34   Chapter 2   IIS 6.0 Architecture
Application Isolation Modes   33

Chapter 2

IIS 6.0 Architecture

Internet Information Services (IIS) version 6.0, which runs on all editions of the Microsoft® Windows® Server 2003 operating system, provides a new architecture that offers flexibility in the choice of two application isolation modes. The new architecture helps you run a faster Web service that is more reliable and secure. Read this chapter to obtain a detailed review of the new architecture so that you can understand how IIS works and can effectively deploy, manage, and troubleshoot IIS 6.0.

In This Chapter

2Overview of IIS 6.0 Architecture


8IIS 6.0 Services


11IIS 6.0 Core Components


18Application Isolation Modes


44How ASP.NET Works with IIS 6.0


47Additional Resources



Related Information

· For more information about running IIS as an application server, see “Running IIS 6.0 as an Application Serveriisrg_was_OVERVIEW” in this book.

· For more information about what has changed since IIS 5.0, see “Introducing IIS 6.0iisrg_iis_OVERVIEW” in this book.

Overview of IIS 6.0 Architecture

IIS 6.0 provides a redesigned World Wide Web Publishing Service (WWW service) architecture that can help you achieve better performance, reliability, scalability, and security for your Web sites, whether they run on a single server running IIS or on multiple servers.

IIS 6.0 runs a server in one of two distinct request processing models, called application isolation modes. Application isolation is the separation of applications by process boundaries that prevents one application or Web site from affecting another and reduces the time that you spend restarting services to correct problems related to applications.

In IIS 6.0, application isolation is configured differently for each of the two IIS application isolation modes. Both modes rely on the HTTP protocol stack (also referred to as HTTP.sys) to receive Hypertext Transfer Protocol (HTTP) requests from the Internet and return responses. HTTP.sys resides in kernel mode, where operating system code, such as device drivers, runs. HTTP.sys listens for, and queues, HTTP requests. For more information about HTTP.sys, see “HTTP Protocol Stackiisrg_arc_ZSDF” later in this chapter.

The new request-processing architecture and application isolation environment enables individual Web applications, which always run in user mode, to function within a self-contained worker process. A worker process is user-mode code whose role is to process requests, such as returning a static page or invoking an Internet Server API (ISAPI) extension or filter. Worker processes use HTTP.sys to receive requests and send responses over HTTP. For more information about worker processes, see “Worker Processesiisrg_arc_SEBA” later in this chapter.

IIS 6.0 Request Processing Models

Worker process isolation mode is the new IIS request processing model. In this application isolation mode, you can group Web applications into application pools, through which you can apply configuration settings to the worker processes that service those applications. An application pool corresponds to one request routing queue within HTTP.sys and one or more worker processes.

Worker process isolation mode enables you to completely separate an application in its own process, with no dependence on a central process such as Inetinfo.exe to load and execute the application. All requests are handled by worker processes that are isolated from the Web server itself. Process boundaries separate each application pool so that when an application is routed to one application pool, applications in other application pools do not affect that application. By using application pools, you can run all application code in an isolated environment without incurring a performance penalty. For more information about application pools, see “How Application Pools Workiisrg_arc_UUWX” later in this chapter.

For a visual representation of worker process isolation mode architecture, see Figure 2.1.

Figure 2.1   Architecture of Worker Process Isolation Mode

[image: image1.wmf]
Worker process isolation mode delivers all the benefits of the new IIS 6.0 architecture, including multiple application pools, health monitoring and recycling, increased security and performance, improved scalability, and processor affinity. For example, the new health monitoring features can help you discover and prevent application failures, and can also help protect your Web server from imperfect applications.

IIS 5.0 isolation mode provides compatibility for applications that were designed to run in earlier versions of IIS. When IIS 6.0 is running in IIS 5.0 isolation mode, request processing is almost identical to the request processing in IIS 5.0. When a server is working in IIS 5.0 isolation mode, application pools, recycling, and health monitoring features are unavailable.

For a visual representation of IIS 5.0 isolation mode architecture, see Figure 2.2. The dashed line in Figure 2.2 indicates the dependency of the worker process on the WWW service, which manages the worker process. For more information about the role of the WWW service, see “WWW Service Administration and Monitoringiisrg_arc_WCKT” later in this chapter.

Figure 2.2   Architecture of IIS 5.0 Isolation Mode

[image: image2.wmf]
Use IIS 5.0 isolation mode only if components or applications do not function in worker process isolation mode. The latter mode is designed to provide an environment in which most existing applications or sites function correctly.

For more information about IIS 6.0 isolation modes, see “Application Isolation Modesiisrg_arc_FQAM” later in this chapter.

IIS 6.0 Services

IIS 6.0 provides four Internet services: the World Wide Web Publishing Service (WWW service) for hosting Internet and intranet content; the File Transfer Protocol (FTP) service for hosting sites where users can upload and download files; the Network News Transfer Protocol (NNTP) service for hosting discussion groups; and the Simple Mail Transfer Protocol (SMTP) service for sending and receiving e-mail messages.

After installing these services, you can create sites or virtual servers, configure properties and security settings, and set up components to further customize your system. For more information about IIS services, see “IIS 6.0 Servicesiisrg_arc_HTFO” later in this chapter and “Configuring Internet Sites and Servicesiisrg_cfg_OMKX” in this book.

WWW Service Administration and Monitoring, which is a new set of features that were added to the WWW service in IIS 6.0, manages worker processes, supports the new request processing model, and is responsible for health management and maintenance, including application pool health monitoring, recycling worker processes, and rapid-fail protection.

IIS Admin service is a service of the Microsoft® Windows® Server 2003, Standard Edition; Microsoft® Windows® Server 2003, Enterprise Edition; Microsoft® Windows® Server 2003, Web Edition; and Microsoft® Windows® Server 2003, Datacenter Edition operating systems. The IIS Admin service manages the IIS metabase, which stores IIS configuration data. The IIS Admin service makes metabase data available to applications and the core components of IIS. For more information about the IIS metabase, see “The IIS Metabaseiisrg_arc_SPFT” later in this chapter.

Comparing Basic Functionality Between IIS 6.0 and Earlier IIS Versions

For a quick preview of IIS architecture, comparing IIS 6.0 architecture with the architecture for earlier versions of IIS, see Table 2.1, which summarizes the basic functionality for different versions of IIS.

Table 2.1   Basic Functionality in Different Versions of IIS

	Functionality
	IIS 4.0
	IIS 5.0
	IIS 5.1
	IIS 6.0

	Platform
	Microsoft® Windows NT® 4.0 operating system
	Microsoft® Windows® 2000 Server operating system
	Microsoft® Windows® XP Professional operating system
	Windows Server 2003

	Architecture
	32-bit
	32-bit
	32-bit and 64-bit
	32-bit and 64-bit

	Network subsystem
	TCP/IP kernel
	TCP/IP kernel
	TCP/IP kernel
	HTTP.sys kernel

	Application request processing model
	MTX.exe: Multiple DLL hosts in High application isolation.

Inetinfo.exe: In‑process as DLLs with Low isolation.
	DLLHost.exe: Multiple DLL hosts in Medium or High application isolation.

Inetinfo.exe: In‑process as DLLs with Low isolation.
	DLLHost.exe: Multiple DLL hosts in Medium or High application isolation.

Inetinfo.exe: In‑process as DLLs with Low isolation.
	W3wp.exe: In worker process isolation mode (multiple worker processes).

Inetinfo.exe: Only in IIS 5.0 isolation mode with in-process applications.

DLLHost.exe: Only in IIS 5.0 isolation mode with out-of-process applications.

	Metabase configuration
	Binary
	Binary
	Binary
	XML

	Security
	Windows authentication

Secure Sockets Layer (SSL)
	Windows authentication

SSL

Kerberos
	Windows authentication

SSL

Kerberos
	Windows authentication

SSL

Kerberos

.NET Passport support

	Remote administration
	HTMLA1
	HTMLA
	No HTMLA

Terminal Services
	Remote Administration Tool (HTML)

Terminal Services


1 Hypertext Markup Language Administration or HTML-based administration. HTMLA-based administration allows administrators to manage IIS Web servers by using a standard Web browser, such as Microsoft® Internet Explorer, as the client-side interface.

IIS 6.0 Services

IIS 6.0 offers four Internet services that you can use to create sites or virtual servers, configure properties and security settings, and set up components to customize your system.

