your customers will be using IIS 6.0 to administer their own dynamic sites, set up a process for handling service packs, security updates, and hotfixes to minimize downtime for your customers and to help ensure the security of your installation. Windows Server 2003 has improved management of updates with Auto Update version 1.0, which provides you with three options:
· Notify you the moment an update is available.

· Download the update and notify you of its availability.

· Scheduled installation (this option enables the update to be downloaded and automatically installed at a time you choose).

For ASP content, allow ASP pages to run on MTA instead of STA
Because of the overhead memory and CPU cost of running dynamic applications, your server will reach a limit in the number of application pools it can host. With ASP content, you can mitigate this limitation on application pools by enabling ASP pages to run on multithreaded apartment (MTA) threads instead of single-threaded apartment (STA) threads. ASP is capable of running all of its threads in an MTA. If your COM components are primarily free-threaded or both-threaded, running the ASP threads as MTA can improve performance significantly. By default, the AspExecuteInMTA metabase property is set to 0, which means that ASP does not execute in MTA. Set this property to 1 at the application level to enable ASP to run in MTA.

[image: image34.wmf]
Note

MTA has some limitations with respect to components that can be instantiated. Objects that are strictly Apartment might show a performance regression because marshalling will occur and the potential for STA thread contention will increase.

If you need to set up more than 60 application pools where each pool is running as a unique identity on a server, change the UseSharedWPDesktop registry key

If you are setting up your application pools with unique identities, depending on the applications and memory resources on your server, you will reach a limit of about 60 application pools. There are finite limits to some system resources that get allocated with each new logon session. This means that 60 processes can run concurrently as distinct accounts. IIS 6.0 supports running these processes in a single shared workstation and desktop, at a cost of sharing a single encapsulation of a user session among all parties.

[image: image35.wmf]
Caution

Do not edit the registry unless you have no alternative. The registry editor bypasses standard safeguards, allowing settings that can damage your system, or even require you to reinstall Windows. If you must edit the registry, back it up first and see the Registry Reference on the Microsoft Windows Server 2003 Deployment Kit companion CD or on the Web at http://www.microsoft.com/reskit.
To scale beyond 60 application pools and to share a single desktop, change the value of the registry entry UseSharedWPDesktop, of data type DWORD, to 1. The registry entry is located in the subkey HKLM\System\CurrentControlSet\Services\W3SVC\Parameters\UseSharedWPDesktop. After changing this registry entry, you should be able to scale to hundreds of application pools and hundreds of concurrently running worker processes.

If IIS is spinning up too many worker processes and your server is running out of resources, set a maximum number of concurrent worker processes
With the IIS 6.0/HTTP.sys architecture and with a request load distributed across many application pools, IIS might attempt to start more worker processes than the server can sustain without running out of memory or CPU resources. The DemandStartThreshold metabase property (also called concurrent process gating), when set to a value less than the default, applies a hard limit to the number of IIS worker processes that can run concurrently. If the hard limit is exceeded, HTTP.sys returns an HTTP 503 error (Service Unavailable).

Locate misbehaving applications and isolate them in their own application pool
You can use Event Viewer and IIS logs to locate misbehaving applications, or you can use Log Manager and Trace Report, which are general-purpose tools supplied with Windows Server 2003. Log Manager creates trace data, which is then processed by the Windows Trace Report utility. The Trace Report utility creates a formatted, detailed report that is useful in assessing IIS and IIS-related activity in the operating system. Once you have located a misbehaving application, isolate the application in its own application pool so it doesn’t affect other applications. Recycle the application pool regularly. For more information about Log Manager and Trace Report, see “Capacity Planning Tracing” in IIS 6.0 Help. For more information about viewing and interpreting log files, see “Analyzing Log Filesiisrg_log_GADT” in this book.

Dedicated Hosting

Dedicated hosting is typically reserved for those customers who have the greatest availability, security, and performance requirements for their dynamic Web sites. In some cases, you might put only one or two sites on an IIS server to ensure there are enough memory and CPU resources to meet customer requirements. In other cases, dedicated hosting means the customer pays to have their own server or servers. Dedicated hosting can be configured in the following ways.

Configure one unique application pool per Web site
Process boundaries separate each worker process so that problems in one application pool do not affect other application pools on the server. By configuring each Web site in a different application pool, you ensure greater reliability, availability, and security. For information about how to configure application pools, see “Running IIS 6.0 as an Application Serveriisrg_was_OVERVIEW” in this book.

Configure one unique anonymous user per site
Configuring one unique anonymous user per site adds a security layer by ensuring that users cannot access content on sites to which they are not permitted access.

