PAGE  

[image: image1.jpg]Microsoft®

System Center
Operations Manager 2007




Management Pack Authoring Guide

Microsoft Corporation

Feedback

Send suggestions and comments about this document to momdocs@microsoft.com.

Information in this document, including URL and other Internet Web site references, is subject to change without notice. Unless otherwise noted, the companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted in examples herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation. 

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2007 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows Server, Windows Vista, and Active Directory are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

All other trademarks are property of their respective owners.

Revision History

	Release Date
	Changes

	February 2008
	Initial public release of this guide


Contents

15Microsoft Operations Manager 2007 Management Pack Authoring Guide


15Intended Audience and Prerequisites


15What Is In the Authoring Guide


16Other Operations Manager 2007 Resources


16Operations Manager 2007 Key Concepts


16In This Section


16Model-Based Design


16What is Model-Based Design?


17An Analogy: Modeling Buildings


19Specialization and Attributes


20Viewing the Operations Manager Model


21Service Models: The Three Key Relationships


22Hosting


22Containment


23Reference


23Health Models


23What is a Health Model of an Application or Component?


24Example: Looking at a Health Model


25Bringing Service Modeling and Health Modeling Together


25How the Service Model and Health Model Interact


27Example: Health Roll-Up in Active Directory


28How Operations Manager Implements Models


29Management Packs, Rules, Monitors, and Tasks and Their Relation to Models


29Management Packs


29Rules


29Monitors


30Types of Monitors


30Unit Monitor


30Aggregate Rollup Monitor


30Dependency Rollup Monitor


31Dependency Monitors: Linking Health Models to Service Models


32Interaction Between the State of a Monitor and Alerts


32Using Diagnostic Actions and Recovery Actions


33Tasks


34Discovery


34What it Means to Discover an Object


34What it Means to Discover a Relationship


35Changes Between Microsoft Operations Manager 2005 and Operations Manager 2007


35State Monitoring and Alerting


35Differences in Targeting


37Why Targeting a Computer Group in Operations Manager 2007 Fails


38Targeting Examples


38Running a Rule on a Group of Computers


38Monitoring CPU usage on Windows 2003 Servers


38Customizing Out-of-the-Box Models


39Creating New Rules


39Creating New Objects to Monitor


40Using Overrides for Customization


41Authoring Management Packs


41Management Pack Concepts


41In This Section


41See Also


41Management Pack Classes


41Classes


42Class Types and Inheritance


43Abstract Class


43Singleton Class


43Hosted Class


44Class Uniqueness


45Relationship Types


45Reference


46Containment


46Hosting


46See Also


47Management Pack Libraries and Namespaces


47Management Packs and Libraries


47Management Packs and Namespaces


48See Also


48Management Pack Data Types


48Data Types and Modules


49See Also


49Management Pack Workflows and Modules


49In This Section


49See Also


49Management Pack Modules


49Data Source


50Probe Action


50Condition Detection


51Write Action


51Composite Module


53See Also


53Management Pack Workflows


53Rule


54Discovery


54Task


55Monitor


56Diagnostic


56Recovery


56See Also


56Designing and Building Management Packs


57In This Section


57See Also


57Tools for Building Management Packs


57Operations Console


57Management Pack Authoring Console


58XML Authoring Tools


58Management Pack Schema


58Using XML Created in the Operations Console


58Reference Management Packs and Libraries


58Operations Manager Installation


59See Also


59Modeling for Management Packs


59What Models Are For


60The Modeling Process


60Identify Objects


60Determine the Identity of Objects


61Identify Relationships Between Objects


61Review the Core Model


62Operations Manager 2007 Core Model


62Operations Manager 2007 Libraries


63Adding to the Core Model


64See Also


64HOW TO: Model An Application


64Steps to Model an Application


64How to Pick the Right Base Class


65Benefits of Picking the Right Base Class


65Defining Abstract Base Classes


66Marking a Class as a Singleton


66Determining Which Type of Relationship to Use


66Marking Key Properties


66See Also


67Discovery for Management Packs


67How Discovery Works


67Single-Rule Discovery


67Multiple-Rule (Progressive) Discovery


68Defining Rules Using Workflows


68Registry


68WMI


69See Also


69Health Model


70Identify Instrumentation


70Identify Monitors & Operational States


72See Also


72HOW TO: Use XML To Create A Basic Management Pack with Discovery


72Getting Started


72Creating the Manifest


74Create the Language Pack


75Creating a Class


76Creating a Discovery


78Testing the Discovery


78Updating the Discovery


80Adding Properties to the Class


82Adding a View to the Console


84Testing Discovery Updates


84Deleting the Management Pack


84See Also


84Management Pack Reference


84In This Section


85See Also


85Commonly Used Base Classes


85Commonly Referenced Libraries


87Common Module Types


88Common Module Types


88Data Source Module Types


90Condition Detection Module Types


91Probe Action Module Types


92Write Action Module Types


92Examples


93Common Monitor Types


94Declaring a Monitor Type


94Available Monitor Types


94AppLog (System.ApplicationLog.Library.MP) Library


94Performance (System.Performance.Library.MP) Library


94SNMP (System.SNMP.Library.MP) Library


95Windows (Windows.Library.MP) Library


96Management Pack Data Types Reference


96Available Data Types


97Variable Notation


97$MPElement Variable


97$MPElement Syntax


98$MPElement Example


99$Target Variable


99$Target Variable Attribute


99$Target Variable Syntax


100$Target Variable Examples


101$Data Variable


101$Data Variable Syntax


102$Data Variable Example


103$Config Variable


103$Config Variable Syntax


103$Config Variable Example


104Management Pack Schema Reference


104See Also


104Management Pack Sections


105See Also


105Management Pack Element


105See Also


106Manifest Section


106Strong Naming


106Extensibility and Reuse


107Backward Compatibility


107See Also


107Type Definitions Section


107EntityTypes


108DataTypes


108SchemaTypes


108SecureReferences


108ModuleTypes


108MonitorTypes


109See Also


109Monitoring Section


109Discoveries


109Rules


110Tasks


110Monitors


110Diagnostics


110Recoveries


110Overrides


111See Also


111Templates Section


111See Also


111Presentation Types Section


112View Types


112Images


112User Interface Pages and Page Sets


112See Also


113Presentation Section


113Console Tasks


113Views


113Reports


113Folders


114Image References


114See Also


114Language Packs Section


114Display Strings


114Knowledge Articles


115See Also


115Deletions Section


115See Also


115Management Pack Schema Details


115See Also


116Management Pack Detail


117See Also


117Manifest Detail


117Identity


118Name


118References


119Example


119See Also


119Type Definitions Detail


119See Also


119Entity Types Detail


120In This Section


120See Also


120ClassTypes


120ClassType Attributes


122ID Attribute


122Accessibility Attribute


122Abstract Attribute


122Base Attribute


122Hosted Attribute


123Singleton Attribute


123ClassType Property Element


125ClassType Sample


126See Also


127RelationshipTypes


127RelationshipType Attributes


128ID Attribute


129Base Attribute


129RelationshipType Elements


130Source and Target Elements


130Property Element


131Examples


132RelationshipType Sample


132See Also


132Data Types Detail


133Attributes


133Example


134See Also


134Schema Types Detail


135Schema Type Attributes


135Example


136See Also


136Secure References Detail


137SecureReferences Attributes


137See Also


138Module Types Detail


138Standard Module Type Attributes


139Module Type Configuration


140Module Type Configuration Example


140Override Parameters


141Override Parameter Attributes


141Module Implementation


142Module Implementation Samples


143Specifying Input and Output Types


143See Also


143Data Source Module Detail


144Example


144See Also


144Probe Action Module Detail


145Probe Action Module Attributes


145Examples


146See Also


146Condition Detection Module Detail


147Condition Detection Module Attributes


147Condition Detection Module Examples


148See Also


149Write Action Module Detail


149Write Action Module Example


150See Also


150Composite Module Detail


150Composite Module Type Definitions


151Composite Module Type Examples


154See Also


154Monitor Types Detail


155Monitor Type State


156Monitor Type Configuration


156Override Parameters


157Monitor Implementation


159Member Modules


160Regular Detection


162On-Demand Detection


162Unit Monitor Type Example


164See Also


164Monitoring Detail


164In This Section


165See Also


165Rules Detail


165Rules Composition


166Rule Schema


166Additional Rules Concepts and Limitations


167Rules Attributes


169Rule Example


170See Also


170Discoveries Detail


170Discovery Element


170Discovery Element Attributes


172Target Attribute


172See Also


172DiscoveryTypes Detail


173DiscoveryClass Element


173Property Element


174DiscoveryRelationship Element


174Example


175See Also


175DataSource Detail


175Available Data Source Module Types for Discovery


176Example


177See Also


177DataSource Element Detail for Group Population


177DataSource Attributes


178DataSource Elements


178RuleID


178GroupInstanceID


178MembershipRules


178Group Population Discovery Example


180See Also


180DataSource Element Detail for Registry-Based Discovery


180DataSource Attributes


180DataSource Sub-Elements for Registry Discoveries


181ComputerName Element


181RegistryAttributeDefinitions Element


182Frequency Element


182ClassID Element


182InstanceSettings Element


184Expression Element


184Registry-Based Discovery Example


187See Also


187DataSource Element Detail for WMI-Based Discovery


187DataSource Attributes


188DataSource Sub-Elements for WMI Discoveries


188Namespace Element


188Query Element


188Frequency Element


188ClassID Element


189InstanceSettings Element


191Example


195See Also


195Tasks Detail


196Task Targeting


196Task Schema


197Task Attributes


197Example


198See Also


199Monitors Detail


199Common Monitor Attributes


200Aggregate Monitor


201Dependency Monitor


202Unit Monitor


203Examples


205See Also


205Diagnostics Detail


206Diagnostic Attributes


207See Also


207Recoveries Detail


207Recovery Attributes


209See Also


209Overrides Detail


210Templates Detail


210Template Attributes


211Template Configuration


212References


214Implementation


214Examples


215See Also


215Presentation Types Detail


215Views


216View Type Attributes


216View Type Sections


216Configuration


217Implementation


218Reports


218Images


218Image Attributes


219Image Example


220User Interface Pages


220User Interface Page Attributes


221User Interface Page Example


221User Interface Page Sets


224User Interface Page Sets Examples


225See Also


225Presentation Detail


225Console Tasks


227Views


229Reports


229Folders


230Image References


231See Also


231Language Packs Detail


232Language Pack Attributes


232See Also


232Display Strings Detail


233Display String Schema


233Display String Attributes


233Example


234See Also


234Knowledge Articles Detail


234Knowledge Article Schema


235In-Line Tasks


236In-Line Console Tasks


236In-Line Views


236Knowledge Article Attributes


237Knowledge Article Example


238See Also


238Deletions Detail


238Deletions Schema


238Deletion Attributes


239See Also





Microsoft Operations Manager 2007 Management Pack Authoring Guide

Welcome to the Management Pack Authoring Guide for Operations Manager 2007.

Operations Manager 2007 is a service-oriented monitoring system that enables you to monitor the health of your end-to-end information technology services. Operations Manager can collect and consolidate events, alerts, and health status information from across your organization and enable you to proactively identify and resolve potential issues before they cause downtime. 

The key to configuring and running Operations Manager is the management pack, an XML-based file that defines the objects that Operations Manager will discover and monitor and what information will be collected about these objects. 

The purpose of this guide is to document how to create a management pack. 

Intended Audience and Prerequisites

This guide is intended for anyone who needs to create a management pack. 

Before you begin, you should have a basic familiarity with XML, and access to an XML editing tool. Familiarity with XML Path Language (XPath) and XML Query Language (XQuery) syntax is also helpful.

You should also have a basic understanding of how Operations Manager 2007 and system health modeling works. For more information, see the Operations Manager 2007 Key Concepts section of this guide.

A Management Pack author needs to understand how the monitored product is integrated into a network environment. This includes an understanding of overall performance indicators that your Management Pack user relies on to operate the monitored product on a daily basis. A Management Pack should include knowledge that allows an administrator to quickly react to failures and as well as to proactively identify developing issues before they interrupt productivity.

What Is In the Authoring Guide

This guide is divided into 4 sections:


The Operations Manager 2007 Key Concepts section describes the key concepts used in Operations Manager 2007, including how modeling is implemented in Operations Manager, and key changes between Microsoft Operations Manager (MOM) 2005 and System Center Operations Manager 2007.


The Management Pack Concepts section covers essential Management Pack authoring concepts, including workflows and modules, data types, and the management pack schema.


The Designing and Building Management Packs section provides information and examples on authoring a management pack, including modeling, creating discoveries, and authoring tools and techniques.


The Management Pack Reference section provides a management pack schema reference, documentation for commonly used module, monitor and data types, variable notation, and more.

Other Operations Manager 2007 Resources

The Operations Manager 2007 Operations Guide covers how to install, configure, update, and delete a management pack.

The System Center Operations Manager Community provides how-to articles, samples, and other resources for the System Center Operations Manager Community.

Operations Manager 2007 Key Concepts

This guide describes the key concepts used in Operations Manager 2007. It describes modeling, how modeling is implemented in Operations Manager, and key changes between Microsoft Operations Manager (MOM) 2005 and System Center Operations Manager 2007. 

In This Section

Model-Based Design - Provides an overview of model-based design in Operations Manager 2007.

Bringing Service Modeling and Health Modeling Together - Defines service modeling and health modeling and describes how they relate to one another.

How Operations Manager Implements Models  - Describes how Operations Manager 2007 implements models and describes key differences between Microsoft Operations Manager 2005 and Operations Manager 2007.

Customizing Out-of-the-Box Models - Provides an overview of customizing your monitoring by using overrides or creating new rules and monitors.

Model-Based Design

What is Model-Based Design?

In Operations Manager 2007, all hardware, software, services, and other logical components that you want Operations Manager to be aware of are described in a model. A model is a computer-consumable representation of software or hardware components that captures the nature of the components and the relationships between them. For example, monitoring messaging services involves monitoring a variety of components such as mailbox servers, front-end servers, operating system components, disk subsystems, Domain Controllers, or DNS servers. Fully monitoring messaging services also requires discovering and monitoring the interaction between these systems, such as monitoring whether e-mail is flowing through the system.

Operations Manager uses management packs to model and monitor software and hardware components. In Operations Manager, management packs contain the models required for the software to interpret the structure of an application and determine the health of the application. This knowledge is expressed as an XML document using a pre-defined XML scheme understood by Operations Manager. Although XML is the language of model-based design, you do not need to know or use XML to use Operations Manager. Familiarity with XML is only required for authoring management packs. 

Model-based design uses this standard specification language to tell System Center Operations Manager about important elements of your application or component. Model-based design is important because it allows service-level monitoring instead of only computer-based or hardware-based monitoring. Objects in your model can represent hardware components, such as whether a router is running, or they can represent software, such as whether a particular application or service is running. By combining different objects and relationships, you can create a distributed application model that spans different components, applications, and hardware. Understanding models helps you make the best use of Operations Manager 2007.

An Analogy: Modeling Buildings

To understand models and the process of modeling, consider the analogy of modeling buildings. Start by considering the types of buildings that exist. 

[image: image2.png]Defining Types of Buildings

An offics building 15 A building
A residertial building IS A building
Building An apartment complex IS A residsrtial building
An apartment complex IS A building
& single family hame IS A residential building
& single family home 1S A building
Office
)y Building

Spedalization
Residential
Building

apartment
Complex

Singe Farily
Home v




Create a model by determining the essence of the object that is being modeled. That is, create something describing the type of object you want to model. If you are familiar with object-oriented modeling or object-oriented programming, this is the same as creating a new class. In Operations Manager, use targeting to direct Operations Manager to apply rules to a specific class or type of object. Targeting is discussed in more detail in Changes Between Microsoft Operations Manager 2005 and Operations Manager 2007. 

There are many different kinds of buildings: office buildings, apartment complexes, single-family homes, and factories. Because you are considering modeling buildings, start with what all buildings have in common. For example, the most general type of building can be described as an object with four walls and a roof. 

Specialization and Attributes

To describe more types of buildings than a generic building, we need to create more specialized classes. Suppose a generic building has the following attributes: 


Address


Construction date


Number of floors


Square feet

[image: image3.png]Building Attributes

pdress
Conearction ote
Building—— fumber of Floars
ety
N oifie | Emplayee
Building Capacity.

Residential
Building

Apartrnet | yuber of Urits
Apartmert | huber of Unt

Single Family—] s Detached
Home




The address attribute is particularly important, because it is a key attribute. An attribute is called a key attribute when it uniquely identifies a specific object, such as a building. Most buildings cannot be uniquely identified by the construction date, number of floors, or number of square feet. 

However, this generic building probably is not detailed enough to model a specific building, such as Microsoft building 7. To create a class that describes an office building, you include not only all the attributes of a generic building, but also the following attributes: 


Employee capacity


Number of meeting rooms

To model a residential building instead of an office building, you need a different set of attributes than the office building attributes. Consider a simplified world where residential buildings are one of two classes: apartment complexes, consisting of multiple apartment units, and single-family residences. An apartment complex might add an attribute for "number of units" to the generic building, although a single family house might add an attribute for "is detached." Both apartment complexes and single-family residences have all the attributes of a generic building, but they do not have the extra attributes of an office building. This property is called specialization or inheritance. In this example, the apartment complex and the single-family both inherit attributes from a residence, but they do not inherit attributes from each other.

In Operations Manager, there are many different types, starting with the most generic Entity class (analogous to the generic building class). Classes become more and more specialized to describe more and more specific things. For example, an Active Directory Domain Controller Computer Role (a class defined in the Active Directory management pack) is a more specialized type of Windows Computer Role object. A Windows Computer Role is a more specialized Logical Entity, which is, in turn, a more specialized Entity.

Viewing the Operations Manager Model

You do not need to see the inheritance tree for day-to-day operations. Therefore, it is somewhat hidden in the console. However, if you are interested in seeing what the model looks like, you can find it in the Distributed Application Designer. 

[image: image4.png]


To view the specification tree

	1.
In the Operations Console, click Authoring.

2.
On the left pane, click Distributed Applications.

3.
Click Create a new distributed application located above the Distributed Applications pane.

4.
Fill in a temporary name, select a template, and then click OK.

5.
Click Add Component.

6.
In the Create New Component Group window, click All Objects.

7.
When you are finished exploring the specification tree, click Cancel.

8.
Close the Distributed Application Designer, and then click No to avoid saving the temporary application you created.


If you open it immediately after you install Operations Manager, you see nothing about Active Directory or Exchange. However, as you add management packs, more classes are added to the tree. Consider what the model looks like after the Exchange and Active Directory management packs have been imported: 

[image: image5.png]Create New Component Group

Mame your component group:

‘Whal objects do you want 1o add o this component group?

Al Objects
5 Objects of the follwing pels)

El=ET
501 3 LogialEnily
bl Notston Subscrton Server

o

I3 4ppicaton Compenert
L] g Clent Moritring Entties
& CIl Computer Role

- 1[0 Windows Computer Role
£+ 1[0 Active Ditectory Domain Controler Computer Role
& ][] Active Ditectory Domain Cortroler Server 2000 Comput

- C1L0J Active Diectory Domain Coniroler Server 2003 Comput_|
[ ] Exchenge Fiole

[ Dataset

D Device
I Distibuted Applcation

[y Distibuted Applcaton Companert

«
Cance





Notice that Operations Manager starts with the most general item, an Entity, and gradually describes more specialized objects. For example, an Active Directory Domain Controller Computer Role is further specialized into an Active Directory 2000 Domain Controller Role and an Active Directory 2003 Domain Controller Role. Each of these share properties of a Domain Controller but have properties that are specific to the different versions of Active Directory.

Service Models: The Three Key Relationships

When you talk about a type of object and attributes of an object, you are describing a class, such as a building class. However, you can also consider specific objects of a class, such as Microsoft building 7. 

Objects can have relationships with other objects. There are three types of relationships that are used to describe how objects can relate to one another: Reference, Hosting, and Containment.

A service model identifies which objects exist in an application or component. It is a critical aspect of Operations Manager, because using service models is how the software knows which software and hardware is important to an application, such as Active Directory.

In addition to identifying the objects in an application, a service model identifies how the different objects relate to one another. There are three ways that objects can relate to one another: one can reference (or use) another, one can host another, or one can contain another. Identifying these relationships is critical when determining the health of an application or component.

Like classes, object relationships are organized in a hierarchy from least specific to most specific, with Hosting being the most specific:


Reference


Containment


Hosting

That is, a containment relationship is a more specialized version of a reference relationship, and a hosting relationship is a more specialized version of a containment relationship. Relationships between objects are classified by the most specific relationship that they belong to. For example, if by using the following criteria, an object can be considered to be both hosted and contained by another object, it is considered to be hosted since hosting is a more specific relationship than containment.

Hosting

It is easiest to think of relationships by first understanding the most restrictive relationship. Consider two objects: a building and a room. These two objects have a hosting relationship, which has the following characteristics: 


The hosted object can be hosted by only one other object; it has an exclusive relationship with the hosting object. That is, a room can be hosted by exactly one building. A room never "belongs" to more than one building.


The hosted object cannot host the hosting object. That is, a room can never host a building.


The hosting object can host multiple other objects. For example, a building can have multiple rooms in it or a building can host both rooms and corridors.

Consider the relationship between a SQL database and a SQL instance; replacing the words "building" and "room" in the previous examples with "SQL database" and "SQL instance" shows another hosting relationship. Other examples include a web server and a web site, a network adapter and computer, and a processor and a computer.

Containment

A containment relationship is less restrictive than a hosting relationship and models the idea that one object is a "part of" another object or objects. It differs from hosting because an object can be contained by many other objects, while an object can be hosted by only one other object. Consider a class that describes university campuses and buildings on a university campus.

 A containment relationship has the following properties: 


An object can contain multiple other objects. For example, a university campus can contain dormitory buildings and administrative buildings.


An object can be contained by multiple other objects. For example, dormitory buildings are contained by university campuses and are also contained by the set of all dormitory buildings in the city.


A contained object cannot contain the containing object. The set of all dormitories on campus cannot contain the set of all buildings on campus.


Another way to differentiate between a contained and hosted relationship is to consider the lifetime of the two objects. If the lifetime of one object is dependent on the lifetime of the other, then the relationship is hosting instead of containment. For example, consider a SQL instance and a SQL database. If the SQL instance is deleted, the database will go away as well. Thus, the relationship between the two objects is a hosting relationship. However, if you consider a group of Windows servers and a particular Windows server, the removal of the group does not mean that the server no longer exists. Thus, the relationship is containment.

Reference

A reference relationship is the loosest relationship; it has no restrictions. If one type of object uses or works with another, but does not host or contain the other, then they are considered to have a reference relationship. For example, consider a developer and a tester who work together. We can say that the developer works with the tester; the tester also works with the developer. Each of them also works with multiple other people. Therefore, the relationship between the two types of people cannot be classified as either containment or hosting. It is a reference relationship. Other examples of reference relationships are a user using a web application, an Exchange server using a domain controller, or a domain controller replicating with another domain controller.

Health Models

What is a Health Model of an Application or Component?

A service model identifies which pieces of an application or component are important for Operations Manager to monitor. The health model describes how the health states of those pieces affect the health of the entire application. In addition, the health model describes possible ways to fix problems with an application or component. The health model is what Operations Manager uses to capture information such as: 


If the computer that hosts the Internet Information Services (IIS) server is not functioning, a web retail business might be in trouble. 


If most Web sites hosted by IIS are not functioning, that is a more significant problem than if a single site is not functioning. 


A particular disk being nearly full is usually a minor problem for the entire environment.


If the IIS server is not functioning, what steps you can take to recover from the error.

Every object type (such as a Windows server role or an IIS server) has an associated health model. The health model is a collection of monitors that represent different aspects of the object type. There are security monitors, availability monitors, performance monitors, and so on, that are all aspects of the health of a particular model.

In Operations Manager, health models are implemented by using monitors that are arranged in a tree structure that indicate which pieces of an application depend on other pieces. Monitors can have different states, such as healthy (indicated in the Operations Console by the color green) or critical (indicated by the color red), to indicate the health of the object they are monitoring. For more information about monitors, see Management Packs, Rules, Monitors, and Tasks and Their Relation to Models.

Example: Looking at a Health Model

Health models are viewed through the Health Explorer. For example, consider the following health model: 

[image: image6.png][, Health Explorer for wemdua0037d.smx.net
(DReset Heath (2] (4 propertes @ telo
9 Oyerides -

Heakh mortars for wemdual037d smnet

+(Eni)
1510 Avaiabity - wemd03 st i)

O Ping Stats - wemdua0037d st (Windows Computer
(©) Windows Compuler Role Healh Roli - wemdusll37d st [Windows Compue)
©) Windows LocalAppliclion Healh Aclup - wemdus037d smx net Windows Compuler)
@) Configuaton - wemduaD037d st (i)
(©) Windows Compuler Role Healh Roli - wemdusll037d st [Windows Compue)
©) Windows Local Appliclin Healh Aclup - wemdus037d smx net Windows Compuler)
() MOM 2005 Monitoring Rollup - wemduaD037d.sm.net (windows Computer)
=@ Pefomance - wemdua037d smuet (Eniy)
() Windows Computer Role Health Rollup - wemduaD037d.sms. net (windows Computer)
& ‘Windows Local Application Health Rollup - wemdua0037d.smx. net (windows Computer)
Perfomance - ictasft Systenerter NolficatiorServer Enty)
&) Pefomance - wemdua0037d et (Eniy)
Data Warchause Peromance Stae - wenduali37d smi et Data Warehouse Cone
=] Health Service Performance - wemdual037d sm et (Health Service)
@ Hesalh Servioe Hande Count Thieshok - wemdua37d s et (et Senvice
() Health Service Modues - wemdua0374 sm net Health Service]
52 Al Subsciplion Data Source Module - wemdua0037 skt (Root Manag
@) et Subscrpion Queny Perfomance Moriar - wema0037d smi.net 1
(@) Health Service Private Bytes Thieshold - wemduall037d.sms net (Healh Service)
O Secuty - wemds0037d st Eniy)

Ready

Knowledge | Stete Change Events (4|

Summary
“This monitor is the rollup monitor for all
other monitors running against this object. If
the state is unknawn, sither monitaring has
ot begun for this object or thers are no
monitors defined

Causes
An unhealthy state for this monitor indicates
some prablem with anather manitar running
against this object. View all current alerts
from this object using this link

View alerts

Resolutions

Use the health explorer to dril down and
find the cause of the unhealthy state, Use
the knawledge on the specific manitar
causing the issue to troubleshoot and fix the
problem

[_[CIx]





This view shows all the monitors that are involved in determining the health of the computer wemdua0037d. Monitors are arranged in a tree structure, where each lower level of the tree is a more specific object. Note that although the overall monitor for the wemdua0037d computer is red, only some of the child monitors are red. A monitor in a red state can have healthy child monitors, but when enough of the lower-level monitors are red, the overall status indicates there is a problem.

Bringing Service Modeling and Health Modeling Together

How the Service Model and Health Model Interact

Service models and health models combine to provide a picture of the state of your environment. 

[image: image7.png]Service Model & Health Model

Logical Entity

Computer Role

Windows
Computer Role

saL
Server





Each object in the service model, such as an Entity object or Windows computer role, has a set of monitors associated with it that provides health information for the different aspects of that object. For example, an Entity object has a set of monitors associated with it. Because an Entity object is such a general object, the health models that are associated with it are also quite general. 

[image: image8.png]\@ ® o

Health
saL Sarer
x%




As the service model becomes more specialized, the associated health monitors also become more specialized. This As Operations Manager receives more information about what it is monitoring, it can monitor the object more closely. If you look at the health models that are associated with a SQL Server object—a very specialized object—you see that the health monitors are also very detailed and specific. For example, one of the monitors for SQL Server objects watches for any long-running SQL Agent jobs that might indicate a problem with the job. This is a more specific type of monitor than the monitors that are associated with Entities.  To adjust the health model to be better suited for your environment, you can alter or add monitors to the appropriate level of the tree. 

Example: Health Roll-Up in Active Directory

Consider the Active Directory model. Like other health models, the health model of Active Directory is a tree structure. Each layer of the tree depends on the layers below it in order for it to be healthy. The top of this structure is the entire Active Directory environment, and the lowest level is all the domain controllers. 

[image: image9.png]Active Directory
Environment

Active Directory
Forests

P

Active Directory
Sites

Active Directory
Damains

Domain
Contrallers





Not all health models handle health in this way. In Active directory, health for each of the layers rolls up to next-highest layer when 60 percent of the objects in the lower layer change state. For the purposes of rolling up health, an unknown state is considered to be an error state, although Maintenance mode is ignored. Active Directory domains are treated slightly differently than sites. Health from domain controllers rolls up to the domain, but domains do not roll up to the forest layer. 

The Active Directory health model captures the idea that if only a few domain controllers are in an error state, it is unlikely that the entire site or forest that they belong to is not functioning. However, if most of the domain controllers in a site are in an error state, it is likely that the site is in trouble, although the forest that contains the site might still be in a healthy state. 

Other applications have different health models. For example, the SQL Server 2005 health model does not roll up health of individual databases to the Database Engine. This is because one database offline does not mean that the SQL Database Engine is unhealthy. 

How Operations Manager Implements Models

In Operations Manager, models are created by starting with the most generic item that you want to monitor. In Operations Manager, this is the Entity object. From the Entity object, management packs add more and more specific objects, which inherit attributes from the higher-level objects in the tree. Additionally, you can add your own objects to the tree by using the authoring functionality for the product. 

[image: image10.png]Back to OpsMgr 2007...

O e

e

s

Windons-based
Computer
I_@Wmdaws

Logical Entity

Computer

Y

s

Computer Role

Role

saL
Server




Consider more specialized and concrete Entity objects - you can have a Logical Entity object, a computer role, or a Windows computer role. Windows computer roles can be further specialized to be a SQL Server object or an Internet Information Services (IIS) server object. 

As in the building analogy, different objects in these classes have relationships. For example, a Windows computer object hosts a Windows computer role. To determine the type of relationship they have, consider the following questions:


Can a Windows computer role be hosted by multiple Windows computers? No; a single IIS server cannot be hosted by multiple Windows computers.


Can a Windows computer role host a Windows computer? No; it does not make sense for an IIS server to host a Windows computer. 


Can a Windows computer host multiple other objects? Yes, a Windows computer could host both an IIS server and a SQL server. 

Therefore, the relationship is a hosting relationship. 

Management Packs, Rules, Monitors, and Tasks and Their Relation to Models

Management Packs

You can build a Service Model and Health Model by defining targets and creating monitors, rules, tasks and reports. These are all contained in a management pack for that application. When imported into Operations Manager, the management pack describes the application and tells Operations Manager how to discover and monitor it. Operations Manager is not aware of an application until its management pack is imported.

When you import the Active Directory management pack, you are importing a set of rules, discoveries, monitors and tasks, all of which provide Operations Manager with a view of how Active Directory works, and what is important to monitor in Active Directory. 

Rules

Management pack rules collect data from various sources, such as Perfmon, EventLog, SNMP, and log files.  That data is then stored in the Operations Manager database or Data Warehouse and can be used for reporting purposes. Optionally, for backward-compatibility reasons, some rules can generate alerts that are based on the collected monitoring data. 

Targeting information tells Operations Manager on which agents and components to run rules to gather monitoring information. Rules always target classes; for example, you might target a rule to all SQL Server 2005 databases or to all Windows Server Operating systems. You should not target rules to groups; for additional information on targeting, see Changes Between Microsoft Operations Manager 2005 and Operations Manager 2007.

Monitors

Monitors are used to determine the health state of an application component and are integral part of the health model. Generally speaking, monitors are the "intelligence" of Operations Manager. They look at monitoring information and determine whether the application is healthy. 

Monitors are state machines that can either be in one of two states (green or red) or in one of three states (green, yellow, and red). The monitor's state changes in response to the monitoring information that the monitor is using. For example, a monitor can be defined that captures the following information: 


If a disk drive is over 90 percent full, the state is red and the disk drive requires investigation. To indicate this, an alert is generated.


If a disk drive is over 85 percent full, the state is yellow, but the situation does not require an operator's attention.


If a disk drive is less than 85 percent full, the state is green and the disk drive is healthy.

Although monitors and rules both collect monitoring data, the collected data is used very differently. Rules collect data that goes into either the Operations Manager database or into the Data Warehouse database. In contrast, monitors evaluate data from various instrumentation sources and only store state changes and alerts in the Operations Manager database and Data Warehouse. Monitor-collected data is never stored in the Operations Manager database or Data Warehouse and does not display in reports. 

Consider the following scenario: You want to monitor memory usage on a server, generate an alert when it reaches a certain threshold, and have data available later so that you can report on memory usage over time. To implement this scenario, you need to do the following: 

1.
Create a collection rule to collect memory information for reporting. 

2.
Because collection rules do not generate alerts, you also need to create a unit monitor that monitors memory health and generates a health state change and an alert after the available memory crosses a threshold you define. 

Types of Monitors

There are three different types of monitors in Operations Manager: 


Unit Monitors


Aggregate Monitors


Dependency Monitors

Unit Monitor

Unit monitors, the fundamental monitoring components, are used to monitor specific counters, events, scripts, and services. You have the option to set the monitor to generate an alert.

Aggregate Rollup Monitor

An aggregate rollup monitor reflects the state of unit, dependency rollup, or other aggregate rollup monitors targeted to an object. You typically use an aggregate rollup monitor to group multiple monitors into one monitor and then use that monitor to set the health state and generate an alert.

Each target in Operations Manager 2007 contains the following top-level aggregate rollup monitors that you can use to group monitors of similar type for reporting purposes:


Availability


Configuration


Performance


Security

Dependency Rollup Monitor

A dependency rollup monitor rolls up health states from objects linked by either a hosting or a containment relationship. Hosting and containment relationships for a given target are defined in most Management Packs. A dependency rollup monitor can be used to make the health state of a particular object dependent on the health state of components that are either hosted or contained.

Dependency Monitors: Linking Health Models to Service Models

Operations Manager uses dependency monitors to implement the idea that when enough of one layer changes state, the layer above should change state.

Dependency monitors allow you to use a hosting or containment relationship to relate the state of one object (such as a hosted object) to the state of another object (such as a hosting object). Consider the following SQL Server model: 

[image: image11.png]sdoe

Hosting





There are two objects in the service model—a SQL Server 2005 object and a SQL Server 2005 Database object. These objects are in a hosting relationship; the server object hosts the database object. Each object has an associated set of monitors that monitor health aspects of the object.