When you install IIS 6.0 on a computer that does not contain an earlier version of IIS, IIS 6.0 automatically installs the following two services:

· The WWW service, which hosts Internet and intranet content.

· The IIS Admin service, which manages the IIS metabase.

You can also choose to install one or more of the following services:

· The FTP service for hosting sites from which users can upload and download files.

· The NNTP service for hosting discussion groups.

· The SMTP service for sending and receiving e-mail messages.

Table 2.2 lists the IIS services, their core components, and their service hosts.

Table 2.2   Basic Services Provided by IIS 6.0

	Service Name
	Description
	Service Short Name
	Core Component
	Host

	World Wide Web Publishing Service (WWW service)
	Delivers Web publishing services.
	W3SVC
	Iisw3adm.dll
	Svchost.exe

	File Transfer Protocol (FTP)
	Allows file uploads and downloads from remote systems.
	MSFTPSVC
	Ftpsvc2.dll
	Inetinfo.exe

	Simple Mail Transfer Protocol (SMTP)
	Sends and receives electronic messages (e-mail).
	SMTPSVC
	Smtpsvc.dll
	Inetinfo.exe

	Network News Transfer Protocol (NNTP)
	Distributes network news messages.
	NNTPSVC
	Nntpsvc.dll
	Inetinfo.exe

	IIS Admin Service
	Manages the metabase.
	IISADMIN
	Iisadmin.dll
	Inetinfo.exe


World Wide Web Publishing Service

The World Wide Web Publishing Service (WWW service) provides Web publishing for IIS, connecting client HTTP requests to Web sites running on an IIS‑based Web server.

The WWW service manages and configures the IIS core components that process HTTP requests. These core components include the HTTP protocol stack (HTTP.sys) and the worker processes.

The WWW service includes these subcomponents: Active Server Pages (ASP), Internet Data Connector, Remote Administration (HTML), Remote Desktop Web Connection, server-side includes (SSI), Web Distributed Authoring and Versioning (WebDAV) publishing, and ASP.NET.

FTP Service

IIS provides an FTP service, which you can use to allow users on remote computer systems to copy files to and from your server on a network that uses TCP/IP. The IIS FTP service is an implementation of the File Transfer Protocol, RFC 959, “File Transfer Protocol (FTP),” and several extensions. The FTP protocol is implemented on top of TCP, which ensures that file transfers are complete and that data transfer is accurate.

You can deploy the FTP service across an arbitrary number of front-end and back-end servers, which increases reliability and availability. By adding virtual directories and servers, you can easily scale FTP without affecting end users.

In IIS 6.0, the FTP service allows you to isolate users at the site level, a feature known as FTP user isolation, to help administrators secure and commercialize their Internet sites. Because of the easy availability and wide adoption of FTP, Internet service providers (ISPs) and application service providers (ASPs) traditionally have used FTP to upload their Web content. IIS 6.0 allows the isolation of users into their own directory, thus preventing users from viewing or overwriting other users’ Web content. The user’s top-level directory appears as the root of the FTP site, thus restricting access by not allowing users to navigate farther up the directory tree or across to other users’ home directories. Within the user’s own site, the user can create, modify, or delete files and folders.
SMTP Service

The SMTP service in IIS processes messages by using the Simple Mail Transfer Protocol (SMTP), which is a TCP/IP protocol that is used to send and receive messages from one computer to another on a network. This protocol is used in intranets and on the Internet to route e-mail.

SMTP is the Internet standard for transporting and delivering electronic messages. Based on specifications in RFCs 2821 and 2822, Microsoft SMTP service is included in the Windows Server 2003 operating system. In Windows Server 2003, the SMTP service is actually a component of IIS and runs as part of Inetinfo.exe. Windows Server 2003 uses SMTP as its native transport protocol to route all messages internally and externally. SMTP is also the default transport for Microsoft® Exchange 2000 Server.

The SMTP component of IIS can send or receive SMTP e-mail messages. You can program the server to automatically send messages in response to events — for example, to confirm a successful form submission by a user. You can also use SMTP to receive messages — for example, to collect feedback from Web site customers.

SMTP does not provide a complete e-mail service. To obtain complete e-mail services for your users, use Microsoft® Exchange Server. For more information about Exchange Server, see the Microsoft Product Support Services link on the <A HREF="http://go.microsoft.com/fwlink/?LinkId=291" TARGET="_blank">Web Resources page</A> at http://www.microsoft.com/windows/reskits/webresources.

NNTP Service

IIS provides a Network News Transfer Protocol (NNTP) service, which you can use to distribute network news messages to NNTP servers and to NNTP clients (news readers) on the Internet. NNTP provides for the distribution, inquiry, retrieval, and posting of news articles by using a reliable stream-based transmission of news on the Internet. With NNTP, news articles are stored on a server in a central database from which users select specific items to read. Indexing, cross-referencing, and expiration of aged messages also are provided.

You can host NNTP local discussion groups on a single computer. Because this feature complies fully with the NNTP protocol, users can use any NNTP client to participate in the newsgroup discussions. The IIS NNTP service does not support news feeds or replication. To use news feeds or to replicate a newsgroup across multiple computers, use Microsoft Exchange Server.

[image: image3.wmf]
Note

For more information about these four IIS Internet services, see “Configuring Internet Sites and Servicesiisrg_cfg_OMKX” in this book.

IIS Admin Service

IIS Admin service is a Windows Server 2003 service that manages the IIS metabase. The metabase stores IIS configuration data in a plaintext XML file that you can read and edit by using common text editors. IIS Admin service makes metabase data available to other applications, including the core components of IIS, applications built on IIS, and applications that are independent of IIS, such as management or monitoring tools. For more information about the IIS metabase, see “The IIS Metabaseiisrg_arc_SPFT” later in this chapter and “Working with the Metabaseiisrg_met_KKED” in this book.

IIS 6.0 Core Components

IIS 6.0 contains several core components that perform important functions in the new IIS architecture. The more that you know about these components, the better you can use IIS 6.0 to your advantage and effectively troubleshoot any issues that might arise.

Most of these core components were briefly described in “Overview of IIS 6.0 Architectureiisrg_arc_NZLE” earlier in this chapter. This section provides additional details, including how these core components interact with each other or how they function in each of the two application isolation modes. For example, you can read about the following topics in this section:

· HTTP Protocol Stack (HTTP.sys). How the HTTP protocol stack protects the operating system kernel from the effects of imperfect application code, and how it handles kernel-mode queuing.

· Worker processes. How the worker process is controlled by the WWW service in both application isolation modes, but in different ways.

· WWW Service Administration and Monitoring. How the WWW Service Administration and Monitoring component manages the lifetime of the worker process.

· Inetinfo.exe. How the role of Inetinfo.exe has changed since IIS 5.0.

· IIS Metabase. Benefits of the new XML metabase, especially in diagnosing possible metabase corruption or in reading and editing the metabase configuration.

HTTP Protocol Stack
The HTTP listener is implemented as a kernel-mode device driver called the HTTP protocol stack (HTTP.sys). IIS 6.0 uses HTTP.sys, which is part of the networking subsystem of the Windows operating system, as a core component.

Earlier versions of IIS use Windows Sockets API (Winsock), which is a user-mode component, to receive HTTP requests. By using HTTP.sys to process requests, IIS 6.0 delivers the following performance enhancements:

· Kernel-mode caching. Requests for cached responses are served without switching to user mode.

· Kernel-mode request queuing. Requests cause less overhead in context switching, because the kernel forwards requests directly to the correct worker process. If no worker process is available to accept a request, the kernel-mode request queue holds the request until a worker process picks it up.

Using HTTP.sys and the new WWW service architecture provides the following benefits:

· When a worker process fails, service is not interrupted; the failure is undetectable by the user because the kernel queues the requests while the WWW service starts a new worker process for that application pool.

· Requests are processed faster because they are routed directly from the kernel to the appropriate user-mode worker process instead of being routed between two user-mode processes.

How HTTP.sys Works

When you create a Web site, IIS registers the site with HTTP.sys, which then receives any HTTP requests for the site. HTTP.sys functions like a forwarder, sending the Web requests it receives to the request queue for the user-mode process that runs the Web site or Web application. HTTP.sys also sends responses back to the client.

Other than retrieving a stored response from its internal cache, HTTP.sys does not process the requests that it receives. Therefore, no application-specific code is ever loaded into kernel mode. As a result, bugs in application-specific code cannot affect the kernel or lead to system failures.