Configure one unique user to run as the process identity of the application pool
Configuring one unique user to run as the process identity of the application pool adds an additional layer of security by ensuring that one site cannot access content on another site. If you specify a unique user account, be sure to add that account to the IIS_WPG group. When you use a built-in account, try to use Network Service because it offers the best balance between security and functionality.

If you experience scalability issues on a dedicated hosting computer, see “Shared Static and Dynamic Hostingiisrg_sca_MVTP” earlier in this chapter.

Improving Scalability Through UNC–Based Centralized Content Storage

IIS 6.0 delivers several technical changes that make it easier for ISPs or other organizations to create UNC-based centralized storage solutions. Centralized content storage can make it much easier to scale your installation to thousands of Web sites. Centralized storage can also help minimize time commitments for server management and administration. This section describes the following:

· Caching Changes. For UNC content, IIS 6.0 provides the new last-modified caching algorithm for both static and ASP files. In addition, IIS 6.0 improves the performance of change-notification-based caching for ASP files.

· UNC Authentication. IIS 6.0 now performs UNC authentication, formerly called Passthrough authentication, by default.

· Constrained Delegation. With constrained delegation, you can allow delegation only to certain services, so you can control the specific network resources that a service or computer can use.

Caching UNC–based Files

When you can create UNC-based virtual directories, the IIS caches must treat each UNC path as a separate directory structure, and therefore ASP and static file caches must monitor each directory individually. In a centralized-content architecture with many different UNC shares, this has the potential to exhaust system resources.

The Web server and the file server are connected with a Server Message Block (SMB) connection. Only one SMB connection is created between a Web server and a file server; however, within that SMB connection, there are a finite number of work items. Work items can be consumed in a variety of ways and for varying amounts of time. For example, performing an operation — such as a CreateFile or GetFileAttributes command — on a file consumes an I/O work item for a short amount of time, but asking for a change notification on a directory structure consumes a work item for as long as the connection is intact. Each change-notification instance uses a work item until the connection is lost, and each request from a Web server to the file server uses a work item only temporarily. However, the scalability impact of the SMB connection is reduced by using last-modified caching.

Last-Modified Caching

To allow for greater scalability of UNC-based storage systems, IIS 6.0 implements a new last-modified cache algorithm for static and ASP files. The new caching algorithm does not request change notification for each directory structure; instead, it requests only the last-modified date of the cached file. If the file is new, the cache entry is updated with the new content and served. If the file has not changed, IIS serves the cached version of the file. By default, IIS checks the last-modified date for both ASP and static files if more than five seconds have elapsed since the file was last checked. Otherwise, IIS assumes the file has not changed, and it serves the existing content.

[image: image36.wmf]
Note

The server side includes (SSI) file handler (Ssinc.dll) makes use of the static file cache, so this behavior occurs for .stm, .shtml, and any other files that are mapped to this DLL.

IIS 6.0 uses the last-modified caching algorithm by default. To specify change-notification caching or to change the TTL value of the cached files, you must edit the registry.

[image: image37.wmf]
Caution

The registry editor bypasses standard safeguards, allowing settings that can damage your system, or even require you to reinstall Windows. If you must edit the registry, back it up first and see the Registry Reference on the Microsoft Windows Server 2003 Deployment Kit companion CD or on the Web at http://www.microsoft.com/reskit.
[image: image38.wmf]
To set change-notification tracking or TTL for static files

40. From the Start menu, click Run.

41. In the Open box, type Regedit.exe, and then click OK.

42. Navigate to the following subkey: HKLM\System\CurrentControlSet\Services\Inetinfo\Parameters

43. Do one or both of the following:

· To enable change-notification caching, modify the value of the registry entry DoDirMonitoringForUnc by setting it to 1.

· To change the TTL setting from the default of five seconds, change the value of the registry entry FileAttributeCheckThreshold to the number of seconds you want to use.

44. Close the registry editor.

ASP Change-Notification Caching

IIS 6.0 provides a scalable change-notification mechanism for ASP pages. Because change notification occurs for unique directory structures, instead of for every directory, the number of work items required for change notification is reduced.

To specify change-notification caching or to change the TTL value of the cached files, you must edit the registry.

[image: image39.wmf]
To set change-notification tracking or TTL for ASP files

45. From the Start menu, click Run.

46. In the Open box, type Regedit.exe, and then click OK.

47. Navigate to the following subkey: HKLM\System\CurrentControlSet\Services\ASP\Parameters

48. Do one or both of the following:

· To enable change-notification caching, change the value of the registry entry EnableChangeNotificationForUNC by setting it to 1.

· To change the TTL setting from the default of five seconds, change the value of the registry entry FileMonitoringTimeoutSeconds to the number of seconds you want to use.