[image: image12.png]



The dependency monitor allows health to roll up over the hosting relationship from the SQL Server Database object to the SQL Server object. Therefore, if the SQL Server Database object turns red, the information captured by the red state can indicate that the SQL Server object also must be red. For example, if the master database goes offline, this can affect the health state of the SQL 2005 database engine.

Interaction Between the State of a Monitor and Alerts

When an application needs attention, Operations Manager generates to-do items for administrators. These are called alerts, and they can be generated when a monitor changes states. When you get an alert in the console, it is an indication that a state change occurred requiring operator attention. Alerts are also used to notify operators who might not be looking at the console.

Using Diagnostic Actions and Recovery Actions

When a monitor changes state from a healthy (green) state to a warning (yellow) or critical (red) state, information is stored in the monitor about the cause of the state change. This information can be used for both manual and automatic diagnostic and recovery actions. To set diagnostic and recovery actions, click a monitor in the Health Explorer and select Properties.  

When you create a diagnostic or recovery action, you have the following options: 


The action runs automatically or requires an operator to run. 


Running the action resets the monitor health to green.

[image: image13.png]T |
Generl] Hoslh Rl Py Aling Disgrosio and Recove | Product Knwidoe |

Configure diagnostic tasks

Configure the diagnosti task(s) by crealing or edting one of mote tasks to be used for each
ofthe healh states:

Entity Health Proper

A\ Disgnostc or waring heath sate

@ Digrosfor vl heskh e

Hedhsze [ Diegrosiotesrane [

Configure recovery tasks

Configure the recovery taskls) by creating or editing one of more tasks to be used for each

ofthe healh states:
Add Ei Femove.

Healh e | Fecorey ek Inerted fom | R stomatialy | Fese nonder

=





Some actions are better suited for running automatically than others. For example, if a disk is over 90 percent full, consider automatically running a task to delete temporary files on the drive to avoid requiring an operator to attend to the situation. 

However, some actions should not be run without operator intervention. If a monitor changes to red when the CPU is over 90 percent utilized, a reasonable recovery action might be to halt the top five processes. Depending on what the computer being monitored is used for, you might not want for this recovery task to be done automatically. Instead, you might want to require an operator to check whether halting the top five processes is acceptable before running the task.

Tasks

A task is a user-initiated action from the Operations Console that is run on an Operations Manager agent. Which tasks are available depends on which management packs are installed. For example, Operations Manager comes with a core set of functionality that gives you the ping task. When you install the SQL Server management pack, it comes with a set of SQL-specific tasks, such as a task to start or stop the SQL Server agent. As with monitors and rules, tasks are targeted to classes. For example, the ping task is targeted to the Windows Computer class.

Discovery

When Operations Manager knows about an object type (such as Windows computer roles or Domain Controllers), it must determine which computers actually have objects of these object types. This process is called discovery.

The Operations Manager agent performs discovery of objects and relationships by interacting with many different resources and using different query methods, such as the following: 


Registry queries


WMI


Scripts that discover different types of settings and configuration


OLEDB


LDAP directory queries

What it Means to Discover an Object

When Operations Manager discovers an object, the software learns about the existence of the object and begins monitoring it. After an object is discovered, its  attributes are set. In the building analogy, a building was discovered, and you added attributes, such as the address, construction date, number of floors, and square feet. 

In addition, Operations Manager discovers relationships between objects.This means that for SQL Server, Operations Manager also discovers the SQL Server databases and knows that they are hosted by the SQL server. Or, when Operations Manager discovers Internet Information Services (IIS), it also discovers the IIS Web sites.   

What it Means to Discover a Relationship

Operations Manager can also discover relationships between objects. For example, if Operations Manager discovers a Windows computer object and a SQL Server object on the Windows computer object, it can discover the relationship between the two objects. If Operations Manager discovers the SQL Server object, myserver.contoso.com, it also discovers instance1, a SQL Server instance object on the SQL Server object, and it can create a relationship between the two objects. This is because the SQL Server Management Pack contains a model description that indicates that SQL Server instance objects are related to SQL Server objects. In this example, the relationship is a hosting relationship. 

Changes Between Microsoft Operations Manager 2005 and Operations Manager 2007

State Monitoring and Alerting

The state-monitoring model in Microsoft Operations Manager 2005 has changed significantly in Operations Manager 2007. In Microsoft Operations Manager 2005, alerts were used to determine the health state of an instance of an object. In Operations Manager 2007, monitored data is automatically used in calculating the state of a health monitor. When a monitor changes state and is configured to respond to that state change with an alert, an alert is generated.

In Operations Manager 2005, the process for monitoring an object is the following: 

1.
Agents gather data and compare the data to the defined health state for the object as defined in a rule. That is, the agents watch for a particular condition.

2.
Raise an alert if the condition is met.

3.
Change the health state of the object as defined in the rule.

If there is an alert against an object, it turns red. After the alerts for the object are closed, it returns to a green state.

In Operations Manager 2007, alerts are considered as to-do items for the administrator. For example, if an administrator resolves an alert in Operations Manager 2005 and the monitor changes to green immediately, the underlying problem might still exist, depending on what the administrator did before closing the alert. The Operations Manager 2007 process for monitoring an object is the following: 

1.
Collect data.

2.
Use the data to calculate the health state of a monitor and change the state of the monitor as necessary. 

3.
Roll up the monitor state as necessary. 

4.
Optionally generate an alert based on the monitor health state change.

Differences in Targeting

Although Microsoft Operations Manager 2005 and Operations Manager 2007 both have the concept of targeting, the way targeting works in Operations Manager 2007 has completely changed from the previous version. To effectively deploy new rules, it is critical that you understand the difference. Consider the following scenario: 

[image: image14.png]Server 1

sqU
Server
Database

saL
Server
Database
[

saL
Server
Database
[

Server 2
Web site
s | Bea
Web site:
Alpha





In Microsoft Operations Manager 2005, to monitor the three SQL Server databases shown in the preceding figure, you would create a computer group that includes Server 1 and Server 2. You then would create a specific rule, put it into a Processing Rule Group (PRG), and then target the rule to the computer group. However, this method has some shortcomings:


Microsoft Operations Manager 2005 does not make a distinction between SQL Server A and SQL Server B, so there is no way to deploy a rule that monitors SQL Server A while still monitoring SQL Server B unless you uninstall SQL Server B.


It is difficult when looking at a rule to know its target. For example, knowing that a rule goes to Server 2 does not tell you whether the rule is gathering monitoring data for the SQL Server object on that computer or for the Internet Information Services Web server object on the computer. 

In Operations Manager 2007, you no longer target computer groups. Instead, you target specific classes. To monitor the SQL Server objects shown in the following figure, you create a monitor and then target it to the SQL Database class.

[image: image15.png]Select a Target Type.

Select the terget you want 1o use from the lis below. You can aso use the

Specilc target ot ot the targets by Managerent Pack

Lookior [

 View common targets

& View alltargels

SGL DB Engie.
50L DB Fie

50L DB File Group

SOL DB Perspective
S0L Distibutor

S0L Instances

S0L Integraton Services
S0L Publication

5L Server Core Libtary
5L Server Core Libary
5L Server Core Libary
5L Server Core Libtary
5L Server Core Libary
5L Server Core Libary
5L Server Core Libary
5L Server Core Libtary

S0L Publiher SOL Server Core Library
SOL Reporing Services S0 Server Core Libtary
50L Role S0L Server Core Libary

5L Subsoiber
50L Subsorber

il

5L Server Core Libtary
5L Server Core Libary

Target Management Pack Desciption
5L 2005 Subsciber QL Server 2005 Discoveny) Al Miciosolt SUL Server 2005 subscibers. The subsciber
S0L 2005 Subsciption 5L Server 2005 (Discovery) Al Miciosoft SOL Serves 2005 replication subsciitions.
S0L Agent 50U Server Core Libay  The S agent comporent thal uns as patt of  Mictosolt
50L Agent Job 50U Server Core Libay Al Microsoft SOL Server Agert jobs regardess of version
5L Anabsi Services 50U Server Core Libay  Aniinstalation o Mictosoft SOL Server Anabsis Services
50L Component 50U Server Core Libay ~ Any Miciosoft SO Server component tht foms part of 5.
50L Computers SOL Server Core Libray A aroup cortaining al Windows compulers that are unring.

‘Aninstallaion of any version of Miciosoft SGIL Server Data
Alicrosoft STOL Server database s independent of the
AllMictasoft SOL Server database fe goups independent
Alicrosot ST Server database perspectives indzpende
AllMictasoft SOL Server ditbutars regardiess o versian.
A group containing al Instances of Misrosolt SO Server
‘Aninstalition of Micrasoft SOL Integration Services
Alicrosof STL Server publications regardlss of version
Al icrosof STL Server publhers egardess of version
Aninstallation of Microsolt SL Server Repoting Services
‘An instaliation of any version of any Microsaft SOL Server .
Allicroso STL Server subscrptions regardless of version.
Alicrosot SO Server subscribers regardless of version.

205 otal Targets, 36 visble, 1 selected

Cancel





This has the following advantages: 


Using overrides, you can stop Operations Manager from monitoring SQL Server B, while continuing to monitor SQL Server A.


If SQL Server A is removed, Operations Manager automatically stops monitoring it.

Why Targeting a Computer Group in Operations Manager 2007 Fails

Targeting a computer group in Operations Manager 2007 produces unexpected results because the computer group target (that is, the class of objects that are computer groups), only exists on the root Management Server. Therefore, any rule that you target to this object class attempts to collect event information from the root Management Server. In some cases, the root Management Server might not have the instrumentation that the rule depends on. For example, a rule that depends on IIS metrics will not be able to collect any information on a root Management Server that has no IIS server on the computer. In other cases, you might collect information that is not what you expect because the rule is intended to collect data on a machine other than the root Management Server.

The only way to send rules to specific computers is to target the rule to an object that exists on the computer, such as a SQL Server object or an IIS Web site object. You can then use overrides to limit the places where the rule works.

Targeting Examples

Determining the appropriate target for a rule or monitor ensures that Operations Manager collects data and determines health information for the correct objects.

Running a Rule on a Group of Computers

Consider the scenario where you want to target a rule to all Windows Server 2003 servers that are in a particular computer group. To do this, complete the following steps: 

1.
Create a rule and target it to the Windows Server 2003 class. 

2.
Set the rule so it is not enabled by default.

3.
Create an override that will enable the rule only for objects that are members of the group. 

Monitoring CPU usage on Windows 2003 Servers

Consider the situation where you want to monitor the total CPU usage on all Windows 2003 servers. 

The monitor should not be targeted to the Agent class for the following reasons:


The monitor will not work for agentless managed computers. 


The monitor will affect the health state of the agent, which should be an unrelated health determination.


The monitor should not be targeted to the Computer class for the following reasons: 


Management packs for computers with operating systems other than Windows are likely to also use the computer class. For example, this monitor would not work on a UNIX computer. 


The monitor will run on all computers running Windows, including client systems. This issue also occurs if you target the rule to the Windows Computer class or the Windows Operating System classes.


The monitor should not be targeted to the Managed Computer class because it will then run on all computers regardless of operating system. The correct class to target is the Windows Server 2003 Operating System class.

Customizing Out-of-the-Box Models

Operations Manager has a set of Microsoft-created management packs that are models of Microsoft published applications, such as Active Directory, Exchange, or SQL Server. In addition, many non-Microsoft management packs provide models of other applications. However, sometimes you have to modify these models to fit your environment. Eventually you might also need to create an entirely new model to represent an application or component for which there is no prepackaged model. 

Creating New Rules

If you want to gather additional monitoring data, you must create a new rule. Create new rules from the Authoring space in the Operations Console. As a best practice, when you create a new rule, store it in your own management pack specifically for your additional rules or customizations. 

When you create a new rule, you must identify where the rule goes. To do this, target the rule to the appropriate object. For example, if you want to target a rule to all SQL Server 2005 Databases, use the SQL Server 2005 Database object as the target. Do not target rules to computer groups. For more information about these issues, see Changes Between Microsoft Operations Manager 2005 and Operations Manager 2007. 

Creating New Objects to Monitor

Management pack templates and the Add Monitoring Wizard are used to create and target custom classes to extend the management capabilities of Operations Manager 2007. 

When creating a custom class with the Add Monitoring Wizard, the attributes, monitors, object discoveries, rules, tasks, and views that are necessary to start monitoring the applicable objects are automatically created and added, with the class, to the specified management pack. These all appear in the Operations Console and are managed as if they were originally provided with the management pack.

Templates for similar classes are provided to help make it easier to create custom objects with the Add Monitoring Wizard. These templates are comparable to the Microsoft Word templates that help make it easier to create similar Word document types. Operations Manager 2007 provides the following templates: 

OLE DB Data Source   

	Generates synthetic transactions that monitor the availability of databases. The default view for this template is in the Synthetic Transaction folder of the Monitoring pane of the Operations Console.




TCP Port

	Generates synthetic transactions that monitor the availability of services. The default view for this template is in the Synthetic Transaction folder of the Monitoring pane of the Operations Console.




Web Application

	Generates monitors that verify the availability of Web-based applications. The default view for this template is in the Web Application folder of the Monitoring pane of the Operations Console.




Windows Service

	Generates monitors and rules that verify the availability of a Windows service. The results of these monitors and rules are in the alert and state views of the Monitoring pane of the Operations Console.




New templates can be added to the Management Group. For example, the ASP.NET management pack adds the ASP .NET Application and ASP.NET Web Service templates.

Using Overrides for Customization

You can change the prepackaged settings and targets of rules, monitors, discoveries, diagnostics and recoveries with overrides. One of the common uses for overrides is to disable or change the monitoring for specific objects. For example, you can use overrides to change the default settings for alert severity, how often a performance monitor collects performance information, whether an alert is enabled, and so forth. Suppose you target a monitor to the Domain Controller class, but you have a particular Domain Controller that you do not want to monitor. You can use an override to disable monitoring for the specific Domain Controller.

Overrides can be applied to any of the following items: 


Classes


Groups


Objects

There can be cases when one object has multiple overrides applied to it. The most specific override applies in cases of conflicting overrides. This means any object-specific override is used if it exists. If none exists, then any group-specific override that exists is used. If no group-specific overrides exist, then a class-specific override is used.

For example, consider a Windows 2003 Server performance monitor. It has a default threshold at 90 percent CPU use. Consider the following overrides that are set: 


For all objects, the threshold is 80 percent CPU use.


For London servers, the threshold is 90 percent CPU use.


For the LNDDB01 server (also one of the London servers), the threshold is 60 percent CPU use. 

When an agent in this environment determines which overrides apply to the monitor it is running, it uses the most specific level first. For example, even though the threshold for all London servers is set at 90 percent, the LNDDB01 server in London will use the threshold of 60 percent because there is a more specific override set that applies to that object. Similarly, the London servers (except for LNDDB01) use the 90 percent threshold, even though there is an override for all objects set at 80 percent.

Authoring Management Packs

To create a completely new and bundled set of monitors, rules, and tasks that can be ported from one installation to another, create your own management pack to monitor a specific application or component. For information about authoring your own management pack, see the Authoring Guide at http://go.microsoft.com/fwlink/?LinkId=103271. 

Management Pack Concepts

The management pack is crucial to the functioning of Operations Manager. This section describes the purpose and contents of a management pack, and the fundamental concepts needed to understand how Management Packs work.

In This Section

This section of the authoring guide covers the following topics:


Management Pack Classes discusses how objects and classes work in management packs.


Management Pack Libraries and Namespaces describes reusable management pack objects and namespaces.


Management Pack Data Types discusses the types of data that a management pack uses internally.


Management Pack Workflows and Modules describes the key building blocks of management packs.

See Also

Management Pack Schema Reference
Operations Manager 2007 Key Concepts
Management Pack Classes

Classes

A class represents a type of object. All objects of this type share some common characteristics. For example, a DNS server is a class, a computer is a class, and a disk is a class. Wherever instances of these objects exist, there is a common way of discovering them, a common set of properties, and a common way to monitor them. These classes can be further specialized. For example, all DNS servers might have some common characteristics, but a DNS server running on Microsoft Windows 2000 Server might have different characteristics than a DNS server running on Microsoft Windows Server 2003. The author of the DNS Management Pack would likely specialize, or subclass, DNS server for these different versions. For more information about specialization or "subclassing," see the Class Types and Inheritance section of this guide.

A management pack can define any number of classes. When a class is defined, a base class must be provided, and this is the class that is being specialized. Any class in a management pack that is referenced can be used as a base class. Some examples of classes that are commonly used as base classes are shown in the following table.

	Class
	Management Pack
	When to Use

	Microsoft.Windows.

ComputerRole
	Microsoft.Windows.Library
	An application that is a Windows-based server role, such as SQL Server, DNS Server, Exchange Server

	Microsoft.Windows.

LocalApplication
	Microsoft.Windows.Library
	A standalone application that is not a server role

	Microsoft.Windows.

ApplicationComponent
	Microsoft.Windows.Library
	An application component that is part of a larger application


The examples in the table are just some common examples. Any public class in any of the Microsoft libraries or management packs can be used as a base class.

Classes can have properties that are populated as soon as they are discovered. These properties can be used for informational purposes (users can see these in the console), for monitor configuration, for task configuration, and as criteria for groups, among other things. There must be a unique way of identifying a classin Operations Manager. This is achieved using key properties. One or more properties in a class can be marked as key properties.

The term class is not shown in the Operations Console. The only time the class concept is exposed is when a management pack object such as a rule, monitor, task, or view is created. In the Operations Console, a class is referred to as a target.

Class Types and Inheritance

Specialization of a class is called inheritance. When a new class is declared in a management pack, it must specialize an existing class. Only one class, the System.Entity class, is not required to specialize an existing class. The System.Entity class is defined in the System Library and is the root class in Operations Manager, and is the class which every other class in Operations Manager eventually inherits from.

When a class is specialized, all management pack objects targeted at the parent class are inherited by the new class. Additional monitoring and discovery can be added to the new class. Any management pack objects targeted at the new class will apply only to the new class and not the parent class. Any management pack objects targeted at the parent class will also apply to the new class.

An object in Operations Manager is an instance of its class and each parent class that it inherits from. For example, a SQL Server 2005 database is an instance of all the following types:


System.Entity


System.Database


Microsoft.SQLServer.Database


Microsoft.SQLServer.2005.Database

Any management pack object targeted to any of these classes applies to the database.

Abstract Class

Some classes are created for the sole purpose of inheritance. These are called abstract classes, and they exist solely to be a parent class for other classes to inherit from. All properties and relationships defined at the abstract class level are automatically inherited by child classes and do not need to be defined again. Any monitoring objects targeted at the abstract class are inherited by child classes.

Abstract classes are used where there is a common set of properties, relationships, monitoring, or grouping that can be defined across all further specializations of that class. For example, the Microsoft SQL Server Management Pack might declare a SQL Server database as an abstract class and then specialize this into version-specific, nonabstract, or concrete, classes such as SQL Server 2000 database and SQL Server 2005 database. Both version-specific classes have common properties and can also have common monitoring. Also, it is possible to define a group of SQL databases and populate this group with all objects of the type SQL Server database. This means that the group will contain all SQL Server databases regardless of version.

Singleton Class

Singleton classes are used when there is only one instance of a class. The class is the instance and always exists. This concept is mainly used in Operations Manager to define services and groups. For example, there will only ever be one instance of the group called SQL Servers in a management group, so it is a singleton class. If there is a possibility that there might be multiple instances, the class should not be marked as singleton. It is never possible to discover instances of a singleton class.

Because there is only one instance of this class, you never need to write discovery for a singleton class. The single instance of the class is automatically created and is always present. There is no concept of a key on a singleton class because there is only one instance.

Hosted Class

When a class is defined in Operations Manager 2007, it is marked as either hosted or non-hosted. The default is non-hosted. A non-hosted class means that instances of the class are not hosted by an instance of another class. The class must have at least one key property defined, and the value of the key must be unique within a management group. Examples of non-hosted classes in Operations Manager include the Windows Computer class and the Active Directory forest class.

A hosted class must have a host before instances of the class can be discovered by Operations Manager. The class must define a key property if more than one instance of the class is possible for a given host. When only one instance is possible for a given host, the key property is not required, although it is still allowed. An example of a hosted class without a key property is the Windows Operating System class, which is hosted by the Windows Computer class - there is no key property required in this instance, because there is guaranteed to be only a single operating system on the computer. An example of a hosted class with a key property is the SQL Server database class, which is hosted by the SQL Server class. In this case, there can be multiple databases on a single server, so a key property is required to uniquely identify each one.

Note 

State can only be rolled up through a dependency monitor if there is a hosting relationship defined between the two objects. For more information, please see the section on relationships.

A hosted class is uniquely identified within a management group using the key of the hosting class and, if a key is set, the key of the hosted class. An instance can share the same key value with another instance as long as it is hosted by a different hosting instance. For example, there can be multiple instances of a database with the same name in a management group. Each database is hosted by a specific instance of SQL Server, which is in turn hosted by a specific physical or virtual computer. Because their hosting objects have different key properties, the multiple databases objects with the same key property can exist.

Class Uniqueness

In Operations Manager 2007, class uniqueness is enforced. This means that it is not possible to introduce a class with the same ID attribute as an existing class, even though the other class is declared in a different management pack. This enforcement of class uniqueness makes it possible to reference classes without using the full name of a class. A full name for a class includes a management pack ID, a management pack version, a management pack public key token, and a class ID. Referencing a class by using only its ID is primarily used in the Operations Manager Command Shell.

Enforcing class uniqueness makes it possible for a management pack to be valid within one management group but not in another if another class with the same ID attribute already exists in the other management group. To stop this from occurring, it is important that namespace guidelines are followed. For more information about namespaces, see the Management Pack Libraries and Namespaces section of this guide.

Relationship Types

In Operations Manager 2007, a central part of monitoring an application, device, or service is to declare and discover relationships between the different object types that describe how the different classes, and objects, work with each other. Operations Manager defines three abstract types of relationships that can be used in management packs. All three of the base relationship types are defined in the System.Library Management Pack and are shown in the following table.

	Relationship Type
	Reference Type ID

	Reference
	System.Reference

	Containment
	System.Containment

	Hosting
	System.Hosting


When a new relationship type is declared in a management pack, it must use one of these three base relationship types as its base. Unlike class declarations, you cannot specialize a relationship type with more than one level. Relationship types that you create within a management pack cannot be abstract, and there is no concept of a singleton relationship type.

All relationship types are directional in nature and require a source and target class. In the case of reference and containment relationship types, the class can be the same for the source and target. For the hosting relationship types, the source and target classes must be different. The source and target classes can be defined in the same management pack as the reference type or in a different management pack.

Reference

The reference relationship is the most general of the available relationship types. Use the reference relationship when parent and child classes are not dependent on each other; for example, a database could reference another database that it is replicating. The existence of each of the databases is not dependent on the other, and the objects are discovered separately. 

Reference relationships can be many-to-many. This means that there is no restriction on the number of sources that can be connected to a single target, or the number of targets that can be connected to a single source.

All reference relationship types can also have properties. These properties are populated during the discovery process. Relationship type properties are similar in nature to class properties, except that there is no key property in relationship types.

Note 

Health state cannot be rolled up across a reference relationship.

Containment

The containment relationship type declares that one class can be contained within another class, although it is not required for the existence of the target class. Instances of the target class can exist even if they are not part of a containment relationship. For example, a computer is contained within a computer group, but the computer can exist even if it is not part of a computer group.

Like the reference relationship, the containment relationship type is a many-to-many relationship. 

A common use of the containment relationship type is to represent group membership. 

Note 

Health state can be rolled up across a containment relationship.

Hosting

The hosting relationship type is the most specific of the relationship types in Operations Manager. The hosting relationship type declares that an instance of a class can exist only when it is hosted within another class.

An example of the hosting relationship is a SQL database that is running in a SQL Server instance. A class representing the SQL Server instance is the host class, while a class representing the database is the hosted class. 

The hosting relationship type is the most restrictive because it is a one-to-many relationship type, which means that an instance of the class designated as the source can contain any number of instances of the class designated as the target. An instance of the target class can be hosted only by one instance of the source class, and it cannot be part of any other hosting relationship. The SQL Server instance can host multiple databases. The existence of the databases is dependent upon the SQL Server instance and will no longer exist if the instance is uninstalled.

Note 

Health state can be rolled up across a hosting relationship.

See Also

Management Pack Concepts
Management Pack Libraries and Namespaces
Management Pack Libraries and Namespaces

Management Packs and Libraries

The term library is given to a management pack that is used purely to define reusable management pack objects. It defines no actual discovery or monitoring. There is no physical difference between a management pack and a library, but this term is used to help the Operations Manager user understand why a number of default libraries are installed during Operations Manager setup and why multiple management packs might be required to monitor a single application.

For example, the monitoring for Microsoft SQL Server is currently defined in three files. These files are as follows:


Microsoft SQL Server Library


Microsoft SQL Server 2005 Management Pack


Microsoft SQL Server 2000 Management Pack

The library contains the abstract classes for Microsoft SQL Server as well as some common groups and images. No actual discovery or monitoring is defined in the library. The management packs designed for a specific version of SQL Server reference the library and inherit from ("specialize") the abstract classes.

Management Packs and Namespaces

Operations Manager does not enforce the declaration and use of a namespace within a management pack. However, it is a best practice  that all elements within a management pack use a common namespace. The namespace should be used in management packs as a prefix to all management pack objects. This prefix should include at a minimum the vendor name and the application, device, or service name. Because Operations Manager enforces uniqueness in the value of the ID attribute of a class, failure to adhere to these standards could result in a conflict with other management packs at the customer site. 

The recommended syntax to use as the prefix for your management pack objects is Vendor.ProductName.Version.

For example, Microsoft SQL Server uses the following namespace in the version-independent library:

          Microsoft.SQLServer.
In the Microsoft SQL Server 2005 Management Pack, the following namespace is used for all elements:

          Microsoft.SQLServer.2005.
Although classes are the only objects in a management pack that require uniqueness, we recommend that all objects—such as rules, monitors, tasks, and images—use the namespace prefix that you create for your management pack. This usage makes it easy for customers to locate similar objects in the database and when using the Operations Manager Command Shell.

See Also

Management Pack Concepts
Management Pack Data Types

Operations Manager passes data between modules. The format of this data varies depending on the module. For example, a data source that reads from the event log will produce a different type of data output than a module that reads from Microsoft Windows performance counters.

Data types are defined in management packs. These definitions are pointers to an internal Operations Manager code implementation of the data type.

[image: image16.png]


Note 

Operations Manager 2007 does not support the extension of the data types provided with the product.

Data types follow an inheritance model in a similar way to class definitions. Where the class hierarchy starts with a base class called System.Entity, the data type hierarchy starts with a data type called System.BaseData. All data types eventually inherit from the base data type.

Data Types and Modules

Some modules require a certain type of input data before it can function properly. For example, a threshold module requires performance data, while the module type that writes event data to the Operations Manager database requires event data.

When a module type is defined in a management pack, the module must specify the input and output data types where applicable. These must be valid data types that are either defined in the same management pack as the module or in a referenced management pack. 

When a module is used in a workflow, the data types that the module type accepts and provides must be compatible with the other modules in the workflow. Some module types, such as filter modules, accept the base System.BaseData data type, so they can accept any data type as input. Other modules accept only specific data types as input. 

For example, there is a workflow in which the first module is an event provider data source, which outputs the System.Event.Data data type. The next module in the workflow must be a module that either explicitly accepts the System.Event.Data data type, or a more general data type. Because System.Event.Data inherits from System.BaseData, a module that accepts either of these types can be used. 

[image: image17.png]


Note 

The MP Verify utility will check all workflow definitions to ensure that you do not mismatch data types.

See Also

Management Pack Concepts
Management Pack Data Types Reference
Management Pack Workflows and Modules

Monitoring in Operations Manager 2007 is based on the concept of workflows. A workflow is a combination of different types of modules that are composed to perform a discrete unit of work. An Operations Manager agent and server will run many workflows simultaneously to discover and monitor applications, devices, and services. These workflows are implemented in the management pack as rules, monitors, and discoveries.

In This Section

Management Pack Modules—Discusses the different kinds of management pack modules.

Management Pack Workflows—Describes some of the commonly used workflow types.

See Also

Management Pack Concepts
Common Module Types
Management Pack Modules

Modules are the most basic work element of a management pack. There are four types of modules: data source, probe action, condition detection, or write action. These modules are composed together in various combinations to create workflows, which are the foundation of Operations Manager. 

Data Source

A data source module generates event or performance data from the instrumentation of a timed trigger action. For example, a data source can provide events from a specific Microsoft Windows event log, or it can poll Windows performance counters at a set interval for a specific performance counter. For a list of the common data sources available in Operations Manager; see Management Pack Data Types Reference topic.

A data source may contain its own configuration. For example, the Windows Event Log provider stores the last-read event from the event log in the registry so that the provider can resume after the Operations Manager health service restarts. A data source takes no input data and outputs a single data stream. 

Probe Action

A probe action will publish data about a monitored entity, but should not affect system state. An example is running a script that used an application programming interface (API) to generate some data or querying Windows Management Instrumentation (WMI) to get some data. Often a probe action will be used in conjunction with a scheduler data source to run some action on a timed basis. The probe action module type might or might not use the input data item to affect the behavior. If the data item is not used, the input data should be defined as trigger only. An incoming data item will trigger the probe to execute, but the data is not used. For example, if the probe is triggered by a Windows event, it might be required to pass the event ID to the probe action as configuration data.

A probe action module accepts a single set of input data provides a single output data stream. A probe action module may require additional configuration parameters to specify how it behaves.

[image: image18.png]


Note 

Operations Manager cannot determine if a probe action is being used to change system state in some way. For example, if you run a script defined using a probe action module, you could be changing state in some way in your script. It is up to the management pack author to create a probe action module that does not change system state.

Condition Detection

A condition detection module type is used to filter or operate on the incoming data in some way. These actions may include selecting which data will proceed through the workflow or modifying the data. There are many types of filters available, including a simple filter on the input data, consolidation of like data items, correlation between multiple inputs, or averaging and optimization of performance data. For more information about the common condition detection module types, see Common Module Types. A condition detection module type can take one or more input data streams and then provide a single output data stream.

Many of the data sources that ship with management pack libraries already contain an expression filter in their composite definition, so it might not be necessary to use a condition detection module in your workflow definitions.

Write Action

A write action module takes a single input data stream and changes the system state in some way. This change could be in the monitored system, or in Operations Manager itself. For example, a write action could run a script that modifies some part of the system, writes data into the Operations Manager database, or generates an alert.

A write action might or might not output data. Because the write action must be the last module in a workflow, this data cannot be passed directly to any other module; however, the data can be sent to the Operations Manager database. An example is running a command that outputs data to the console. This data might be useful to the operator who executed the command and is returned to that operator and stored as task output.

Composite Module

A composite module consists of like entity types and data type modules, and can be specialized for use in a particular management pack.  

For example, the following sample shows a probe module that uses WMI and is defined in the Microsoft.Windows.Library:

<ProbeActionModuleType ID="Microsoft.Windows.WmiProbe" Accessibility="Public" Batching="false" PassThrough="false">

        <Configuration>

          <xsd:element xmlns:xsd="http://www.w3.org/2001/XMLSchema" name="NameSpace" type="xsd:string" />

          <xsd:element xmlns:xsd="http://www.w3.org/2001/XMLSchema" name="Query" type="xsd:string" />

        </Configuration>

        <ModuleImplementation Isolation="Any">

          <Native>

            <ClassID>92A40C04-DE27-47E2-ADB3-CD960E6BD9E2</ClassID>

          </Native>

        </ModuleImplementation>

        <OutputType>System!System.PropertyBagData</OutputType>

        <InputType>System!System.BaseData</InputType>

      </ProbeActionModuleType>

This probe is implemented by code that is part of the Operations Manager agent.  It accepts a Namespace and Query parameters as input, and outputs a PropertyBag data type.  This module forms the basis for a number of other modules in the Microsoft.Windows.Library management pack. For example, here is the Microsoft.Windows.WmiProvider:

      <DataSourceModuleType ID="Microsoft.Windows.WmiProvider" Accessibility="Public" Batching="false">

        <Configuration>

          <xsd:element xmlns:xsd="http://www.w3.org/2001/XMLSchema" name="NameSpace" type="xsd:string" />

          <xsd:element xmlns:xsd="http://www.w3.org/2001/XMLSchema" name="Query" type="xsd:string" />

          <xsd:element xmlns:xsd="http://www.w3.org/2001/XMLSchema" name="Frequency" type="xsd:unsignedInt" />

        </Configuration>

        <ModuleImplementation Isolation="Any">

          <Composite>

            <MemberModules>

              <DataSource ID="Scheduler" TypeID="System!System.Scheduler">

                <Scheduler>

                  <SimpleReccuringSchedule>

                    <Interval Unit="Seconds">$Config/Frequency$</Interval>

                  </SimpleReccuringSchedule>

                  <ExcludeDates />

                </Scheduler>

              </DataSource>

              <ProbeAction ID="Probe" TypeID="Microsoft.Windows.WmiProbe">

                <NameSpace>$Config/NameSpace$</NameSpace>

                <Query>$Config/Query$</Query>

              </ProbeAction>

            </MemberModules>

            <Composition>

              <Node ID="Probe">

                <Node ID="Scheduler" />

              </Node>

            </Composition>

          </Composite>

        </ModuleImplementation>

        <OutputType>System!System.PropertyBagData</OutputType>

      </DataSourceModuleType>

In the preceding example, the presence of the <composite> node indicates that this is a composite module.

See Also

Management Pack Concepts
Management Pack Workflows
Management Pack Workflows

In Operations Manager 2007, there are distinct types of workflows that are used for different purposes. Some of these workflows are loaded by the health service on the agent or server and run continuously, while others are loaded as they are required. A management pack might ship with one workflow or thousands of workflows. This section describes the different types of workflows: rule, discovery, task, monitor, diagnostic, and recovery.

[image: image19.png]


Note 

Every workflow in Operations Manager is targeted at a type of object or a class. The workflow will be run only where the targeted object type has been discovered and is being managed by Operations Manager. A separate workflow will execute for every object of this type that is present.

Rule

A rule uses data source, condition detection, and write action module types in its definition. A rule is loaded into memory as soon as an object of the type that the rule is targeting is managed by the health service – a process found on any Operations Manager server or agent. A rule continues to be held in memory, waiting for data items to be generated from one or more specified data sources.

A rule consists of several modules, including one or more data source modules, zero or one condition detection modules, and one or more write action modules. If more than one data source module is used, a condition detection module must be used and the module type of the condition detection module must accept the same number of inputs as the number of data sources present.