HTTP.sys provides the following services in IIS 6.0:

· Routing HTTP requests to the correct request queue.

· Caching of responses in kernel mode.

· Performing all text-based logging for the WWW service.

· Implementing Quality of Service (QoS) functionality, which includes connection limits, connection timeouts, queue-length limits, and bandwidth throttling.

How HTTP.sys Handles Kernel-Mode Queuing

When IIS 6.0 runs in worker process isolation mode, HTTP.sys listens for requests and queues those requests in the appropriate queue. Each request queue corresponds to one application pool. An application pool corresponds to one request queue within HTTP.sys and one or more worker processes.

When IIS 6.0 runs in IIS 5.0 isolation mode, HTTP.sys runs like it runs in worker process isolation mode, except that it routes requests to a single request queue.

If a defective application causes the user-mode worker process to terminate unexpectedly, HTTP.sys continues to accept and queue requests, provided that the WWW service is still running, queues are still available, and space remains in the queues.

When the WWW service identifies an unhealthy worker process, it starts a new worker process if outstanding requests are waiting to be serviced. Thus, although a temporary disruption occurs in user-mode request processing, an end user does not experience the failure because TCP/IP connections are maintained, and requests continue to be queued and processed.

Worker Processes

A worker process is user-mode code whose role is to process requests, such as processing requests to return a static page, invoking an ISAPI extension or filter, or running a Common Gateway Interface (CGI) handler.

In both application isolation modes, the worker process is controlled by the WWW service. However, in worker process isolation mode, a worker process runs as an executable file named W3wp.exe, and in IIS 5.0 isolation mode, a worker process is hosted by Inetinfo.exe. Figure 2.2, which depicts the architecture for IIS 5.0 isolation mode, uses a dashed line to suggest the relationship between the worker process and the WWW service.

Worker processes use HTTP.sys to receive requests and to send responses by using HTTP. Worker processes also run application code, such as ASP.NET applications and XML Web services. You can configure IIS to run multiple worker processes that serve different application pools concurrently. This design separates applications by process boundaries and helps achieve maximum Web server reliability.

By default, worker processes in worker process isolation mode run under the Network Service account, which has the strongest security (least access) compatible with the functionality that is required. For more information about Network Service accounts, including Windows Server 2003 built-in security accounts, see “Running IIS 6.0 as an Application Serveriisrg_was_OVERVIEW” in this book and “IIS and Built-in Accounts” in IIS 6.0 Help.

WWW Service Administration and Monitoring

The WWW Service Administration and Monitoring component, which is hosted in Svchost.exe, is a set of new features contained in the WWW service. Like the worker process, this new component runs in user mode, and like HTTP.sys, this component contains critical IIS 6.0 functionality that never loads external code. IIS 6.0 completely isolates external application code from this component by running only the external code in worker processes.

[image: image4.wmf]
Note

Because the WWW Service Administration and Monitoring component implements and controls a set of new features contained in the WWW service, to simplify the text, the term WWW service is used when discussing these new features instead of the term WWW Service Administration and Monitoring component.

The WWW service is responsible for two roles in IIS: HTTP administration and worker process management.

HTTP administration

The WWW service interacts with the metabase to obtain the configuration data that is needed to set up HTTP.sys and that is used to manage the worker process.

When you start a server that is running IIS, and the WWW service is started, this service reads metabase information and initializes the HTTP.sys namespace routing table with one entry for each application. HTTP.sys then uses the routing table data to determine which application pool responds to requests from what parts of the namespace. When HTTP.sys receives a request, it signals the WWW service to start a worker process for the application pool.

When you add or delete an application pool, the WWW service processes the configuration changes, which includes adding or deleting the application pool queue from HTTP.sys. The WWW service also listens for and processes configuration changes that occur as a result of application pool recycling.

Managing the lifetime of the worker process 

The WWW service is responsible for managing the worker processes, which includes starting the worker processes and maintaining information about the running worker processes. This service also determines when to start a worker process, when to recycle a worker process, and when to restart a worker process if it becomes blocked and is unable to process any more requests.

In worker process isolation mode, the WWW service is responsible for health management and maintenance, including application pool health monitoring, recycling worker processes, and rapid-fail protection. For more information about these new features, see “Features of Worker Process Isolation Modeiisrg_arc_UCGC” later in this chapter and “Running IIS 6.0 as an Application Serveriisrg_was_OVERVIEW” in this book.

The WWW service runs under the Local System account. For more information about Local System accounts, including Windows Server 2003 built-in security accounts, see “Running IIS 6.0 as an Application Serveriisrg_was_OVERVIEW” and “Managing a Secure IIS 6.0 Solutioniisrg_sec_OVERVIEW” in this book.

Inetinfo.exe

When IIS 6.0 runs in worker process isolation mode, Inetinfo.exe is a user-mode component that hosts the IIS metabase and that also hosts the non-Web services of IIS 6.0, including the FTP service, the SMTP service, and the NNTP service. Inetinfo.exe depends on IIS Admin service to host the metabase.

When IIS 6.0 runs in IIS 5.0 isolation mode, Inetinfo.exe functions much as it did in IIS 5.0. In IIS 5.0 isolation mode, however, Inetinfo.exe hosts the worker process, which runs ISAPI filters, Low-isolation ISAPI extensions, and other Web applications.

[image: image5.wmf]
Important

In IIS 6.0, regardless of the application isolation mode used, the services that run in Inetinfo.exe run as dynamic-link libraries (DLLs) under the Local System account. Because a Local System account allows users access to every resource on the local computer, use caution when you run services in Inetinfo.exe, especially on computers that provide services on the Internet. 

When you run services in Inetinfo.exe that can be accessed from the Internet, be sure to protect your system by using a firewall, such as Microsoft® Internet Security and Acceleration (ISA) Server, or by disabling services that you do not use.

The IIS Metabase

The IIS metabase is a plaintext, XML data store that contains most IIS configuration information. Although most of the IIS configuration settings are stored in the IIS metabase, a few settings are maintained in the Windows registry. If a configuration setting i one that you might need to configure or change, or if you can access the setting in the IIS 6.0 user interface, then the setting is typically stored in the IIS metabase.

The new XML metabase allows administrators to directly read and edit the configuration file without using scripts or code, by using a common text editor such as Notepad. The XML metabase makes it easier to diagnose potential metabase corruption, and to back up and restore your metabase files.

If you upgrade to IIS 6.0, the existing binary metabase is automatically converted to the new XML metabase. The metabase is 100 percent compatible with IIS 5.x metabase application programming interfaces (APIs) and Active Directory® directory service Service Interfaces (ADSI), ensuring that existing scripts and code continue to work.

For more information about the metabase, see “Working with the Metabaseiisrg_met_KKED” in this book.

Metabase Elements

IIS 6.0 replaces the single binary file (MetaBase.bin) of earlier IIS versions with two XML files: MetaBase.xml and MBSchema.xml. IIS stores these files in the systemroot\System32\Inetsrv folder of your computer. To view and modify these files, you must be a member of the Administrators group.

The metabase consists of the following elements:

· MetaBase.xml file. This file stores IIS configuration information that is specific to an installation of IIS.

· MBSchema.xml file. This file contains the metabase schema. The MBSchema.xml file is a master configuration file that defines default attributes for all metabase properties and enforces rules for constructing and placing metabase entries within the metabase.

· In-memory metabase. The in-memory metabase contains the most current metabase and metabase schema configuration. The in-memory metabase accepts changes to the metabase configuration and schema, storing them in RAM, and periodically writing changes to the on-disk metabase and metabase schema files.

When IIS starts, the MetaBase.xml and MBSchema.xml files are read by the IIS storage layer and copied to the in-memory metabase. While IIS is running, any changes that you make to the in-memory metabase are periodically written to disk. IIS also saves the in-memory metabase to disk when you stop IIS.

The IIS Admin service makes the metabase available (by means of the Admin Base Object) to other applications, including the core components of IIS, applications built on IIS, and applications that are independent of IIS, such as management or monitoring tools.

For more information about what happens to the metabase when IIS starts or restarts, see “About the Metabase” in IIS 6.0 Help.

Automatic Versioning and History

IIS 6.0 also provides automatic versioning and history. This metabase history feature automatically tracks any changes to the metabase that are written to disk. When the metabase is written to disk, IIS marks the new MetaBase.xml file with a version number and saves a copy of the file in the history folder. Each history file is marked with a unique version number, which is then available, if needed, for metabase rollback or restore. The metabase history feature is enabled by default.