49. Close the registry editor.

UNC–based Caching Considerations

You should decide which caching method to use based on your network architecture and your scalability and performance requirements. In general, last-modified caching is the most reliable method. It is recommended that you use this caching method when you require scalability for a system with a Web server that points to different file structures. You can also experience performance gains by using change-notification caching if your system uses a file server that reliably reports change notifications and you have only a few sites or virtual directories. For example, if you have a single Web site with one or two applications, and all of your content is stored on a Windows Server 2003–based file server, use change-notification caching.

To configure caching for optimum scalability and performance, you must edit the registry entries MaxMpxCt, MaxWorkItems, and MaxCmds. On the server running IIS, these entries are stored in the subkey HKLM\System\CurrentControlSet\Services\LanmanWorkstation\Parameters. On the remote file server running Windows Server 2003, these entries are stored in the subkey HKLM\System\CurrentControlSet\Services\LanmanServer\Parameters.

MaxMpxCt

The MaxMpxCt registry entry permits a server to provide a specified maximum number of simultaneous client requests to itself, and then enforces that limit. Because each client connection generates multiple instances (for example, Windows shell and Explorer.exe), with multiple clients connecting to the server, the number of client requests can be greater than the default MaxMpxCt value of 50. As soon as this limit is reached for that server, additional requests are refused until the number of requests drops below the limit again.

MaxWorkItems

The value of the registry entry MaxWorkItems should be at least four times as large as that for MaxMpxCt. For example, if MaxMpxCt has a value of 1,024, MaxWorkItems should have a value of at least 4,096.

Some resources, including Microsoft Knowledge Base articles, recommend setting the value of MaxWorkItems to 16,000. However, this could consume up to 250 MB of nonpaged pool memory, which could starve the system. To increase your system’s reliability, it is recommended that you set the value of MaxWorkItem lower than 16,000.

To determine the number to set for the value of MaxWorkItems, monitor the Server object performance counters. The Work Item Shortages counter will indicate if you need to make these values larger or increase the load capability of your file server by adding memory or clustering the file server. You must allow enough work items for two activities: change notifications and normal I/O requests.

MaxCmds

The MaxCmds registry entry sets the limit for the number of concurrent outstanding network requests between the SMB client and server that the client can support. The general formula for calculating the value of MaxCmds is as follows:

(number of distinct physical directories that IIS needs to monitor for change notifications) × (1(if static files exist) + 1 (if ASP content exists) + 1 (if ASP.NET content exists) + 50 (for concurrent default/regular file I/O)

This formula is merely a starting point for tuning your servers. You might need to increase your settings depending on concurrent traffic. For better scaling, you typically need to modify the values of the MaxCmds, MaxMpxCt, and MaxWorkItems registry entries on both the server running IIS and the remote file server. Before you modify the entries, however, watch the Server object performance counters while you stress-test your system. Carefully monitor the Work Item Shortages counter to see if you need to increase the values of the entries or increase the load capability of your file server by adding memory or clustering the file server. If you are using the non-default change-notification option for caching, you must allow enough work items for two activities: change notifications and normal I/O requests for the file.

UNC–based Caching Scenarios

The following three scenarios illustrate the different UNC–based caching options in more detail and provide recommendations for setting maximum values:

· Wide content, low traffic. This scenario is an example of a typical low-end shared hosting server.

· Wide content, high traffic. This scenario represents an enterprise Web site that hosts hundreds of small applications and receives a high volume of traffic consisting mainly of anonymous users.

· Narrow content, high traffic. This scenario represents a dedicated hosted Web site with fewer than 10 applications, but with a very high volume of traffic consisting only of anonymous users.

When evaluating the settings in the tables in the following sections, consider the number of simultaneous work items that are opened from the server running IIS to the remote file server, but reflected (inversely) by the value of the MaxCmds entry. You should calculate all other remote file server settings based on that result.

[image: image40.wmf]
Important

The settings in the following scenarios are intended as guidelines only. Changing the registry settings listed here will produce different results, depending on your specific system configuration. You should test your application with the default settings, and then increase the maximum settings accordingly.

Scenario 1: Wide Content, Low Traffic

In this scenario, each site has its own directory structure, and there are no virtual directories below each site. Each server running IIS might have up to 20,000 sites, but only approximately 1,000 sites are active at any given time. Each site runs in its own process. Users are authenticated if they are publishing on the Web; otherwise, they are anonymous. The content is primarily ASP and static files, with a few ASP.NET applications.