Each module in the workflow is defined to be of a particular module type. The module type defines the behavior of the module and can be a code-based implementation or a composite of other module types.

Every rule must end in at least one write action that changes the monitored system state or Operations Manager state; for example, the write action raises an alert, or stores data in the database.

A rule is typically used for one of three purposes:


Collects data and stores it in the Operations database and/or the data warehouse


Generates an alert based on instrumentation 


Runs a timed action on a continuous basis; for example, runs a script every five minutes

Discovery

A discovery is a specialized type of rule used solely for the purpose of inserting discovery data into the Operations Manager database. This discovery data can be object instances and/or relationship instances.

No condition detection modules or write action module types are allowed in a discovery. There is an implicit write action for all discoveries that is handled by Operations Manager internally. This write action inserts the discovery data into the database. Operations Manager also handles discovery data caching internally so that data is sent to the management server and database only if it has changed since the last execution of the discovery.

The module type that is used for the data source must produce System.DiscoveryData output to be used in a discovery workflow. If you try to use a module type that does not produce this type of data, your management pack will not pass verification using the MP Verify utility.

A discovery for each instance of the object type that the discovery is targeted at is loaded and held in memory, waiting for data items to be generated from the specified data source. 

Although a discovery can contain only a single data source module, a data source module type can be composed of other modules. For example, a scheduler can be composed with a script probe action into a new data source module type. Many of the out-of-the-box data sources that are defined for discovery purposes are composite module type definitions.

Task

A task is a workflow that is not loaded by the health service until it is requested by the user through the Operations Console or some other SDK call. The user executes the task for one or more objects, the agent receives notification from the server to execute the workflow, and then output is returned to the database. After the workflow has executed, it is unloaded from memory until it is called again. 

A task does not have a data source or a condition detection module. It must consist of either a single probe action or a single write action. You should use the correct type of module depending on what your task will do. If it is only reading system state, use a probe action. If it is changing system state in some way, use a write action.

Probe actions and write actions expect some input data. This is provided for a task in the form of a trigger signal by the health service. As a result, you should use a probe action or write action module type in a task only when the type expects System.BaseData or trigger-only data. For example, if your module type is expecting performance data or event data, it is not going to get this data type when it is launched as a task.

Monitor

A monitor is used in Operations Manager to determine the state of a monitored object. Each monitor is a distinct state machine that has a set number of states. A monitor is in a single state at any one time. Aggregate and dependency monitors are specific types of monitors that derive their state from other monitors only. Although these monitors use workflows internally, it is not necessary to understand the internals of these types for this discussion. This section focuses on unit monitors only.

A unit monitor is defined to be of a particular monitor type. The monitor type defines the workflows that the monitor will use. Typically, a monitor type has a separate workflow for each state that the monitor type declares. In addition, on-demand workflows can be defined for each state. Therefore, when a monitor is created, there can be many workflows running for each instance of the monitor.

For regular detection workflows, which is the normal, ongoing operation of a monitor, any number of modules can be used. The rules for the workflow are as follows:


The workflow must begin with one or more data source modules.


The workflow must not use write action modules.


The workflow can use condition detection and probe actions modules in any order.


There can be one data stream of output only; that is, if you are using two data source modules, you must pass the output to a condition detection module.

For each health state of the monitor, the workflows should be mutually exclusive; that is, the output of data should be for one workflow only for a given set of instrumentation. Because a monitor is a state machine, it is invalid to produce output for both states at a given time. Therefore, when you are using an expression filter in your workflows, you should make sure both expressions cannot evaluate to True at once.

It is possible that one monitor state can declare no workflow for regular detection. This means that this state can be entered only when the user resets the monitor or the monitor is reset by the health service, which means that the monitor comes out of maintenance mode or initiates for the first time.

The on-demand workflows for a monitor type define what state will be set when the monitor is reset by the user, by exiting maintenance mode, or on the first initialization. These workflows must follow these rules:


The workflow must begin with a probe action.


The initial probe action must be trigger only; that is, no input data can be entered.


The workflow can use condition detection and probe actions modules in any order.


No data source or write actions can be used in the workflow.

As with regular detection, you should ensure only one state evaluates at a given time to avoid nondeterministic behavior.

Diagnostic

A diagnostic is a specialized type of task. A diagnostic uses a monitor state change to trigger execution. It is either executed on demand by the user, or another SDK call, when a monitor is in a given state, or automatically by the health service when the state is entered. Diagnostic workflows are targeted to a type of object, a monitor, and a specific health state of the monitor. A diagnostic is not loaded by the health service until it is required. 

The diagnostic consists of zero or one condition detection modules and one probe action module. A diagnostic should not change system state in any way.

The condition detection module will often be a filter that looks at the input data item and evaluates it against a filter. The input data item is the state change with the original data item that caused the state change as context.

Multiple diagnostics can be created for the same monitor state, if required.

Recovery

A recovery is another specialized type of task. A recovery uses a monitor state change or diagnostic output to trigger execution. It is executed either on demand by the user, or another SDK call, when a monitor is in a given state or automatically by the health service when the state is entered. Alternatively, it might execute only after a specific diagnostic has provided output data. Recovery workflows are targeted in one of two ways: 


To a type of object, a monitor, and a specific health state.


To a type of object and a specific diagnostic that is targeted to the same type.

The recovery consists of zero or one condition detection modules and one write action module. A recovery changes system state in some way.

See Also

Management Pack Concepts
Management Pack Data Types
Designing and Building Management Packs

Building a complete Operations Manager 2007 Management Pack is divided into a number of processes:


Creating and implementing the Application Model


Creating and implementing the Health Model


Designing and implementing supporting objects

This section of the management pack authoring guide covers each of these processes.

In This Section

This section of the authoring guide contains the following topics:

Tools for Building Management Packs discusses the development and test environment you'll need to author a management pack.

Modeling for Management Packs covers implementing an abstract model of an application or object as classes in your management pack.

Discovery for Management Packs covers the various methods used to create discoveries in your management packs.

Health Model documents how to implement rules and monitors that will communicate the health of your targeted object.

See Also

Operations Manager 2007 Key Concepts
Management Pack Reference
Tools for Building Management Packs

Before you begin authoring your Management Pack, you need to decide which authoring tools you want to use, locate your reference Management Packs and libraries, and then configure your test environment.

Operations Console

The Operations Manager 2007 Operations Console provides a means to author basic management packs. An Operations Manager user with sufficient security privileges can create management packs and add objects such as monitors, rules, and tasks . The user can also run templates and store the output in the management pack that is being authored. The management pack can be exported from the Operations Console at any point.

The Operations Console does not provide all authoring capabilities for management pack authors, in particular the vendor. For example, classes and relationships cannot be created directly through the Operations Console. Also, some decisions, such as adding references and creating management pack object identities, are created in the Operations Console without the author’s input.

Management Pack Authoring Console

The purpose of the new Management Pack Authoring Console in Operations Manager 2007 is to provide everything needed for the management pack author to develop management packs in one tool. All management pack authoring in the Authoring Console user interface (UI) is written as XML directly to the management pack file and not to the Operations Manager database. A full Operations Manager environment is not required for management pack development when using the Authoring Console

XML Authoring Tools

You can use any text editing tool to write, view, and edit management packs. If you want to add valuable features such as smart tags and validation against a schema, consider using a dedicated XML editor. 

In the XML editor that you choose, you can declare the management pack schema file as ManagementPackSchema.xsd to activate smart tags and enable validation of your XML. 

Management Pack Schema

The Management Pack schema is provided as part of the System Center Operations Manager 2007 SDK documentation to help create management packs. The schema consists of a file called ManagementPackSchema.xsd and also a number of files that define the schema of Operations Manager 2007 knowledge. This knowledge schema is contained in a Microsoft Assistance Markup Language (MAML) directory. MAML is the standard knowledge format for the Microsoft Windows Vista operating system Help and is the schema used for Operations Manager 2007 knowledge. 

Using XML Created in the Operations Console

As a management pack author, you can speed up the authoring process if you use the wizards provided in the Operations Console to create XML needed for your management pack. You can then export the management pack and copy the XML to your management pack file. To perform these actions, you need to have a user account that is assigned the Administrator role in Operations Manager 2007.

Reference Management Packs and Libraries

If you inherit from a class or use a type definition such as a module type or monitor type that is defined in another management pack, you must reference that management pack. All referenced management packs and libraries must also be imported into the management group that you are using to test your management pack.

Operations Manager Installation

To test your management pack fully, you need an installation of Operations Manager 2007. Any Operations Manager installation used during management pack authoring should be a test environment that is separate from all production environments. All Operations Manager components, such as the database, management server, and console, can be installed on a single server. The application, device, or service that the management pack is being created for should be available and accessible for monitoring on the server or on an agent computer.

See Also

Management Pack Reference
Operations Manager 2007 Key Concepts
Modeling for Management Packs

In Operations Manager 2007, models are defined via the Operations Manager implementation of the System Definition Model (SDM) schema. These models are defined in Management Packs and libraries. Management Packs also define rules that specify how to discover instances of these classes. After a Management Pack is installed, the discovery rules populate the instances of classes in the model. Operations Manager also creates monitors that watch the health state of the corresponding instances. 

Because Operations Manager is an extensible platform for monitoring, models are extended via Management Packs. The perspective of these models will always be monitoring. Essentially, models in Operations Manager describe the importance of objects and relationships from a monitoring perspective.

What Models Are For

Operations Manager’s primary goal is to monitor instances; it is not to verify whether the instances are configured correctly or to verify that the components of an application have the correct relationships. Operations Manager’s models are not focused on verifying the constraints specified in a model; instead, they are focused on reflecting what actually exists in the real world and monitoring it.

Operations Manager 2007 is founded on model-based management. This approach requires that any application, device, or service that is to be monitored using the product is modeled in a Management Pack. The model can be as simplistic or as complex as required, and this level of complexity is a vendor decision that must be made based on customer requirements.

The model refers to a definition of the application, device, or service and any components that make up the application, device, or service. It also describes how objects are related to each and how the application, device, or service relates to other applications, devices, or services.

In the context of Operations Manager, building the model is focused on creating classes and relationships. Classes and relationships cannot be created in the Operations Console outside of management pack templates and the distributed application designer that create classes and relationships without exposing the details of the creation to the user. This part of the Management Pack authoring process must therefore be performed either using the Management Pack Authoring Console or using XML.

The Modeling Process

The modeling process is not dependent on the monitoring solution used. An application, device, or service can be modeled in an abstract fashion without regard to the technology that is used to implement the discovery and monitoring of the model. However, Operations Manager 2007 allows the use of a model to form the cornerstone of monitoring with minimal requirement to tailor the model to the monitoring solution.

Monitoring systems with Operations Manager using models is accomplished in several steps. The first step is to model the type of application, device, or service being monitored and the possible relationships between the instances of these types. 

Identify Objects

When modeling an application, device, or service, objects that are relevant to the model should be documented and described. It is not important at this stage to identify how they fit into the Operations Manager core model, but it is important to fully understand all components and how they interact with each other.

Operations Manager monitors objects, so not all components of an application, device, or service make sense in this context. A number of questions can be asked during this phase of modeling:


Is the health state of these objects of interest?


Can the health state of these objects be determined?


Is the object important to an administrator?


What is the lifetime of the object? Objects that are created and then quickly deleted may not be suited for modeling.

An application, device, or service should be broken into classes at granularity not more than what an administrator of that application, device, or service is interested in and understands. For example, a database can be modeled down to a cell in a table, but the value of this is questionable to an administrator who might be interested only in the table or database level.

It is possible to ship a Management Pack with the discovery of some classes disabled. This approach allows the default behavior to be applicable to most customers, but it allows other customers to enable more extensive discovery on certain instances of the application, device, or service for more granular information and monitoring.

Determine the Identity of Objects

Determining the identity of objects within a Management Group can define the type of classes that must be created. There are a number of questions that can be asked to provide guidance on the use of classes:


Will there be only one instance of the class in a Management Group? If the answer to this question is yes, this can be a singleton class that requires no key property and no discovery; otherwise, this will not be a singleton object and might require a key.


Will instances of the class be uniquely identified globally in the Management Group? If the answer to this question is yes, the class requires one or more key properties to uniquely identify instances; otherwise, this class needs definition in the context of another class, such as a class hosted by another class.


If the class is hosted, will there ever be multiple instances of the class within the context of a single host? If so, the class must be hosted and have one or more key properties defined; otherwise, the class must be hosted but does not require a key property.

The identity of instances leads to most decisions on the types of classes that are created.

Identify Relationships Between Objects

Objects can have relationships to other objects within the model. Relationships can be of a number of different types and can infer that one object depends on another object for existence. There are a number of questions that can be asked to help define relationships:


Are there situations where the health of one object directly affects the health of another object where hosting is not involved? If so, a containment relationship might be required; if not, containment relationships might not be necessary.


Is there some connection topology between objects of the same type or different types within the application, device, or service? Yes—One or more reference relationships should be defined. No—Reference relationships are not required.

Review the Core Model

The core model, which is defined across a number of libraries, provides numerous abstract and non-abstract classes and relationships. Classes in the core model can be used as base classes from which to inherit for your new classes. 

The following are some questions to ask when reviewing the core model:


Does the class you are defining have similar characteristics to one of the existing classes in the core model? If so, this is a candidate class to inherit from.


Do all the relationships that are defined for the candidate class make sense for this class? If so, this class could potentially derive from the candidate class.


Is the candidate class concrete? If the answer is yes, and all instances of this class identified in the same way as the candidate class, then  you can derive from the candidate class; otherwise, this class cannot derive from this candidate class because the identity of a concrete class cannot be modified by an inherited class, Another potential option is to derive from a common abstract parent class.


Is this a platform-specific version of the candidate class? If the answer is yes, then you can consider deriving from this candidate class in a platform-specific namespace. For example, the Microsoft.Windows.Computer class inherits from the System.Computer class. If the answer is no, then you can extend this class within the same namespace as the candidate class.






Is the health model for the derived class the same (or very similar) to the candidate class? If so, You can inherit from candidate class; otherwise you might want to derive from a class that is higher in the hierarchy.

Operations Manager 2007 Core Model

Operations Manager 2007 uses model concepts as the basis of monitoring applications, devices, and services. Using modeling, it is possible to define the semantics of an object, discover the object, and model the health of the object. Operations Manager provides a core model that is used to declare common types of objects. Much of the model is abstract and provides a starting point for Management Pack vendors to specialize the model and define the required monitoring logic.

At the most basic level, the model is a collection of classes, relationship types, modules, data types, and other building blocks that the Management Pack author can leverage. In Operations Manager 2005, the core monitoring logic was built into the product and was not extensible. Monitoring was focused around computers only, although some modeling of simple classes, known as server roles, was provided. With Operations Manager 2007, the monitoring capabilities are defined in an extensible way through Management Packs.

Operations Manager 2007 Libraries

The core model for Operations Manager 2007 is provided via libraries that are imported by default during the installation process. The list of libraries available in Operations Manager 2007 is not fixed and might change from release to release. 

Here is the current list of libraries installed by default during Operations Manager setup:

System.Snmp.Library

System.Performance.Library

System.Mom.BackwardCompatibility.Library

System.Library

System.Image.Library

System.Health.Library

System.ApplicationLog.Library

Microsoft.Windows.Server.Library

Microsoft.Windows.Library

Microsoft.Windows.Image.Library

Microsoft.Windows.Cluster.Library

Microsoft.Windows.Client.Library

Microsoft.SystemCenter.WebApplication.Library

Microsoft.SystemCenter.TaskTemplates

Microsoft.SystemCenter.SyntheticTransactions.Library

Microsoft.SystemCenter.ServiceDesigner.Library

Microsoft.SystemCenter.RuleTemplates

Microsoft.SystemCenter.OperationsManager.Internal

Microsoft.SystemCenter.OperationsManager.AM.DR.2007

Microsoft.SystemCenter.OperationsManager.2007

Microsoft.SystemCenter.NTService.Library

Microsoft.SystemCenter.Notifications.Library

Microsoft.SystemCenter.NetworkDevice.Library

Microsoft.SystemCenter.Library

Microsoft.SystemCenter.Internal.UI.Tasks

Microsoft.SystemCenter.Internal

Microsoft.SystemCenter.InstanceGroup.Library

Microsoft.SystemCenter.Image.Library

Microsoft.SystemCenter.DataWarehouse.Report.Library

Microsoft.SystemCenter.DataWarehouse.Library

Microsoft.SystemCenter.ClientMonitoring.Views.Internal

Microsoft.SystemCenter.ClientMonitoring.Library

Microsoft.SystemCenter.2007

These core libraries define the core model available in Operations Manager. The term core model refers to classes, class properties, relationship types, and relationship type properties that are defined in these libraries. The model in Operations Manager is fully extensible, and this is done by specializing classes in the core model.

Adding to the Core Model

Whenever a new class is created in a management pack, it expands the core model. This class can be made available to customers and other vendors to add more monitoring or specialize further (subject to access settings). The process of authoring a management pack is to expand the model-to-model specific applications, devices, and services. If a type of object is not currently modeled, a new class can be defined with properties to be discovered and then the discovery and monitoring of that class can be defined.

All objects in Operations Manager must eventually inherit from the Entity class defined in the System Library. It is not possible to define a new base class that has no inheritance.

Note that the concept of modeling is agnostic of the product being used to monitor that application, device, or service. Modeling can be done without regard for the monitoring solution, although at some point the conceptual model must be moved into a specific implementation model. 

See Also

HOW TO: Model An Application
Operations Manager 2007 Key Concepts
Commonly Used Base Classes
HOW TO: Model An Application

Properly modeling the application for which a management pack is being built is one of the most important steps in building a management pack. The following text outlines the steps for modeling an application, and it provides answers to frequently asked questions.

Steps to Model an Application

1.
Identify the important classes of objects in a particular application from a monitoring prospective.

2.
Identify the list of properties that instances of the determined classes should have. The following are the main usage scenarios of properties: 


Showing information about a particular instance to the operator when he or she is looking at an instance of a class in the Operations Manager console.


Using the property values as configuration data that will be passed to a rule, monitor, task, diagnostic, or recovery.


Showing information about a particular instance in a report.


Filtering out instances that are shown in the view based on the instance property value.

3.
Identify the relationships that exist between the instances of the determined classes. Operations Manager supports three types of relationships: Hosting, Containment, and Reference. 

4.
Based on the set of base classes available in Operations Manager, pick the correct base classes as a starting point when you start defining your own classes. 

How to Pick the Right Base Class

The collection of classes that ship with Operations Manager 2007 can be broken into the following categories:


System—Defined in the System.Library management pack. These classes serve as the foundation for all other classes in Operations Manager. All classes defined in this management pack are abstract (that is, they cannot be instantiated). 


Network management—Defined in the Microsoft.SystemCenter.NetworkDevice and Microsoft.SystemCenter.NetworkDevice.Monitoring management packs. Classes that are defined in these two management packs are specific to monitoring network devices. If you are modeling a network device, you should look in these two management packs for the right base class. The two main classes are Microsoft.SystemCenter.NetworkDevice and Microsoft.SystemCenter.NetworkDevice.Router. Unless you are modeling a specific router, you should use the Microsoft.SystemCenter.NetworkDevice class as the base class. There are no more specific classes for network management defined in Operations Manager 2007.


Hardware management—Defined in the System.Hardware.Library management pack. This management pack defines base classes for modeling entities such as power supply, server rack, storage array controller, physical disk, fan, and chassis. All classes in this management pack are abstract. There are no more specific classes for hardware management defined in Operations Manager 2007.


Application management—There is a large collection of management packs that define classes used for application management. This collection can be divided into two parts: abstract classes that model entities such as a database or a Web site, and concrete classes that model, for example, an Internet Information Services (IIS) 2003 Web site. If you are modeling an application that exists on a Microsoft Windows operating system, always start in the Microsoft.Windows.Library and then work your way through the more specific management packs. If you are modeling an application that exists on a non-Windows operating system, you should use one of the classes defined in the System.Library management pack as your base class.

The first step is to determine in which one of the above four categories your class belongs. After that is determined, traverse down the hierarchy of the classes defined in the category to find the most derived class.

[image: image20.png]


Note 

Multiple inheritance is not supported in Operations Manager 2007.

Benefits of Picking the Right Base Class

Many base classes have monitoring logic already defined. By inheriting from the correct base class, you can leverage the already defined monitoring logic and focus on adding more monitoring logic as required to properly monitor your application.

Performance, State, and Alert views can be targeted only to a particular class of objects. If the operator wants to see state for all Windows NT services that are being monitored, he or she will target the view to the Windows NT Service class (Microsoft.SystemCenter.NTService). By inheriting from the Windows NT Service class, you are ensuring that the state of your service will be displayed.

Tasks can be targeted only to a particular class of objects. If the operator defines a new task—for example, Restart Service—and targets it to the Windows NT Service class, the task will be available to all objects whose type has inherited from Windows NT Service.

Defining Abstract Base Classes

Using abstract base classes, you can achieve the following:


Specify the bare minimum set of properties for entities of a particular type. For example, by defining the Microsoft.SQLServer.Database class with a set of properties, you are saying that any SQL Server database must have these properties.


Specify a set of relationships for entities of a particular type. For example, by defining a hosting relationship between a SQL Server DB Engine and a SQL Server Database, you are saying that a SQL Server database must always be hosted by a SQL Server DB Engine rather than a Windows computer.

Marking a Class as a Singleton

A class should be marked as a singleton when there should always be one and only one instance of a particular class. The most common use for singleton classes is for defining group classes. For example, if you wanted to define a class to model a group of SQL databases in North America, you would mark the class as a singleton. This would ensure that there would always be one instance of this class. There is also no need to create a discovery for this class, because it is automatically created. Singletons are enforced on a per management group level.

Determining Which Type of Relationship to Use

If the lifetime of object B is dependent on the lifetime of object A, use the hosting relationship. For example, a SQL Database Engine hosts a SQL database; if the database engine was removed, the database would also be removed

If the lifetime of object B is not dependent on the lifetime of object A, but objects B is part of object A, use the containment relationship. For example, an Active Directory forest contains a domain controller. If the domain controller was removed, the forest may still exist.

If the lifetime of object B is not dependent on the lifetime A and object B is not part of object A, use the reference relationship. For example, a user is using a Web service.

Marking Key Properties

When defining a class, you can mark one of the properties as the key. The key property value is used to uniquely identify an instance of the class. The scope of uniqueness is the hosting object. For example, in the Microsoft.SystemCenter.NTService class, the ServiceName property is marked as the key. There is also a hosting relationship defined between the base class of Microsoft.SystemCenter.NTService (Microsoft.Windows.LocalService) and Microsoft.Windows.Computer. This means that the ServiceName property will be unique for all instances of Microsoft.SystemCenter.NTService running on a particular computer and not on all computers managed by Operations Manager. There is no hard requirement to define a key property for every class.

See Also

Designing and Building Management Packs
Management Pack Concepts
Discovery for Management Packs

After you have modeled your application structure using classes and relationships, you will need to find instances of these classes and how the instances are related to each other. This is called discovery, and there are a number of ways to go about this. The main methods are using the registry, using Windows Management Instrumentation (WMI), or using a script.

How Discovery Works

Discovery is accomplished using rules. There can be a single discovery rule for a class or multiple. There is no requirement that all discovery needs to be done in one go. Multiple discovery rules can be run, and these can even be run on different agents. For example, the Operations Manager server might discover an Active Directory forest instance and some properties of that instance. The rest of the properties might be discovered by the agent on the Schema master domain controller for the domain.

Single-Rule Discovery

For simpler discovery cases, a single rule can be used. This rule might normally be targeted at the parent of the class that will be discovered; for example, if "DNS Server" is a class and it is hosted by Windows Server, it is likely the discovery rule for DNS Server will be targeted at Windows Server. This means that everywhere there is an instance of Windows Server, a rule will be executed to discover any DNS Servers. If a DNS zone class is defined and is hosted by a DNS Server class, a discovery rule can be targeted at the DNS Server. This means that the rule is executed only after an instance of DNS Server has been discovered. Alternatively, the DNS Server and DNS Zone discovery can be combined into a single script-based discovery rule targeted at the Windows Computer class.

Note that a management pack will be deployed to all Operations Manager health agents if the health service is managing an instance of a class that has anything targeted at it within the management pack.  Because of this, as soon as a rule is targeted at Windows Server, all agents running on Windows Server-based computers will receive the management pack. 

[image: image21.png]


Note 

Scripts should be a last resource in Operations Manager 2007, and used only if you cannot use any other modules to get the data you need. Using the registry or WMI discovery methods result in less overhead on the agent than using a script.

Multiple-Rule (Progressive) Discovery

It might not be possible to gather all the discovery information in a single rule. For example, you might have one rule to discover SQL server instances, and then a second rule to discover databases. This type of discovery is progressive in nature. You first discover an application by targeting a rule at its host class (often computer), and then use a rule targeted at the application class to discover its components. This approach allows more granular discovery definitions and avoids the need for using scripts in most cases.  This approach also allows the management pack users more control over the management pack. For example, if the Operations Manager administrator does not want to monitor databases, but only monitor instances of SQL database engines, they can disable the database discovery rule using overrides.

Defining Rules Using Workflows

Any rule in Operations Manager is defined by specifying a workflow of modules. This workflow is restricted to the following:


One or more data source modules


One condition detection module (optional)


One or more write action modules

In all discovery examples, it is important to note that the discovery data write module must be targeted at the Operations Manager server. The agent generates the data, and then this must be written to the database by the Operations Manager server. If this is not done, your rules will work only when running on Operations Manager servers, and not agents.

Registry

To discover from the registry, the standard rule workflow that you will use should be a registry probe data source module, a class snapshot mapper condition detection module, and a discovery data write action module.

For a typical registry discovery workflow, the registry probe configuration defines the keys and values to use. Then the class mapper module defines how to map this data into instances of a specific class. Finally, the write action writes the data to the Operations Manager database. 

The first two modules execute on the agent, while the writer executes on the Operations Manager server. The write action has a target of MOM!System.MOM.ManagementServer.

An alternative workflow can be used to add an expression filter to the condition detection module. A composite module has been defined in the System.MOM management pack which combines the class snapshot mapper with an expression filter.

WMI

Another common form of discovery is Windows Management Instrumentation (WMI) based discovery using WMI objects. Any WMI instance that exists can be used to drive MOM instance discovery.  

The workflow used to discover from WMI consists of a WMI probe data source module, a class snapshot mapper condition detection module, and a discovery data write action module.

This is very similar to the registry discovery rule except that we use a WMI probe as the data source instead of the registry probe. As with the registry, it is possible to add a filter by using the class snapshot mapper with a filter module as the condition detection module.

See Also

Commonly Used Base Classes
Modeling for Management Packs
Health Model

The health model defines how to monitor, diagnose, and recover any application, device, or service that has been defined in a model. The Operations Manager implementation of the health model uses the following items:


Monitors


Rules


Tasks


Diagnostics


Recoveries

Monitors, rules, and tasks can be created using the Operations Manager console or the management pack authoring console. For monitors, rules, and tasks that take reasonably complex configuration, we recommend that you create these objects in the Operations Console or management pack authoring console and export the management pack to avoid any configuration errors.

To monitor the health of the application, a health model is defined for classes that form part of the model of the application, device, or service. At a basic level, the health model is a set of state machines that are constantly evaluating the state of the modeled application components. State changes in this model can cause alerts to be generated, cause diagnostic and recovery actions to be run, and provide notifications to Operations Manager users. The health model is primarily defined using monitors. Wherever state needs to be represented, a monitor is used.

Every class instance has a known set of monitors defined. These are targeted at the System.Entity class, so all classes inherit them. Having this known set of monitors means that it is possible to always refer to one of these monitors on a dependency monitor for any class. Also, it allows categorization of monitors based on these top-level monitors for reporting purposes. 

Whenever a monitor is defined for a new class, a parent monitor ID must be provided. This must be an aggregate monitor. Every monitor introduced should ultimately roll up to one of the four aggregate monitors (Performance, Availability, Security, and Configuration) defined on the System.Entity class. Rolling up to the correct aggregate monitors allows many generic reports, such as availability reporting, to be available for the new class. Further aggregate monitors can be defined below the four main aggregate monitors if they are necessary to organize the health model.

You can view the monitors for any instance of a class in the Operations Console by starting the Health Explorer. 

Providing a rich set of monitors gives customers more detail about the current state of their applications, devices, and services.

Identify Instrumentation

Operations Manager relies on two approaches for gauging the health of an object:


Operations Manager captures and interprets instrumentation provided by the application, device, or server.


Operations Manager probes the application, device, or service on a periodic basis through an accessible interface.

Operations Manager can work with a variety of instrumentation. Some of the common sources of instrumentation that are used in Management Packs are as follows:


Windows events


Windows performance counters


Windows Management Instrumentation (WMI) events


WMI performance data


Log file events (many types of log files can be monitored)


Simple Network Management Protocol (SNMP) traps

Operations Manager also uses custom scripts or poll-based modules to periodically poll an application, device, or service to determine the health. All instrumentation that is available from the application, device, or service should be cataloged and understood prior to implementing monitors and rules in the Management Pack.

The process of building a Management Pack can identify gaps or deficiencies in instrumentation that might be incorporated back into the development process for the application, device, or service being monitored. Ideally, the application, device, or service should have the business logic internally to evaluate the current operational state of all components, as well as output instrumentation to indicate changes in operational states. This capability simplifies the process of building a Management Pack for an application, device, or service.

Many applications provide instrumentation when there are problems with the application. However, most applications do not provide instrumentation that indicates the problem no longer exists. For example, an event may be generated when a problem occurs, but no corresponding event is generated when the problem has been resolved.Therefore, it is sometimes hard to understand the true state of an application at any given point without some probing action. Operations Manager is primarily concerned with state monitoring, so improvements in the instrumentation can ensure better Management Pack design.

Identify Monitors & Operational States

After the instrumentation is identified, the monitor hierarchy can then be designed for each non-abstract class in the Management Pack. A monitor is a state machine that is used to represent a particular aspect of the application, device, or service being monitored. The monitor can check for a single event or a wide range of events that represent many different problems. The goal of the monitor design is to ensure that each unhealthy state of a monitor indicates a well-defined problem that has known diagnostic and recovery steps. 

[image: image22.png]


Note 

Using a single monitor to cover a large number of disparate problems is not recommended.

In Operations Manager 2007, a monitor has two or three operational states. The number of states that are available is dictated by the type of monitor. For example, a unit monitor type that is monitoring a performance counter might take one threshold value as configuration and define two states: above and below the threshold. A different unit monitor type might take two thresholds as configuration and define three states, below the lower threshold, in between thresholds, and above the higher threshold.

A monitor type declares the states that are available. A monitor created of that monitor type declares the meaning of those states as operational states and additionally assigns a health state to each operations state. In Operations Manager 2007, each operational state must be assigned a different health state. The available health states are as follows:


Success (Green)


Warning (Yellow)


Error (Red)

Monitors and operational states should be considered and specified without regard to the Operations Manager implementation of monitors. Operations Manager provides many monitor types by default for common scenarios, but it is possible to build different workflows to meet the monitoring requirements. It is important to model the health of the application, device, or service first and then consider its implementation in Operations Manager.

A set of monitor types are available through the Operations Console. These cover common monitoring scenarios such as the ones in the following list:


Windows service monitoring


Windows Event monitoring


Two state (one event expression is bad, one event expression is good)


Three state (one event expression is bad, one event expression is good, one event expression is indeterminate)


Manual reset (one event expression is bad, user manually resets when good)


Timed reset (one event expression is bad, resets to good after a set time)


Correlated events


Windows performance monitoring


Two-state threshold


Three-state threshold


Delta threshold


Average threshold


Self-tuning thresholds

This is not a definitive list of monitors available in the Operations Console. A complete list of available monitors is found in the Add Monitor wizard.

See Also

Designing and Building Management Packs
HOW TO: Use XML To Create A Basic Management Pack with Discovery

This topic demonstrates how to create a new management pack that includes a class to represent a Microsoft Windows application, as well as a discovery for this class. It also introduces the use of an XML editor and the use of the management pack schema.

Getting Started

This how-to requires the following:


An XML editor. Because this how-to focuses on creating the Management Pack directly in XML, an XML editor is required. This how-to uses the Microsoft Visual Studio XML editor. A free version of Visual Studio can be downloaded from http://msdn.microsoft.com/vstudio/express/downloads/default.aspx.


The Management Pack schema files. These files are installed with the Operations Manager Authoring Console. This how-to assumes these files are located in C:\OpsMgr\MPSchema.


The Operations console. 

Creating the Manifest

First, we will create a new XML file with a ManagementPack element. Copy and paste the following into the Visual Studio XML editor to create the references to the management pack schema and the xsi and xsd namespaces:

<ManagementPack xsi:noNamespaceSchemaLocation="C:\OpsMgr\MPSchema\ManagementPackSchema.xsd" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

</ManagementPack>

Now save the file as “AuthorMPs.Tutorials.MyFirstMP.xml” to the C:\OpsMgr\MyMPs directory. 

Next, we will create the manifest section. This is the only required section of the management pack. If you move your cursor inside the Management Pack element and type an opening angle bracket (<) character, Visual Studio smart tags will kick in and you will be given the available elements that you can add to this section.

Because the schema defines the manifest section, it must be the first section; this is the only option. Select the manifest element, and close the element with the closing angle bracket (>) character. You will notice a blue underline indicating a schema error, and your XML will now be as follows:

<ManagementPack xsi:noNamespaceSchemaLocation="C:\OpsMgr\MPSchema\ManagementPackSchema.xsd" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <Manifest></Manifest> 

</ManagementPack>

If you look in the error list (from the View menu, choose Error List), you will see the following error: 

“The element 'Manifest' has incomplete content. List of possible elements expected: 'Identity'.”

Visual Studio validates the XML you type against the schema as you go. You should ensure you have no errors in the error list before you attempt to import the Management Pack to Operations Manager. 