For more information about the metabase, see “Working with the Metabaseiisrg_met_KKED” in this book.
Application Isolation Modes

IIS 6.0 runs a server in one of two distinct request processing models, called application isolation modes. In each isolation mode, IIS functions differently, although both application isolation modes rely on HTTP.sys as the HTTP listener.

Worker process isolation mode

Worker process isolation mode takes advantage of the redesigned architecture for IIS 6.0. In this application isolation mode, you can group Web applications into application pools, through which you can apply specific configuration settings to groups of applications and to the worker processes servicing those applications. By using application pools, you can run all application code in an isolated environment; however, unlike earlier versions of IIS, IIS 6.0 provides isolation without a performance penalty, because there are no added process hops.

Worker process isolation mode provides application (or site) compatibility for most existing applications. This application isolation mode is specified by a false value for the metabase property IIs5IsolationModeEnabled.

IIS 5.0 isolation mode

IIS 5.0 isolation mode is provided for applications that depend upon specific features and behaviors of IIS 5.0. Use this mode only if an application has a compatibility issue when it runs in worker process isolation mode and you cannot resolve the problem.

In this application isolation mode, you can isolate applications as you did in IIS 5.0: in Low isolation (in-process), Medium isolation (pooled out-of-process), or High isolation (out-of-process). This application isolation mode is specified by a true value for the IIs5IsolationModeEnabled metabase property.

Whenever possible, run your server in worker process isolation mode, which is more secure and reliable than IIS 5.0 isolation mode and is also the default application isolation mode for a clean installation of IIS 6.0. For more information about IIS 6.0 application isolation mode defaults, see “Application Isolation Mode Defaultsiisrg_arc_KVXA” later in this chapter.

Choosing an Application Isolation Mode

The IIS application isolation mode that you choose affects performance, reliability, security, and feature availability. Worker process isolation mode is the recommended mode of operation for IIS 6.0 because it provides a more robust platform for applications and the ability to isolate applications in separate application pools without incurring a performance penalty. Also, in the default configuration, worker process isolation mode provides a higher level of security than does IIS 5.0 isolation mode because its default host process identity is Network Service.

Some applications might have compatibility problems when they run in worker process isolation mode. If compatibility problems occur, you might need to use IIS 5.0 isolation mode. For applications that run in IIS 5.0 isolation mode, Local System is the only available process identity when you run an application in-process in Inetinfo.exe. For more information about IIS security, see “Managing a Secure IIS 6.0 Solutioniisrg_sec_OVERVIEW” in this book. Also see “Configuring Worker Process Identities” and “IIS and Built-in Accounts” in IIS 6.0 Help.

[image: image6.wmf]
Important

IIS 6.0 cannot run both application isolation modes simultaneously on the same computer. Therefore, on a single computer running IIS 6.0, you cannot run some Web applications in worker process isolation mode and others in IIS 5.0 isolation mode. If your applications require different modes, you must run them on separate computers.

When you are deciding which application isolation mode to use, follow these guidelines:

· Use worker process isolation mode unless you need to use IIS 5.0 isolation mode because of a specific compatibility problem. For example, an application that checks to see if an application is running in a process named Inetinfo.exe is incompatible with worker process isolation mode.

· For Web sites that contain static content and simple ASP applications, run the applications in worker process isolation mode because these Web sites usually require little or no modification.

· For applications that run correctly on IIS 5.0, try running them first in worker process isolation mode. If they do not work correctly, change them back to IIS 5.0 isolation mode until you can diagnose and fix the incompatibility.

Applications that cannot run in worker process isolation mode
Applications that run in worker process isolation mode can take advantage of all the worker process behaviors, which include multi-instancing, recycling, and configurable process identity. Certain application characteristics conflict with the architecture of worker process isolation mode and must be run in IIS 5.0 isolation mode until you can modify them.

The following applications or application characteristics conflict with worker process isolation mode:

· Read raw data filters. This type of filter can only be loaded in IIS 5.0 isolation mode.

· Dependency on Inetinfo.exe. Applications that must run in an Inetinfo.exe worker process can only run in IIS 5.0 isolation mode because applications cannot run in Inetinfo.exe in worker process isolation mode.

· Requires Dllhost.exe. Web applications that must run in a Dllhost.exe environment can run only in IIS 5.0 isolation mode because running Web applications in Dllhost.exe is not an option in worker process isolation mode.

Applications that require special handling to run in worker process isolation mode
Applications that you cannot load into multiple processes simultaneously have the following limitations:

· You cannot run them in application pools configured to perform overlapped recycling.

· You cannot run them in application pools configured as Web gardens.

Instead, run this type of application in an application pool that is not configured for overlapped recycling and that is not configured to run as a Web garden. For more information about overlapped recycling, see “Features of Worker Process Isolation Modeiisrg_arc_UCGC” later in this chapter. For information about configuring overlapped recycling, see “Recycling Worker Processes” in IIS 6.0 Help.

If the IIS 6.0 WWW service is running in worker process isolation mode (the IIS 6.0 default mode), and you must run applications that require a functionality that is available only in IIS 5.0 isolation mode, change to IIS 5.0 isolation mode until you can correct the incompatibility. When running your server in IIS 5.0 isolation mode, you cannot take advantage of worker process isolation and the other features of worker process isolation mode.

Application Isolation Mode Defaults

When you install IIS 6.0 on a computer that does not contain an earlier version of IIS, IIS 6.0 automatically sets the application isolation mode to worker process isolation mode. If you upgrade from a earlier version of IIS, IIS 6.0 sets the application isolation mode to IIS 5.0 isolation mode.

Table 2.3 lists the IIS 6.0 default settings for the two application isolation modes.

Table 2.3   Default IIS 6.0 Installation Settings for Each Application Isolation Mode

	Type of Installation
	Application Isolation Mode

	New installation of IIS 6.0 (clean install)
	Worker process isolation mode

	Upgrade from an earlier version of IIS 6.0, such as a beta release 
	No change in isolation mode

	Upgrade from IIS 5.0
	IIS 5.0 isolation mode

	Upgrade from IIS 4.0
	IIS 5.0 isolation mode


Although IIS 5.0 isolation mode is the default application isolation mode when you upgrade from earlier versions of IIS, be sure to test your applications for compatibility issues so that, if possible, you can upgrade to worker process isolation mode.

Application Isolation Mode Functions

Use Table 2.4 to compare how certain IIS 6.0 functions run in worker process isolation mode with how they run in IIS 5.0 isolation mode. Knowing the host component for each iapplication solation mode can help you decide which application isolation mode to use. For example, if an application must run in DLLhost.exe, and you cannot change the application to remove this requirement, this table shows you the two available options, which are to run the application in Medium or High isolation in IIS 5.0 isolation mode.
Table 2.4   Comparison of IIS 6.0 Functions in the Two Application Isolation Modes

	IIS 6.0 Function
	Worker Process Isolation Mode Host/Component
	IIS 5.0 Isolation Mode Host/Component

	Worker process management
	Svchost.exe/WWW service
	Svchost.exe/WWW service

	Worker process
	W3wp.exe
	Inetinfo.exe

	Running Low-isolation ISAPI applications
	W3wp.exe
	Inetinfo.exe

	Running Medium-isolation ISAPI applications
	Not applicable (All ISAPI extensions are in-process.)
	DLLHost.exe (1)

	Running High-isolation ISAPI applications
	Not applicable (All ISAPI extensions are in-process.)
	DLLHost.exe

	Running ISAPI filters
	W3wp.exe
	Inetinfo.exe

	HTTP.sys configuration
	Svchost.exe/WWW service
	Svchost.exe/WWW service

	HTTP protocol support
	Windows kernel/HTTP.sys
	Windows kernel/HTTP.sys 

	HTTP SSL (HTTPFilter)
	Lsass.exe
	Inetinfo.exe

	IIS metabase
	Inetinfo.exe
	Inetinfo.exe

	FTP
	Inetinfo.exe
	Inetinfo.exe

	NNTP
	Inetinfo.exe
	Inetinfo.exe

	SMTP
	Inetinfo.exe
	Inetinfo.exe


HTTP SSL (HTTPFilter)

When HTTP.sys receives requests that are encrypted by using Secure Sockets Layer (SSL), the kernel-mode HTTP service cannot decrypt the requests or encrypt the responses. Instead, HTTP SSL (HTTPFilter), which is a user-mode service, implements SSL for the HTTP service. HTTP SSL runs in the IIS 6.0 isolation modes as follows:

· In worker process isolation mode, Lsass.exe hosts HTTPFilter.