If you enable file caching with the change-notification algorithm, you might use the following equation to calculate MaxCmds:

20,000 physical directories × (1(static) + 1(ASP) +1(ASP.NET) + 50 = approximately 60,000 for MaxCmds

However, this setting would jeopardize server performance and scalability because it would consume hundreds of megabytes of nonpaged pool memory.

If you use caching with the default last-modified algorithm, no work items are used for change notification. Depending on active traffic for file I/O and your analysis of the performance counters, you might still need to increase the values of MaxCmds, MaxWorkItems, and MaxMpxCt from their default values. Table 7.8 lists the recommended settings for the wide-content, low-traffic scenario that uses the default last-modified caching algorithm.

Table 7.8 Recommended Registry Settings for Wide Content, Low Traffic

	Registry Entry
	Server Running IIS
	Remote File Server

	MaxCmds
	3,072 (0xC00). This is the maximum number of work items allowed by this computer.
	Default setting.

	MaxMpxCt
	Default setting.
	3,072 (0xC00). This is the maximum number of work items allowed per client computer. The client computer in this case is the server running IIS.

	MaxWorkItems
	Default setting.
	12,288(0x3000). This value must be four times MaxMpxCt.

Scenario 2: Wide Content, High Traffic

In this scenario, a large Web site has 300 applications. The site contains static files, ASP content and ASP.NET content. Most users access the site anonymously.

If you enable file caching with the change-notification algorithm, this site will consume approximately three work items per cache, per application, for a total of 900 work items.

If you enable file caching with the last-modified algorithm, the site will not consume any work items that would be consumed for long periods, but there will be temporary work items and heavy traffic between the Web server and the file server. The caches are all frequently used.

Because there are a manageable number of applications in this scenario that use less than 1,000 work items per client, you might attempt to use the change-notification caching algorithm. This would reduce the back-end network traffic.

Table 7.9 lists the recommended settings for the wide-content, high-traffic scenario that uses the change-notification algorithm.

Table 7.9 Recommended Registry Settings for Wide Content, High Traffic

	Registry Entry
	Server Running IIS
	Remote File Server

	MaxCmds
	2,048 (0x800). This is the maximum number of work items allowed by this computer.
	Default setting.

	MaxMpxCt
	Default setting.
	2,048 (0x800). This is the maximum number of work items allowed per client computer. The client computer in this case is the server running IIS.

	MaxWorkItems
	Default setting.
	8,192 (0x2000). This value must be four times MaxMpxCt.

[image: image41.wmf]
Note

The value listed in Table 7.9 for MaxCmds is higher than the value that results when you use the general formula for calculating MaxCmds because the value in the table was rounded.

If you have too many applications to use the change-notification algorithm, you can use the last-modified algorithm. You should extend the cache TTL value to approximately 30 seconds to reduce the traffic between the Web server and the file server. This scenario is the most difficult to tune properly.

Scenario 3: Narrow Content, High Traffic

In this scenario, a small site contains 10 applications and static, ASP, and ASP.NET files that receive a very high number of hits.

If you enable file caching with the change-notification algorithm, this site will consume approximately three work items per cache, per application, for a total of 30 work items.

If you enable file caching with the last-modified algorithm, the site will not consume any work items, but there will be heavy traffic between the Web server and the file server. The caches are all frequently used.

Because this scenario requires only a few work items to cache the content reliably, change notification is the recommended caching algorithm. You do not need to increase the default maximum settings by very much. Table 7.10 lists the recommended settings for the narrow-content, high-traffic scenario that uses the change-notification algorithm.

Table 7.10 Recommended Registry Settings for Narrow Content, High Traffic

	Registry Entry
	Server Running IIS
	Remote File Server

	MaxCmds
	512 (0x200). This is the maximum number of work items allowed by this computer.
	Default setting.

	MaxMpxCt
	Default setting.
	512 (0x200). This is the maximum number of work items allowed per client computer. The client computer in this case is the server running IIS.

	MaxWorkItems
	Default setting.
	2,048 (0x800). This value must be four times MaxMpxCt.

[image: image42.wmf]
Note

The value listed in Table 7.10 for MaxCmds is higher than the value that results when you use the general formula for calculating MaxCmds because the value in the table was rounded.

UNC Authentication

The UNC authentication method, also called UNC Passthrough authentication, determines the credentials to be used for gaining access to a UNC share on a remote computer. In IIS 6.0, UNC authentication works by looking at the request user and the credentials stored in the UNCUserName and UNCPassword metabase properties to determine the credentials to pass through to the computer with the UNC share.

If you use IIS Manager to create a Web site or virtual directory and specify a UNC path for the content, IIS Manager prompts you to type a user name and password for the network resource. If you specify a user name and password, the UNCUserName and UNCPassword metabase properties are set.