You can continue to type the XML yourself or cut and paste in the manifest section below:

<ManagementPack xsi:noNamespaceSchemaLocation="C:\OpsMgr\MPSchema\ManagementPackSchema.xsd" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <Manifest>

   <Identity> 

      <ID>AuthorMPs.Tutorials.MyFirstMP</ID> 


      <Version>1.0.0.0</Version> 

   </Identity> 

<Name>My First MP</Name> 

<References> 

   <Reference Alias="System"> 

      <ID>System.Library</ID> 

      <Version>6.0.4941.0</Version> 

      <PublicKeyToken>31bf3856ad364e35</PublicKeyToken> 

   </Reference> 

   <Reference Alias="Windows"> 

      <ID>Microsoft.Windows.Library</ID> 

      <Version>6.0.5000.0</Version>    

      <PublicKeyToken>31bf3856ad364e35</PublicKeyToken> 

   </Reference> 

   <Reference Alias="SC"> 

      <ID>Microsoft.SystemCenter.Library</ID>

      <Version>6.0.4941.0</Version>

      <PublicKeyToken>31bf3856ad364e35</PublicKeyToken> 

    </Reference> </References> 

  </Manifest> 

</ManagementPack>

The manifest defines the ID and version of the management pack. Note that the ID has to be same as the filename; this is so that the MP Verify tool can find management packs on the file system when it needs to verify the management packs that you reference. 

In this section, we have defined three references to some very common management packs. You will always reference these three management packs for any Windows monitoring.

This is now a valid management pack, although it doesn’t do anything useful. To verify this, save the file, and open a command prompt. Go to your Operations Manager install directory—for example, C:\Program Files\System Center Operations Manager 2007—and run the following command on one line, changing the directory names as appropriate: 

MPVerify.exe /I C:\OpsMgr\SystemMPs C:\OpsMgr\MyMPs\AuthorMPs.Tutorials.MyFirstMP.xml 
This will open the management pack you have created, validate it against the schema, and then run a series of verification tests to ensure your management pack is valid. 

It's recommended to run MP Verify frequently as you add to your management pack so that you can catch errors as they happen. 

Create the Language Pack

The management pack schema is designed so that no localizable text is used in the majority of the management pack. Instead, all localizable text (for example, names, descriptions, and knowledge articles) are kept in a separate section of the management pack called the Language Pack. It is possible to ship multiple languages in the same management pack. 

The first thing you should do is create a name and description for the management pack. To do this, add a Language Packs section after the manifest closing element:

<LanguagePacks> 

   <LanguagePack ID="ENU" IsDefault="true"> 

      <DisplayStrings> 

         <DisplayString ElementID="AuthorMPs.Tutorials.MyFirstMP"> 

             <Name>AuthorMPs Tutorials - My first MP</Name> 

             <Description>Hello world!</Description> 

          </DisplayString> 

       </DisplayStrings> 

   </LanguagePack> 

</LanguagePacks>

Save and run MP Verify on the updated management pack to check for errors.

Creating a Class

One of the first requirements when designing a management pack to monitor a custom application is to create a class to represent the application. In this tutorial, we will start with the bare essentials and then add some properties as we progress. 

This management pack is going to monitor a very simple application. This application is a standalone application that can be discovered by the existence of a registry key. There is already a class defined in the Windows.Library management pack called the Windows Local Application class that we can use to get started. The Windows Local Application class is an abstract class that we will inherit from to create a new class. In this tutorial, our application is called “Application Z”. 

We create the class definition in a new section of the management pack called "Type Definitions". The Type Definitions section is defined between the Manifest section and Display Strings section of the management pack. 

Enter our class definition as follows:

<TypeDefinitions> 

   <EntityTypes> 

      <ClassTypes> 

         <ClassType ID="AuthorMPs.Tutorials.MyFirstMP.ApplicationZ" 

            Abstract="false" 

             Base="Windows!Microsoft.Windows.LocalApplication"

             Accessibility="Internal" Hosted="true"/> 

      </ClassTypes> 

   </EntityTypes> 

</TypeDefinitions>

This defines a class with the following semantics:


Defines an ID that is unique within our management pack


Inherits from (customizes) the pre-defined Windows Local Application class


Is a non-abstract class (that is, there can be instances of this class)


Is an internal class (that is, this management pack can be sealed so that no other management packs can reference it)


Is hosted by another class (that is, instances cannot exist without a host)

Because the class is based on the Windows Local Application, it inherits a relationship stating that it is hosted by a Windows computer, so there is no need to define a new hosting relationship.

Next, we can add a display string for the class. Add the following display string to the Language Pack section you created earlier:

<DisplayString ElementID="AuthorMPs.Tutorials.MyFirstMP.ApplicationZ">
   <Name>Application Z</Name> 
</DisplayString> 
If you were to import the management pack into Operations Manager at this point, you could create management pack objects such as rules, tasks and monitors targeted to this new class; however, they would never execute because we have not defined how to discover the class.

Creating a Discovery

Now that we have defined the class for our application, we need to discover it. To do this, we will create a discovery. For this tutorial, we will discover using the registry. 

We will create a discovery that is targeted to the Windows Server Computer class. This means the discovery will run on every Windows Server we are monitoring in our Operations Manager management group. 

An instance of the application will be created only where we find the required key. For this tutorial, we will look for a registry key with the following path: 

HKLM\Software\AuthorMPs\ApplicationZ 
We will create this key later in the tutorial.

Let's create a monitoring section in our management pack after the type definitions section and add a discovery:

<Monitoring> 
   <Discoveries> 
      <Discovery ID="AuthorMPs.Tutorials.MyFirstMP.ApplicationZ.DiscoverApplication" Enabled="true" Target="Windows!Microsoft.Windows.Server.Computer">    
      <Category>Discovery</Category> 
      <DiscoveryTypes/> 
      <DataSource ID="DS" TypeID="Windows!Microsoft.Windows.FilteredRegistryDiscoveryProvider"> 
      <ComputerName>
$Target/Property[Type="Windows!Microsoft.Windows.Computer"]/NetworkName$
      </ComputerName> 
      <RegistryAttributeDefinitions> 
         <RegistryAttributeDefinition> 
            <AttributeName>ApplicationZExists</AttributeName>
            <Path>SOFTWARE\AuthorMPs\ApplicationZ</Path> <PathType>0</PathType> 
             <AttributeType>0</AttributeType>                 
         </RegistryAttributeDefinition> 
      </RegistryAttributeDefinitions> 
      <Frequency>30</Frequency> 
      <ClassId>
$MPElement[Name="AuthorMPs.Tutorials.MyFirstMP.ApplicationZ"]$
      </ClassId> 
      <InstanceSettings> 
         <Settings> 
            <Setting>
               <Name>
$MPElement[Name="Windows!Microsoft.Windows.Computer"]/PrincipalName$
               </Name>
               <Value>
$Target/Property[Type="Windows!Microsoft.Windows.Computer"]/PrincipalName$
               </Value> 
            </Setting> 
         </Settings> 
      </InstanceSettings> 
      <Expression> 
         <SimpleExpression>
            <ValueExpression> 
               <XPathQuery Type="Boolean">Values/ApplicationZExists
               </XPathQuery>
            </ValueExpression> 
            <Operator>Equal</Operator> 
            <ValueExpression> 
               <Value Type="Boolean">true</Value> 
            </ValueExpression> 
         </SimpleExpression> 
      </Expression> 
      </DataSource> 
    </Discovery> 
  </Discoveries> 
</Monitoring>
This particular discovery uses the registry provider. This module requires configuration to specify the following: 


The frequency to execute on (note we have set this very low—30 seconds) 


The keys to look for 


The class to discover 


How to map properties of the discovered data to properties of a class instance 

Testing the Discovery

Save your management pack and then import it into an Operations Manager group. The first thing you should check is that an instance of a class is not discovered because there is no registry key present. Wait for configuration to be sent to the agent or Operations Manager server you are testing on. 

Now open the Operations Console and go to the Discovered Inventory view in the monitoring space. This is a view that shows you all discovered instances of a particular type. 

Change the target type either by right-clicking in the view and using the context menu or by using the Actions pane. Search for the "Application Z" class in the list, and then select it and click OK. You should not see any objects in the list view because nothing has been discovered. 

Next, create a registry key called HKLM\Software\AuthorMPs\ApplicationZ on your test agent or server. Wait for at least 30 seconds and refresh the view. You should see an instance of your class appear.

At this point, you can start targeting rules, monitors, and tasks to this class, and they will run anywhere that the application is discovered.

Updating the Discovery

To help the user find the discovery in the Object Discoveries view, you need to add a display string for the discovery and the data source module within the discovery. Add the following two display strings:

<DisplayString 
ElementID="AuthorMPs.Tutorials.MyFirstMP.ApplicationZ.DiscoverApplication"> 
   <Name>Discover Application Z on Windows Servers</Name>
</DisplayString> 
<DisplayString ElementID="AuthorMPs.Tutorials.MyFirstMP.ApplicationZ.DiscoverApplication" SubElementID="DS">
   <Name>Registry Probe</Name> 
</DisplayString>
You can add more information to the display strings to make them more useful and informative in the Operations Console. Every class inherits a property from the System.Entity class called DisplayName. This can be set during discovery so that it displays in the Operations Console. 

Update the Instance Settings section of the discovery so that it now reads as follows:

<InstanceSettings>
   <Settings> 
      <Setting>
         <Name>
$MPElement[Name="Windows!Microsoft.Windows.Computer"]/PrincipalName$
         </Name>
         <Value>
$Target/Property[Type="Windows!Microsoft.Windows.Computer"]/PrincipalName$
         </Value> 
      </Setting>
   <Setting>
   <Name>
$MPElement[Name="System!System.Entity"]/DisplayName$
   </Name>
      <Value>
Application Z ($Target/Property[Type="Windows!Microsoft.Windows.Computer"]/NetbiosComputerName$)
         </Value> 
         </Setting> 
   </Settings> 
</InstanceSettings>
The display name of the object will now be "Application Z (computername)", where computername will be the NetBIOS name of the computer it is discovered on.

The discovery has a section called Discovery Types that declares the classes and relationships that can be discovered by the discovery. This meta data is used by the Operations Console so that you can find discoveries for particular types of objects.

Each time you create a discovery, you should declare the types you will discover. 

Change the Discovered Types section to the following:

<DiscoveryTypes>
   <DiscoveryClass TypeID="AuthorMPs.Tutorials.MyFirstMP.ApplicationZ">
      <Property TypeID="System!System.Entity" PropertyID="DisplayName"/> 
   </DiscoveryClass>
   <DiscoveryRelationship  TypeID="Windows!Microsoft.Windows.ComputerHostsLocalApplication"/>
</DiscoveryTypes>
After you import the new management pack to your management group, you can then go into the authoring space of the console, go to the Object Discoveries view and scope to the Application Z class. You now see the discovery listed and you can view the properties. 

Adding Properties to the Class

Next, we will add two properties to the class and update the discovery to populate these from registry values in the registry key we created before. 

The first step is to update the class definition and add two properties:

<ClassType ID="AuthorMPs.Tutorials.MyFirstMP.ApplicationZ" Abstract="false" Base="Windows!Microsoft.Windows.LocalApplication" Accessibility="Internal" Hosted="true">
   <Property ID="Version" Type="string"/>
   <Property ID="InstallPath" Type="string"/>
</ClassType>
Next, add some display strings for these properties in the Language Pack:

<DisplayString ElementID="AuthorMPs.Tutorials.MyFirstMP.ApplicationZ" SubElementID="Version"> 
   <Name>Version</Name> 
</DisplayString> 
<DisplayString ElementID="AuthorMPs.Tutorials.MyFirstMP.ApplicationZ" SubElementID="InstallPath"> 
   <Name>Install Path</Name> 
</DisplayString>
We need to update the discovery to look for two registry values. Change the registry attribute definition to the following:

<RegistryAttributeDefinitions>
   <RegistryAttributeDefinition>
      <AttributeName>ApplicationZExists</AttributeName>
      <Path>SOFTWARE\AuthorMPs\ApplicationZ</Path>
      <PathType>0</PathType>
      <AttributeType>0</AttributeType>
   </RegistryAttributeDefinition>
   <RegistryAttributeDefinition>
      <AttributeName>ApplicationZVersion</AttributeName>
      <Path>SOFTWARE\AuthorMPs\ApplicationZ\Version</Path>
      <PathType>1</PathType>
      <AttributeType>1</AttributeType>
   </RegistryAttributeDefinition>
   <RegistryAttributeDefinition>
      <AttributeName>ApplicationZPath</AttributeName>
      <Path>SOFTWARE\AuthorMPs\ApplicationZ\Path</Path>
      <PathType>1</PathType>
      <AttributeType>1</AttributeType>
   </RegistryAttributeDefinition>
</RegistryAttributeDefinitions>
Now update the instance settings of the discovery to map these new attributes to class properties:

<InstanceSettings> 
   <Settings> 
      <Setting>
         <Name>
$MPElement[Name="Windows!Microsoft.Windows.Computer"]/PrincipalName$
         </Name>
         <Value>
$Target/Property[Type="Windows!Microsoft.Windows.Computer"]/PrincipalName$
         </Value>
      </Setting>
      <Setting>
         <Name>
         $MPElement[Name="System!System.Entity"]/DisplayName$
         </Name>
         <Value>
Application Z $Target/Property[Type="Windows!Microsoft.Windows.Computer"]/NetbiosComputerName$)
         </Value> 
      </Setting> 
      <Setting> 
         <Name>
$MPElement[Name="AuthorMPs.Tutorials.MyFirstMP.ApplicationZ"]/Version$
         </Name> 
         <Value>$Data/Values/ApplicationZVersion$</Value>  
      </Setting> 
      <Setting>
         <Name>
$MPElement[Name="AuthorMPs.Tutorials.MyFirstMP.ApplicationZ"]/InstallPath$
         </Name>
         <Value>$Data/Values/ApplicationZPath$</Value>
      </Setting>
   </Settings>
</InstanceSettings>
Add two string values to the ApplicationZ registry key. One should be called Version, and the other Path. Populate these registry keys with some values. You can now import the new management pack and wait a few minutes for the updated discovery to run, at which point you should be able to see the updated properties for the application in the object properties dialog box.

Adding a View to the Console

The final piece to add to this management pack is a state view so that we don’t have to go to the Discovered Inventory view to see objects we have discovered. We will create two new elements here—a folder for our management pack and then the state view itself. 

It is common practice for a management pack to introduce a new folder into the monitoring folder structure. This is done by defining a Folder object in your management pack. This folder must reference a specific folder in the Microsoft.SystemCenter.Library management pack as its parent folder. If you do not add this reference, the folder will never show up in the Monitoring folder tree. 

The Folder object goes into a presentation section of your management pack. This section comes after the Monitoring section but before the Language Packs section. 

To add a folder object, add the following to your management pack:

<Presentation>
<Folders>
<Folder ID="AuthorMPs.Tutorials.MyFirstMP.ViewFolder" Accessibility="Internal" ParentFolder="SC!Microsoft.SystemCenter.Monitoring.ViewFolder.Root"/>
   </Folders> 
</Presentation>
Next, add a display string for the folder:

<DisplayString ElementID="AuthorMPs.Tutorials.MyFirstMP.ViewFolder">
   <Name>AuthorMPs Tutorial - My First MP</Name>
</DisplayString>
A state view for the application will show all discovered objects of our new class. 

To define a state view, create a View object in the Presentation section of the management pack. Add the following to the Presentation section before the Folders section that we defined previously to create a state view with no criteria:

<Views>
<View ID="AuthorMPs.Tutorials.MyFirstMP.ApplicationZ.State" Accessibility="Internal" Target="AuthorMPs.Tutorials.MyFirstMP.ApplicationZ" TypeID="SC!Microsoft.SystemCenter.StateViewType">
      <Category>Operations</Category> 
   </View> 
</Views>
Next, add a display string for this view:

<DisplayString ElementID="AuthorMPs.Tutorials.MyFirstMP.ApplicationZ.State"> 
   <Name>Application Z</Name> 
   <Description>All my Application Z instances</Description>
</DisplayString>
The final step is to add the view to the folder. This is done using a Folder Item element. Folder items come after the Folders section of the Presentation section. A folder item points to a management pack element and a management pack folder. The complete presentation section should now be as follows:

<Presentation>
   <Views>
         <View ID="AuthorMPs.Tutorials.MyFirstMP.ApplicationZ.State" Accessibility="Internal" Target="AuthorMPs.Tutorials.MyFirstMP.ApplicationZ" TypeID="SC!Microsoft.SystemCenter.StateViewType">
         <Category>Operations</Category>
      </View>
   </Views>
   <Folders>
      <Folder ID="AuthorMPs.Tutorials.MyFirstMP.ViewFolder" Accessibility="Internal" ParentFolder="SC!Microsoft.SystemCenter.Monitoring.ViewFolder.Root"/>
   </Folders>
   <FolderItems>
      <FolderItem ElementID="AuthorMPs.Tutorials.MyFirstMP.ApplicationZ.State" Folder="AuthorMPs.Tutorials.MyFirstMP.ViewFolder"/> 
   </FolderItems>
</Presentation>
Now you can test your view. Import the finished management pack. You should see a new folder in your monitoring space, and the state view will show all instances of the ApplicationZ class.

Testing Discovery Updates

When someone deletes ApplicationZ from the computer, the discovery will run as scheduled at the next polling interval (30 seconds in our case), and it will not find the registry key. At this point, an empty discovery packet will be submitted, which indicates that the application is no longer there. When the database receives this empty discovery packet, the ApplicationZ object is removed from the system. 

You can test this by deleting (or renaming) the Application Z registry key you created at the start of this tutorial. After you have done this, wait for a minute and then refresh your Application Z state view. You should see the object disappear.

Deleting the Management Pack

After you are finished testing your management pack, you can delete it from the Management Packs view of the Administration space by finding the management pack, right-clicking it, and clicking Delete. This will remove all the definitions you made in your management pack, and it will remove any instances of the ApplicationZ class.

See Also

Management Pack Concepts
Designing and Building Management Packs
Management Pack Reference

 This section of the authoring guide contains reference topics. 

In This Section

Commonly Used Base Classes - describes classes included with Operations Manager that are often used as base classes in inheritance

Common Module Types - lists common module types

Common Monitor Types - describes some of the most useful monitor types included with Operations Manager

Management Pack Data Types Reference - lists common data types and the libraries in which they're defined

Variable Notation - discusses how to use variable notation

Management Pack Schema Reference - contains a complete list of the XML elements that comprise a management pack

See Also

Operations Manager 2007 Key Concepts
Management Pack Concepts
Designing and Building Management Packs
Commonly Used Base Classes

Operations Manager contains several libraries that define abstract classes from which you can inherit to create the classes needed in your Management Pack. This list contains classes that are often used as base classes in inheritance.

Commonly Referenced Libraries

The following is a list of commonly referenced classes that are defined in the libraries that are provided as part of Operations Manager 2007. The classes are listed by the library in which they are defined. The listed libraries are imported during the Operations Manager 2007 installation.

	Library Name
	Commonly Referenced Class

	System.Library.MP
	System.LogicalHardware

System.Device

System.Computer

System.NetworkDevice

System.Group

System.Perspective

System.OperatingSystem

System.ComputerRole

System.LocalApplication

System.Service

System.ApplicationComponent

System.Database

System.WebSite

System.FTPSite

System.SoftwareInstallation

System.PhysicalEntity

System.HardwareComponent

System.Fan

System.Modem

System.PhysicalDisk

System.PhysicalNetworkInterfaceCard

System.Port

System.PowerSupply

System.Processor

System.StorageArrayController

System.VideoCard

System.HardwareEnclosure

System.Blade

System.Blade.ComputerBlade

System.Blade.NetworkBlade

System.Chasis

System.Chassis.BladeEnclosure

System.Chassis.NetworkBlade

System.Chassis.ServerBladeEnclosure

System.Chasis.Rackable

System.Chasis.Standalone

System.Chasis.Storage

System.Rack

	Microsoft.Windows.Library.MP
	Microsoft.Windows.LogicalDevice

Microsoft.Windows.LogicalDisk

Microsoft.Windows.PhysicalDisk

Microsoft.Windows.DiskPartition

Microsoft.Windows.Processor

Microsoft.Windows.NetworkAdaptor

Microsoft.Windows.Computer

Microsoft.Windows.Server.Computer

Microsoft.Windows.Server.DC.Computer

Microsoft.Windows.VirtualServer

Microsoft.Windows.Client.Computer

Microsoft.Windows.OperatingSystem

Microsoft.Windows.Client.OperatingSystem

Microsoft.Windows.ComputerRole

Microsoft.Windows.LocalApplication

Microsoft.Windows.LocalService

Microsoft.Windows.UserApplication

Microsoft.Windows.Cluster.Service

Microsoft.Windows.ApplicationComponent

Microsoft.Windows.SoftwareInstallation

	Microsoft.SystemCenter.Library.MP
	Microsoft.SystemCenter.ComputerGroup

Microsoft.SystemCenter.HealthService

Microsoft.SystemCenter.Agent

Microsoft.SystemCenter.ManagementServer

Microsoft.SystemCenter.CollectionManagementServer

Microsoft.SystemCenter.RootManagementServer

Microsoft.SystemCenter.GatewayManagementServer

Microsoft.SystemCenter.SiteManagementServer

Microsoft.SystemCenter.DataWarehouseConnectorServer

Microsoft.SystemCenter.Connector

Microsoft.SystemCenter.ManagementGroup

Microsoft.SystemCenter.TieredManagementGroup


Common Module Types

Module types are reusable pieces, defined in XML, that are used individually or can be combined when creating monitoring objects, such as monitors, rules, and tasks. 

Module types are classified based on the following functions they serve in the system: 

•Data Source

•Probe Action

•Condition Detection

•Write Action

Different monitoring objects require you to use module types that serve a particular function or a combination of module types. For example, a rule requires a data source module and a write action module type at a minimum. You can include multiple data source module types and write action modules, but you must have at least one of each. You can also include a condition detection module to help sort through the data collected by the data source modules. 

Common Module Types

Operations Manager 2007 includes several module types in the libraries that import as part of an Operations Manager 2007 installation. 

Data Source Module Types

Data source module types define how you access a particular data source.

	Library
	Data Source Module Type

	System.Library.MP
	System.Scheduler

System.Discovery.Scheduler

System.SimpleScheduler

	Microsoft.Windows.Library.MP
	Microsoft.Windows.WmiDeltaPerfCounterProvider

Microsoft.Windows.WmiPerfCounterProvider

Microsoft.Windows.TimedScript.PerformanceProvider

Microsoft.Windows.RegistryDiscoveryProvider

Microsoft.Windows.FilteredRegistryDiscoveryProvider

Microsoft.Windows.Win32ServiceInformationProviderWithClassSnapshotDataMapper

Microsoft.Windows.WmiProviderWithClassSnapshotDataMapper

Microsoft.Windows.WmiProviderWithRelationshipSnapshotDataMapper

Microsoft.Windows.TimedScript.DiscoveryProvider

Microsoft.Windows.EventProvider

Microsoft.Windows.ScriptGenerated.EventProvider

Microsoft.Windows.WmiEventProvider.EventProvider

Microsoft.Windows.WmiEventProvider.FilteredEventProvider

Microsoft.Windows.WmiProvider.EventProvider

Microsoft.Windows.WmiProvider.FilteredEventProvider

Microsoft.Windows.TimedScript.EventProvider

Microsoft.Windows.NTServiceStateProvider

Microsoft.Windows.WmiEventProvider

Microsoft.Windows.WmiProvider

Microsoft.Windows.Win32ServiceInformationProvider

Microsoft.Windows.TimedScript.PropertyBagProvider

	System.Performance.Library.MP
	System.Performance.DataProvider

System.Performance.DeltaDataProvider

System.Performance.OptimizedDataProvider

System.Performance.PerformanceLogDataProvider

System.Performance.SnmpPerformanceProvider

	System.ApplicationLog.Library.MP
	System.ApplicationLog.GenericLog.EventProvider

System.ApplicationLog.GenericLog.FilteredEventProvider

System.ApplicationLog.HTTPErrorLog.EventProvider

System.ApplicationLog.HTTPErrorLog.FilteredEventProvider

System.ApplicationLog.GenericCSVLog.EventProvider

System.ApplicationLog.GenericCSVLog.FilteredEventProvider

System.ApplicationLog.InternetApplicationLog.EventProvider

System.ApplicationLog.InternetApplicationLog.FilteredEventProvider

System.ApplicationLog.BinaryLog.EventProvider

System.ApplicationLog.BinaryLog.FilteredEventProvider

System.ApplicationLog.IISLog.EventProvider

System.ApplicationLog.IISLog.FilteredEventProvider

System.ApplicationLog.NCSALog.EventProvider

System.ApplicationLog.NCSALog.FilteredEventProvider

System.ApplicationLog.W3CLog.EventProvider

System.ApplicationLog.W3CLog.FilteredEventProvider

System.ApplicationLog.WebSiteLog.EventProvider

System.ApplicationLog.WebSiteLog.FilteredEventProvider

System.ApplicationLog.FTPSiteLog.EventProvider

System.ApplicationLog.FTPSiteLog.FilteredEventProvider

System.ApplicationLog.SysLog.EventProvider

System.ApplicationLog.SysLog.FilteredEventProvider

System.ApplicationLog.GenericLogReader

System.ApplicationLog.GenericCSVLogReader

System.ApplicationLog.HTTPErrorLogReader

System.ApplicationLog.InternetApplicationLogReader

System.ApplicationLog.BinaryLogReader

System.ApplicationLog.IISLogReader

System.ApplicationLog.NCSALogReader

System.ApplicationLog.W3CLogReader

System.ApplicationLog.SysLogReader

	System.Snmp.Library.MP
	System.SnmpEventProvider

System.SnmpTrapEventProvider

System.SnmpQuery.EventProvider

System.SnmpQuery.FilteredEventProvider

System.SnmpScanQuery.EventProvider

System.SnmpScanQuery.FilteredEventProvider

System.SnmpTrap.EventProvider

System.SnmpTrap.FilteredEventProvider

	Microsoft.SystemCenter.Library
	Microsoft.SystemCenter.TargetEntitySdkPerformanceDataProvider 

Microsoft.SystemCenter.TargetEntitySdkEventProvider


Condition Detection Module Types

Condition detection module types define a filter for data that you are using in a monitoring object.

	Library
	Condition Detection Module Type

	System.Library.MP
	System.ExpressionFilter

System.Event.GenericDataMapper

System.Discovery.ClassSnapshotDataMapper

System.Discovery.FilteredClassSnapshotDataMapper

System.Discovery.RelationshipSnapshotDataMapper

System.SchedulerFilter

System.ConsolidatorCondition

System.Correlator

System.CorrelatorCondition

System.CorrelatorAutoCondition

System.TimerCondition

	System.Performance.Library.MP
	System.Performance.OptimizedCollectionFilter

System.Performance.DataGenericMapper

System.Performance.DeltaValueCondition

System.Performance.AveragerCondition

System.Performance.ConsecutiveSamplesCondition

System.Performance.SimpleThresholdCondition

System.Performance.LearningModule

System.Performance.SignatureCollect

System.Performance.Baselining

System.Performance.SignatureMapper

System.Performance.SignatureCreatorWithoutCompression

System.Performance.SignatureCreatorFromLog

System.Performance.SignatureCreatorWithoutCompressionNoID


Probe Action Module Types

Probe action module types define how you read data, but do not change data in a data source.

	Library
	Probe Action Module Type

	Microsoft.Windows.Library.MP
	Microsoft.Windows.ScriptPropertyBagProbe

Microsoft.Windows.RegistryProbe

Microsoft.Windows.RegistryTriggerProbe

Microsoft.Windows.WmiProbe

Microsoft.Windows.WmiTriggerProbe

Microsoft.Windows.Win32ServiceInformationProbe

Microsoft.Windows.ServiceControlManager.QueryService

Microsoft.Windows.ProductInstallationProbe

Microsoft.Windows.SoftwareFeatureProbe

Microsoft.Windows.ScriptProbeAction

	System.Library.MP
	System.OleDbProbe

System.OleDbTriggerProbe

System.CommandExecuterProbe

System.Secure.CommandExecuterProbe

System.PassThroughProbe

	System.Snmp.Library.MP
	System.SnmpProbe

System.SnmpScanProbe


Write Action Module Types

Write action module types define how you make a change to a data source.

	Library
	Write Action Module Type

	Microsoft.Windows.Library.MP
	Microsoft.Windows.ScriptWriteAction

Microsoft.Windows.ServiceControlManager.StartService

Microsoft.Windows.ServiceControlManager.ConfigureStartupType

	System.Library.MP
	System.CommandExecuter

System.Secure.CommandExecuter

	System.Health.Library.MP
	System.Health.GenerateAlert

	Microsoft.SystemCenter.DataWarehouse.Library.MP
	Microsoft.SystemCenter.DataWarehouse.PublishPerformanceData

Microsoft.SystemCenter.DataWarehouse.PublishEventData

	Microsoft.SystemCenter.Library.MP
	Microsoft.SystemCenter.CollectEvent

Microsoft.SystemCenter.CollectPerformanceData


Examples

The Microsoft.SystemCenter.TargetEntitySdkPerformanceDataProvider provider connects performance data that is inserted through the Operations Manager SDK. The following example shows the performance data:

<?xml version="1.0" encoding="utf-16"?>

<DataItems>

<DataItem type="MOM.PerfData" sourceHealthServiceId="{00000000-0000-0000-0000-000000000000}" time="2007-09-20T20:53:37.798528Z">

<ObjectName>NameofPerfObject</ObjectName>

<CounterName>CounterNameUsedinSDK</CounterName>

<InstanceName />

<IsNull>false</IsNull>

<Value>80</Value>

<ManagedEntityId>{6c974804-c14c-9992-4738-01f40d767860}</ManagedEntityId>

<RuleId>{00000000-0000-0000-0000-000000000000}</RuleId>

</DataItem>

</DataItems>

The Microsoft.SystemCenter.TargetEntitySdkEventProvider provider connects the event data that is inserted through the Operations Manager SDK. The following example shows the event data: 

<?xml version="1.0" encoding="utf-16"?>

<DataItems>

<DataItem type="MOM.EventData" sourceHealthServiceId="{00000000-0000-0000-0000-000000000000}" time="2007-09-21T01:23:13.4237008Z">

<EventOriginId>{ce92e6a2-ba17-4888-b7d3-c830fae73cbc}</EventOriginId>

<PublisherId>{baaf8dbb-9ab3-9b73-3982-b04ea88cc46f}</PublisherId>

<PublisherName>Contoso</PublisherName>

<Channel />

<LoggingComputer />

<EventNumber>2</EventNumber>

<EventCategory>0</EventCategory>

<EventLevel>0</EventLevel>

<UserName>CONTOSO\Administrator</UserName>

<Params />

<EventData></EventData>

<ManagedEntityId>{6c974804-c14c-9992-4738-01f40d767860}</ManagedEntityId>

<RuleId>{00000000-0000-0000-0000-000000000000}</RuleId>

</DataItem>

</DataItems>

Common Monitor Types

A monitor type is a reusable piece, defined in XML, that is used when creating unit monitors in a Management Pack. Monitor types are used as templates to reduce the configuration needed when creating monitors. Several monitor types are included in the libraries that install automatically during an Operations Manager 2007 installation. Some examples of monitor types include Service State Monitor Type, which monitors the health of Windows service, and Performance Counter Health Monitor Type, which monitors the health of a performance counter. Additional monitor types are defined for Windows Events, application logs, and SNMP.

Declaring a Monitor Type

Monitor types are declared when you create a unit monitor. The name of the monitor type is specified in the value of the TypeID attribute of the UnitMonitor element. 

A unit monitor is configured using a Configuration element. Every monitor type has fixed schema that dictates what information must be defined in the Configuration element. For example, a Microsoft.Windows.SingleEventLogTimer2StateMonitorType must define a computer, a log name, and an event ID, and can also define the amount of seconds to wait before resetting. 

Available Monitor Types

Operations Manager provides many monitor types by default for common scenarios. The following sections list some of the available monitor types by the library in which they are defined. For more information on the configuration required of these monitor types, you can create the monitor in the Operations Console, export the Management Pack to which the monitor is saved, and then view the XML.

AppLog (System.ApplicationLog.Library.MP) Library


System.ApplicationLog.GenericLog.2SingleEvent2StateMonitorType


System.ApplicationLog.GenericLog.RepeatedEventManualReset2StateMonitorType 


System.ApplicationLog.GenericLog.RepeatedEventSingleEvent2StateMonitorType  


System.ApplicationLog.GenericLog.RepeatedEventTimer2StateMonitorType


System.ApplicationLog.GenericLog.SingleEventManualReset2StateMonitorType  


System.ApplicationLog.GenericLog.SingleEventTimer2StateMonitorType

Performance (System.Performance.Library.MP) Library


System.Performance.AverageThreshold


System.Performance.ConsecutiveSamplesThreshold


System.Performance.DeltaThreshold 


System.Performance.DoubleThreshold


System.Performance.ThreeStateBaseliningMonitorWithoutCompression


System.Performance.ThresholdMonitorType


System.Performance.TwoStateAboveBaseliningMonitorWithoutCompression


System.Performance.TwoStateBaseliningMonitorWithoutCompression


System.Performance.TwoStateBelowBaseliningMonitorWithoutCompression

SNMP (System.SNMP.Library.MP) Library


System.SnmpProbe.2SingleEvent2StateMonitorType


System.SnmpProbe.RepeatedEventManualReset2StateMonitorType


System.SnmpProbe.RepeatedEventSingleEvent2StateMonitorType


System.SnmpProbe.RepeatedEventTimer2StateMonitorType


System.SnmpProbe.SingleEventManualReset2StateMonitorType


System.SnmpProbe.SingleEventTimer2StateMonitorType


System.SnmpTrapProvider.2SingleEvent2StateMonitorType


System.SnmpTrapProvider.RepeatedEventManualReset2StateMonitorType


System.SnmpTrapProvider.RepeatedEventSingleEvent2StateMonitorType


System.SnmpTrapProvider.RepeatedEventTimer2StateMonitorType


System.SnmpTrapProvider.SingleEventManualReset2StateMonitorType


System.SnmpTrapProvider.SingleEventTimer2StateMonitorType

Windows (Windows.Library.MP) Library


Microsoft.Windows.2SingleEventLog2StateMonitorType


Microsoft.Windows.3SingleEventLog3StateUnitMonitorType


Microsoft.Windows.CheckNTServiceStateMonitorType


Microsoft.Windows.CorrelatedEventLogManualReset2StateMonitorType"


Microsoft.Windows.CorrelatedEventLogSingleEventLog2StateMonitorType


Microsoft.Windows.CorrelatedEventLogTimer2StateMonitorType


Microsoft.Windows.MissingCorrelatedEventLogTimer2StateMonitorType


Microsoft.Windows.MissingCorrelatedEventLogSingleEventLog2StateMonitorType


Microsoft.Windows.MissingEventLogManualReset2StateMonitorType


Microsoft.Windows.MissingEventLogSingleEventLog2StateMonitorType


Microsoft.Windows.MissingEventLogTimer2StateMonitorType


Microsoft.Windows.RepeatedEventLogManualReset2StateMonitorType


Microsoft.Windows.RepeatedEventLogSingleEventLog2StateMonitorType"


Microsoft.Windows.RepeatedEventLogTimer2StateMonitorType


Microsoft.Windows.SingleEventLogManualReset2StateMonitorType 


Microsoft.Windows.SingleEventLogTimer2StateMonitorType


Microsoft.Windows.TimedScript.ThreeStateMonitorType


Microsoft.Windows.TimedScript.TwoStateMonitorType


Microsoft.Windows.WmiBased.Performance.AverageThreshold Windows!Microsoft.Windows.WmiBased.Performance.ConsecutiveSamplesThreshold 


Microsoft.Windows.WmiBased.Performance.DeltaThreshold 


Microsoft.Windows.WmiBased.Performance.DoubleThreshold


Microsoft.Windows.WmiBased.Performance.ThresholdMonitorType 


Microsoft.Windows.WmiEventProvider.2SingleEvent2StateMonitorType 


Microsoft.Windows.WmiEventProvider.RepeatedEventManualReset2StateMonitorType


Microsoft.Windows.WmiEventProvider.RepeatedEventSingleEvent2StateMonitorType 


Microsoft.Windows.WmiEventProvider.RepeatedEventTimer2StateMonitorType 


Microsoft.Windows.WmiEventProvider.SingleEventManualReset2StateMonitorType


Microsoft.Windows.WmiEventProvider.SingleEventTimer2StateMonitorType

Management Pack Data Types Reference

Data types define the type of data that Operations Manager can use as part of a Management Pack object. Operations Manager provides data types, by default, for common scenarios. The following sections list some of the available data types by the library in which they are defined.