· In IIS 5.0 isolation mode, HTTP filter runs in Inetinfo.exe.

[image: image7.wmf]
Important

Lsass.exe cannot be stopped except during computer shutdowns — either planned or unexpected.

IIS 6.0 Identity vs. IIS 5.0 Identity

In IIS 6.0, worker processes use a different process identity than in IIS 5.0. Process identity is an operating system term used to denote the account that a process runs under. Every process that is running on a Windows NT operating system has a process identity that is used to control access to resources on the system.

The different process identity used by worker processes in IIS 6.0 can affect applications migrated from IIS 5.0 if the application expects the process identity to run as a specific account, such as IWAM_ComputerName. In addition, for Medium-isolation or High-isolation Web applications created in IIS 5.0 or run on IIS 6.0 in IIS 5.0 isolation mode, identity is configured by Component Services; however, when IIS 6.0 is running in worker process isolation mode, identity is configured in IIS Manager.

Worker Process Isolation Mode

IIS 6.0 worker process isolation mode takes the concept of application isolation, which was introduced in IIS 4.0, one step further. In IIS 6.0, you can isolate one application from another so that an error in one application does not affect another application running in a different process. This application isolation mode provides better isolation while not incurring a performance penalty for isolation.

Worker process isolation mode loads application code — for example, ASP and ASP.NET applications — into the worker process only. By isolating application code in the worker process, this application isolation mode ensures a reliable environment for an application server: the WWW service, IIS Admin service, and HTTP.sys can run continuously despite any service interruptions that occur in a worker process. Also, Web sites running in the worker processes are not affected by failures in other worker processes because they are isolated from each other through operating system process boundaries.

Worker process isolation mode uses all of the new IIS 6.0 core components and supports application pooling, recycling, and health monitoring features.

Benefits of Using Worker Process Isolation Mode

One benefit of isolating applications or sites into separate worker processes is to simplify management tasks, such as taking an application offline or putting an application back online (independent of all other sites or applications running on the system), changing a component that an application uses, debugging an application, and throttling (limiting) resources that an application uses.

IIS 6.0 worker process isolation mode improves on earlier versions of IIS in the following areas:

· It is more robust. Prevents Web applications and Web sites in an application pool from disrupting or harming applications or Web sites in another application pool.

· It requires fewer or no reboots. Does not force you to reboot the server or to shut down the WWW service. You can perform common tasks, such as upgrading site content or components, debugging Web applications, or dealing with faulty Web applications, without affecting service to other sites or applications on the server.

· It is self-healing. Supports autorestart of failed applications and periodic restart of unstable applications or applications that leak memory.

· It is more scalable and reliable. Supports scaling for ISPs, which sometimes run thousands of sites on a server, and offers better multiprocessor scalability.

· It is application-oriented. Makes the application the unit of administration and robustness by enabling application isolation and also by enabling resource throttling (limiting the amount of resources that an application can use) and scaling based on the application.

The result is a Web server that is more reliable and always available, even if applications cause their hosting worker processes to terminate.

Features of Worker Process Isolation Mode

Worker process isolation mode includes several features that you can use to improve IIS robustness, scalability, and reliability without reducing performance. These features include multiple application pools, application pool health monitoring, worker process recycling, and rapid-fail protection. When you run your Web server in worker process isolation mode, you can configure application pools to take advantage of these features, which can only be used when a Web server is running in worker process isolation mode.

Multiple Application Pools

In IIS 5.0, applications can be pooled together out-of-process, but only in one application pool (typically referred to as a pooled out-of-process in IIS 5.0, rather than an application pool). In IIS 6.0, worker process isolation mode allows customers to create multiple application pools, each with a different configuration, such as a unique recycling configuration or a unique process ID. In addition, all HTTP application run-time features, such as the services that support ISAPI extensions, are available in all application pools. This design prevents a malfunctioning Web application or Web site from disrupting other Web applications or Web sites on that server.

Application Pool Health Monitoring

You can configure an application pool to monitor not only the health of its worker process, but the health of the entire pool. The WWW service can detect an unhealthy application pool in these situations:

· If a worker process in the application pool terminates abnormally.

· If all of the available IIS threads in the worker process that is assigned to the application pool are blocked.

· If the application notifies IIS that a problem exists.

Monitoring the health of a worker process includes detecting that the worker process is not able to serve requests and taking corrective action. For example, if a worker process does not respond to a ping from the WWW service, the worker process probably does not have threads available for processing incoming requests. When this happens, the WWW service either terminates the worker process or releases the worker process and leaves it running. (You can configure IIS to attach a debugger to an unhealthy worker process when the WWW server releases it.) If requests are waiting in the request queue, the WWW service starts a new worker process to replace the one that was terminated or released.

For more information about configuring IIS for application pool health monitoring, see “Configuring Worker Process Health Monitoring” in IIS 6.0 Help and “Running IIS 6.0 as an Application Serveriisrg_was_OVERVIEW” in this book.

Worker Process Recycling

Web applications sometimes leak memory, are poorly coded, or have other unidentified problems. In earlier versions of IIS, these faulty applications might force you to restart the Web server. In worker process isolation mode, you can use the recycling feature to periodically restart the worker processes in an application pool in order to manage faulty applications. You can schedule worker processes to restart based on several options, such as elapsed time or the number of requests served.

You can configure the WWW service so that it recycles a worker process in one of two ways:

· By default, the WWW service establishes an overlapped recycle, creating a new worker process to handle any new incoming requests before signaling the old worker process to finish processing its existing requests and shut down.

· Optionally, the WWW service first signals the old worker process to shut down and, after it shuts down, starts a new worker process.

In both types of recycling, the WWW service allows a configured amount of time for the old worker process to handle the requests that it has already taken from HTTP.sys before it shuts itself down.

In the default configuration, when a worker process requests a recycle, the WWW service initiates an overlapped recycle, creating a new worker process to replace the old process. While the new worker process is starting, the old process continues to serve requests. As soon as the new worker process starts and initializes successfully, the WWW service signals the old worker process to shut down. The old worker process then stops pulling new requests and begins to shut down. The WWW service gives the old worker process a configured time period in which to finish processing its requests and shut down, and it terminates the worker process if it does not shut down within the specified time.

For more information about worker process recycling, including when to use it and how to configure it, see “Recycling Worker Processes” in IIS 6.0 Help.

Rapid-Fail Protection

Rapid-fail protection stops an application pool when too many of the worker processes assigned to it are found to be unhealthy within a specified period of time. When an application pool is stopped, HTTP.sys either returns an out-of-service message (“503: Service Unavailable”) or resets a connection based on the configuration of the LoadBalancerCapabilities property of the application pool. Also, when an application pool stops automatically, such as when rapid-fail protection engages, you can configure an action (a debugging action, for example) to notify the administrator that the application pool has stopped.

For more information about rapid-fail protection, including how to configure this feature, see “Running IIS 6.0 as an Application Serveriisrg_was_OVERVIEW” in this book.

Orphaning Worker Processes

You can configure worker process isolation mode to “orphan” a worker process that the WWW service deems to be failing. The WWW service usually terminates a failing worker process and replaces it. If you enable orphaning, the WWW service allows a failing worker process to continue running, but separates it from the application pool (making it an orphan) and starts a new worker process in its place. You can configure the WWW service to run a command on the orphaned worker process — for example, launching a debugger.

For more information about orphaning worker processes, including how to configure this feature, see “Running IIS 6.0 as an Application Serveriisrg_was_OVERVIEW” in this book and “OrphanWorkerProcess” in the Metabase Property Reference of IIS 6.0 Help.

Web Gardens

Web gardens are application pools that are configured to run multiple worker processes. By default, each application pool in IIS 6.0 has only one worker process. However, you can configure an application pool to have a set of equivalent worker processes that share the work, thus creating a Web garden. In a Web garden, HTTP.sys distributes the requests among the set of worker processes in the application pool.

[image: image8.wmf]
Note

Do not confuse a Web garden with a Web farm, which is a Web site or Web hosting service that runs off of more than one server and that uses clustering and load balancing.

The benefits of Web gardens are that they can handle more load, and that if one worker process stops responding, other worker processes are available to accept and process requests. Hence, Web gardens can enhance performance and reliability of the applications in the application pool.