If UNCUserName is specified (not empty) and UNCPassword is valid, the metabase user credentials are sent as the user identity for access to the remote share. If UNCUserName is specified (not empty) and UNCPassword is not valid, a 500.13 error (Internal Server Error: Invalid Username or Password) is sent to the client.

If UNCUserName is empty, the credentials of the request user — which can be either an authenticated set of credentials for authenticated requests or IUSR_computername credentials for anonymous requests — are sent as the user identity for access to the remote share. In other words, by default in IIS 6.0, you do not need to specify user name and password credentials.

[image: image43.wmf]
Note

The UNCAuthenticationPassthrough metabase key is no longer used for UNC authentication.

For more information about enabling UNC authentication, see “Securing Virtual Directories” in IIS 6.0 Help.

Constrained Delegation for UNC File Content

Delegation is the act of allowing a service to impersonate a user account or computer account in order to access resources throughout the network. When a service is trusted for delegation, that service can impersonate a user to use other network services. Constrained delegation is a new option for Windows Server 2003, and it is recommended that you use it with a Windows Server 2003 domain. With this option, you can specify the Service Principal Names (SPNs) to which an account can delegate. With this option, a service can be trusted for delegation, but the domain administrator can limit that trust to a select group of explicitly specified services. By only allowing delegation to specific services, you can control the specific network resources the service or computer can use.

Constrained delegation is particularly useful in scenarios where a site that requires authentication — that is, a site that does not allow anonymous access — contains content that is housed on a remote UNC file server. With constrained delegation, you can enable Windows Integrated authentication, which can use NTLM authentication or send credentials across the network as a Kerberos-based token.

If you do not use constrained delegation, but you enable Windows Integrated authentication and NTLM, the token that the Web server obtains from the Windows security infrastructure does not have sufficient permissions to access another computer, such as your file server. However, with constrained delegation and Windows Integrated authentication, the token received by the Web server from the Windows security infrastructure is a Kerberos-based token with permission to access other computers, including the file server. Essentially, constrained delegation allows an NTLM-based token to be upgraded to a Kerberos-based token. Be aware, however, that Kerberos-based authentication can degrade performance because each access check occurs on the file server.

For more information about constrained delegation, see “Managing a Secure IIS 6.0 Solutioniisrg_sec_OVERVIEW” in this book.

When you set up a UNC-based virtual directory and specify a user name and password for that directory, you might receive an error message when you attempt to access the directory by using IIS Manager. This error occurs because IIS Manager sends the current Windows user credentials when it accesses the virtual directory. The credentials of the current Windows user might not be the same as those you specified for the UNC-based virtual directory. However, if you access your Web server over the Internet by using IIS Manager on a remote computer, the contents of the virtual directory will be displayed without error. Because using IIS Manager is not a reliable method of verifying whether your customers can access the content stored on the remote computer, you should test your virtual directories by making requests with a Web browser.

Case Study: Scaling an ASP.NET Web Application on IIS 6.0

The following case study illustrates how to monitor and tune IIS 6.0 for improved performance and scalability. In this study, network administrators in a fictional company, Contoso, were getting ready to roll out a new Web application for the purpose of selling books online. The application code had been extensively tested, but performance and scalability statistics were still unknown. To gather performance and scalability metrics, the administrators stress-tested the site by using the Microsoft Web Capacity Analysis Tool (WCAT).

Stress testing helps administrators locate performance and scalability bottlenecks in their Web application installation. By using a tool such as WCAT or the Microsoft Application Center Test (ACT) in a test environment to simulate the server load they can expect in a production environment, administrators can isolate and fix potential bottlenecks that might undermine the customer experience. Administrators can also plan the installation capacity.

The administrators in this study were preparing to roll out the Duwamish 7.0 ASP.NET application, a fictitious online bookseller application. Their rollout consisted of the following phases:

· Capacity planning

· Tuning production servers

· Scaling up

· Scaling out

[image: image44.wmf]
Note

This case study does not provide information about how to create a WCAT script or how to perform stress testing by using WCAT. WCAT ships on the Internet Information Services (IIS) 6.0 Resource Kit companion CD. The WCAT guide (Wcatguide.doc) contains information about how to create a WCAT script and how to use WCAT for stress testing.

Capacity Planning

The administrators initially wanted to see how their application scaled on a server with four 500-MHz processors running IIS 6.0 in worker process isolation mode. Their goal was to stress the site to see how many requests per second the installation processed at (or close to) 100 percent CPU saturation. By understanding how the application performed when the CPU was saturated, they could begin to understand how the site would scale under a heavy load, and they could begin to plan the capacity of the installation based on traffic estimates. Table 7.11 describes the software and hardware used for this case study.