Available Data Types

	Library
	Data Type

	Microsoft.SystemCenter.Library.MP
	Microsoft.SystemCenter.Event.LinkedData

Microsoft.SystemCenter.Performance.LinkedData

	Microsoft.Windows.Library.MP
	Microsoft.Windows.EventData

Microsoft.Windows.RegistryData

	System.ApplicationLog.Library.MP
	System.ApplicationLog.InternetLogEntryData

System.ApplicationLog.GenericLogEntryData

System.ApplicationLog.HTTPErrorLogEntryData

System.ApplicationLog.SysLogData

	System.Health.Library.MP
	System.Health.StateData

System.Health.MonitorStateData

System.Health.MonitorStateChangeData

	System.Library.MP
	System.BaseData

System.Event.Data

System.Discovery.Data

System.ConsolidatorData

System.CorrelatorData

System.PropertyBagData

System.CommandOutput

System.TriggerData

System.OleDbData

	System.Performance.Library.MP
	System.Performance.BaseData

System.Performance.Data

System.Performance.SignatureEntry

System.Performance.NTSignatureData

System.Performance.SignatureData

	System.Snmp.Library.MP
	System.SnmpData


Variable Notation

When you are creating a Management Pack object, such as a rule, monitor, or task, you might not know some of the values needed for configuration. For example, if you create a rule and target it to the SQL Server class, that rule needs to run against each instance of SQL Server that is discovered within a Management Group. Therefore, because the name of any specific SQL Server won’t be known until after your Management Pack is imported, you can use a variable in the configuration that finds the name of each SQL Server at runtime.

You can use the following variable types in your Management Pack file:


$MPElement variable


$Target variable


$Data variable


$Config variable

Which variable you use depends on the configuration needed for the module type you are using when you create an object in a Management Pack file. Some variables, such as $MPElement, can be used in any Management Pack element. Other variables, such as $Data, can be used only with certain module types.

$MPElement Variable

You can use the $MPElement variable when you need to retrieve the GUID of any Management Pack object or sub-element of a Management Pack object. Some elements, such as the Discovery element, need to distinguish between several objects that are instances of a class, and each instance of a discovered class is assigned a GUID. 

$MPElement Syntax

Following is the general syntax used to retrieve the GUID of a Management Pack object:

$MPElement[Name=”ElementName”]/SubElementName$
The following table describes each of the sections in the $MPElement syntax.

	Section
	Description

	$MPElement
	The name of the variable that you need to use. Type as is.

	Name=ElementName
	The value of the ID attribute of a Management Pack element. The Management Pack object created in this element can be defined in your Management Pack or in another Management Pack or library. If this object is defined in another Management Pack or library, you need to prepend the alias of the Management Pack or library that it is defined in using the Alias! notation.

	SubElementName
	Retrieves the GUID of an object that is defined in a child element of the Management Pack object defined in the Name of Class section of this variable. SubElementName is required only if the GUID you need to retrieve is in a child element that is no more than one level down from the parent element. 


$MPElement Example

The following example defines an object discovery that defines membership in the AppXComponent group. This means that for every AppXComponent that exists on a computer, a corresponding discovery object is created on that local computer’s agent. Each discovery, on each computer that has the AppXComponent, has its own unique GUID, which is why the RuleID, MonitoringClass, and RelationshipClass elements use the $MPElement variable for their values, as follows: 


The value of the RuleID element is the GUID of the specific discovery rule that exists on an agent. 


The value of the MonitoringClass element is the GUID of the current AppXComponent. 


The value of the RelationshipClass element is the GUID of the relationship defined between the current AppXComponent and the AppXComponents group. 

<Discovery ID="Microsoft.Demo.Discovery.Group.AppXComponents.Discovery" Target="Microsoft.Demo.Discovery.Group.AppXComponents" Enabled="true">
  <Category>Discovery</Category> 
  <DiscoveryTypes />
  <DataSource ID="DS" TypeID="SC!Microsoft.SystemCenter.GroupPopulator">
  <RuleId>$MPElement$</RuleId> 
  <GroupInstanceId>$Target/Id$</GroupInstanceId> 
- <MembershipRules>
  - <MembershipRule>
  <MonitoringClass>$MPElement[Name="Microsoft.Demo.Discovery.AppXComponent"]$</MonitoringClass> 
  <RelationshipClass>$MPElement[Name="Microsoft.Demo.Discovery.AppXComponentsGroupContainsAppXComponents"]$</RelationshipClass> 
  </MembershipRule>
  </MembershipRules>
  </DataSource>
  </Discovery>
$Target Variable

When an instance of a monitoring object is created, it can retrieve data from its target class. The target class is the value of the Target attribute of an element that defines a Management Pack object. For example, a rule that needs to groom a database nightly at midnight is targeted at the class that hosts the databases. When you create the rule that will groom the databases, you will not know the name of the SQL Server that hosts the database or even the names of the databases that need to be groomed. Therefore, you can use the $Target variable to retrieve this information at runtime.

$Target Variable Attribute

The $Target variable retrieves values from objects of the target class of a Management Pack object. When you use the $Target variable, you are referring to the class that is named in the Target attribute of the Management Pack object you are creating. 

You can also retrieve values from any class that hosts the target class. For example, if a rule is targeted to a database that is hosted by a SQL Server, which is in turn hosted by a computer, you can retrieve property values from the computer, the SQL Server, or the database by using the $Target variable notation. 

$Target Variable Syntax

The $Target variable is used to retrieve a value that applies only to a particular object. The following is the general syntax used to retrieve the value from an object from the target class:

$Target/Host/Property[Type=”Name of class”]/PropertyName$
The following table describes each of the sections in the $Target syntax. 

	Syntax Section
	Description

	$Target
	The name of the variable you need to use. 

	Type=Name of Class
	The value of ID attribute of the class that is the target of this Management Pack object. This can be the value of the Target attribute of this Management Pack object or a class that hosts the target of this Management Pack object. This class can be defined in your Management Pack or another Management Pack or library. If the target class is defined in another Management Pack or library, you need to prepend the alias of the Management Pack or library that the target class is defined in using the Alias! notation.

	PropertyName
	Name of the property whose value you want to retrieve.

	Host
	Use if the class in the Name of Class section is the host of the target class.

	Property
	Use if you are naming a property of the class named in the Name of Class section.


$Target Variable Examples

The following example instructs Operations Manager to find the FQDN, which is the value of the NetworkName property, for each instance of the target class of the monitoring object you are creating. 

<ComputerName>$Target/Property[Type="Windows!Microsoft.Windows.Computer"]/NetworkName$</ComputerName>

The following example retrieves the value of the NetworkName property for all instances of the class that hosts the target class. The hosting class is the Windows Computer class that is defined in the Microsoft Windows Library.

$Target/Host/Property[Type="Windows!Microsoft.Windows.Computer"]/NetworkName$

You can retrieve a property value from a class all the way up the hosting tree. You specify how high to go simply by adding another host. For example, if you wanted a value from a computer class, that hosts a server class, that hosts a database server class, that hosts the database, use the following syntax: 

$Target/Host/Host/Host/Property

If the discovery is targeted at a class hosted two levels above the computer, the Host section of the syntax must be specified twice, as in $Target/Host/Host…. Use the following syntax to retrieve the value of the NetworkName property from the hosting class that is two levels above the current class:

<ComputerName>$Target/Host/Host/Property[Type="Windows!Microsoft.Windows.Computer"]/NetworkName$</ComputerName>

The value retrieved by the $Target variable can also be appended to text. The following syntax prepends SqlServer to the name of each instance of a discovered object:

<InstanceName>SqlServer$Target/Property/SQLInstanceName$</InstanceName>

$Data Variable

When data is gathered as part of the creation of a Management Pack object, the $Data variable is used to match the gathered data to the newly created object’s properties. The $Data variable is used as part of the configuration of rules, monitors, and tasks as well as when defining a new composite module type.

Also, during discovery of the data that is gathered from a data source, the $Data variable can be used to map data to the properties of the Management Pack object that is being discovered. To map this information, you need to use both the $MPElement variable and the $Data variable. The $MPElement variable retrieves the assigned GUID of a property, and the $Data variable is used to provide a value to the property.

$Data Variable Syntax

The following is the general syntax of the $Data variable:

$Data/NameofValue$
The $Data variable notation does not include a path to where the variable data is located. $Data variable retrieves only data gathered from the previous DataSource.

The following table describes each of the sections in the $Data syntax. 

	Syntax Section
	Description

	$Data
	Refers to a property within the DataSource element.

	Name of Value
	Path to the data that was retrieved by the DataSource element.


$Data Variable Example

In the following example, a rule is defined. The DataSource element retrieves data using the Computer Discovery module type. In the ConditionDetection element, the data retrieved is used to populate an FQDN property. In the Setting element, variables are used so that the FQDN property is created for every object that is discovered. The Setting element, a child element of the ConditionDetection element, defines a name and value for each discovered object. The Name element uses the $MPElement variable to retrieve a GUID to use as a name for the new property. The $Data variable is used to retrieve a value that was gathered in the DataSource element and assign it to the new FQDN property.

<Rule ID="DiscoveryRule" Target="RHS" Enabled="true">

  <DataSources>

    <DataSource ID="DS1" TypeID="System.ComputerDiscoveryDS">

      <Interval>5000</Interval> 

      <Verify>false</Verify> 

      <Domain>ntdev</Domain> 

      <Query><![CDATA[(&(objectClass=computer)(cn=feritf*))]]></Query>

    </DataSource>

  </DataSources>

  <ConditionDetection ID="CD1" TypeID="System.DiscoveryDataMapper">

    <DiscoverySourceType>0</DiscoverySourceType>

    <DiscoverySourceObjectId>$MPElement$</DiscoverySourceObjectId>

    <DiscoverySourceManagedEntityId>$Target/Id$</DiscoverySourceManagedEntityId>

    <InstanceType>0</InstanceType>

    <InstanceTypeId>$MPElement[Name="System!Windows.Computer"]$</InstanceTypeId>

    <InstanceSettings>

    <Settings>

      <Setting>

         <Name>$MPElement[Name="System!Windows.Computer"]/FQDN$</Name> 

         <Value>$Data/FQDN$</Value>

      </Setting>

    </Settings>

    </InstanceSettings>

  </ConditionDetection>

  <WriteActions>

    <WriteAction ID="WA1" TypeID="System.ProcessDiscoveryData" />

  </WriteActions>

</Rule>

$Config Variable

The $Config variable retrieves information that is defined in the Configuration element of the current object you are creating. The $Config variable is usually used when creating a composite module type. 

$Config Variable Syntax

The syntax for the $Config variable is as follows:

$Config/Name of object$
The $Config variable notation does not need to include a path to where the variable data is located, since the $Config variable retrieves its data from the Configuration element of the current object.

$Config Variable Example

The following example creates a DataSource module type. The data source module type is a composite module type. This means it is a combination of other module types. The DataSourceModuleType element requires the Configuration and ModuleImplementation elements. It also requires a third element that describes the type of data that it inputs or outputs, which is defined in either the InputData or OutputData elements. 

The Configuration element in this example requires a DataSourceLogName, a DataSourceServerName, and a FilterExpression element as part of its configuration. The DataSourceLogName and the DataSourceServerName are referenced in the MemberModules element as members of this composite module. 

<DataSourceModuleType ID="NTEventDataSource">

  <Configuration>

     <xsd:element name="DataSourceLogName" type="xsd:string" /> 

     <xsd:element name="DataSourceServerName" type="xsd:string" /> 

     <xsd:element name="FilterExpression" type="ExpressionType" /> 

  </Configuration>

  <ModuleImplementation>

     <Composite>

       <MemberModules>

          <DataSource TypeID="AllNTEventsDataSource" ID="DS1">

             <DataSourceLogName>$Config/DataSourceLogName$</DataSourceLogName> 

             <DataSourceServerName>$Config/DataSourceServerName$</DataSourceServerName> 

         </DataSource>

         <ConditionDetection TypeID="ExpressionEvaluatorCondition" ID="CD1">

            <Expression>$Config/FilterExpression$</Expression> 

         </ConditionDetection>

       </MemberModules>

       <Composition>

         <Node ID="CD1">

            <Node ID="DS1"/> 

         </Node>

       </Composition>

     </Composite>

  </ModuleImplementation>

  <OutputType>NTEventDataType</OutputType> 

</DataSourceModuleType>

Management Pack Schema Reference

This reference provides information on each section of a management pack. An overview section contains basic information on each section of a management pack, and a details section provides more specific information, schema diagrams, and usage examples.

See Also

Management Pack Sections
Management Pack Schema Details
Management Pack Sections

A management pack is divided into several sections. These divisions have been made based on the following criteria:


The specific user role that a section is managed by (management pack author, administrator, or operator)


The component of Operations Manager that is responsible for interpreting a section (for example, core runtime or user interface)


Allowing concurrent editing/authoring of different pieces of the management pack


Separating presentation from content


Ease of localization


Allowing install/uninstall scenarios with strong references to other management packs

The sections of a management pack are shown in the following illustration:

[image: image23.png]ManagementPack

Root Managmen Pack
dement




Only the manifest section is mandatory in a management pack – all other sections are optional.

Management pack sections are laid out so that management pack objects in a specific section reference only other management pack objects that have already been defined in the previous sections.

See Also

Management Pack Schema Details
Management Pack Element

The Management Pack element defines the product version of the Operations Manager server that the management pack is targeted at, and also defines whether the management pack is an update to an existing management pack or a new management pack

[image: image24.png]


Note 

The update flag is used internally by the Operations Manager console and SDK to submit changes to management packs which already exist in the database. These management packs must be unsealed.

See Also

Management Pack Detail
Manifest Section

A management pack in Operations Manager has a manifest similar to a managed code assembly. This section consists of a strong identity for the management pack, and references to other management packs that are required for this MP to be installed. 

The manifest section has the following schema:

[image: image25.png]dentity B

Manifest





Strong Naming

Previous versions of Operations Manager did not support management pack versioning; instead, they offered mechanisms such as Merge and Replace to control behaviors of management pack objects during import time. 

The idea behind strong naming is to provide a way to manage versions of management packs. With strong names in Operations Manager 2007, Merge and Replace options for management pack import and export are no longer necessary.

Extensibility and Reuse

The references section in a management pack defines all of the dependencies to other management packs. This makes it possible to determine the consequences of an install or uninstall action. For example, if the SQL Server 2000 Replication Management Pack depended on the SQL Server 2000 management pack, then installation of the SQL Server 2000 Replication management pack would not be able to continue until all the prerequisites were installed.

References between management packs may arise due to the following:


Using types (module types, data types, monitor types) defined in another management pack


Overriding configuration settings for rules, tasks, or monitors defined in another management pack


Defining knowledge articles about objects (including rules, modules and tasks) in another management pack


Inheriting from SDM types defined in another management pack

Backward Compatibility

Backward compatibility is not explicitly specified in a management pack. If a management pack has the same ID and public key token but a different version, Operations Manager considers it the same Management Pack and will perform backward-compatibility checks on import. If a user tries to import a new version of the management pack and has a previous version of the same management pack, Operations Manager will not allow the management pack to be imported unless it passes backward-compatibility checks.  

[image: image26.png]


Note 

It is not possible to run different versions of the same Management Pack side by side.

See Also

Manifest Detail
Type Definitions Section

This section of the Management pack is devoted to defining types that will be used in later sections of the management pack. Types are reusable pieces that can be combined together to form rules, tasks and monitors. 

[image: image27.png]+-4 bataTypes

i-{ SecuroReferences

+-4 ModuleTypes

{ Monitor Types




EntityTypes

EntityTypes contains definitions of class types and relationship types. Classes are types similar to classes in Operations Manager 2005. In Operations Manager 2007, every rule, task, monitor, or view is always targeted to a specific class type. Examples of class types include "SQL Server 2000," "All SQL Servers," and "Microsoft Operations Manager 2005 Agents."  

Relationship types define relationships between class types that have been defined in the Class Types section of this management pack or another management pack.

DataTypes

DataTypes take data streams as input and produce data streams as outputs based on their role. This sub-section provides a hierarchy of data types that are defined in this management pack. These data types will be referenced when ModuleTypes are defined. DataTypes are not extensible in Operations Manager 2007, although there is schema support.  

SchemaTypes

The SchemaTypes section allows the definition of schema for configuration of types such as modules, monitors, and views. The schema type defines a set of simple or complex types that can be referred by multiple definitions in a management pack and by other management packs.

SecureReferences

Secure References defines specific credential references for use by workflows in the management pack.  The Operations Manager administrator can assign credentials after management pack import that relate to specific credential references.

ModuleTypes

Modules are reusable types that can be instantiated and combined to form rules, tasks, and monitors. 

MonitorTypes

A MonitorType is a reusable type definition that can be used to create monitors in a management pack. Examples of MonitorTypes include the Service State Monitor Type (which models the health of an NT service) and the Performance Counter Health Monitor Type (which models the health of a performance counter as it goes under threshold or over threshold). 

[image: image28.png]


Note 

A Unit MonitorType is the only type that can be defined.

There are two other types of monitor: aggregate and dependency MonitorTypes. These are standard monitor types and are not defined in this section. Refer to the monitors section for more information on these types.

Using monitor types (as templates) to create monitors can significantly reduce configuration that needs to be provided when modeling health for Managed Entities.

To create a monitor from a monitor type, configuration information needs to be specified. For example, to create a monitor to model the health of the “IISAdmin” service, an instance of the “Service State Monitor Type” needs to be created with configuration that specifies that the name of the service to monitor is the IISAdmin service.

See Also

Entity Types Detail
Data Types Detail
Schema Types Detail
Secure References Detail
Module Types Detail
Monitor Types Detail
Monitoring Section

This section of the management pack contains the definition and configuration of monitoring objects that are used to monitor the managed entity types of a management pack and also add or change the monitoring of types defined in other management packs. Each of these management pack objects are defined by combining instances of types into workflows. 

[image: image29.png]-1 Discoveries.

Recoverios

Guerrides





Discoveries

Discovery rules are special types of workflows that result in discovery data being inserted into the Operations Manager database.  These workflows are specialized from Operations Manager rules principally to allow meta data to be added to indicate the classes and properties that are discovered by each rule.  

Rules

Rules in Operations Manager 2007 are similar to those in Operations Manager 2005. Unlike Operations Manager 2005, however, rules are created by combining modules whose types have already been defined in the TypeDefinition section of the management pack.  

Rules do not produce state change data.  Rules are most often used for collecting data in the Operations Manager database, and reacting to state changes from monitors in some way (creating alerts and notifications, for example).

Tasks

Tasks in Operations Manager 2007 are functionally similar to tasks in Operations Manager 2005. In Operations Manager 2007, tasks are created by combining modules whose types have already been defined in the TypeDefinitions section of the management pack.

A task executes a single module.  This module is either a probe action or a write action.

Monitors

Monitors are state machines with a known set of operational states.  The monitor can be in a single state at any given time.  A change in state will product a state change event in Operations Manager, and further workflows can be executed based on this state change.

There are three types of monitors:


Aggregate – this rolls up health state from child monitors


Dependency – this rolls up state from a difference entity type related to the current entity


Unit – this is an instance of a monitor type already defined in the MonitorTypes section of this management pack or a referenced management pack.  To instantiate a monitor type, configuration conforming to the schema of that type must be provided.

Diagnostics

When a monitor changes state optionally one or more diagnostic actions can execute.  This action can be automatic or user initiated.  The diagnostic action can optionally specify a condition detection module and must specify a probe action.  The diagnostic can use the context of the state change as configuration to either module. 

Recoveries

A recovery action can be specified that will run in response to a monitor state change directly, or on the output of a diagnostic action.  The recovery can be user initiated or automatic.  The diagnostic can optionally use a condition detection module, and must specify a single write action.

Overrides

Overrides are used to alter the configuration of monitoring for specific instances or groups of instances.  For example, a customer may want to alter rule or monitor configuration for Building 44 SQL Servers, or for the databases used as part of the SAP service.

See Also

Discoveries Detail
Rules Detail
Tasks Detail
Monitors Detail
Diagnostics Detail
Recoveries Detail
Overrides Detail
Templates Section

Templates can be used in Operations Manager 2007 to fulfill common monitoring scenarios. Rather than having to create monitoring definitions piece by piece, you can specify a set of configurations that is applied to a template to produce a management pack fragment.  

[image: image30.png]



In the Operations Manager Console, the template configuration is captured by the Add Monitoring Wizard. The template can also be run by using the SDK.  

A template consists of a definition, which is stored in the management pack, and user interface pages, which are defined in the management pack (with the code contained in a separate assembly).

The template can ship as part of its own management pack, or it can be part of another management pack; for example, the Windows Service template could ship in the Base Operating System management pack.

The template has a configuration section that defines the configuration that is required to run the template.  This configuration is used to populate the configuration on objects stored in the template.

The output of the template will be stored in a management pack.  This can be either a new management pack, or an existing management pack.  

See Also

Templates Detail
Presentation Types Section

The presentation types section contains definition of types that are used for display purposes. 

The presentation types section has the following schema:

[image: image31.png]PresentationTypes B~





View Types

View types are reusable constructs that are referenced while creating views. View types are instantiated by views in order to provide specific information to the user. Operations Manager 2005 defined a static set of view types, such as alert views, state views, and event views. Operations Manager 2007 provides view-type extensibility by allowing view types to be defined in the management pack. A core set of view types is delivered with Operations Manager 2007.

Images

Operations Manager can display images to represent types in the user interface to make it easy for the user to distinguish between class types. The images can be stored directly in the management pack as binary data and then referenced from other management pack objects.

 Image references (defined in the presentation section of the management pack) are created to consume the images defined in this section.

User Interface Pages and Page Sets

The Operations Manager 2007 management pack architecture allows management pack authors to introduce new module types, monitor types and templates.  The management pack must be able to contain user interface definitions for new types to allow the user to configure these types using the Operations Manager console. This section allows user interface pages to be defined and grouped into sets, and references to the implementation of the pages provided. These user interface elements can be reused, so that management pack authors only have to write the portion of user interface that specifically configures any new module types or monitor types that they have defined.

See Also

Presentation Types Detail
Presentation Section

The presentation section contains the definition of management pack objects (such as views and reports) that are used to filter and display data for administrators and operators. 

The presentation section has the following schema:

[image: image32.png]ConsoleTasks

ImageReferences.




Console Tasks

Console tasks are tasks that are run on the Operations Manager Console only. These tasks do not need the Operations Manager runtime to execute. These tasks are run in the users context that is logged on and using the Operator Console.  Console tasks cannot be run from the Operations Manager Web Console.

Views

Views in Operations Manager 2007 are similar to views in previous versions of Operations Manager in terms of functionality. There are two differences in Operations Manager 2007: 


Views are targeted to a particular managed entity type.


Views do not require a folder hierarchy from a schema standpoint, but views may be arranged in folders for display purposes.

Note that a view is targeted at an entity type. However, views can be applied to more than one type of entity by targeting a type higher up the class inheritance tree; for example, System.Entity (all classes are of this type).

Reports

Information not available in this release.

Folders

Folders are used to organize objects for presentation purposes. They serve only as a logical grouping and are not used by the Operations Manager 2007 runtime. From a schema perspective, any management pack object can be grouped into a folder. However, the Operations Manager user interface only uses folders for class type grouping.

Image References

Image references are used to link images (defined in the images section of the management pack) to management pack objects.  A single image can be used for many different objects.  From a schema perspective, an image can be linked to any management pack object; however, the Operations Manager user interface only uses images associated with class type definitions.

See Also

Presentation Detail
Language Packs Section

This section contains all of the display-related information in a management pack that is localizable. 

The language packs section has the following schema:

[image: image33.png]LanguagePacks

LanguagePack




Display Strings

All user interface display names are specified in this section, and a management pack can be localized by replacing the language section with a different one for each language supported.

Knowledge Articles

This section is also used to store knowledge articles that relate to management pack objects.

A knowledge article is made up of several sections. Each of these sections offers specific capabilities for organizing data. For example, a summary section can have the capability to display content as a bulleted list, a table, or a link to a webpage. 

Different sections of knowledge articles can be searched independently. For example, a user can look for all rules that have the words "network" and "disconnected" in the "Causes" section of the knowledge article.

All management pack objects can have knowledge associated with them if the user interface supports it; for example rules, views, monitors, and managed entity types.

Including multiple languages in a single management pack is optional.  If no language pack is provided, all objects in the management pack and all instances created from types in that management pack will be shown in the console using their internal management pack object names rather than language dependent display names.

See Also

Display Strings Detail
Knowledge Articles Detail
Deletions Section

The deletions section consists of zero or more deletions and has the following schema: 

[image: image34.png]



This section is used in combination with the update flag on the management pack to submit changes to an existing management pack.  If the update flag is set to true, then a deletion can be specified that will remove the object from the management pack in the database.  

[image: image35.png]


Note 

The management pack targeted must be unsealed in the database.

See Also

Deletions Detail
Management Pack Schema Details

This section contains detailed information about the individual sections of the management pack. For overview information on the management pack sections, please refer to the Management Pack Sections topic.

See Also

Management Pack Schema Reference
Management Pack Detail

The management pack is the root element of the XML file.  The element defines namespaces for the management pack.  A typical declaration is shown below:

<ManagementPack ProductVersion="v3Beta2" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

This declares the xsd and xsi namespaces that are used in the management pack. For the purposes of authoring management packs in XML purposes, it is useful to add a reference to the management pack schema, although this is not required and is not used when the management pack is imported. 

While authoring in XML, adding a reference to the management pack schema  allows you to validate the XML document against the schema and tell you about errors. An example of declaring adding a reference to the management pack schema is shown below:

<ManagementPack xsi:noNamespaceSchemaLocation="c:\MPInfrastructure\schema\ManagementPackSchema.xsd" ProductVersion="v3Beta2" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

You should substitute a reference to your copy of the mpschema.xsd.

Two attributes are declared on the management pack element:

	Name
	Type
	Use
	Details

	Update
	Boolean
	Optional
	Specifies whether this is a new management pack or an update to an existing management pack in the database (used by the console to submit updates and deletions).

	ProductVersion
	MomProductVersion
	Required
	The product version that this management pack relates to. This is an enumeration (see below).


The product version that is used in the management pack schema may change between releases. The current defined values are as follows:


v3Beta1


v3Beta2


v3RC


v3RTM

See Also

Management Pack Schema Details
Manifest Detail

The manifest section consists of an identity, name and references to other management packs.

[image: image36.png]dentity B

Manifest





Identity

A strong-named management pack has a message digest (called “PublicKeyToken”) that will be invalid if any portion of the management pack changes. This can be used by management pack authors for versioning. 

A strong name for an Operations Manager 2007 management pack consists of the following: 


An ID


A version number (in the format Major.Minor.Build.Revision) 


Public key token



[image: image37.png]





Note that the public key token is optional and will only be set for management packs that have been signed and sealed.

The following sample shows a manifest identity:

<Identity>

<ID>System.Windows.MP</ID>

<Version>6.0.0.0</Version>

<PublicKeyToken>31bf3856ad364e35</PublicKeyToken>

</Identity>

Note that all display strings are stored in the language packs section of the relevant language.

Name

The name of the management pack is not required by Operations Manager. The Operations Manager console will display either the name of the management pack as stored in the display strings section, or the ID of the management pack if there is no display string.  

References

References consist of zero or more reference elements:

[image: image38.png]



The references section consists of strong name references to other management packs that the management pack depends upon. These referred management packs contain type definitions or objects that are required by objects that are part of this management pack. 

These references to other management packs are similar to the way managed code assemblies refer to other assemblies in their manifest.

[image: image39.png]! managementpackreference

Fio

Fuersion

seplen
| i





A strong reference to another management pack consists of an alias attribute, which defines a short alias for use in the rest of the management pack, and the following elements:


ID (string) - Name of the MP being referenced


version (format Major.Minor.Build.Revision) - Version of the management pack being referenced


publickeytoken (string)  - this is optional



Example

Below is an example of a reference section:

<Reference Alias="System">

<ID>System.Library</ID>

<Version>6.0.0.0</Version>

<PublicKeyToken>31bf3856ad364e35</PublicKeyToken>

</Reference>

See Also

Manifest Section
Type Definitions Detail

This section covers the type definitions section of the management pack schema.

See Also

Management Pack Schema Details
Entity Types Detail

Entity types consist of class types and relationships types.

[image: image40.png]



The EntityTypes element defines the classes and relationship types that you use in your Management Pack. The EntityTypes element contains the ClassTypes and RelationshipTypes elements. All classes are defined within the ClassTypes element, and all relationship types are defined within the RelationshipTypes element. When you define monitoring objects such as a monitor, rule, or task, you target them at a class that you define within this element. 

In This Section

ClassTypes
RelationshipTypes
See Also

Type Definitions Section
Entity Types Detail
ClassTypes
ClassTypes

The class types section consists of zero or more class type definitions.

[image: image41.png]ClassTypes -t ClassType

Fe





A class type can have zero or more properties that will be populated during discovery of this type.

[image: image42.png]MPClassType ‘

ClassType,





The ClassTypes element contains all classes that are defined in your Management Pack. Individual classes are each defined in a ClassType element. All ClassType elements are contained in a single ClassTypes element. The ClassTypes element can also contain a Property element, which is used to add properties to an individual class type.

ClassType Attributes

A class type has the following attributes:

	Name
	Type
	Use
	Details

	ID
	ManagementPackUniqueIdentifier
	Required
	Represents an internal identifier for this type. This identifier is unique in the namespace of the management pack.

	Comment
	ManagementPackString
	Optional
	This field can be used by the author to store any valid string.  The comment field is not used by Operations Manager. During conversion, this field is populated with the Operations Manager 2005 GUID.

	Accessibility
	ManagementPackAccessibility
	Required
	Determines whether other management packs can use this class type as a base type.  

	Base
	ManagementPackIdentifierReference
	Optional
	If the class sub- classes from a base type, this attribute contains the ID of the base type.  Note that this is optional in the schema but actually required for all classtypes except System.Entity in the System.Library MP.

	Abstract
	xsi:boolean
	Required
	Indicates whether the class is abstract on non-abstract.  Abstract classes do not have instances.

	Hosted
	xsi:boolean
	Optional
	Indicates whether this is a hosted class.

	Singleton
	xsi:boolean
	Optional
	Indicates whether this is a singleton class.  Singleton classes have only one instance, e.g., instance groups.


ID Attribute

The ID attribute defines the name of this class type. The value of the ID attribute of any class type you create must be unique across all Management Packs. 

Accessibility Attribute

The Accessibility attribute defines whether this class can be referenced by monitoring objects from other Management Packs. If you declare this class type as public, you must continue to include it in future versions of your Management Pack because other Management Packs might reference it.

Abstract Attribute

Some classes are created for the sole purpose of inheritance. These are called abstract classes, and they exist solely to be a base class from which other classes inherit. When you inherit from an abstract class, all properties, monitoring definitions, and relationships defined for the abstract class are automatically inherited by the child class and do not need to be defined again. For more information on inheritance, see Operations Manager 2007 Namespace.

Base Attribute

When you define a class type, you must specify a base class from which you inherit. When you inherit from a base class, all properties, monitoring definitions, and relationships defined for the base class are automatically inherited by the child class and do not need to be defined again. You can then add additional properties using the Property element. For more information about class inheritance, see Operations Manager 2007 Namespace.

Hosted Attribute

The value of the Hosted attribute specifies whether this class is hosted by another class. A value of True indicates this class is hosted by another class.

A value of False indicates that this is a non-hosted class. To discover non-hosted class instances on a computer, proxying will need to be enabled. By default, the health service on a computer will not be able to create instances or relationships with any objects that it is not hosting.  A management server has proxying enabled by default.  Proxying for a computer can be configured from the Operations Console. 

Singleton Attribute

Singleton classes are used when there can be only one instance of that class. This type of class is commonly used to define services and groups. A group in Operations Manager must be unique within a management group, so there should be only one instance of it. Because there is only one instance of a singleton class, you do not need to create an object discovery for it. Singleton objects are hosted by the health service on the Root Management Server.

ClassType Property Element

The Property element has two required attributes and five optional attributes. Later when defining object discoveries, you specify the values that populate these properties in the Operations Manager database. 

	Property Attribute
	Accepted Value 
	Description

	ID
	String
	Required. The name of this property. 

	Type
	Int

Decimal

Double

String

DataTime

GUID

Bool
	Required. Specifies the type of data that this property expects.

	Key
	True

False
	Optional. Indicates that this property can be used to uniquely identify this object. If omitted, the default value is False.

	CaseSensitive
	True

False
	Optional. Specifies whether case sensitivity is enforced. If omitted, the default value is False.

	Length
	Integer
	Optional. Specifies the maximum number of characters for the value of a property. This attribute only applies to properties that have a string data type. If omitted, the default value is 256.

	MinLength
	Integer
	Optional. Specifies the minimum number of characters for the value of a property. This attribute only applies to properties that have a string data type. If omitted, the default value is 0.

	Comment
	String
	Optional. Describes this property. 