The MaxProcesses metabase property determines the maximum number of worker processes that an application pool allows to service its requests. For more information about Web gardens, including how to create them, see “Running IIS 6.0 as an Application Serveriisrg_was_OVERVIEW” in this book and “Configuring Web Gardens” in IIS 6.0 Help.

Processor Affinity

Processor affinity is an application pool property that forces worker processes to run on a specific set of microprocessors or CPUs. Processor affinity applies to all worker processes that serve a particular application pool and allows you to take advantage of more frequent CPU caching. If a Web garden is running on a multiprocessor computer, you can use processor affinity to dedicate certain application pools to specific clusters of CPUs.

To set up processor affinity, configure the SMPAffinitized and SMPProcessorAffinityMask metabase properties. For more information about assigning processor affinity, including how to configure these metabase properties, see “Running IIS 6.0 as an Application Serveriisrg_was_OVERVIEW” in this book.

Idle Timeout

You can configure an application pool to have its worker processes request a shutdown if they are idle for a certain period of time. Configuring idle timeout can help you to free unused resources. New worker processes are started when demand exists for that application pool.

Use either IIS Manager or the IdleTimeout metabase property to configure this feature. For information about setting the IdleTimeout metabase property, see “IdleTimeout” in IIS 6.0 Help. For more information about configuring idle timeout for a worker process, see “Running IIS 6.0 as an Application Serveriisrg_was_OVERVIEW” in this book.

Application Pool Identity

Application pool identity is the user account that the worker processes servicing the application pool use as their process identity. Process identity is the operating system term that is used to denote the account that a process runs under. Every running process on a Windows NT operating system has a process identity that is used to control access to resources on the system.

You can assign a predefined account for the application pool identity or create your own account for this purpose. For security reasons, choose an application pool identity with the minimum permissions that your application requires.

For more information about configuring process identities, see “Configuring Worker Process Identities” in IIS 6.0 Help.

How Application Pools Work

When you run IIS 6.0 in worker process isolation mode, you can separate different Web applications and Web sites into groups known as application pools. An application pool is a group of one or more URLs that are served by a worker process or set of worker processes. Any Web directory or virtual directory can be assigned to an application pool.

Every application within an application pool shares the same worker process. Because each worker process operates as a separate instance of the worker process executable, W3wp.exe, the worker process that services one application pool is separated from the worker process that services another. Each separate worker process provides a process boundary so that when an application is assigned to one application pool, problems in other application pools do not affect the application. This ensures that if a worker process fails, it does not affect the applications running in other application pools.

Use multiple application pools when you want to help ensure that applications and Web sites are confidential and secure. For example, an enterprise organization might place its human resources Web site and its finance Web site on the same server, but in different application pools. Likewise, an ISP that hosts Web sites and applications for competing companies might run each company’s Web services on the same server, but in different application pools. Using different application pools to isolate applications helps prevent one customer from accessing, changing, or using confidential information from another customer’s site.

In HTTP.sys, an application pool is represented by a request queue, from which the user-mode worker processes that service an application pool collect the requests. Each pool can manage requests for one or more unique Web applications, which you assign to the application pool based on their URLs. Application pools, then, are essentially worker process configurations that service groups of namespaces.

Multiple application pools can operate at the same time. An application, as defined by its URL, can only be served by one application pool at any time. While one application pool is servicing a request, you cannot route the request to another application pool. However, you can assign applications to another application pool while the server is running.

Request Processing in Worker Process Isolation Mode

Figure 2.3 shows the standard request process for IIS 6.0 when it is running in worker process isolation mode.

Figure 2.3   Standard (HTTP) Request Processing in Worker Process Isolation Mode 

[image: image9.wmf]
The HTTP protocol stack (HTTP.sys), which runs in kernel mode, receives client requests and routes them to the appropriate request queue. Worker processes, which run in user mode, pull the requests directly from their own kernel request queues, eliminating the process hops that occur in IIS 5.0 (and that also occur in IIS 5.0 isolation mode) when the Web server sends a request to a High-isolation, out-of-process application. Because these extra process hops are eliminated in worker process isolation mode, IIS can provide application isolation without sacrificing performance.

[image: image10.wmf]
Note

Before routing a request to a queue, HTTP.sys checks to see if the response is located in its kernel-mode cache; if a response is cached, it is returned immediately.

To see a visual representation of the request process for the two application isolation modes, compare Figure 2.3 (worker process isolation mode) with Figure 2.6 (High isolation in IIS 5.0 isolation mode).

[image: image11.wmf]
Note

In Figure 2.3, and also in Figure 2.4, 2.5, 2.6, and 2.7, the numbered arrows indicate the request process flow.

When HTTP.sys receives requests that are encrypted by using SSL, the kernel-mode HTTP service cannot decrypt the requests or encrypt the responses. Instead, HTTP SSL (HTTPFilter), which is a user-mode service, implements SSL for the HTTP service. In worker process isolation mode, the default host for HTTPFilter is Lsass.exe.

Figure 2.4 illustrates the process flow for an SSL request when IIS 6.0 is running in worker process isolation mode. The HTTP protocol stack receives the SSL request from the client and places it in the SSL queue. The HTTPFilter listens for requests to enter the queue, picks up any new request, uses SSL to decrypt the request, and then returns the decrypted request to HTTP.sys. HTTP.sys then places the decrypted request in the appropriate request queue. A worker process pulls the request directly from its own kernel request queue.

Figure 2.4   SSL Request Processing in Worker Process Isolation Mode

[image: image12.wmf]
On the return trip, the worker process returns the response to HTTP.sys, which places it in the appropriate queue from which the HTTPFilter picks it up and performs SSL encryption. After encryption, the HTTPFilter again returns the response to HTTP.sys, which sends the encrypted response back to the client.

Keep in mind that SSL requires more resources than does standard HTTP. If you use SSL, ensure that the information being sent, such as credit card numbers or medical information, is sensitive enough to justify the added performance expense. For example, your home page or a search results page does not necessarily need to be run through SSL. However, you need to make sure that a checkout or purchase page is SSL-secured.

When you use SSL, the initial connection takes significantly longer than reconnecting. Reconnections use security information in the SSL session cache. The default timeout for the SSL session cache is changed to 5 minutes in Windows 2000 (10 hours in Windows 2000 with Service Pack 2) and 10 hours in Windows Server 2003. After cached data is deleted, the client and server must establish a completely new connection. You can change the default timeout by configuring the ServerCacheTime registry entry. For more information about configuring this registry setting, see “Optimizing IIS 6.0 Performanceiisrg_per_OVERVIEW” in this book.

[image: image13.wmf]
Caution

Do not edit the registry unless you have no alternative. The registry editor bypasses standard safeguards, allowing settings that can damage your system, or even require you to reinstall Windows. If you must edit the registry, back it up first and see the <A HREF="http://go.microsoft.com/fwlink/?LinkID=4543" TARGET="_blank">Registry Reference</A> on the Microsoft Windows Server 2003 Deployment Kit companion CD or on the Web at http://www.microsoft.com/reskit.
For more information about balancing performance and security, see “Performance and Security” in IIS 6.0 Help. For more information about encryption, see “About Encryption” in IIS 6.0 Help. For more information about the security features available in IIS 6.0, see “Managing a Secure IIS 6.0 Solutioniisrg_sec_OVERVIEW” in this book.

Table 2.5 provides additional details about how worker process isolation mode processes HTTP (standard) and HTTPS (SSL) requests.

Table 2.5   HTTP and HTTPS Request Processing 

	Step
	Request Type
	Description

	I
	HTTP & HTTPS
	HTTP.sys receives the request from the client and determines the type of request (HTTP or HTTPS). (Corresponds to #1 in Figures 2.3 and 2.4.)

If the request is an HTTPS request, HTTP.sys places it in the SSL queue.

	
	HTTPS (SSL) only
	For an SSL request, the HTTPFilter performs these steps:

· Listens for requests to be added to the SSL queue (see #2 in Figure 2.4).

· Picks up any requests that are queued.

· Uses SSL to decrypt the request.

· Returns the decrypted request to HTTP.sys for processing (see #3 in Figure 2.4).

	II
	HTTP & HTTPS
	HTTP.sys determines if the request is valid:

· If the request is invalid, HTTP.sys sends a 400-class error message for an invalid request back to the client. 1
· If the request is valid, HTTP.sys checks to see if the response is located in its kernel-mode cache.

	III
	HTTP & HTTPS
	HTTP.sys checks the kernel-mode cache for a response:

· If the response is in the kernel-mode cache, HTTP.sys returns the response immediately, without transitioning to user mode.