Table 7.11 Case Study Software and Hardware

	Software
	Hardware

	Web Servers
Windows Server 2003 (RC1)

Default installation of IIS 6.0 (running in worker process isolation mode)

ASP.NET

Duwamish.NET 7.0 Web application
	Web Servers
Four 550-MHz Intel Pentium 3 processors

Compaq Proliant 6400R

512 MB RAM

Single 3COM Gigabyte Ethernet Server network adapter

Eight 900-MHz Pentium 3 processors

Compaq Proliant 6400R

8 GB RAM

Intel Pro Gigabit Optic Fiber Server network adapter

	Database
SQL Server 2000
	Database
Two 1000-MHz Pentium 3 processors

Compaq DL360

264 MB RAM

Preparing to Test

The administrators set up their WCAT configuration file to run 40 virtual clients (four client computers running 10 threads each). They set up their WCAT distribution file to imitate real-world customer use of their site. Table 7.12 shows the breakdown of the WCAT distribution file.

Table 7.12 Description of WCAT Distribution File Classes for Contoso Stress Tests

	Class Number
	Percentage of Requests
	Class Description

	<class> 1
	60
	User browses for books. The administrators assigned the highest percentage of requests to this action to reflect what they expect to be the highest percentage of real-world traffic to their site.

	<class> 2
	10
	User creates an account and buys a book.

	<class> 3
	20
	User logs on to an existing account, puts five books in the shopping cart, takes two books out of the shopping cart, and then completes the purchase.

	<class> 4
	10
	Invalid searches and other user mistakes.

The administrators ran the stress test for 10 minutes. If they had wanted to locate bugs or bottlenecks in their Web application, they would have run the test for much longer; however, because they were not concerned about bugs in the application, the 10-minute test run was sufficient.

While the test ran, the administrators monitored the network to make sure the connection (with a capacity of 1 GB) was not saturated. In Windows Task Manager, on the Networking tab, the administrators noted that network traffic was steady at about 4 percent, which meant that the network was not a bottleneck.

The administrators then opened System Monitor and monitored the Processor(_Total)\% Processor Time counter. The counter showed that the CPU was saturated at 100 percent. The administrators ran the test several more times with fewer virtual clients and the CPU did not reach 100 percent saturation, so they concluded that the data from the test that ran 40 virtual clients would suit their needs for capacity planning, provided the WCAT log did not reveal test errors.

The log revealed no errors, so the administrators concluded the bottleneck is the CPU. The server installation could not scale beyond the 40 virtual clients because the server did not have sufficient processing power. If the administrators had failed to saturate the CPU, they would have looked elsewhere in the installation for the bottleneck — for example, disk I/O (reading and writing from disk) or database activity. Also, a badly written application can be the source of a bottleneck in cases where the CPU is not saturated during stress testing.

Interpreting Test Data

In a situation where the CPU constrains maximum performance, the WCAT results can be used to perform a cycles-per-request calculation for capacity planning. The WCAT log showed 893 requests per second on a server with four 550-MHz processors. Test results can be summarized as follows:

· 4 × 550 megacycles/second = 2,200 megacycles/second.

· 2,200,000,000 cycles/second divided by 893 requests/second = 2,463,606 cycles/request (on average). Rounded up, the server used 2.5 million cycles/request while the CPU was at 100 percent saturation.

· At this point, the administrators spoke with the business managers and marketing managers to learn about expected traffic loads per day. The managers explained that after extensive research, they expected 200,000 customers per day. Each customer will send roughly 60 requests per session, so the total requests/day is 60 × 200,000, or 12,000,000 total requests/day (estimated).

· 12,000,000 divided by 24 × 60 minutes × 60 seconds = 139 anticipated requests per second.

· Rounding to 150 requests/second × 2.5 megacycles per request = 375 MHz needed to process the expected traffic at any given time (on average).

The administrators did not want their Web server to run at 100 percent CPU utilization. Furthermore, the administrators knew from experience that all Web sites have a pattern to their traffic. In order to accurately assess their capacity needs, they would need to know how much CPU power would be needed to handle traffic spikes. After researching other online booksellers, the administrators determined that their site would be busiest in the evening hours from 6 P.M. to midnight (local time) and that their peaks would be around 300 requests per second. The administrators also knew that according to their company’s policy, maximum CPU utilization during peak loads should rarely exceed 30 percent. This maximum helps to assure quality of service during times of heavy traffic.