The following are examples of Property elements defined on a ClassType:

<ClassType 
    ID="Microsoft.SystemCenter.HealthService" 
    Comment="represents a health service and its configration" 
    Accessibility="Public" 
    Abstract="false" 
    Base="Windows!Microsoft.Windows.LocalApplication" 
    Hosted="true" 
    Singleton="false">
    <Property ID="AuthenticationName" Type="string" Key="false"/>
    <Property ID="MaximumQueueSize" Type="int" Key="false"/>
    <Property ID="MaximumSizeOfAllTransferredFiles" Type="int" Key="false"/>
    <Property ID="RequestCompression" Type="bool" Key="false"/>
    <Property ID="CreateListener" Type="bool" Key="false"/>
    <Property ID="Port" Type="int" Key="false"/>
    <Property ID="IsRHS" Type="bool" Key="false"/>
    <Property ID="IsManagementServer" Type="bool" Key="false"/>
    <Property ID="IsAgent" Type="bool" Key="false"/>
    <Property ID="IsGateway" Type="bool" Key="false"/>
    <Property ID="IsManuallyInstalled" Type="bool" Key="false"/>
    <Property ID="InstalledBy" Type="string" Key="false"/>
    <Property ID="InstallTime" Type="datetime" Key="false"/>
    <Property ID="Version" Type="string" Key="false"/>
    <Property ID="ActionAccountIdentity" Type="string" Key="false"/>
    <Property ID="HeartbeatEnabled" Type="bool" Key="false"/>
    <Property ID="HeartbeatInterval" Type="int" Key="false"/>
    <Property ID="ActiveDirectoryManaged" Type="bool" Key="false"/>
    <Property ID="ProxyingEnabled" Type="bool" Key="false"/>
    <Property ID="PatchList" Type="string" Key="false"/>
</ClassType>
ClassType Sample

<EntityTypes>
  <ClassTypes>
    <ClassType ID="Microsoft.SystemCenter.HealthService" 
      Comment="represents a health service and its configration" 
      Accessibility="Public" 
      Abstract="false" 
      Base="Windows!Microsoft.Windows.LocalApplication" 
      Hosted="true" 
      Singleton="false">
      <Property ID="AuthenticationName" Type="string"/>
      <Property ID="MaximumQueueSize" Type="int"/>
      <Property ID="MaximumSizeOfAllTransferredFiles" Type="int"/>
      <Property ID="RequestCompression" Type="bool"/>
      <Property ID="CreateListener" Type="bool"/>
      <Property ID="Port" Type="int"/>
      <Property ID="IsRHS" Type="bool"/>
      <Property ID="IsManagementServer" Type="bool"/>
      <Property ID="IsAgent" Type="bool"/>
      <Property ID="IsGateway" Type="bool"/>
      <Property ID="IsManuallyInstalled" Type="bool"/>
      <Property ID="InstalledBy" Type="string"/>
      <Property ID="InstallTime" Type="datetime"/>
      <Property ID="Version" Type="string"/>
      <Property ID="ActionAccountIdentity" Type="string"/>
      <Property ID="HeartbeatEnabled" Type="bool"/>
      <Property ID="HeartbeatInterval" Type="int"/>
      <Property ID="ActiveDirectoryManaged" Type="bool"/>
      <Property ID="ProxyingEnabled" Type="bool"/>
      <Property ID="PatchList" Type="string"/>
    </ClassType>
    <ClassType ID="Microsoft.SystemCenter.ManagementServer" 
      Comment="represents a Management Server" 
      Accessibility="Public" 
      Abstract="false" 
      Base="Microsoft.SystemCenter.HealthService" 
      Hosted="true" 
      Singleton="false">
      <Property ID="ManagementServerSCP" Type="string"/>
      <Property ID="AutoApproveManuallyInstalledAgents" Type="bool"/>
      <Property ID="NumberOfMissingHeartBeatsToMarkMachineDown" Type="int"/>
      <Property ID="ProxyAddress" Type="string"/>
      <Property ID="ProxyPort" Type="int"/>
      <Property ID="RejectManuallyInstalledAgents" Type="bool"/>
      <Property ID="UseProxyServer" Type="bool"/>
    </ClassType>
  </ClassTypes>
</EntityTypes>
In the preceding example, two classes are defined. The first class, Microsoft.SystemCenter.HealthService, represents all HealthServices in an organization. The second class, Microsoft.SystemCenter.ManagementServer, specializes in the HealthService class and defines additional properties that are specific to ManagementServers. 

The Microsoft.SQLServer.Component class inherits from the Microsoft.Windows.ApplicationComponent class, which is defined in another Management Pack. The value of the Base attribute uses the Alias attribute to reference something that is defined in another Management Pack. 

For more information about the notation used when referencing an object defined in another Management Pack, see Manifest Section.

See Also

Type Definitions Section
Entity Types Detail
RelationshipTypes
RelationshipTypes

The relationship types section consists of zero of more relationship type definitions.

[image: image43.png]RelationshipTypes F3—{~-— [

RelationshipType.





A relationship type consists of a source and a target (the end points of the relationship) and optionally a set of properties for this relationship.

[image: image44.png]Fsource

Frarget





There are three base types of relationships between classes:


Reference


Membership


Hosting

All relationship types must derive from one of these base types. These base types are defined in the System.MP Management Pack. Operations Manager 2007 does not support further specialization of relationship types. Management Pack verification (via the mpverify tool) will allow a relationship type only if it derives from one of the three base types.

RelationshipType Attributes

A relationship type has the following attributes:

	Name
	Type
	Use
	Details

	ID
	ManagementPackUniqueIdentifier
	Required
	Represents an internal identifier for this type. This identifier is unique in the namespace of the management pack.

	Comment
	ManagementPackString
	Optional
	Comment field for use by the management pack author

	Accessibility
	ManagementPackAccessibility
	Required
	Required.

Internal—This relationship type can be referenced only from within this Management Pack. 

Public—Other Management Packs can reference this relationship type.

	Base
	ManagementPackIdentifierReference
	Optional
	If the type is a subclass of a base type, this attribute contains the ID of the base type

	Abstract
	xsi:boolean
	Required
	Indicates whether the type is abstract or non-abstract. Abstract types do not have instances. This would be set to true only for a base relationship type.


ID Attribute

The ID attribute specifies a name for this relationship. All three of the relationship types should be named using the same general syntax, which is Class1RelationshipTypeClass2. In this syntax, Class1 is the name of a class that is assigned the first role in the relationship. RelationshipType identifies the type of this relationship. The available types are reference, containment, and hosting. Class2 is the name of the class that is assigned the second role in the relationship. For more information about relationships, see Management Pack Concepts section of the authoring guide. 

The syntax for each relationship type is shown in the following table.

	Relationship 

Type
	ID Attribute Syntax
	Example

	Reference
	SourceReferencesTarget
	Database1ReferencesDatabase2

	Containment
	WholeContainsPart
	ComputerGroupContainsComputer1

	Hosting
	HostHostsGuest
	ComputerHostsLocalApplication 


You can also use verbs when creating naming relationships using the Reference relationship.

	First Class
	Second Class
	Relationship Name

	System.WebSite
	System.Database
	WebSiteUsesDatabase


The syntax described for naming relationships applies only to the last section of the relationship name. The other sections of the name should follow the Operations Manager naming conventions. 

The following example shows the name of a relationship type as it is defined in the value of the ID attribute:

  <RelationshipType ID="Microsoft.SQLServer.2005.DBEngineHostsDatabase" 
Base Attribute

All relationship types must derive from one of three base types. These base relationship types are defined in the System library, so to reference one of these relationship types you must use the notation used to identify objects defined in other Management Packs. This notation prepends the value of the Alias attribute of the Management Pack and an exclamation point (!) to the name of the Management Pack object. 

The value of the Base attribute must be one of the following:


System!System.Hosting

System!System.Containment

System!System.Reference
The following is an example of a RelationshipType start tag that contains a Base attribute:

  <RelationshipType ID="Microsoft.SQLServer.2005.DBEngineHostsDatabase" Accessibility="Public" Base="System!System.Hosting">
RelationshipType Elements

Each relationship type that you define requires a Source element and a Target element. Optionally, for reference relationships, one or more Property elements can be included.

Source and Target Elements

All relationship types are directional, and they begin at a class designated as the source and end at a class designated as the target. Relationship types can be defined between classes that are in the current Management Pack or between a class in the current Management Pack and another Management Pack. When you are referencing a class from another Management Pack, prepend the value of the Alias attribute of the Management Pack and an exclamation point (!) to the name of the Management Pack object. 

The following are examples of Source and Target elements:

<RelationshipType ID="Microsoft.SystemCenter.ManagementGroupContainsAgent" 
  Comment="This represents all the agents that belong to a ManagementGroup" 
  Accessibility="Public" 
  Abstract="false" 
  Base="System!System.Containment">
  <Source>Microsoft.SystemCenter.ManagementGroup</Source>
  <Target>Microsoft.SystemCenter.Agent</Target>
</RelationshipType>
Property Element

The Property element has two required and three optional attributes. Later, when defining object discoveries, you specify the values that populate these properties in the Operations Manager database. 

	Property Attribute
	Accepted Value 
	Description

	ID
	String
	Required. The name of this property. 

	Type
	Int

Decimal

Double

String

DataTime

GUID

Bool
	Required. Specifies the type of data that this property expects.

	CaseSensitive
	True

False
	Optional. Specifies whether case sensitivity is enforced. If omitted, the default value is False.

	Length
	Integer
	Optional. Specifies the maximum number of characters for the value of a property. This attribute applies only to properties that have a string data type. If omitted, the default value is 256.

	Comment
	String
	Optional. Describes this property. 


The following sample shows an example of a Property element: 

  <Property ID="ReplicationInterval" Type="string"/>
Examples

The base relationship types defined in the System MP are as follows:

<RelationshipType ID="HealthModelName.ParentManagedClassName.ChildManagedClassName.Relationship" Base = "System!System.Housting" Accessibility="Public" Abstract="false">

<Source>HealthModelName.ParentManagedClassName</Source>

<Target>HealthModelName.ChildManagedClassName</Target>

</RelationshipType>

<RelationshipType ID="System.Reference" Abstract="true" Accessibility="Public">

  <Source>System.Entity</Source>

  <Target>System.Entity</Target>

</RelationshipType>

<RelationshipType ID="System.Membership" Base="System.Reference" Abstract="true" Accessibility="Public">

  <Source>System.Entity</Source>

  <Target>System.Entity</Target>

</RelationshipType>

<RelationshipType ID="System.Hosting" Base="System.Membership" Abstract="true" Accessibility="Public">

  <Source>System.Entity</Source>

  <Target>System.Entity</Target>

</RelationshipType>

RelationshipType Sample

<RelationshipType ID="System.ComputerGroupContainsComputer" Base="System.Membership" Abstract="false" Accessibility="Public">

  <Source>System.ComputerGroup</Source>

  <Target>System.Computer</Target>

</RelationshipType>

See Also

Entity Types Detail
Type Definitions Section
Data Types Detail

This section consists of zero or more data types.

[image: image45.png]DataType




The Operations Manager run time does not need details about the implementation of a data type, only the hierarchy of the types that comprise the data type and a reference to the implementation of the data type. This information is used to validate combinations of modules when they are used to form rules, monitors, tasks, and other workflows.

[image: image46.png]|weoatarype |

Datatye gﬂ.} implomentation B





[image: image47.png]



[image: image48.png]


Note 

Operations Manager 2007 does not support the creation of new data types. 

Attributes

	Name
	Type
	Use
	Details

	ID
	ManagementPackUniqueIdentifier
	Required
	Represents an internal identifier for this type. This identifier is unique in the namespace of the management pack.

	Comment
	ManagementPackString
	Optional
	Internal comment field for use by the management pack author.

	Accessibility
	ManagementPackAccessibility
	Required
	Determines whether the type can be used outside of the management pack it is defined in.  Valid values are either public or internal.

	Base
	ManagementPackIdentifierReference
	Optional
	If the type sub-classes from a base type, this attribute contains the ID of the base type.


Example

Here is an example showing two data types:

<DataTypes>
  <DataType ID="System.BaseData" Accessibility="Public">
    <Implementation>
      <Assembly>Microsoft.Mom.Modules</Assembly>
  <Type>
        Microsoft.EnterpriseManagement.Mom.Modules. DataItemBase
         </Type>
    <ClassID>dd23e13c-4604-4f22-9011-09427dc357ff</ClassID>
     </Implementation>
  </DataType>
  <DataType ID="System.Discovery.Data" Base="System.BaseData" Accessibility="Public">
    <Implementation>
      <Assembly>Microsoft.Mom.Modules.DataTypes</Assembly>
      <Type>Microsoft.EnterpriseManagement.Mom.Modules. DataItems.Discovery.DiscoveryDataItem</Type>
      <ClassID>EB1EE5D9-6A74-4E30-98F8-6A9E9A255356</ClassID>
    </Implementation>
  </DataType>
</DataTypes>
See Also

Type Definitions Detail
Management Pack Schema Details
Schema Types Detail

The schema type section consists of zero or more schema type definitions:

[image: image49.png]SchemaTypes

SchemaType.





A schema type can be defined in one management pack and referred to by another management pack as long as it is defined as public. The schema type can be any XSD (subject to XSD Restrictions):

[image: image50.png]‘fmsm aType \





Schema Type Attributes

A schema type has two attributes:

	Name
	Type
	Use
	Details

	ID
	ManagementPackUniqueIdentifier
	Required
	Represents an internal identifier for this type. This identifier is unique in the namespace of the management pack.

	Comment
	ManagementPackString
	Optional
	Comment field for use by the management pack author.

	Accessibility
	ManagementPackAccessibility
	Required
	Determines whether this schema type can be referenced in other management packs.


Example

A schema type is defined below for use with Registry modules:

<SchemaType ID="System.Windows.RegistryAttributeDefinitionsSchema" Accessibility="Public">

  <xsd:complexType name="RegistryAttributeDefinitionsType">

    <xsd:sequence>

      <xsd:element name="RegistryAttributeDefinition" minOccurs="1" maxOccurs="unbounded">

        <xsd:complexType>

          <xsd:sequence>

            <xsd:element name="AttributeName" type="xsd:ID"></xsd:element>

            <xsd:element name="Path" type="xsd:string"></xsd:element>

            <xsd:element name="PathType" type="xsd:integer"></xsd:element>

            <xsd:element name="AttributeType" type="xsd:integer"></xsd:element>

          </xsd:sequence>

        </xsd:complexType>

      </xsd:element>

    </xsd:sequence>

  </xsd:complexType>

</SchemaType>

This is used in the configuration section of the registry data source module type as follows:

<Configuration>

  <IncludeSchemaTypes>

  <SchemaType>

    System.Windows.RegistryAttributeDefinitionsSchema

  </SchemaType>

  </IncludeSchemaTypes>

  <xsd:element name="ComputerName" type="xsd:string"></xsd:element>

  <xsd:element name="RegistryAttributeDefinitions" type="RegistryAttributeDefinitionsType"></xsd:element>

  <xsd:element name="Frequency" type="xsd:unsignedInt"></xsd:element>

</Configuration>

See Also

Type Definitions Detail
Management Pack Schema Details
Secure References Detail

Secure references can be used to specify that a non-default set of credentials will be used by one or more modules in a management pack. This can occur in instances of rules that require elevated privileges. Once a secure reference is specified, after the management pack is imported the user can set this account to an account that has the required privileges.

A secure reference does not store any credentials. Credentials are only stored in the Operations Manager credential store. 

[image: image51.png]SecureReference

SecureReferences [}~




SecureReferences Attributes

	Name
	Type
	Use
	Details

	ID
	ManagementPackUniqueIdentifier
	Required
	Represents an internal identifier for this type. This identifier is unique in the namespace of the management pack.

	Comment
	ManagementPackString
	Optional
	Internal comment field for use by the management pack author.

	Accessibility
	ManagementPackAccessibility
	Required
	Determines whether this schema type can be referenced in other management packs. 

	Context
	ManagementPackIdfentifierReference
	Required
	Specifies the class type that these credentials will be used for. Only workflows targeting this class or sub-classes can use this set of credentials.


See Also

Type Definitions Detail
Type Definitions Section
Module Types Detail

Modules are classified into types based on the function they serve in the system.  These possible types are:


Data Source


Probe Action


Condition Detection


Write Action



[image: image52.png]DataSourceModuleType

ProbeActionModuleType

ModuleTypes.

£ -4 Condtionbetecti

o Tyne




A module type definition principally consists of three parts:


Type properties – These are standard properties that need to be specified for a type. This includes the type ID, role, input and output data types, etc.


Configuration – This is an XSD section that describes the configuration that is needed to create this type.


Implementation – This is a reference to the code that actually implements this type, or a list of other types that are combined to make up this type. 

Standard Module Type Attributes

All module types have the following attributes:

	Name
	Type
	Use
	Details

	ID
	ManagementPackUniqueIdentifier
	Required
	Represents an internal identifier for this type. This identifier is unique in the namespace of this management pack.

	Comment
	ManagementPackString
	Optional
	Comment field for use by the management pack author.

	Accessibility
	ManagementPackAccessibility
	Required
	Determines whether other Management Packs can reference/reuse this module type. 

	RunAs
	ManagementPackIdentifierReference
	Optional
	References a secure reference element in this management pack (or a referenced management pack).  The module will execute under the account that is supplied in this reference.

	Batching
	xsi:boolean
	Optional
	Indicates whether this condition module type can accept a batch of input data at one time. A module that has this flag turned on would have to implement additional interfaces that enable the module to accept/submit an array of data items that have a common batch identifier.


Module Type Configuration

Each module type requires a configuration section. 

[image: image53.png]! mpconfigurationschematype





This section contains a valid XSD that defines the configuration that is needed by this module type. This XSD (schema) is used to validate the configuration portion of a rule/task/monitor that uses an instance of this module type. The XSD can be defined directly in the configuration section, or it can reference a schema type that was defined in the Schema Types Detail section. When a module is created of this type, the configuration must validate to this schema.

[image: image54.png]


Note 

It is possible to specify an empty configuration section if the module does not require configuration.

[image: image55.png]IncludeSchemaTypes 3 -]

| SehemaType

Y





Module Type Configuration Example

Below is an example of a configuration section with no schema type reference:

<Configuration>

   <xsd:element name="ComputerName" type="xsd:string" minOccurs="0" maxOccurs="1"/>

   <xsd:element name="LogName" type="xsd:string"/>

</Configuration>

Below is an example of a module type configuration with a schema reference:

<Configuration>

   <IncludeSchemaTypes>

      <SchemaType>System!System.ExpressionEvaluatorSchema"</SchemaType>

   </IncludeSchemaTypes>

   <xsd:element name="ComputerName" type="xsd:string" minOccurs="0" maxOccurs="1"/>

   <xsd:element name="LogName" type="xsd:string"/>

   <xsd:element name="Expression" type="ExpressionType"/>

</Configuration>

Override Parameters

Each module type can take an optional section to indicate which parameters can be overridden.

[image: image56.png]OverridableParameters F3—{~-— [





Override Parameter Attributes

	Name
	Type
	Use
	Details

	ID
	ManagementPackUniqueIdentifier
	Required
	Represents an internal identifier for this type. This identifier is unique in the namespace of this management pack.

	Comment
	ManagementPackString
	Optional
	Comment field for use by the management pack author.

	Selector
	ManagementPackLongString
	Required
	Information not available in this release.

	ParameterType
	ManagementPackEntityPropertyTypes
	Required
	Information not available in this release.


Module Implementation

Each module type requires a module implementation section.

[image: image57.png]Managed [

Woduemplementation B-(7

v

Composite B




This subsection contains either a reference to the code that implements this module type or a list or other module types that are composed to form this module type.

Note that the code is not packaged with the management pack – the management pack only contains a reference to this implementation.

If there is a reference to the code, then it is either native or managed. If the implementation type is native, the implementation section will contain a ClassID of an unmanaged COM class that implements this module type.  

[image: image58.png]Mative E3—{~-— ]

gedimplement;

Fassembly
Managed EHH E—{
Tyve

I et





Module Implementation Samples

Below is a sample of a native code implementation section:

<ModuleImplementation>

   <Native>

      <ClassID>009BE441-F1AD-4074-AD46-15F3BABCF0E5</ClassID>

   </Native>

</ModuleImplementation>

If the implementation type specified is managed, the implementation section will contain a managed assembly name and the name of a type in that assembly that implements this module type.

Below is a sample of a managed code implementation:

<Managed>
   <Assembly>Microsoft.Mom.Modules.Notification</Assembly>
   <Type>Microsoft.EnterpriseManagement.Mom.Modules.Notification .Sms.SmsNotificationContentGeneratorModule
   </Type>
</Managed>
The assembly type specified here is assumed to implement certain well-defined interfaces. Therefore, there is no need to specify method names in this section. 

If the implementation type is composite, the implementation section will contain a list of member modules and details on how they are composed together. See Composite Module Types for more information.

Specifying Input and Output Types

If a module takes data as an input, this data must be of a specific data type. This type is defined in the InputType element of the module type.  

Note   Only the probe action, write action, and condition detection module types can have input types.

If a module passes data as an output, this data must be of a specific data type. This type is defined in the OutputType element of the module type. All module types can have output types.

The following XML snippet shows the input and output type:

<OutputType>System.Windows.RegistryData</OutputType>
<InputType>System!System.BaseData</InputType>
See Also

Data Source Module Detail
Probe Action Module Detail
Condition Detection Module Detail
Write Action Module Detail
Composite Module Detail
Type Definitions Detail
Data Source Module Detail

A data source module is used to provide data into a workflow. In Operations Manager 2005, these were referred to as providers; for example, the NT Event Log data source and IIS App Log data source.

[image: image59.png]asourceModuleType |

Contiguration \

DatasourceModuleType

Wodiemptemertaion B

Foutputiype





For more information on the schema for the data source module type, please see Module Types Detail.  

Example

An example of a data source module type is the Windows event log provider:

<DataSourceModuleType ID="System.Windows.Event.DataProvider" Accessibility="Public">

   <Configuration>

      <xsd:element name="ComputerName" type="xsd:string" minOccurs="0" maxOccurs="1"/>

      <xsd:element name="LogName" type="xsd:string"/>

   </Configuration>

   <ModuleImplementation>

      <Native>

       <ClassID>009BE441-F1AD-4074-AD46-15F3BABCF0E5</ClassID>

      </Native>

   </ModuleImplementation>

   <OutputType>System.Windows.Event.Data</OutputType>

</DataSourceModuleType>

See Also

Module Types Detail
Type Definitions Section
Probe Action Module Detail

A probe action module is used to produce output by querying external data. This module type does not change the system state.

[image: image60.png]| ManagementPaciProbeActionModuleType

Configuration &

ProbeActionModuleType

Foutputiype

Finputtype

\
\
\
Wodueimplementation B
\
\
\
\





A probe action module has one input and one output stream. The input to a probe action can be by a specific data type or by a trigger only. A trigger-only probe action implies that this probe does not interpret its input data type. The input data type exists only to activate the probe.

A probe action is stateless by definition.

Probe Action Module Attributes

	Name
	Type
	Use
	Details

	PassThrough
	xsd:boolean
	Optional
	Indicates that the module type does not change the input data type.


Examples

The following example is the Windows registry probe:

<ProbeActionModuleType ID="System.Windows.RegistryDataProbe" Accessibility="Public">

   <Configuration>

      <IncludeSchemaTypes>

        <SchemaType>

          System.Windows.RegistryAttributeDefinitionsSchema

        </SchemaType>

</IncludeSchemaTypes>

      <xsd:element name="ComputerName" type="xsd:string"/>

<xsd:element name="RegistryAttributeDefinitions" type="RegistryAttributeDefinitionsType"/>

   </Configuration>

<ModuleImplementation>

   <Native>

      <ClassID>472364F2-A1F0-41C0-9A8F-E00C92C2AB31</ClassID>

     </Native>

   </ModuleImplementation>

   <OutputType>System.Windows.RegistryData</OutputType>

   <InputType>System!System.BaseData</InputType>

</ProbeActionModuleType>

The following is the Windows service state probe, which is an example of a trigger-only probe action module:

<ProbeActionModuleType ID="System.Windows.ServiceStateProbe" Accessibility="Public">

   <Configuration>

      <xsd:element name="ServiceName" type="xsd:string"/>

   </Configuration>

   <ModuleImplementation>

      <Native>

         <ClassID>D9E9B922-6C2F-40DF-8D70-F406C0EFFBDE</ClassID>

      </Native>

   </ModuleImplementation>

   <OutputType>System.Windows.ServiceStateData</OutputType>

   <TriggerOnly>true</TriggerOnly>

</ProbeActionModuleType>

See Also

Module Types Detail
Type Definitions Section
Condition Detection Module Detail

A condition detection module is used to filter data into a workflow. Examples from Operations Manager 2005 include the performance data average calculator, the performance threshold numeric calculator, and the regular expression parser for events. 

[image: image61.png]ConditionDetectionModuleType C}

Cor

ration £

OuerridableParametors

Modulelmplementation G

Foutputiype

InputTypes B

ConditionDetectionModuleType





The schema for a condition detection module consists of the standard sections described in the type definitions detail section of this reference, plus one or more input types.

[image: image62.png]InputTypes E3—{ - T InputType

Y





A condition detection module may have multiple inputs if it is a correlation module.

Condition Detection Module Attributes

	Name
	Type
	Use
	Details

	Stateful
	xsd:boolean
	Optional
	Indicates whether the condition module keeps internal state. Stateless modules can only process data items synchronously, and the runtime can create and destroy these modules without affecting the defined business logic.

	PassThrough
	xsd:boolean
	Optional
	Indicates that the module type does not change the input data.


Condition Detection Module Examples

The following illustration shows the effect of the Passthrough flag on a condition detection module:

[image: image63.png]Do Souee

pormarcsbasTe

Tota Souree

[

Condition Detection

ot T
RoSasTpe

passTugves

Portmancs 0 Too

Coriton Detecian

FasThoughetio

| mwomaree





In this example, the output data type is Performance Data when the passthrough flag is set, and Root Data when the passthrough flag is not set.

The following example shows the expression filter condition detection module:

<ConditionDetectionModuleType ID="System.ExpressionFilter" Accessibility="Public" Stateful="false" PassThrough="true" Batching="true">

   <Configuration>

      <IncludeSchemaTypes>

         <SchemaType>System.ExpressionEvaluatorSchema</SchemaType>

      </IncludeSchemaTypes>

      <xsd:element name="Expression" type="ExpressionType"/>

   </Configuration>

   <ModuleImplementation>

      <Native>

         <ClassID>C6410789-C1BB-4AF1-B818-D01A5367781D</ClassID>

      </Native>

   </ModuleImplementation>

   <OutputType>System.BaseData</OutputType>

   <InputTypes>

      <InputType>System.BaseData</InputType>

   </InputTypes>

</ConditionDetectionModuleType>

See Also

Module Types Detail
Type Definitions Section
Write Action Module Detail

A Write Action is a module that updates the system state when triggered. It always has one input stream and one or zero output streams. A write action uses the input stream to trigger the update. Write Actions may optionally have an Output Type with 0 or 1 output streams.

[image: image64.png]WriteActionModuleType L





The schema for a write action module consists of the following sections, which are discussed in Module Types Detail:


Standard Attributes


Configuration


Overridable Parameters


Module Implementation


Output Type (optional)


Input Type

Write Action Module Example

Below is the System.Health.SetStateAction, which is a write-action module type that is used to set the state of a specific monitor.

<WriteActionModuleType ID="System.Health.SetStateAction" Accessibility="Public">

   <Configuration>

      <xsd:element name="ManagementGroupId" type="xsd:string" minOccurs="0" maxOccurs="1"/>

      <xsd:element name="ManagedEntityId" type="xsd:string" minOccurs="0" maxOccurs="1"/>

      <xsd:element name="MonitorId" type="xsd:string" minOccurs="0" maxOccurs="1"/>

   </Configuration>

   <ModuleImplementation>

      <Native>

         <ClassID>c6b267da-715f-4684-b436-17fe85c17822</ClassID>

      </Native>

   </ModuleImplementation>

   <InputType>System.BaseData</InputType>

</WriteActionModuleType>

See Also

Module Types Detail
Type Definitions Section
Composite Module Detail

Composite modules types are constructed from other module types. A composite module type can be made up of other simple module types, as well as other composite module types. Once defined, these module types can be used as part of rules, tasks, or monitors just like any unit module type.

Composite Module Type Definitions

Composite module types are declared in the same way as unit module types. They are one of the following types:


Data source


Probe action


Condition detection


Write action

The standard properties and the configuration of a composite module type are exactly the same as for a unit module type. Therefore, when using a module type as a part of a rule/task/monitor, we do not need to know if it is a unit or a composite module type. That is purely an implementation detail.

The only difference in a unit module type is the module implementation section of the type definition. This section contains the following information:


A list of member modules that are part of the composition.


The configuration to be passed to the member modules.


Details of how these member modules are connected together in the composition.

The composite schema definition is as follows:

[image: image65.png]MemberModules
Composite E-{ E—{
Composition





The member modules in the composition are listed under the <MemberModules> tag. For each member module in the composition, configuration information needs to be specified. The schema for configuration of each member module would have already been defined (as an XSD) in the corresponding member module’s configuration section.


Constants


References to data that is a part of a composite module’s configuration. This mapping is provided using an XPATH expression.



[image: image66.png]



Each member module has an identifier that uniquely identifies that member module in this composition. 

Composite Module Type Examples

The System.Windows.WmiQueryProvider example shown below creates a composition from a SimpleScheduler data source and a WmiQueryProbe probe action. The WmiQueryProvider takes the following configuration:

<Configuration>

   <IncludeSchemaTypes>

      <SchemaType TypeID="System.Windows.WmiQuerySchema"/>

   </IncludeSchemaTypes>

   <xsd:element name="NameSpace" type="xsd:string"/>

   <xsd:element name="Query" type="xsd:string"/>

   <xsd:element name="Params" type="WmiParamListType"/>

   <xsd:element name="Frequency" type="xsd:unsignedInt"/>

</Configuration>

The configuration is passed through to the two modules that make up this composition, as shown below:

<MemberModules>

   <DataSource TypeID="System!System.SimpleScheduler" ID="Scheduler">

      <Interval>$Config/Frequency$</Interval>

   </DataSource>

   <ProbeAction TypeID="System.Windows.WmiQueryProbe" ID="Probe">

      <NameSpace>$Config/NameSpace$</NameSpace>

      <Query>$Config/Query$</Query>

      <Params>$Config/Params$</Params>

   </ProbeAction>

</MemberModules>

The logic on how these member modules are linked together is stored in the Composition element of the module type. The rules governing composition are described in the conceptual section of the authoring guide.

[image: image67.png]Composition 3~ 5

Hode





Based on the composition rules, member modules are connected together in a “shrinking” tree. This means that the member modules are combined in order to have one output stream from a composite module.

A way to describe this kind of a composition is to start from the right and traverse this shrinking tree from right to left and specify all the nodes in the composition.

Nodes are chained together as required using the following schema:

[image: image68.png]o
| MPModuleCompositiontlodeType. ‘





For the WmiQueryProvider discussed in this section, the composition is as follows:

<Composition>

   <Node ID="Probe">

      <Node ID="Scheduler"/>

   </Node>

</Composition>

This describes the following module flow:

[image: image69.png]System iindows.Wmillueryschema

Simplescheduler

utput stream

wmiGuaryProbe





The complete module type definition is as follows:

<DataSourceModuleType ID="System.Windows.WmiQueryProvider" Accessibility="Public">

   <Configuration>

      <IncludeSchemaTypes>

         <SchemaType TypeID="System.Windows.WmiQuerySchema"/>

      </IncludeSchemaTypes>

      <xsd:element name="NameSpace" type="xsd:string"/>

      <xsd:element name="Query" type="xsd:string"/>

      <xsd:element name="Params" type="WmiParamListType"/>

      <xsd:element name="Frequency" type="xsd:unsignedInt"/>

</Configuration>

<ModuleImplementation>

         <Composite>

            <MemberModules>

         <DataSource TypeID="System!System.SimpleScheduler" ID="Scheduler">

                  <Interval>$Config/Frequency$</Interval>

               </DataSource>

             <ProbeAction TypeID="System.Windows.WmiQueryProbe" ID="Probe">

                <NameSpace>$Config/NameSpace$</NameSpace>

                <Query>$Config/Query$</Query>

                <Params>$Config/Params$</Params>

             </ProbeAction>

          </MemberModules>

          <Composition>

             <Node ID="Probe">

                <Node ID="Scheduler"/>

             </Node>

          </Composition>

       </Composite>

   </ModuleImplementation>

   <OutputType>System!System.PropertyBagData</OutputType>

</DataSourceModuleType>

See Also

Module Types Detail
Type Definitions Section
Monitor Types Detail

The monitor type section consists of zero or more unit monitor type definitions:

[image: image70.png]UnitMonitor Type.





The definition of a unit monitor type consists of four sections:

[image: image71.png]I managementpackunitmonitorType |

MonitorTypeStates.

Configuration &

Unithonitor Type





Each monitor type has three attributes:

	Name
	Type
	Use
	Details

	ID
	ManagementPackUniqueIdentifier
	Required
	Represents an internal identifier for this type. This identifier must be unique in the namespace of this management pack.

	Comment
	ManagementPackString
	Optional
	Comment field for use by the management pack author.

	Accessibility
	ManagementPackAccessibility
	Required
	This setting determines whether other management packs can reference/reuse this monitor type. 


Monitor Type State

A monitor can have a number of operational states. Logic will exist in the implementation section to determine the current state of the monitor. For example, a Service Health monitor can be in Running and NotRunning states; a Performance Counter monitor can be in UnderThreshold, AtThreshold, and OverThreshold states.

The corresponding health state of a monitor is not defined in this section—that is left to the monitor definition that uses this monitor type. See the monitors section for more information.

Every monitor type state defined in this section has an identifier that is unique in the monitor states section of the monitor type being defined. The attributes of a monitor type state are as follows:

	Name
	Type
	Use
	Details

	ID
	ManagementPackLocalIdentifierReference
	Required
	Represents an internal identifier for this type. This identifier is unique in this type definition.

	Comment
	ManagementPackString
	Optional
	Comment field for use by the management pack author.

	NoDetection
	xsi:boolean
	Optional
	If set to true, this means the state cannot be detected by MOM. For example, this is the case for a two-state event monitor where only the problem event is detected—there is no anti-event.