· If the response is not in the cache, HTTP.sys determines the correct request queue and places the request in that queue.

· If the target request queue is out of service or if the queue is full, HTTP.sys returns a “503 Service Unavailable” message to the client.

	IV
	HTTP & HTTPS
	If no worker process is available and listening in the request queue and if HTTP.sys is able to request that a new worker process be started, HTTP.sys signals the WWW service to start a worker process.

	V
	HTTP & HTTPS
	The worker process pulls the request from the queue and processes the request. (Corresponds to #2 in Figure 2.3 and #4 in Figure 2.4.)

	VI
	HTTP & HTTPS
	The worker process sends the response back to HTTP.sys and instructs HTTP.sys whether to cache the response. (Corresponds to #3 in Figure 2.3 and #5 in Figure 2.4.)

	VII
	HTTP & HTTPS
	HTTP.sys determines the type of response (HTTP or HTTPS).

If the request is an HTTPS response, HTTP.sys places it in the SSL queue. 

	
	HTTPS (SSL) only
	For an SSL response, the HTTPFilter performs the following steps:

· Listens for responses to enter the SSL queue (see #6 in Figure 2.4).

· Picks up any responses that enter the queue. 

· Uses SSL to encrypt the response. 

· Returns the encrypted response to HTTP.sys (see #7 in Figure 2.4).

	VIII
	HTTP & HTTPS
	HTTP.sys sends the response back to the client and logs the request if logging is enabled. (Corresponds to #4 in Figure 2.3 and #8 in Figure 2.4.)


1 For information about 400-class error messages, including keys to the many substatus codes, see “Troubleshooting IIS 6.0” in this book.

IIS 5.0 Isolation Mode

IIS 5.0 isolation mode provides as much compatibility as possible for applications that were developed for IIS 5.0. For example, the request processing of IIS 6.0 when it is running in IIS 5.0 isolation mode is nearly identical to the request processing of IIS 5.0. Hence, in IIS 5.0 isolation mode, you can run read raw data filters and can run applications in Inetinfo.exe or in DLLHost.exe — all of which is not accommodated in worker process isolation mode.

Before you decide to run an application in IIS 5.0 isolation mode, carefully evaluate whether you can substitute other filters and applications for the ones that require IIS 5.0 architecture because when a server is running in IIS 5.0 isolation mode, application pools, recycling, and health monitoring features are unavailable.

For more information about choosing an application isolation mode, see “Choosing an Application Isolation Modeiisrg_arc_RSVF” earlier in this chapter.

Application Isolation in IIS 5.0 Isolation Mode

When IIS 6.0 is running in IIS 5.0 isolation mode, your options for isolation, which are similar to your options when you run an application on IIS 5.0, are as follows:

· Low isolation (in-process). Applications run in-process (on the Web server) as DLLs in Inetinfo.exe and are not protected from other applications running in-process. The process identity of the application (the account under which the application’s process runs) is Local System.
· Medium isolation (pooled out-of-process). All pooled applications run as DLLs in one instance of DLLHost.exe and are protected from the effects of applications running in High isolation. However, because all pooled applications run in the same process, they are not protected from each other. The default application identity is IWAM_ComputerName.

· High isolation (out-of-process). Applications run as DLLs in DLLHost.exe and are protected from the effects of other applications running in Medium or High isolation. In addition, all other applications that run on the same computer are protected from the effects of applications that run in High isolation. The default application identity is IWAM_ComputerName.

Security Considerations

When IIS 6.0 runs in IIS 5.0, Web applications that are set to Low isolation run with the Local System account. The Local System account has access to all of the resources on the computer. This means that when an attack by a malicious user takes over a Web application that is set to Low isolation, all of the assets of the local computer are open to the attacker.

When you set Web applications to Medium or High isolation, they run with IWAM_ComputerName as the default account; however, you can configure these applications to run with other identities.

Performance Considerations

When you run IIS 6.0 in IIS 5.0 isolation mode, applications that run in Medium or High isolation incur a performance penalty. The penalty occurs because the Component Object Model (COM) uses a remote procedure call (RPC) during these parts of the cycle:

· When a request is sent to an application that is running in Medium or High isolation and the response is sent back.
· When a Web application that is running in Medium or High isolation communicates with the Web server during the processing of a request.

In contrast, when IIS 6.0 runs in worker process isolation mode, applications are loaded in-process to W3wp.exe. Therefore, no performance penalty occurs.
Request Processing in IIS 5.0 Isolation Mode

In IIS 5.0 isolation mode, HTTP.sys is used in almost the same way that it is in worker process isolation mode. The difference is that HTTP.sys routes requests to only a single request queue, which is maintained by the WWW Service Administration and Monitoring component of IIS. Depending on how you configure the IIS 5.0 isolation mode — as in-process or out-of-process — IIS processes the request in either Inetinfo.exe or in DLLHost.exe.

Figure 2.5 illustrates the processing of an SSL request for a Low-isolation application that is running in IIS 5.0 isolation mode. When HTTP.sys receives requests that are encrypted by using SSL, the kernel-mode HTTP service cannot decrypt the requests or encrypt the responses. Instead, HTTP SSL (HTTPFilter), which is a user-mode service, implements SSL for the HTTP service. In IIS 5.0 isolation mode, Inetinfo.exe, rather than Lsass.exe, hosts HTTPFilter.

Figure 2.5   Low-Isolation SSL Request Processing in IIS 5.0 Isolation Mode

[image: image14.wmf]
In Figure 2.5, if you eliminate the decrypting and encrypting steps that are required for SSL requests and follow only arrows 1, 4, 5, and 8, you see the standard (non-SSL) request process for a Low-isolation application that is running in IIS 5.0 isolation mode. For example, an HTTP request comes in to the HTTP protocol stack from the Internet, enters a single request-processing queue, and is picked up by a worker process that delivers the request to the Low-isolation application and returns it directly to the HTTP protocol stack.

Figure 2.6 illustrates request processing for an HTTP (non-SSL) request when IIS 6.0 is running in IIS 5.0 isolation mode. Note the extra process hops (represented by arrows 3 and 4) that occur when the request hops from the worker process, which is hosted by Inetinfo.exe and managed by the WWW service, to the High-isolation out-of-process application, which is hosted by DLLHost.exe.

Figure 2.6   High-Isolation Standard Request Processing in IIS 5.0 Isolation Mode

[image: image15.wmf]
If you compare Figure 2.6 with Figure 2.3, you can see the advantage of using worker process isolation mode, in which application isolation occurs without a performance penalty (the additional process hops are not needed) and in which health monitoring and worker process recycling promote the stability of your application server and its applications.

[image: image16.wmf]
Note

In IIS 5.0 isolation mode, request processing is almost identical for High-isolation and Medium-isolation applications. The only differences between these two isolation methods are that multiple applications can run in the pool for Medium isolation and there can only be one Medium-isolation process; however, only a single application can run in the pool for High isolation and you can have multiple High-isolation applications on one computer.

Figure 2.7 illustrates the processing of an SSL request for a High-isolation application that is running in IIS 5.0 isolation mode. The HTTP protocol stack receives the SSL request from the client and places it in the SSL queue. The HTTPFilter listens for requests to be added to the SSL queue, picks up any requests that are queued, uses SSL to decrypt the request, and then returns the decrypted request to HTTP.sys. HTTP.sys then places the decrypted request in the worker process request queue (in this application isolation mode, there is only a single request queue), and a worker process pulls the request directly from the queue.

Figure 2.7   High-Isolation SSL Request Processing in IIS 5.0 Isolation Mode

[image: image17.wmf]
On the return trip, the worker process returns the response to HTTP.sys, which places it in the SSL queue, from which the HTTPFilter picks it up and performs SSL encryption. After encryption, the HTTPFilter returns the response to HTTP.sys, which sends the encrypted response back to the client.

If performance is a concern, and you are running applications in High isolation or Medium isolation on a computer that is running in IIS 5.0 isolation mode, keep in mind that using SSL requires more resources to process a request. In addition, the extra process hops required for High isolation and Medium isolation add to the resource requirements.

For more information about balancing performance and security, see “Performance and Security” in IIS 6.0 Help. For more information about configuring IIS 5.0 isolation mode, see “Running IIS 6.0 as an Application Serveriisrg_was_OVERVIEW” in this book.