With a goal of 300 requests per second and a maximum CPU utilization of 30 percent, the administrators adjusted their WCAT distribution and configuration files and then ran the stress test again. The tests showed that at 275 requests per second, CPU utilization approached 30 percent. In this way, the administrators determined that their current capacity on the server with four 550-MHz processors is sufficient for expected regular traffic and peak loads. In other words, the installation scales well for their current needs, and the installation should have sufficient resources available to handle peak loads.

Tuning Production Servers

Contoso best practices mandate that each server be configured for optimum performance and scalability before the server is put into production. These best practices specifically target disk setup, services running on the server by default, network setup, and caches.

Use RAID

To begin with, the administrators set up the site content on a redundant array of independent disks (RAID). RAID is a data storage method in which data — along with information used for error correction, such as parity bits — is distributed among two or more hard disk drives to improve performance and reliability. For information about setting up RAID, see Help and Support Center for Windows Server 2003.

If using RAID is not an option, consider moving the site content to a disk other than the system disk (that is, the disk on which the operating system is installed). By storing your site content on a disk other than the system disk, you reduce contention for disk access between the operating system and the Web sites. This further increases performance.

Delete unused default documents

The administrators knew that if a user tried to access the Web site by using a trailing slash — for example, http://www.contoso.com/website/ — the server would read each item listed in the default document list (such as Default.htm, Default.asp, and Index.htm) and perform a search to see if each document existed. As a best practice, the administrators deleted all the documents in the default document list that do not exist. They left only the default document that does exist — for Contoso, this is Default.aspx. You can delete unnecessary default documents by using IIS Manager to modify the Documents tab on the Web Sites property pages.

Shut down unused services

To conserve memory and CPU resources for the Web service, the administrators shut down unnecessary services. The server will host only the Contoso Web application, so the administrators stopped other IIS services such as the FTP, Simple Mail Transfer Protocol (SMTP), and Network News Transfer Protocol (NNTP) services. Using the Services snap-in, the administrators stopped the Automatic Updates, Task Scheduler, Wireless Configuration, and Print Spooler services (because they would not be printing from that server).

[image: image45.wmf]
Important

Refer to Help and Support Center for Windows Server 2003 to ensure that you understand the role of each service before you stop it. Monitor performance after stopping each service to ensure that the change does not negatively impact performance.

Change file and printer sharing defaults

The administrators changed the default File and Printer Sharing for Network properties from Maximize data throughput for file sharing to Maximize data throughput for network applications. This small change resulted in a 10 percent increase in throughput. For information about how to change these properties, see Help and Support Center for Windows Server 2003.

For more information about performance tuning, see “Optimizing IIS 6.0 Performanceiisrg_per_OVERVIEW” in this book.

Scaling Up

Scaling up means adding hardware, such as RAM or CPUs, to a Web server to increase the number of sites a server can host. Scaling up can be an inexpensive way to boost performance, especially if you host static-content Web sites.

Shortly after moving the server with four 550-MHz processors into production, the Contoso Marketing department finalized plans for a major television advertisement campaign. The marketing director informed the administrators that site traffic would likely double in the next few weeks. The administrators needed to determine whether the server with four 550-MHz processors could handle sustained traffic loads of 600 requests per second while staying within the 30 percent CPU restriction. The cycles-per-request analysis is as follows:

· 4 × 550 megacycles/second = 2,200 megacycles/second.

· 2,200,000,000 cycles/second divided by 893 requests/second = 2,463,606 cycles/request (on average). Rounded up, the server performed 2.5 million cycles/request while the CPU was at 100 percent saturation.

· 600 requests/second × 2.5 million cycles/request = 1500 MHz.

· 1500 MHz divided by 30 percent CPU saturation maximum (1500/.3) = 5000 megacycles/second.

As a result of this analysis, the administrators realized they needed a server that could perform 5,000 megacycles/second in order to use 1,500 megacycles/second at 30 percent CPU. The server with four 550-MHz processors could only achieve 2,200 megacycles/second. Consequently, they would need to scale up, scale out, or both.

To determine the results of scaling up, the administrators tested a server with eight 900-MHz processors. This new server was capable of 7,200 megacycles/second, which covered their current needs.

The administrators migrated the application and performed their WCAT stress test again. In an effort to saturate the CPU at 100 percent, the administrators ran the test with 48, then 72, and finally 120 virtual clients. CPU utilization never exceeded 70 percent. The administrators checked Task Manager and found that the network hovered around 11 percent. The administrators determined at this point that they had a bottleneck somewhere in the system, but for the purpose of their tests, the result of 1,904 requests/second with an average response time of 630 milliseconds was sufficient test data.