There must be at least two monitor type states defined in this section:

[image: image72.png]Monitor TypeStates F3—{—- =

Monitor TypeState

B





The following is an example of a simple two-state monitor type where both states can be detected:

<MonitorTypeStates>
<MonitorTypeState ID="UnderThreshold"/>
<MonitorTypeState ID="OverThreshold"/>
</MonitorTypeStates>
The following is an example of a two-state monitor type where only one state can be detected:

<MonitorTypeStates>
<MonitorTypeState ID="ProblemEventRaised"/>
<MonitorTypeState ID="ResetEventRaised" NoDetection="true"/>
</MonitorTypeStates>
Monitor Type Configuration

Each monitor type requires configuration in order to instantiate. This is similar to the module type configuration discussed previously. This section contains a valid XSD that defines the configuration that is needed by this monitor type. This section can reference a schema type that was defined in the Schema Types section. The configuration section has the following schema:

[image: image73.png]! mpconfigurationschematype





Override Parameters

Each monitor type can take an optional section to indicate which parameters can be overridden.

[image: image74.png]OverridableParameters F3—{~-— [





Each parameter has the following attributes:

	Name
	Type
	Use
	Details

	ID
	ManagementPackUniqueIdentifier
	Required
	Represents an internal identifier for this type. This identifier is unique in the namespace of the management pack.

	Comment
	ManagementPackString
	Optional
	Comment field for use by the  management pack author.

	Selector
	ManagementPackLongString
	Required
	Information not available in this release.

	ParameterType
	ManagementPackEntityPropertyTypes
	Required
	Information not available in this release.


Monitor Implementation

The monitor implementation section of the monitor type is where the definition of how to detect the state of the monitor is stored. This can map to code that can be executed by the run time. 

[image: image75.png]RequDetecton

OnbemandDetection




For a unit monitor type, the implementation section can define either one workflow that produces a monitor state change data type or a separate workflow for each operational state of the monitor.

The following diagram shows one workflow that produces a monitor state change date type:

[image: image76.png]~nit Monitor Type_

Regular Detection

DataSource  ——

Probe Action  (———»(

Condition
Detection

ou

"On Demand Detection

0.

Monilor State Change Data Type




The diagram below shows a monitor implementation with separate workflows:

[image: image77.png]Unit Monitor Type-

Datasoucet [
Condiion Condtion Condition Outut Siream
Detection 1 [ Detection 2 [ Detecton 3 peratonal Siate 1
Probe Acton 1 [
DataSoucet [
Condiion Ouput Stream
Detection 4 peratonal Siate
Probe Action2 | ——»
DataSource2 [
Condiion Condition Ouiput Stream
Detection3 [~ Detection 5 peraonal Sate 3’
Probe Action | ——»

AT





Member Modules

The member modules that make up this unit monitor type are listed under the <MemberModules> tag. The following types of modules can be used in this section:


Data source


Probe action


Condition detection

Any set of these modules shown in the following diagram can be defined:

[image: image78.png]



For each member module, configuration information needs to be specified. The configuration schema of each member module should have already been defined (as an XSD) in the corresponding member module’s configuration section.

The following values can be used in member module configuration:


Constants


References to data that is a part of a monitor type’s configuration. This mapping is provided using an XPATH expression. 

Each member module has an identifier that uniquely identifies that member module in the context of this monitor type.

The following sample shows the member modules section of a two-state performance monitor type:

<MemberModules>
<DataSource ID="DataSource" TypeID="System.Performance.DataProvider">
<ComputerName>$Config/ComputerName$</ComputerName>
<CounterName>$Config/CounterName$</CounterName>
<ObjectName>$Config/ObjectName$</ObjectName>
<InstanceName>$Config/InstanceName$</InstanceName>
<AllInstances>$Config/AllInstances$</AllInstances>
<Frequency>$Config/Frequency$</Frequency>
</DataSource>
<ConditionDetection ID="UnderThresholdFilter" TypeID="System.ExpressionFilter">
<Expression>
<SimpleExpression>
<ValueExpression>
<XPathQuery>Value</XPathQuery>
</ValueExpression>
<Operator>LessEqual</Operator>
<ValueExpression>
<Value VariantType="VT_R8">$Config/Threshold$</Value>
</ValueExpression>
</SimpleExpression>
</Expression>
</ConditionDetection>
<ConditionDetection ID="OverThresholdFilter" TypeID="System.ExpressionFilter">
<Expression>
<SimpleExpression>
<ValueExpression>
<XPathQuery>Value</XPathQuery>
</ValueExpression>
<Operator>Greater</Operator>
<ValueExpression>
<Value VariantType="VT_R8">$Config/Threshold$</Value>
</ValueExpression>
</SimpleExpression>
</Expression>
</ConditionDetection>
</MemberModules>
In the above example, there are three member modules. The first is a data source module that provides a performance counter value which accepts the computer, counter, object, instance name, all instances, and frequency configuration values as configuration.

The second and third member modules are both condition detection modules with different configurations. The OverThresholdFilter condition evaluates to "true" if the performance value is over the threshold value specified as configuration for the monitor, and the UnderThresholdFilter condition evaluates to "true" if the value is less than or equal to the threshold value.

Regular Detection

Regular detection determines the state a monitor is in, based on either periodic polling or event-based observations. Regular detection can be defined by combining a data source module with a condition detection module, as shown in the following diagram:

[image: image79.png]0)stream

Data Source

Condiion
Detaction

1
i sroan— (1) stream o
i

)





The regular detection section defines the way member modules are connected together in a monitor workflow. This section is very similar to the composition section of composite module types:

[image: image80.png]RegularDetection F}— -]

| | MPMonitorTypeDetect

Derection EJT(.)} el





The detection element has a single attribute:

	Name
	Type
	Use
	Details

	MonitorTypeStateID
	ManagementPackLocalIdentifierReference
	Required
	Reference to a monitor type state ID that was defined in the MonitorTypeStates section of this unit monitor.


The following sample shows a unit monitor that has been defined to provide a separate workflow for each monitor state defined: 

<RegularDetection>
<Detection MonitorTypeStateID="UnderThreshold">
<Node ID="UnderThresholdFilter">
<Node ID="DataSource"/>
</Node>
</Detection>
<Detection MonitorTypeStateID="OverThreshold">
<Node ID="OverThresholdFilter">
<Node ID="DataSource"/>
</Node>
</Detection>
</RegularDetection>
On-Demand Detection

On-demand detection is a probe-based detection that can be defined by combining a trigger-only probe action module with one or more condition detection modules. On-demand detection determines the state of a monitor when triggered. 

[image: image81.png]— (1) siream-m{

Probe Action

(1) seam—mi

It

Condiion
Detection

1) strsam -




Regular detection and on-demand detection can be a part of the same workflow, as illustrated in the following diagram:

[image: image82.png]~nit Monftor Type

DaaSource | ——»f

Conditon

Output Stream

Probe Action  [———»|

Detection





Unit Monitor Type Example

The following example shows a two-state threshold monitor type:

<UnitMonitorType ID="System.Performance.ThresholdMonitorType" Accessibility="Public">
<MonitorTypeStates>
<MonitorTypeState ID="UnderThreshold"/>
<MonitorTypeState ID="OverThreshold"/>
</MonitorTypeStates>
<Configuration>
<xsd:element name="ComputerName" type="xsd:string" minOccurs="0" maxOccurs="1"/>
<xsd:element name="CounterName" type="xsd:string"/>
<xsd:element name="ObjectName" type="xsd:string"/>
<xsd:element name="InstanceName" type="xsd:string" minOccurs="0" maxOccurs="1"/>
<xsd:element name="AllInstances" type="xsd:boolean" minOccurs="0" maxOccurs="1"/>
<xsd:element name="Frequency" type="xsd:unsignedInt"/>
<xsd:element name="Threshold" type="xsd:string"/>
</Configuration>
<MonitorImplementation>
<MemberModules>
<DataSource ID="DataSource" TypeID="System.Performance.DataProvider">
<ComputerName>$Config/ComputerName$</ComputerName>
<CounterName>$Config/CounterName$</CounterName>
<ObjectName>$Config/ObjectName$</ObjectName>
<InstanceName>$Config/InstanceName$</InstanceName>
<AllInstances>$Config/AllInstances$</AllInstances>
<Frequency>$Config/Frequency$</Frequency>
</DataSource>
<ConditionDetection ID="UnderThresholdFilter" TypeID="System.ExpressionFilter">
<Expression>
<SimpleExpression>
<ValueExpression>
<XPathQuery>Value</XPathQuery>
</ValueExpression>
<Operator>LessEqual</Operator>
<ValueExpression>
<Value VariantType="VT_R8">$Config/Threshold$</Value>
</ValueExpression>
</SimpleExpression>
</Expression>
</ConditionDetection>
<ConditionDetection ID="OverThresholdFilter" TypeID="System.ExpressionFilter">
<Expression>
<SimpleExpression>
<ValueExpression>
<XPathQuery>Value</XPathQuery>
</ValueExpression>
<Operator>Greater</Operator>
<ValueExpression>
<Value VariantType="VT_R8">$Config/Threshold$</Value>
</ValueExpression>
</SimpleExpression>
</Expression>
</ConditionDetection>
</MemberModules>
<RegularDetection>
<Detection MonitorTypeStateID="UnderThreshold">
<Node ID="UnderThresholdFilter">
<Node ID="DataSource"/>
</Node>
</Detection>
<Detection MonitorTypeStateID="OverThreshold">
<Node ID="OverThresholdFilter">
<Node ID="DataSource"/>
</Node>
</Detection>
</RegularDetection>
</MonitorImplementation>
</UnitMonitorType>
See Also

Type Definitions Detail
Type Definitions Section
Monitoring Detail

This section covers the details of the monitoring section of the management pack schema.

In This Section

Rules Detail
Discoveries Detail
Tasks Detail
Monitors Detail
Diagnostics Detail
Recoveries Detail
Overrides Detail
See Also

Management Pack Schema Details
Monitoring Section
Rules Detail

The rules section consists of zero or more rules.

[image: image83.png]



A rule is formed by combining modules according to the following restriction:

[image: image84.png]i !
! |
| Condiion

I
Sonditon  f—(1)stream-m  Wite Acton

Oatasource[—(1.1) sream-

T o TN




Rules Composition

A simple (non-correlation) rule contains the following:


A data source module


One condition detection module (optional)


One or more write action modules

A correlation rule contains the following:


A list of data source modules


One condition detection module that is stateful


Takes as many inputs as the list of data source modules


One or more write action modules

Each rule combines modules as discussed in the rule Concepts section of this guide. There can be one or more data sources; a single, optional condition detection module; and one or more write actions:

[image: image85.png]DataSources E}-{~~-— 5| DataSource

1=

P

MPTargetedDataSourceModuleReference





[image: image86.png]MPTargetedConditionDetectionModuleReference

Conditionbetection EH{=—— )5

WriteActions E3{~~— T WriteAction

1=

[ WPTargeteawriteActionModulcReterence. |

(R By




Rule Schema

The schema for a rule is as follows:

[image: image87.png]Rule

| mrute

Feategory.

Datasources B





Additional Rules Concepts and Limitations

Every rule in Operations Manager 2007 is targeted to an Entity Types Detail (referred to as "Computer Groups" in Operations Manager 2005). This behavior differs from Operations Manager 2005, which allowed rules to be created without being assigned to a managed entity type/computer group. 

When different modules are connected together to form a rule (as per the restrictions stated above), these modules must have compatible input and output Data Types Detail. For example, a data source module that produces performance data can only be matched with a condition module (for example, the threshold analyzer module) that consumes the performance data type or the root data type. This will be verified as a part of the management pack validation process which is executed during import/export of management packs.

Processing Rule Groups (PRGs) do not exist in Operations Manager 2007. Since each rule is directly targeted to a Managed Entity Type, there is no requirement to group rules into PRGs before associating them to Computer Groups. (Computer Groups in Operations Manager 2005 terminology corresponds to Managed Entity Types in Operations Manager 2007 terminology.)

A particular rule can be targeted to only one managed entity type. If multiple managed entity types need to share the same rule, this problem can be addressed by modeling the entity relationships in a better way. For example, if we have a Performance Collection rule that should be targeted to both Windows 2000 Servers and Windows 2003 Servers, instead of creating two copies of this rule (each rule associated with one managed entity type), the better solution is to use inheritance. This can be done by creating a new managed entity type called Windows Servers (have Windows 2000 Servers and Windows 2003 Servers inherit from this type) and targeting this rule to the new managed entity type. 

In general, there are three ways to target a rule to multiple managed entities:


Use inheritance. This is the preferred method and ensures that there is only one copy of the rule. 


Use composite modules. Create composite module(s) with the common functionality, and reuse these composite modules in different rules.


Copy the rule and target the copy to a new managed entity. This is the least preferred method, since it requires that the Management Pack author maintain multiple copies of the same rule (least preferred).

A rule's data source module target has to be lower in the managed entity type hierarchy tree than the rule's condition detection module’s target, which in turn should be lower in the hierarchy than the write actions target.

Rules Attributes

A rule has the following attributes:

	Name
	Type
	Use
	Details

	ID
	ManagementPackUniqueIdentifier
	Required
	Unique identifier in the management pack namespace for the rule.

	Comment
	ManagementPackString
	Optional
	Comment field for use by the Management Pack author.

	Enabled
	xsd:boolean
	Required
	Identifies if the rule is enabled or disabled.

	Target
	ManagementPackIdentifierReference
	Required
	Indicates the entity type that this rule targets.

	Confirm Delivery
	xsd:boolean
	Optional
	Used by the runtime that determines if the rule will execute across failure/restart.

	Remoteable
	xsi:boolean
	Optional
	Indicates whether the module can execute in an agentless fashion, i.e., a workflow is executing on behalf of another machine.

	Priority
	ManagementPackWorkflowPriority
	Optional
	The relative priority of the workflow.


Note   Rules do not have accessibility attributes. This is because the only references that are allowed on rules from other management packs are policy references. Other management packs cannot extend rules from this management pack in any way.

Each module (data source, condition detection, and write action) that is a part of the rule has the following attributes:

	Name
	Type
	Use
	Details

	ID
	ManagementPackUniqueIdentifier
	Required
	Unique identifier within the context of the rule.

	Comment
	ManagementPackString
	Optional
	Comment field for use by the management pack author.

	TypeID
	ManagementPackIdentifierReference
	Required
	The module type that this module is an instance of.

	RunAs
	ManagementPackIdentifierReference
	Optional
	References a secure reference element in the management pack (or a referenced management pack).  The module will execute under the account that is given to this reference.


The write action module has one additional, optional attribute called Target. The target is a ManagementPackIdentifierReference and is used to form a distributed workflow. The target will be the Operations Manager server class for workflows that insert data to the Operations Manager database. With the exception of this special case, all module targets need to be specified by walking relationships from the rule target.

Rule Example

Below is an example of a performance data collection rule that combines a single data source and a single write action:

<Rule ID="Microsoft.Demo.NTService.CollectHandleCount" Target="Microsoft.Demo.NTService" Enabled="true">

   <Category>PerfData Collection</Category>

   <DataSources>

      <DataSource ID="DS" TypeID="System!System.Performance.LinkedDataProvider">    <ComputerName>$Target/Host/Property[Type="Windows!System.Windows.Computer"]/PrincipalName$</ComputerName>

         <CounterName>Handle Count</CounterName>

         <ObjectName>Process</ObjectName>

         <InstanceName>spoolsv</InstanceName>

         <Frequency>60</Frequency>

      </DataSource>

   </DataSources>

   <WriteActions>

      <WriteAction ID="WA" TypeID="Mom!System.Mom.Performance.DataCollector" Target="Mom!System.Mom.Server"/>

   </WriteActions>

</Rule>

See Also

Monitoring Section
Discoveries Detail

The Discoveries element contains all object discoveries for this Management Pack. Most classes and all relationship types that you define in your Management Pack must have one or more object discoveries. Object discoveries can also find the values for properties defined as part of your classes and relationships. 

The Discoveries element has no attributes and only one sub-element, the Discovery element. Each object discovery is defined in a separate Discovery element. All Discovery elements are contained in a single Discoveries element.

Discovery Element

A discovery is defined as:

[image: image88.png]‘FMJ gementPackbiscovery

‘ Feategory.

rscovery S | Dcoveryies

| =




The Discovery element defines how Operations Manager finds the actual objects on a network that your Management Pack is designed to monitor. This element also populates the properties of each discovered object and creates the relationships that are declared in the RelationshipTypes element of your Management Pack. 

Discovery Element Attributes

Use a separate Discovery element for each data source you are using to discover objects. Discovery elements are contained in a single Discoveries element. Each Discovery element has six attributes, two of which are required.

	Discovery Attribute
	Accepted Value
	Description

	ID
	String
	Required. The name of this discovery. 

	Target
	String
	Required. Specifies the value of the ID attribute of a class type. The value for the Target attribute must be a class whose objects have already been discovered.

	Enabled
	True
False
	Optional. Defines whether this discovery runs automatically after the Management Pack is imported. A value of False means that this discovery does not run unless an Operations Manager administrator creates an override that changes this value to True.

	ConfirmDelivery
	True
False
	Optional. Specifies whether this object discovery should remove a bookmark it places in the data source until it receives confirmation that the Operations Manager database has received that data. This value should be set to True if the data source has a data store such as the Windows Event log or other log files. This value should be set to False if the data source does not have a data store. This might include data sources such as performance data, WMI, and SNMP.

	Remoteable
	True
False
	Optional. Indicates whether this discovery can run against an agentless monitored computer.

	Comment
	String
	Optional. A description of this discovery. 


Target Attribute

The Target attribute identifies the class whose objects your discovery will search. When choosing the target of your discovery, keep in mind that the discovery you are defining will not run until the discovery for the target class has run. For example, if your discovery is looking for an application that runs on Microsoft Windows-based computers, you can target your discovery at the Windows Computer class from the Microsoft Windows Library (Microsoft.Windows.Library.MP). Because the Microsoft Windows Library is imported when Operations Manager installs, you know that any discoveries contained in it have already run. Additionally, every Windows-based computer on the network that imports your Management Pack will run your discovery. 

If you can use a more specific class and it fits the two criteria, your discovery can run on fewer computers. For example, if your application runs only on a Windows server operating system and does not run on a client operating system, you can select the Windows Server Role class instead. 

Object discoveries are run in order so that the first object discovery listed in your Discoveries element is the first discovery that runs. The first discovery that you write should be for the highest class in your product model hierarchy. After that discovery runs, you can then discover the components of your product. You can target these discoveries at the classes in your own Management Pack.

See Also

Rules Detail
DiscoveryTypes Detail
DataSource Detail
DiscoveryTypes Detail

The DiscoveryTypes element declares the classes and relationships that define the type of objects that this discovery finds on a network. It also declares the properties defined in these classes and relationships for which this discovery finds values. 

The DiscoveryTypes element has no attributes and two optional sub-elements: DiscoveryClass and DiscoveryRelationship. Multiple DiscoveryClass and DiscoveryRelationship elements can be contained in a single DiscoveryTypes element. 

[image: image89.png]



This element contains a collection of discovery classes and discovery relationships.  For every class and relationship type that is discovered, a separate element will be created.  

DiscoveryClass Element

A discovery rule can discover one or many types of classes and relationships. For each class and relationship type, the discovery script may discover none, some, or all properties. Each property that is discovered will be defined:

[image: image90.png]| ManagementpackDiscoverytel

DiscoveryRelationship E3{=—— =





The DiscoveryClass element requires a TypeID attribute and can also have Property sub-elements. The TypeID attribute is the name of the class whose objects are located by this discovery. The Property element identifies a property whose value you want this discovery to find.

Note   Any properties that are a key property, designated by the Key attribute in the Property sub-element of a ClassType element, must be discovered in the same Discovery element that finds objects of that class.

Property Element

You must define a Property sub-element for every property whose value you want to discover. Each Property element has two possible attributes: PropertyID and TypeID. The PropertyID attribute is required and contains the name of a property whose value you want to discover. The property name is defined in the ClassTypes element of the discovery class. The TypeID attribute is optional and is needed only if the property is inherited from another class. The value of the TypeID attribute is the ID attribute of the class from which you inherited the property. 

The following is an example of a DiscoveryClass element with four Property sub-elements: 

<DiscoveryClass TypeID="SCLibrary!Microsoft.SystemCenter.HealthService">

  <Property PropertyID="Version" />

  <Property PropertyID="ActionAccountIdentity" />

</DiscoveryClass>

The management pack author must correctly define the data that is discovered, since it is not possible for the management pack verification tool to identify all discovery types.

A single data source is used for discovery rules. This can obviously be a composed set of modules. Often a scheduler and probe action will be used in a composed data source type to perform discovery on a scheduled interval.

DiscoveryRelationship Element

The DiscoveryRelationship element requires a TypeID attribute and can also have Property sub-elements. The TypeID attribute is the name of the relationship that is created by this discovery. 

Create a Property sub-element for every property whose value you want to discover. Each Property element requires a PropertyID attribute, whose value is the name of the property defined in the RelationshipTypes element. 

Example

Following is an example of the DiscoveryTypes element:

<Discovery ID="Microsoft.SystemCenter.DiscoverWindowsOSProperties" 

  Comment="Discovers OS properties using WMI" 

  Enabled="true" 

  Target="Windows!Microsoft.Windows.Computer" 

  ConfirmDelivery="false" 

  Remotable="true" 

  Priority="Normal">

  <Category>Discovery</Category>

  <DiscoveryTypes>

    <DiscoveryClass TypeID="Windows!Microsoft.Windows.OperatingSystem">

    <Property TypeID="System!System.Entity" PropertyID="DisplayName" />

      <Property PropertyID="OSVersion" />

      <Property PropertyID="OSVersionDisplayName" />

      <Property PropertyID="BuildNumber" />

      <Property PropertyID="CSDVersion" />

      <Property PropertyID="ServicePackVersion" />

      <Property PropertyID="SerialNumber" />

      <Property PropertyID="InstallDate" />

      <Property PropertyID="SystemDrive" />

      <Property PropertyID="WindowsDirectory" />

    </DiscoveryClass>

  </DiscoveryTypes>

See Also

Monitoring Section
Monitoring Detail
DataSource Detail

The DataSource element defines what data source your discovery will search and what data it is looking for in that data source. You can define only one data source for each Discovery element. The DataSource element requires an ID and a TypeID attribute. The value of the ID attribute is a name for the data source module. The TypeID attribute identifies which data source module type you are using. Module types are reusable pieces that reduce the configuration data needed when creating monitoring objects. The module type you choose controls the sub-elements and attributes that are required in the DataSource element.

If you use a module type that is defined in the libraries imported as part of the Operations Manager installation, you do not need to define a module type. If no module type is available for the action you want to perform, you must create your own module type. For more information about module types, see the Common Module Types section of this guide.

If the properties you are discovering for the same class come from separate sources, you will have to define a discovery for each type of Data Source. For example, there are two sets of discoveries that populate properties on the Microsoft.Windows.OperatingSystem class:


Discovery ID="Microsoft.SystemCenter.DiscoverWindowsProductType": This discovery uses the registry module to discover a property.


Discovery ID="Microsoft.SystemCenter.DiscoverWindowsOSProperties": This discovery uses the WMI module to discover properties.

Available Data Source Module Types for Discovery

Operations Manager provides data source module types for common data sources that contain the type of data needed for discovery. 


Registry: 


Microsoft.Windows.FilteredRegistryDiscoveryProvider


WMI: 


Microsoft.Windows.WmiProviderWithClassSnapshotDataMapper


Microsoft.Windows.WmiProviderWithRelationshipSnapshotDataMapper


Group Membership: 


Microsoft.SystemCenter.GroupPopulator

The module types used for the registry and WMI are defined in the Microsoft Windows Library (Microsoft.Windows.Library.MP). The module type used for group membership is defined in the Microsoft System Center Library (Microsoft. SystemCenter.Library.MP).

Example

The example below shows the DiscoveryTypes section for each discovery. In the TypeID node below (highlighted and emphasized), you will see where the data for this discovery is coming from:

<Discovery ID="Microsoft.SystemCenter.DiscoverWindowsOSProperties" 

  Comment="Discovers OS properties using WMI" 

  Enabled="true" 

  Target="Windows!Microsoft.Windows.Computer" 

  ConfirmDelivery="false" 

  Remotable="true" 

  Priority="Normal">

  <Category>Discovery</Category>

  <DiscoveryTypes>

    <DiscoveryClass TypeID="Windows!Microsoft.Windows.OperatingSystem">

      <Property TypeID="System!System.Entity" PropertyID="DisplayName" />

      <Property PropertyID="OSVersion" />

      <Property PropertyID="OSVersionDisplayName" />

      <Property PropertyID="BuildNumber" />

      <Property PropertyID="CSDVersion" />

      <Property PropertyID="ServicePackVersion" />

      <Property PropertyID="SerialNumber" />

      <Property PropertyID="InstallDate" />

      <Property PropertyID="SystemDrive" />

      <Property PropertyID="WindowsDirectory" />

    </DiscoveryClass>

  </DiscoveryTypes>

  <DataSource 

    ID="DiscoveryDataSource" 

   TypeID="Windows!Microsoft.Windows.WmiProviderWithClassSnapshotDataMapper">

<Discovery ID="Microsoft.SystemCenter.DiscoverWindowsProductType" 

  Comment="Discovers Operating System - ProductType property" 

  Enabled="true" 

  Target="Windows!Microsoft.Windows.Computer" 

  ConfirmDelivery="false" 

  Remotable="true" 

  Priority="Normal">

  <Category>Discovery</Category>

  <DiscoveryTypes>

    <DiscoveryClass TypeID="Windows!Microsoft.Windows.OperatingSystem">

      <Property PropertyID="ProductType" />

    </DiscoveryClass>

  </DiscoveryTypes>

  <DataSource 

    ID="DiscoveryDataSource" 

    TypeID="Windows!Microsoft.Windows.RegistryDiscoveryProvider">

See Also

DataSource Element Detail for Group Population
DataSource Element Detail for Registry-Based Discovery
DataSource Element Detail for WMI-Based Discovery
DataSource Element Detail for Group Population

The DataSource element is used to define the location of discovery data. The configuration of the DataSource element depends on which data source module type you use to access the data source. Operations Manager provides data source module types for common data sources used for discovery. The module type provided by Operations Manager for group membership is the Group Populator module type (Microsoft.SystemCenter.GroupPopulator). This module type is defined in the Microsoft SystemCenter Library (Microsoft.SystemCenter.Library.MP).

DataSource Attributes

The DataSource element requires an ID and TypeID attribute. The value of the ID attribute is a name for the data source module you are defining. The TypeID attribute identifies the module type you are using for this data source. If you are using the data source module type provided by Operations Manager for population of groups, the value of the TypeID attribute is SC!Microsoft.SystemCenter.GroupPopulator.

DataSource Elements

The Group Populator module type requires three sub-elements for the DataSource element: RuleID, GroupInstancesID, and MembershipRules.

RuleID

The RuleID element specifies the name of the set of rules that are created to govern the membership of this group. 

GroupInstanceID

The GroupInstanceID element specifies the name of each object that the membership rules are run against. For this discovery to run for every discovered object of the target class, you need to use a $Target variable for this value. For more information about the notation used for variables, see the Variable Notation section of the management pack reference.

MembershipRules

The MembershipRules element determines the objects that will be members of this group. Use a separate MembershipRule element for each rule you need. All MembershipRule elements are contained in a single MembershipRules element. Neither element has any attributes.

Each MembershipRule element contains MonitoringClass and RelationshipClass elements. The MonitoringClass element identifies the class that can have members in this group. The RelationshipClass element identifies the containment relationship that the monitoring class has with this group. You can use the $MPElement variable as the value for these elements because you want to apply this membership rule to each discovered object of this class. For more information about the notation used for variables, see the Variable Notation section of the management pack reference

Group Population Discovery Example

In this example, the Target attribute of the Discovery element identifies the group that will be populated. Because all groups are designated as singleton in the ClassType that creates the group, you do not need any value in the DiscoveryTypes element. The values of the RuleID and GroupInstancesID elements are variables, so this discovery runs for every discovered Microsoft.SystemCenter.ManagedComputer. 

<Discovery ID="Microsoft.SystemCenter.PopulateSCAgentManagedComputerGroup" 

  Enabled="true" 

  Target="Microsoft.SystemCenter.AgentManagedComputerGroup" 

  ConfirmDelivery="false" 

  Remotable="true" 

  Priority="Normal">

  <Category>Discovery</Category>

  <DiscoveryTypes/>

  <DataSource 

    ID="GroupPopulator" 

    TypeID="Microsoft.SystemCenter.GroupPopulator">

    <RuleId>$MPElement$</RuleId>

    <GroupInstanceId>$Target/Id$</GroupInstanceId>

    <MembershipRules>

      <MembershipRule>

        <MonitoringClass>

          $MPElement[Name="Microsoft.SystemCenter.ManagedComputer"]$

        </MonitoringClass>

        <RelationshipClass>

          $MPElement[Name="SystemCenter.ComputerGroupContainsComputer"]$

        </RelationshipClass>

        <Expression>

          <Contains>

            <MonitoringClass>

              $MPElement[Name="Microsoft.SystemCenter.Agent"]$

            </MonitoringClass>

          </Contains>

        </Expression>

      </MembershipRule>

    </MembershipRules>

  </DataSource>

</Discovery>

See Also

Discoveries Detail
DataSource Detail
DataSource Element Detail for Registry-Based Discovery

The DataSource element is used to define the location of discovery data. The configuration the DataSource element requires depends on which data source module type you use to access the data source. Operations Manager provides data source module types for common data sources used for discovery. The module type provided by Operations Manager for discovery data in the registry is the Registry Discovery Provider module type (Microsoft.Windows.FilteredRegistryDiscoveryProvider), defined in the Microsoft Windows Library (Microsoft.Windows.Library.MP).

Several sub-elements in the DataSource element use variables. For more information about these variables, see the Variable Notation section of the management pack reference.

DataSource Attributes

The DataSource element requires two attributes, and they are ID and TypeID. The ID attribute specifies a name for the data source that you are creating. The TypeID attribute specifies the module needed to access the registry. If you are using the data source module type provided by Operations Manager for discovery data that is in the registry, the value of the TypeID attribute is Microsoft.Windows.FilteredRegistryDiscoveryProvider. 

The following is an example of a DataSource start tag in an object discovery that uses the registry data source module type:

<DataSource ID="MyRegistryDiscoveryDataSource" TypeID="Windows!Microsoft.Windows.FilteredRegistryDiscoveryProvider">

DataSource Sub-Elements for Registry Discoveries

The Registry Discovery Provider module type requires six sub-elements to the DataSource element: ComputerName, RegistryAttributeDefinitions, Frequency, ClassID, InstanceSettings, and Expression.

ComputerName Element

The ComputerName element identifies the computer whose registry you want to check for discovery data. Because you want to check every computer that belongs to the target class of this discovery, you need to use a $Target variable.

The following is an example of a ComputerName element:

<ComputerName>\\$Target/Host/Property[Type="Windows!Microsoft.Windows.Computer"]/NetworkName$</ComputerName>

RegistryAttributeDefinitions Element

The RegistryAttributeDefinitions element contains a RegistryAttributeDefinition sub-element for every value that is gathered from the registry. The RegistryAttributeDefinition element has four sub-elements: AttributeName, Path, PathType, and AttributeType. The following table describes each element.

	Element
	Description

	AttributeName
	Specifies a name for the attribute you are creating. No spaces are allowed.

	Path
	Specifies a path to the registry key or value, such as SOFTWARE\Microsoft\Windows NT \CurrentVersion\CurrentVersion.

	PathType
	Indicates the data type of the value:

•0 – Boolean

•1 – String

•2 – Integer

•3 - Float

	AttributeType
	Indicates whether the path specifies a key or value:

•0 – Key

•1 – Value


The following XML example displays the syntax of the RegistryAttributeDefinitions element with only one attribute defined:

<RegistryAttributeDefinitions>

  <RegistryAttributeDefinition>

    <AttributeName>DatabaseServerName</AttributeName>

    <Path>SOFTWARE\Microsoft\Microsoft Operations Manager\3.0\Setup\DatabaseServer</Path>

    <PathType>1</PathType>

    <AttributeType>1</AttributeType>

  </RegistryAttributeDefinition>

  <RegistryAttributeDefinition>

    <AttributeName>DatabaseName</AttributeName>

    <Path>SOFTWARE\Microsoft\Microsoft Operations Manager\3.0\Setup\DatabaseName</Path>

    <PathType>1</PathType>

    <AttributeType>1</AttributeType>

  </RegistryAttributeDefinition>
</RegistryAttributeDefinitions>

Frequency Element

The Frequency element specifies how often you want to rerun this discovery to find whether there are new instances of a class in the network. The value of the Frequency element is in seconds.

The following is an example of the Frequency element:

<Frequency>3600</Frequency>

ClassID Element

The ClassID element specifies the name of the class whose objects are being discovered. This element can be in the same Management Pack or a referenced Management Pack. To refer to a class that is defined in another Management Pack, use the Management Pack alias and an exclamation point (!) followed by the full name of the class, as specified in the class's ID attribute. You can use the $MPElement variable to retrieve the GUID of this class.

The following is an example of the ClassID element:

<ClassId>$MPElement[Name="SCLibrary!Microsoft.SystemCenter.OpsMgrDBWatcher"]$</ClassId>

InstanceSettings Element

The InstanceSettings element defines how to map discovered data to the correct property value of a class or relationship. All registry attributes that are collected are available for mapping to properties. The InstanceSettings element has no attributes and requires a Settings element. Each Settings element can contain multiple Setting elements. Each Setting element requires Name and Value sub-elements. In the Name element, you need to use the $MPElement variable to set the name of the property for each discovered object because you won't know the names of the objects that have been discovered. The $Target variable retrieves the value of the property of each discovered element.

In the following example, the Name element retrieves the GUID of the property named PrincipalName from every discovered instance. The Value element retrieves the value of the PrincipalName property from every discovered instance.

<InstanceSettings>

  <Settings>

    <Setting>

      <Name>

       $MPElement[Name="Windows!Microsoft.Windows.Computer"]/PrincipalName$

      </Name>

      <Value>

        $Target/Host/Property[Type="Windows!Microsoft.Windows.Computer"]/PrincipalName$

      </Value>

    </Setting>

    <Setting>

      <Name>

      $MPElement[Name="SCLibrary!Microsoft.SystemCenter.OpsMgrDBWatcher"]/DatabaseServer$

      </Name>

      <Value>

        $Data/Values/DatabaseServerName$

      </Value>

    </Setting>

    <Setting>

      <Name>

        $MPElement[Name="SCLibrary!Microsoft.SystemCenter.OpsMgrDBWatcher"]/DatabaseName$

      </Name>

      <Value>

        $Data/Values/DatabaseName$

      </Value>

    </Setting>

    <Setting>

      <Name>

        $MPElement[Name="System!System.Entity"]/DisplayName$

      </Name>

      <Value>

        $Target/Host/Property[Type="Windows!Microsoft.Windows.Computer"]/PrincipalName$

      </Value>

    </Setting>

  </Settings>

</InstanceSettings>

Expression Element

The Expression element contains a query that acts as a filter so that not every value found in the registry creates a discovered instance of a class. If the expression evaluates to true, the instance is created; otherwise, the instance is not created. 