How ASP.NET Works with IIS 6.0

If you run your ASP.NET applications in IIS 6.0, you obtain a significant advantage over running your ASP.NET applications in IIS 5.0. For example, in IIS 5.0, you cannot isolate individual applications into their own worker processes; hence, if one ASP.NET application fails, it can affect all the other applications. IIS 6.0, however, provides a new architecture that allows you to isolate your ASP.NET applications without incurring a performance penalty.

Before you run ASP.NET applications on IIS 6.0, be sure that you understand how ASP.NET works with the two IIS 6.0 isolation modes. When running in IIS 5.0 isolation mode, ASP.NET uses its own request processing model and configuration settings in the Machine.config file — just as it does when ASP.NET runs on IIS 5.x. When running in worker process isolation mode, ASP.NET disables its own request processing model and uses the new worker process architecture of IIS 6.0.

[image: image18.wmf]
Important

The version of ASP.NET that is included with Windows Server 2003 is not available with the Microsoft® Windows® XP 64-Bit Edition and the 64-bit versions of Windows Server 2003. For more information, see “Features unavailable on 64-bit versions of the Windows Server 2003 family” in Help and Support Center for Windows Server 2003.

ASP.NET Request Processing Model

When ASP.NET is enabled on a server running Windows Server 2003, the ASP.NET request processing model depends on the application isolation mode in which IIS 6.0 is running. The preferred application isolation mode for IIS 6.0 is worker process isolation mode, which enables you to use application pools, worker process recycling, and application pool health monitoring. When IIS 6.0 is running in worker process isolation mode, ASP.NET uses the IIS 6.0 request processing model settings.

In almost all situations, if your ASP.NET applications are running on Windows Server 2003, configure them to run in worker process isolation mode. However, if your application has compatibility issues in this mode — for example, if your application depends upon read raw ISAPI data filters — you can change your configuration to run IIS 6.0 in IIS 5.0 isolation mode.

If you configure IIS 6.0 to run in IIS 5.0 isolation mode, ASP.NET runs in its own request processing model, Aspnet_wp.exe, and uses its own configuration settings for process configuration, which are stored in the Machine.config configuration file. When your server is running in IIS 5.0 isolation mode, the ASP.NET ISAPI extension implements a request processing model that is similar to worker process isolation mode and contains worker process management capabilities similar to those provided by the WWW service. ASP.NET also provides recycling, health monitoring, and processor affinity.

When ASP.NET is installed on servers running Windows XP or Windows 2000 Server, ASP.NET runs in IIS 5.1 or IIS 5.0, respectively, and runs in the Aspnet_wp.exe process by default. The ASP.NET request processing model provides process recycling, health detection, and support for affinities between worker processes and particular CPUs on a server with multiple CPUs. For more information about running ASP.NET in its own request processing model, see “Using the ASP.NET Process Model” in IIS 6.0 Help.

ASP.NET processModel Configuration Settings

If the processModel section of the Machine.config file includes specific configuration settings for your ASP.NET application, those settings are not used when the application is running in worker process isolation mode, with the exception of the following attributes:
· maxIOThreads configures the maximum number of I/O threads per processor that are used by the ASP.NET thread pool.
· maxWorkerThreads configures the maximum number of worker threads per processor that are used by the ASP.NET thread pool.

· responseDeadlockInterval specifies a time limit, after which ASP.NET reports a worker process as unhealthy when a deadlock condition is detected.

If developers create ASP.NET applications with processModel configurations that include other attributes, the developers must manually convert the applications to the appropriate application pool settings before they deploy the applications in IIS 6.0. Except for the attributes previously mentioned, the other health monitoring and recycling features available in processModel do not automatically transfer from an ASP.NET configuration to IIS 6.0.

When Different Versions of ASP.NET Share the Same Application Pool

When multiple versions of the .NET Framework are installed on a computer that uses IIS 6.0, you might encounter the following error message in the Application Event log:

It is not possible to run different versions of ASP.NET in the same IIS process. Please use the IIS Administration Tool to reconfigure your server to run the application in a separate process.

This error occurs when more than one version of ASP.NET is configured to run in the same process. Different versions of the .NET Framework and run time cannot coexist side by side within the same process. Therefore, an ASP.NET application that uses one version of the run time must not share a process with an application that uses a different version. This error commonly occurs when two or more applications are mapped to different versions of ASP.NET but share the same application pool.

For more information about using ASP.NET with IIS 6.0 application pools, see “Configuring an ASP.NET Application for an ASP.NET Version” in IIS 6.0 Help. For more information about deploying ASP.NET applications on IIS 6.0, see “Deploying ASP.NET Applications in IIS 6.0” in Deploying Internet Information Services (IIS) 6.0 of the Microsoft® Windows® Server 2003 Deployment Kit (or see “<A HREF="http://go.microsoft.com/fwlink/?LinkId=10484" TARGET="_blank">Deploying ASP.NET Applications in IIS 6.0</A>” on the Web at http://www.microsoft.com/reskit). For more information about ASP.NET, see “ASP.NET” in the Web Application Guide of IIS 6.0 Help.

Additional Resources

These resources contain additional information related to this chapter.

Related Information 

· “Configuring Internet Sites and Servicesiisrg_cfg_OMKX” in this book for information about the IIS FTP, NNTP, and SMTP services.

· “Managing a Secure IIS 6.0 Solutioniisrg_sec_OVERVIEW” in this book for information about the security features available in IIS 6.0.

· “Running IIS 6.0 as an Application Serveriisrg_was_OVERVIEW” in this book for information about configuring application pool health monitoring, orphaning worker processes, creating Web gardens, configuring idle timeout, configuring worker process isolation mode and IIS 5.0 isolation mode, and using the built-in Network Service account.

· “Deploying ASP.NET Applications in IIS 6.0” in Deploying Internet Information Services (IIS) 6.0 of the Microsoft Windows Server 2003 Deployment Kit (or see “<A HREF="http://go.microsoft.com/fwlink/?LinkId=10484" TARGET="_blank">Deploying ASP.NET Applications in IIS 6.0</A>” on the Web at http://www.microsoft.com/reskit) for information about deploying ASP.NET applications on IIS 6.0.

· The Exchange Server link on the <A HREF="http://go.microsoft.com/fwlink/?LinkId=291" TARGET="_blank">Web Resources page</A> at http://www.microsoft.com/windows/reskits/webresources for information about the complete e-mail services that Exchange Server provides.
· The Microsoft Product Support Services link on the <A HREF="http://go.microsoft.com/fwlink/?LinkId=291" TARGET="_blank">Web Resources page</A> at http://www.microsoft.com/windows/reskits/webresources for information about Exchange Server and other Microsoft products.
Related IIS 6.0 Help Topics

· “About Encryption” in IIS 6.0 Help, which is accessible from IIS Manager, for information about how to use encryption to help reduce the attack surface of your Web server.

· “About the Metabase” in IIS 6.0 Help for information about the architecture of the IIS metabase.

· “ASP.NET” in the Web Application Guide of IIS 6.0 Help for information about ASP.NET.

· “Configuring an ASP.NET Application for an ASP.NET Version” in IIS 6.0 Help for information about using ASP.NET with IIS 6.0.

· “Configuring Web Gardens” in IIS 6.0 Help for information about creating Web gardens.

· “Configuring Worker Process Health Monitoring” in IIS 6.0 Help for information about configuring IIS 6.0 for application pool health monitoring.

· “Configuring Worker Process Identities” and “IIS and Built-in Accounts” in IIS 6.0 Help for information about IIS security, including the recommended use of the built-in Network Service account.

· “IdleTimeout” in the Metabase Property Reference of IIS 6.0 Help for information about using this property to specify how long a worker process runs idle if no new requests are received.

· “OrphanWorkerProcess” in the Metabase Property Reference of IIS 6.0 Help for information about using this property to separate (instead of terminate) a failing worker process from its application pool.

· “Performance and Security” in IIS 6.0 Help for information about successfully balancing performance and security.

· “Recycling Worker Processes” in IIS 6.0 Help for information about worker process recycling, including when to use it, how to configure it, and how to configure overlapped recycling.

· “Using the ASP.NET Process Model” in IIS 6.0 Help for information about running ASP.NET in its own request processing model.

Related Windows Server 2003 Help Topics

For best results in identifying Help topics by title, in Help and Support Center, under the Search box, click Set search options. Under Help Topics, select the Search in title only check box.
· “Features unavailable on 64-bit versions of the Windows Server 2003 family” in Help and Support Center for Windows Server 2003.