The server with four 550-MHz processors performed 893 requests/second. The server with eight 900-MHz processors performed 1,900 requests/second. The installation scaled at a ratio of 1 to 1.6 [(7200/1900)/(2200/893)] when moving from four to eight processors. The administrators understood this to be an acceptable scaling ratio. Realistically, the overhead in system resources and issues such as lock contention do not allow a system to scale linearly; and so they did not expect to see a scale ratio of 1 to 2 when moving from four to eight processors. According to their calculations, the administrators determined that the server with eight 900-MHz processors, barring any unforeseen problems, should scale and perform satisfactorily for their application.

Scaling Out

Scaling out is the process of adding servers to an existing server environment to improve performance and to increase the number of Web sites that the system can host or publish. Scaling out reduces bottlenecks and lock contention because requests coming into the system do not share resources. The request load is balanced among servers.

The Contoso administrators understood that although scaling up to an eight-processor server would meet their performance and scalability needs, they would potentially gain more throughput and increased reliability by hosting their Web application on multiple servers. They decided to use two four-processor servers (one with four 550-MHz processors and one with four 900-MHz processors) with Network Load Balancing for load balancing and failover. After installing and configuring Network Load Balancing on both servers, the administrators ran their WCAT stress test using 500 virtual clients (five client computers running 100 threads each).

As one Network Load Balancing node, the two servers processed (on average) 1,900 requests per second when the Processor(_Total)\% Processor Time counter approached 100 percent. The administrators were initially concerned that the requests per second had not increased beyond the results of the eight-processor server by itself. After looking at the actual megacycles per request, as shown in Table 7.13, the administrators realized they actually had an 18 percent increase in throughput, because the number of megacycles per request had decreased in the Network Load Balancing test.

Table 7.13 Megacycles/Request Calculations

	Server
	Megacycles/Second

(# of Processors/MHz)
	Requests/Second
	Megacycles/Request

	4 × 550 MHz
	2,200
	900
	2.45

	8 × 900 MHz
	7,200
	1,900
	3.8

	4 × 550 MHz +

4 × 900 MHz
	5,800
	1,900
	3.1

With the 18 percent increase in throughput and the added reliability of hosting the Web application on two servers, the administrators asked themselves, Are we done? Is this good enough? Have we scaled this installation as much as we can scale it? They realized that the only truly accurate benchmark they could use for their application was the application itself. In other words, they had scaled the installation out to the point where they could readily process the expected traffic loads while staying within the 30 percent CPU utilization guideline. They had increased reliability by hosting the site on two servers, and they had executed their stress testing with no errors. Unless they began to experience errors from clients, or they noticed — during regular performance monitoring — that traffic loads were increasing and CPU usage was surpassing the 30 percent restriction, they had achieved their objective.

Additional Resources

These resources contain additional information and tools related to this chapter.

Related Information

· “IIS 6.0 Administration Scripts, Tips, and Tricksiisrg_adm_NAPF” in this book for information about command-line administration tools in IIS 6.0.
· “IIS 6.0 Architectureiisrg_arc_OVERVIEW” in this book for information about IIS 6.0 request processing modes.

· “Optimizing IIS 6.0 Performanceiisrg_per_OVERVIEW” in this book for information about performance tuning.

· “Running IIS 6.0 as an Application Serveriisrg_was_OVERVIEW” in this book for information about IIS 6.0 application isolation modes, including how to enable and configure worker process isolation mode.

· “Working with the Metabaseiisrg_met_KKED” in this book for information about the IIS 6.0 metabase, including how to change a metabase property.

· The Capacity Planning link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources for information about capacity planning.

· The Duwamish 7.0 link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources for information about Duwamish 7.0.

· The Scalability link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources for information about scalability.

· The SharePoint Team Services Administrator’s Guide link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources for information about upgrading your FrontPage-extended Web sites.

· Performance Testing Microsoft .NET Web Applications by Microsoft Application Consulting and Engineering (ACE) Team, 2003, Redmond: Microsoft Press.

Related IIS 6.0 Help Topics

· “Performance Counters Reference” in IIS 6.0 Help for information about IIS cache counters.

· “Metabase Property Reference” in IIS 6.0 Help for information about specific IIS 6.0 properties.

· “Using Command-Line Administration Scripts” in IIS 6.0 Help for information about administering IIS 6.0 programmatically.
· “Performance Counters Reference” in IIS 6.0 Help for information about IIS 6.0 counters.

Related Tools

· WCAT

The Microsoft Web Capacity Analysis Tool (WCAT) runs simulated workloads on client/server configurations. Using WCAT, you can test how IIS and network configurations respond to a variety of different client requests for content or data. The results of these tests can be used to determine the optimal server and network configuration for your server. WCAT and its documentation (Wcatguide.doc) are included on the Internet Information Services (IIS) 6.0 Resource Kit companion CD.