The Expression element contains one or more SimpleExpression elements. In the following example, the expression checks the version of every DNS server that is discovered to make sure that only DNS servers using version 6.0, as defined by the Value element, become discovered objects of a class.

<Expression>

  <SimpleExpression>

    <ValueExpression>

      <XPathQuery>Values/DatabaseServerName</XPathQuery>

    </ValueExpression>

    <Operator>NotEqual</Operator>

    <ValueExpression>

      <Value/>

    </ValueExpression>

  </SimpleExpression>
</Expression>

Registry-Based Discovery Example

The following object discovery example uses the registry as a data source.

<Discovery ID="Microsoft.SystemCenter.OpsMgrDBWatcher.Discovery" 

  Enabled="true" 

  Target="SCLibrary!Microsoft.SystemCenter.RootManagementServer" 

  ConfirmDelivery="false" 

  Remotable="false" 

  Priority="Normal">

  <Category>Discovery</Category>

  <DiscoveryTypes>

    <DiscoveryClass TypeID="SCLibrary!Microsoft.SystemCenter.OpsMgrDBWatcher">

      <Property TypeID="System!System.Entity" PropertyID="DisplayName"/>

      <Property PropertyID="DatabaseServerName"/>

      <Property PropertyID="DatabaseName"/>

    </DiscoveryClass>

  </DiscoveryTypes>

  <DataSource ID="RegistryDataSource" 

    RunAs="System!System.PrivilegedMonitoringAccount" 

    TypeID="Windows!Microsoft.Windows.FilteredRegistryDiscoveryProvider">

    <ComputerName>

      \\$Target/Host/Property[Type="Windows!Microsoft.Windows.Computer"]/NetworkName$

    </ComputerName>

    <RegistryAttributeDefinitions>

      <RegistryAttributeDefinition>

        <AttributeName>DatabaseServerName</AttributeName>

        <Path>

          SOFTWARE\Microsoft\Microsoft Operations Manager\3.0\Setup\DatabaseServer

        </Path>

        <PathType>1</PathType>

        <AttributeType>1</AttributeType>

      </RegistryAttributeDefinition>

      <RegistryAttributeDefinition>

        <AttributeName>DatabaseName</AttributeName>

        <Path>

          SOFTWARE\Microsoft\Microsoft Operations Manager\3.0\Setup\DatabaseName

        </Path>

        <PathType>1</PathType>

        <AttributeType>1</AttributeType>

      </RegistryAttributeDefinition>

    </RegistryAttributeDefinitions>

    <Frequency>3600</Frequency>

    <ClassId>

      $MPElement[Name="SCLibrary!Microsoft.SystemCenter.OpsMgrDBWatcher"]$

    </ClassId>

    <InstanceSettings>

      <Settings>

        <Setting>

          <Name>

            $MPElement[Name="Windows!Microsoft.Windows.Computer"]/PrincipalName$

          </Name>

          <Value>

          $Target/Host/Property[Type="Windows!Microsoft.Windows.Computer"]/PrincipalName$

          </Value>

        </Setting>

        <Setting>

          <Name>

      $MPElement[Name="SCLibrary!Microsoft.SystemCenter.OpsMgrDBWatcher"]/DatabaseServer$

          </Name>

          <Value>

            $Data/Values/DatabaseServer$

          </Value>

        </Setting>

        <Setting>

          <Name>

        $MPElement[Name="SCLibrary!Microsoft.SystemCenter.OpsMgrDBWatcher"]/DatabaseName$

          </Name>

          <Value>

            $Data/Values/DatabaseName$

          </Value>

        </Setting>

        <Setting>

          <Name>

            $MPElement[Name="System!System.Entity"]/DisplayName$

          </Name>

          <Value>

          $Target/Host/Property[Type="Windows!Microsoft.Windows.Computer"]/PrincipalName$

          </Value>

        </Setting>

      </Settings>

    </InstanceSettings>

    <Expression>

      <SimpleExpression>

        <ValueExpression>

          <XPathQuery>Values/DatabaseServerName</XPathQuery>

        </ValueExpression>

        <Operator>NotEqual</Operator>

        <ValueExpression>

          <Value/>

        </ValueExpression>
      </SimpleExpression>
    </Expression>
  </DataSource>
</Discovery> 

See Also

Discoveries Detail
DataSource Detail
DataSource Element Detail for WMI-Based Discovery

The DataSource element is used to define the location of discovery data. The configuration of the DataSource element depends on which data source module type you use to access the data source. Operations Manager provides data source module types for common data sources used for discovery. The module type provided by Operations Manager for discovery data in Windows Management Instrumentation (WMI) is the WMI Provider module type (Microsoft.Windows.WmiProviderWithClassSnapshotDataMapper). This module type is defined in the Microsoft Windows Library (Microsoft.Windows.Library.MP).

Several of the sub-elements in the DataSource element use variables. For more information about these variables, see the Variable Notation section of the management pack reference.

DataSource Attributes

The DataSource element requires two attributes and they are ID and TypeID. The ID attribute specifies a name for the data source that you are creating. The TypeID attribute specifies the module needed to access WMI. If you are using the data source module type provided by Operations Manager for discovery data in WMI, the value of the TypeID attribute is Windows!Microsoft.Windows.WmiProviderWithClassSnapshotDataMapper. 

DataSource Sub-Elements for WMI Discoveries

The WMI Provider module type requires five sub-elements to the DataSource element: NameSpace, Query, Frequency, ClassID, and InstanceSettings.

Namespace Element

The NameSpace element identifies the computer and the parts of the WMI namespace that are queried. The computer name should always be expressed using the $Target variable. 

Following is an example of namespace configuration using the $Target variable:

<NameSpace>\\$Target/Property[Type="Windows!Microsoft.Windows.Computer"]/NetworkName$\ROOT\CIMV2</NameSpace>

Query Element

The Query element specifies the WMI query language (WQL) query to run against the value of the NameSpace element. This Query element requires a select statement and the use of the $Target variable. 

The following example uses the AgentName property of the SQL Server DB Engine class. This class is the target of this discovery:

<Query>SELECT * FROM Win32_OperatingSystem WHERE CSName =  ‘$Target/Property[Type="Windows!Microsoft.Windows.Computer"]/NetworkName$’</Query>

Frequency Element

The Frequency element specifies how often you want to rerun this discovery to find new instances of a class in the network. The value of the Frequency element is in seconds.

The following is an example of the Frequency element:

<Frequency>3600</Frequency>

ClassID Element

This ClassID element specifies the name of the class whose objects are being discovered. This element can be in the same Management Pack or a referenced Management Pack. To refer to a class that is defined in another Management Pack, use the Management Pack alias and an exclamation point (!) followed by the full name of the class, as specified in the class's ID attribute. You can use the $MPElement variable to retrieve the GUID of this class.

The following is an example of the ClassID element:

<ClassId>$MPElement[Name="Windows!Microsoft.Windows.OperatingSystem"]$</ClassId>

InstanceSettings Element

This InstanceSettings element defines how to map discovered data to the correct property value of a class or relationship. All registry attributes that are collected can be mapped to properties. The InstanceSettings element has no attributes and requires a Settings element. Each Settings element can contain multiple Setting elements. Each Setting element requires a Name and a Value sub-element. In the Name element, you need to use the $MPElement variable to set the name of the property for each discovered object because you won't know the names of the objects that have been discovered. The $Target variable retrieves the property value of each discovered element.

In the following example, the Name element retrieves the GUID of the property named PrincipalName from every discovered instance. The Value element retrieves the value of the PrincipalName property from every discovered instance.

<InstanceSettings>

  <Settings>

    <Setting>

      <Name>

        $MPElement[Name="Microsoft.Windows.Computer"]/PrincipalName$

      </Name>

      <Value>

        $Target/Property[Type="Microsoft.Windows.Computer"]/PrincipalName$

      </Value>

    </Setting>

    <Setting>

      <Name>

        $MPElement[Name="Microsoft.Windows.OperatingSystem"]/OSVersion$

      </Name>

      <Value>$Data/Property[@Name='Version']$</Value>

    </Setting>

    <Setting>

      <Name>

        $MPElement[Name="Microsoft.Windows.OperatingSystem"]/OSVersionDisplayName$

      </Name>

      <Value>$Data/Property[@Name='Caption']$</Value>

    </Setting>

    <Setting>

      <Name>

        $MPElement[Name="Microsoft.Windows.OperatingSystem"]/BuildNumber$

      </Name>

      <Value>$Data/Property[@Name='BuildNumber']$</Value>

    </Setting>

    <Setting>

      <Name>

        $MPElement[Name="Microsoft.Windows.OperatingSystem"]/CSDVersion$

      </Name>

      <Value>$Data/Property[@Name='CSDVersion']$</Value>

    </Setting>

    <Setting>

      <Name>

        $MPElement[Name="Microsoft.Windows.OperatingSystem"]/ServicePackVersion$

      </Name>

      <Value>

$Data/Property[@Name='ServicePackMajorVersion']$.$Data/Property[@Name='ServicePackMinorVersion']$

      </Value>

    </Setting>

    <Setting>

      <Name>

        $MPElement[Name="Microsoft.Windows.OperatingSystem"]/SerialNumber$

      </Name>

      <Value>$Data/Property[@Name='SerialNumber']$</Value>

    </Setting>

    <Setting>

      <Name>

        $MPElement[Name="Microsoft.Windows.OperatingSystem"]/InstallDate$

      </Name>

      <Value>$Data/Property[@Name='InstallDate']$</Value>

    </Setting>

    <Setting>

      <Name>

        $MPElement[Name="Microsoft.Windows.OperatingSystem"]/SystemDrive$

      </Name>

      <Value>$Data/Property[@Name='SystemDrive']$</Value>

    </Setting>

    <Setting>

      <Name>

        $MPElement[Name="Microsoft.Windows.OperatingSystem"]/WindowsDirectory$

      </Name>

      <Value>$Data/Property[@Name='WindowsDirectory']$</Value>

    </Setting>

    <Setting>

      <Name>

        $MPElement[Name="Microsoft.Windows.OperatingSystem"]/PhysicalMemory$

      </Name>

      <Value>$Data/Property[@Name='TotalVisibleMemorySize']$</Value>

    </Setting>

    <Setting>

      <Name>

        $MPElement[Name="System!System.Entity"]/DisplayName$

      </Name>

      <Value>$Data/Property[@Name='Caption']$</Value>

    </Setting>

  </Settings>

</InstanceSettings>

Example

The following example shows how the Discovery element uses Windows Management Instrumentation (WMI) as a data source for discovery information.

<Discovery ID="Microsoft.SystemCenter.DiscoverWindowsOSProperties" 

  Comment="Discovers OS properties using WMI" 

  Enabled="true" 

  Target="Windows!Microsoft.Windows.Computer" 

  ConfirmDelivery="false" 

  Remotable="true" 

  Priority="Normal">

  <Category>Discovery</Category>

  <DiscoveryTypes>

    <DiscoveryClass TypeID="Windows!Microsoft.Windows.OperatingSystem">

      <Property TypeID="System!System.Entity" PropertyID="DisplayName"/>

      <Property PropertyID="OSVersion"/>

      <Property PropertyID="OSVersionDisplayName"/>

      <Property PropertyID="BuildNumber"/>

      <Property PropertyID="CSDVersion"/>

      <Property PropertyID="ServicePackVersion"/>

      <Property PropertyID="SerialNumber"/>

      <Property PropertyID="InstallDate"/>

      <Property PropertyID="SystemDrive"/>

      <Property PropertyID="WindowsDirectory"/>

    </DiscoveryClass>

  </DiscoveryTypes>

  <DataSource 

    ID="DiscoveryDataSource" 

    TypeID="Windows!Microsoft.Windows.WmiProviderWithClassSnapshotDataMapper">

    <NameSpace>

\\$Target/Property[Type="Windows!Microsoft.Windows.Computer"]/NetworkName$\ROOT\CIMV2

    </NameSpace>

    <Query>SELECT * FROM Win32_OperatingSystem</Query>

    <Frequency>3600</Frequency>

    <ClassId>

      $MPElement[Name="Windows!Microsoft.Windows.OperatingSystem"]$

    </ClassId>

    <InstanceSettings>

      <Settings>

        <Setting>

          <Name>

            $MPElement[Name="Microsoft.Windows.Computer"]/PrincipalName$

          </Name>

          <Value>

            $Target/Property[Type="Microsoft.Windows.Computer"]/PrincipalName$

          </Value>

        </Setting>

        <Setting>

          <Name>

            $MPElement[Name="Microsoft.Windows.OperatingSystem"]/OSVersion$

          </Name>

          <Value>$Data/Property[@Name='Version']$</Value>

        </Setting>

        <Setting>

          <Name>

     $MPElement[Name="Microsoft.Windows.OperatingSystem"]/OSVersionDisplayName$

          </Name>

          <Value>$Data/Property[@Name='Caption']$</Value>

        </Setting>

        <Setting>

          <Name>

            $MPElement[Name="Microsoft.Windows.OperatingSystem"]/BuildNumber$

          </Name>

          <Value>$Data/Property[@Name='BuildNumber']$</Value>

        </Setting>

        <Setting>

          <Name>

            $MPElement[Name="Microsoft.Windows.OperatingSystem"]/CSDVersion$

          </Name>

          <Value>$Data/Property[@Name='CSDVersion']$</Value>

        </Setting>

        <Setting>

          <Name>

       $MPElement[Name="Microsoft.Windows.OperatingSystem"]/ServicePackVersion$

          </Name>

          <Value>

$Data/Property[@Name='ServicePackMajorVersion']$.$Data/Property[@Name='ServicePackMinorVersion']$

          </Value>

        </Setting>

        <Setting>

          <Name>

            $MPElement[Name="Microsoft.Windows.OperatingSystem"]/SerialNumber$

          </Name>

          <Value>$Data/Property[@Name='SerialNumber']$</Value>

        </Setting>

        <Setting>

          <Name>

            $MPElement[Name="Microsoft.Windows.OperatingSystem"]/InstallDate$

          </Name>

          <Value>$Data/Property[@Name='InstallDate']$</Value>

        </Setting>

        <Setting>

          <Name>

            $MPElement[Name="Microsoft.Windows.OperatingSystem"]/SystemDrive$

          </Name>

          <Value>$Data/Property[@Name='SystemDrive']$</Value>

        </Setting>

        <Setting>

          <Name>

         $MPElement[Name="Microsoft.Windows.OperatingSystem"]/WindowsDirectory$

          </Name>

          <Value>$Data/Property[@Name='WindowsDirectory']$</Value>

        </Setting>

        <Setting>

          <Name>

           $MPElement[Name="Microsoft.Windows.OperatingSystem"]/PhysicalMemory$

          </Name>

          <Value>$Data/Property[@Name='TotalVisibleMemorySize']$</Value>

        </Setting>

        <Setting>

          <Name>

            $MPElement[Name="System!System.Entity"]/DisplayName$

          </Name>

          <Value>$Data/Property[@Name='Caption']$</Value>

        </Setting>

      </Settings>

    </InstanceSettings>

  </DataSource>

</Discovery>

See Also

Management Pack Sections
Tasks Detail

The tasks section consists of zero or more tasks.

[image: image91.png]



The task consists of a single instance of a probe action or write action module type that has been defined in the Module Types Detail section of the management pack (referenced management pack):

[image: image92.png]



[image: image93.png]



The module that forms the task has the following attributes:

	Name
	Type
	Use
	Details

	ID
	ManagementPackUniqueIdentifier
	Required
	Unique identifier within the context of the task.

	Comment
	ManagementPackString
	Optional
	Comment field for use by the management pack author.

	TypeID
	ManagementPackIdentifierReference
	Required
	The module type that this module is an instance of.

	RunAs
	ManagementPackIdentifierReference
	Optional
	References a secure reference element in the management pack (or referenced management pack). The module will execute under the account that is given to this reference.


For a write action task, the module also takes the optional Target attribute that can specify where to execute the task. (See Rules Detail for more details on write action targeting.)

Task Targeting

Every task in Operations Manager 2007 is targeted to a single Managed Entity Type.

If multiple managed entity types need to share the same task, this problem can be addressed with one of the following methods: 


Using managed entity inheritance where possible. This is the most preferred method. 


Use composite modules. Create a composition where all the task implementation and fixed parameters for task configuration are specified in the composition. Reuse the composite modules for creating tasks targeted to multiple managed entities. This method can reduce maintenance.


Copy the task and target the copy to a new managed entity. This is the least preferred method, since it requires the management pack author to maintain multiple copies of the same task.

Task Schema

The schema for a task is illustrated below.

[image: image94.png]F«; sk o

e
|





Task Attributes

A task has the following attributes:

	Name
	Type
	Use
	Details

	ID
	ManagementPackUniqueIdentifier
	Required
	Unique identifier in the management pack  namespace for the task.

	Comment
	ManagementPackString
	Optional
	Comment field for use by the management pack author.

	Accessibility
	ManagementPackAccessibility
	Required
	Determines whether other management packs can reference this task in knowledge.  

	Enabled
	xsd:boolean
	Required
	Indicates whether the task is enabled or disabled.

	Target
	ManagementPackIdentifierReference
	Required
	The entity type that this task targets.


Example

An example of a task that executes a write action is shown below (this stops a Windows service): 

<Task ID="Microsoft.Demo.NTService.StartService" Target="Microsoft.Demo.NTService" Accessibility="Public" Enabled="true">

   <Category>Maintainence</Category>

   <WriteAction ID="WA" TypeID="System!System.CommandExecuter">

      <ApplicationName/>

      <WorkingDirectory/>

      <CommandLine>net start $Target/Property[Type="Microsoft.Demo.NTService"]/ServiceName$</CommandLine>

      <TimeoutSeconds>60</TimeoutSeconds>

      <RequireOutput>true</RequireOutput>

      <FileContents/>

   </WriteAction>

</Task>

An example of a task that executes a write action is shown below. This task uses a target property to execute:

<Task ID="Microsoft.SQLServer.2005.StartSQLService" Target="Microsoft.SQLServer.2005.DBEngine" Accessibility="Public" Enabled="true">

  <Category>Maintenance</Category>

  <WriteAction ID="WA" TypeID="System!System.CommandExecuter">

    <ApplicationName></ApplicationName>

    <WorkingDirectory></WorkingDirectory>

    <CommandLine>net start $Target/Property[Type="Microsoft.SQLServer.2005.DBEngine"]/ServiceName$</CommandLine>

    <TimeoutSeconds>60</TimeoutSeconds>

    <RequireOutput>true</RequireOutput>

    <Files></Files>

  </WriteAction>

</Task>

See Also

Probe Action Module Detail
Write Action Module Detail
Composite Module Detail
Rules Detail
Monitors Detail

The monitors section consists of zero or more monitors.

[image: image95.png]



Monitors form a hierarchical tree. When specifying a monitor, the ParentMonitorID attribute must be set except for one monitor that is defined at the Entity class level (Entity Health). All further monitors eventually roll up to this monitor.

When a class is created, it inherits the monitor hierarchy of its parent class. The hierarchy can be extended for the new class as required to add to the health model.

Common Monitor Attributes

All monitors have the following common attributes:

	Name
	Type
	Use
	Details

	ID
	ManagementPackUniqueIdentifier
	Required
	Unique identifier in the management pack namespace for the monitor.

	Comment
	ManagementPackString
	Optional
	Comment field for use by the management pack author.

	Accessibility
	ManagementPackAccessibility
	Required
	Determines whether other management packs can roll up health from this monitor or to this monitor.  

	Enabled
	xsd:boolean
	Required
	Identifies whether the monitor is enabled or disabled.

	Target
	ManagementPackIdentifierReference
	Required
	The entity type that this monitor targets.

	ParentMonitorID
	ManagementPackIdentifierReference
	Optional
	The name of the monitor associated to the same entity type that this monitor rolls up to. All monitors will have a parent except the root level monitor for the entity type.

	Remoteable
	xsi:boolean
	Optional
	Indicates whether the module can execute in an agentless fashion, i.e., a workflow is executing on behalf of another machine.

	Priority
	ManagementPackWorkflowPriority
	Optional
	The relative priority of the workflow.


Aggregate Monitor

An aggregate monitor rolls up health from child monitors. It has an algorithm that defines the roll-up policy. The algorithm can be "best of" or "worst of".

[image: image96.png]ManagementPackAgaregateMonitor | ‘

| (= -Femeomy ‘
AgoregateMonitor E}H
5 FAgoritom \





The following is asample of an aggregate monitor:

<AggregateMonitor ID="System.EntityHealth" Accessibility="Public" Target="System.Entity" Enabled="true">

<Algorithm>WorstOf</Algorithm>

</AggregateMonitor>

Dependency Monitor

A dependency monitor rolls up health from a related entity. This entity must have a hosting or containment relationship to the entity that the monitor is targeted at.

[image: image97.png]gementPackDependencyMonit
- fomeony

T Atgorithm

DependencyMonitor

L Fembertontor





The member monitor points to a monitor ID on the target entity type so that health can be rolled up from any level of the monitor tree on this type.

This monitor type has an additional attribute:

	Name
	Type
	Use
	Details

	RelationshipType
	ManagementPackIdentifierReference
	Required
	The ID of the relationship type that the health will be rolled up from.

	MemberMonitor
	ManagementPackIdentifierReference
	Optional
	The monitor ID that state will be rolled up from.


The algorithm is one of the following:


Best of


Worst of


Percentage based


Weighted rollup



The member monitor points to a monitor ID on the target entity type so that health can be rolled up from any level of the monitor tree on this type.

Below is an example of a dependency monitor:

<DependencyMonitor ID="Microsoft.Demo.LocalApplicationHealth" Accessibility="Public" Target="Windows!System.Windows.Computer" Enabled="true" ParentMonitorID="System!System.EntityHealth" RelationshipType="Windows!System.Windows.ComputerHostsLocalApplication">

   <Algorithm>WorstOf</Algorithm>

   <MemberMonitor RefID="System!System.EntityHealth"/>

</DependencyMonitor>

Unit Monitor

A unit monitor is created from a specific monitor type that was defined in the Monitor Types section of this management pack or a referenced management pack.

[image: image98.png]— |

P oy

Unithontor





This monitor type has the following additional attributes:

	Name
	Type
	Use
	Details

	TypeID
	ManagementPackIdentifierReference
	Required
	The ID of the monitor type that this monitor is an instance of.

	Confirm Delivery
	xsd:boolean
	Optional
	This is a flag used by the runtime, meaning the monitor will execute across failure/restart. Refer to core documentation for more information.


The monitor defines a list of operational states that the monitor can be in:

[image: image99.png]OperationalStates [}~

OperationalState

Y





There is one operational state for each monitor type state. Each operational state has the following attributes:

	Name
	Type
	Use
	Details

	ID
	ManagementPackLocalIdentifierReference
	Required
	The ID of this state that is unique in the context of this monitor.

	MonitorTypeStateID
	ManagementPackIdentifierReference
	Required
	The monitor type state that this operational state refers to.

	HealthState
	MPMonitorHealthStates
	Required
	The MOM health state that this operational state translates to.


The following health states are available:


Error (Red – implies monitor is currently unhealthy)


Warning (Yellow – implies monitor is close to being unhealthy)


Success (Green – implies monitor is healthy)


No state (Gray – implies monitor’s health is currently unknown)

Examples

A sample of a monitor is shown below:

<UnitMonitor ID="Microsoft.Demo.NTService.ServiceRunning" Accessibility="Public" Target="Microsoft.Demo.NTService" Enabled="true" TypeID="Microsoft.Demo.CheckServiceState" ParentMonitorID="System!System.EntityHealth">

   <OperationalStates>

      <OperationalState HealthState="Success" MonitorTypeStateID="Running" ID="Success"/>

      <OperationalState HealthState="Error" MonitorTypeStateID="NotRunning" ID="Error"/>

   </OperationalStates>

  <Configuration>

<ServiceName>$Target/Property[Type="Microsoft.Demo.NTService"]/ ServiceName$</ServiceName>

   </Configuration>

</UnitMonitor>


Another sample of a performance threshold monitor:

<UnitMonitor ID="PerformanceThreshold_Processor__InterruptTimethresholdexceeded__2_Monitor" TypeID="System!System.Performance.ThresholdMonitorType" Target="MicrosoftWindows2000Servers_Installation" Enabled="true" Accessibility="Internal" ParentMonitorID="MomBackwardCompatibility!System.Mom.BackwardCompatibility.SoftwareInstallation.PerformanceHealth">

   <OperationalStates>

      <OperationalState ID="UnderThresholdOperationalState" MonitorTypeStateID="UnderThreshold" HealthState="Error" />

      <OperationalState ID="OverThresholdOperationalState" MonitorTypeStateID="OverThreshold" HealthState="Success" />

   </OperationalStates>

   <Configuration>

      <ComputerName>$Target/Host/Property [Type="Windows!System.Windows.Computer"]/PrincipalName$</ComputerName>

      <CounterName>% Interrupt Time</CounterName>

      <ObjectName>Processor</ObjectName>

      <InstanceName>_Total</InstanceName>

      <Frequency>300</Frequency>

      <Threshold>90</Threshold>

   </Configuration>

</UnitMonitor>

Here is a further monitor example where the monitor takes configuration using the properties of the target instance and its host:

<UnitMonitor ID="Microsoft.SQLServer.2005.ServerServiceMonitor" Accessibility="Public" Target="Microsoft.SQLServer.2005.DBEngine" Enabled="true" TypeID="Windows!System.Windows.NTService.CheckServiceState" ParentMonitorID="System!System.Availability">

  <Category>PerformanceHealth</Category>

  <OperationalStates>

    <OperationalState HealthState="Success" MonitorTypeStateID="Running" ID="Success"></OperationalState>

    <OperationalState HealthState="Error" MonitorTypeStateID="NotRunning" ID="Error"></OperationalState>

  </OperationalStates>

  <Configuration>

    <ComputerName>$Target/Host/Property[Type="Windows!System.Windows.Computer"]/PrincipalName$</ComputerName>

    <ServiceName>$Target/Property[Type="Microsoft.SQLServer.2005.DBEngine"]/ServiceName$</ServiceName>

  </Configuration>

</UnitMonitor>

See Also

Monitoring Detail
Monitoring Section
Diagnostics Detail

Diagnostics allow simple or complex troubleshooting workflows that can be executed automatically or on demand. One or more diagnostics can be defined in a management pack.

[image: image100.png]



[image: image101.png]Diagnostic

Feategory.





Diagnostics can specify a single condition detection module (optional) and a single probe action. These are defined in exactly the same manner as a rule.

Diagnostic Attributes

Diagnostics take the following attributes:

	Name
	Type
	Use
	Details

	ID
	ManagementPackUniqueIdentifier
	Required
	Unique identifier in the management pack namespace for the diagnostic.

	Comment
	ManagementPackString
	Optional
	Comment field for use by the management pack author.

	Accessibility
	ManagementPackAccessibility
	Required
	Determines whether other management packs can reference this diagnostic.

	Enabled
	xsd:boolean
	Optional
	Identifies whether the diagnostic is enabled or disabled. If the diagnostic is disabled, then it is an on-demand diagnostic. Otherwise, the diagnostic will execute automatically.

	Target
	ManagementPackIdentifierReference
	Required
	The entity type that this diagnostic targets.

	Monitor
	ManagementPackIdentifierReference
	Required
	The monitor ID that this diagnostic will run for.

	ExecuteOnState
	HealthState
	Required
	The state that the diagnostic will run for.

	Remotable
	xsi:boolean
	NA
	NA


The ExecuteOnState attribute can be one of the following:


Uninitialized


Success


Warning


Error

See Also

Rules Detail
Recoveries Detail

Recovery actions are defined to take automated or on-demand recovery actions.  They can be executed directly from a monitor state change or on demand by the user. One or more recoveries can be defined in a management pack.

[image: image102.png]



[image: image103.png]Recovery





The recovery can execute either on demand or automatically for a monitor state change (no diagnostic required) or on the output of a specific diagnostic.  

Recovery Attributes

The recovery takes the following attributes:

	Name
	Type
	Use
	Details

	ID
	ManagementPackUniqueIdentifier
	Required
	Unique identifier in the management pack namespace for the recovery.

	Comment
	ManagementPackString
	Optional
	Internal comment field for use by the management pack author.

	Accessibility
	ManagementPackAccessibility
	Required
	Determines whether other management packs can reference this recovery.

	Enabled
	xsd:boolean
	Optional
	Identifies whether the recovery is enabled or disabled. If the recovery is disabled, it will be on demand; otherwise, it will execute automatically.

	Target
	ManagementPackIdentifierReference
	Required
	Contains the entity type that this targets.

	Monitor
	ManagementPackIdentifierReference
	Required
	Contains the monitor ID that this recovery will run for.

	ExecuteOnState
	HealthState
	Optional
	Contains the state that the diagnostic will run for.

	ExecuteOnDiagnostic
	HealthState
	Optional
	Contains the diagnostic that should trigger this recovery.

	Remotable
	xsi:boolean
	NA
	Information not available in this release.


See Also

Diagnostics Detail
Monitors Detail
Overrides Detail

Information not available in this release.

[image: image104.png]RuleConfigurationOverride []
RulePropertyOverride B

Grermides B

Caegoryoveride

WMonitor ConfigurationOverride B
MonitorPropertyOverride Bl





[image: image105.png]\gementPackRuleConfigu

RuleConfigurationoverride E}L(.)} Vaiue





[image: image106.png]| ManagementpackRulePropertyoverride |

RulePropertyOverride E})-(.)}—vm..g [





[image: image107.png]| Managementpackategoryoverride

Categoryoverride EH{~— - Value ‘

| T -




[image: image108.png]| ManagementPackMonitor

Wonitor ConfigurationOverride EH-{we |- Value





[image: image109.png]| ManagementpackionitorPropertyOver

WonttorPropertyOverride QT(.)EF Vaiue




Templates Detail

The templates section of the management pack consists of one or more templates:

[image: image110.png]



Each template requires a configuration, references, and implementation section:

[image: image111.png]| MPTemplate

Eﬂ.}a{

\
\
References [
\

Implementation




Note that the contents of the template will not validate against the management pack schema as there are invalid attributes because they need to store references to the template configuration. Once the template is run, the resultant management pack or management pack fragment is validated before being created.

It is a template author (vendor) responsibility to ensure that the template contains correct schema to create a valid management pack.

Template Attributes

The template has two attributes:

	Name
	Type
	Use
	Details

	ID
	ManagementPackLocalIdentifierReference
	Required
	Represents an internal identifier for this type. This identifier is unique in the namespace of the management pack.

	Comment
	ManagementPackString
	Optional
	Internal comment field for use by the management pack author.


Template Configuration

The configuration section defines configuration items that must be set in order to run the template.  

[image: image112.png]! mpconfigurationschematype





The example below shows the configuration for the Windows Service template:

<Configuration>

<xsd:element name="Namespace" type="xsd:string" />

<xsd:element name="TypeName" type="xsd:string" />

<xsd:element name="ServiceName" type="xsd:string" />

<xsd:element name="LocaleId" type="xsd:string" />

<xsd:element name="TypeDisplayName" type="xsd:string" />

<xsd:element name="TypeDescription" type="xsd:string" />

<xsd:element name="DiscoveryIntervalSeconds" type="xsd:integer" />

</Configuration>

When running the template, all configuration information must be specified.  

References

The references section contains reference information that will be included in the management pack where the output is stored after running the template.

[image: image113.png]



Actual references must be defined in the management pack that contains the template prior to being used in this section. One template-specific reference that will not be defined in the management pack is used in this section to refer to the management pack that contains the template. This reference is named "Self." This will not be in the references section of the manifest because a management pack does not need to reference itself. However, the template needs some way of referencing the type definitions that are used in the template, as the resultant monitoring will end up in another management pack after the template is run.

As an example, the following references are defined in the manifest of the management pack holding the template:

<References>

<Reference Alias="System">

<ID>System.MP</ID>

<Version>6.0.0.0</Version>

<PublicKeyToken>31bf3856ad364e35</PublicKeyToken>

</Reference>

<Reference Alias="Windows">

<ID>System.Windows.MP</ID>

<Version>6.0.0.0</Version>

<PublicKeyToken>31bf3856ad364e35</PublicKeyToken>

</Reference>

<Reference Alias="Mom">

<ID>System.Mom.MP</ID>

<Version>6.0.0.0</Version>

<PublicKeyToken>31bf3856ad364e35</PublicKeyToken>

</Reference>

</References>

In a template definition stored in this management pack, the following references section is defined:

<References>

<Reference ID="Self" />

<Reference ID="System" />

<Reference ID="Windows" />

<Reference ID="Mom" />

</References>

When the template is run to produce a set of monitoring, the management pack where this monitoring ends up will have the following references (notice in particular the "Self" alias that has been created): 

<References>

<Reference Alias="Self">

<ID>Microsoft.WindowsService.Template.MP</ID>

<Version>6.0.0.0</Version>

<PublicKeyToken>31bf3856ad364e35</PublicKeyToken>

</Reference>

<Reference Alias="System">

<ID>System.MP</ID>

<Version>6.0.0.0</Version>

<PublicKeyToken>31bf3856ad364e35</PublicKeyToken>

</Reference>

<Reference Alias="Mom">

<ID>System.Mom.MP</ID>

<Version>6.0.0.0</Version>

<PublicKeyToken>31bf3856ad364e35</PublicKeyToken>

</Reference>

<Reference Alias="Windows">

<ID>System.Windows.MP</ID>

<Version>6.0.0.0</Version>

<PublicKeyToken>31bf3856ad364e35</PublicKeyToken>

</Reference>

</References>

Implementation

The implementation section contains a management pack fragment.  This is the template that will create the management pack fragment after running the template. This section follows the management pack schema definition. Configuration from the template is used to populate object names as well as configuration of management pack objects. The schema is defined as follows:  

[image: image114.png]| mMPTemplateSection

MPTemplateSection





Examples

In the following example, the configuration items namespace and configuration are used to define the name of a class type:

<TypeDefinitions>

<EntityTypes>

<ClassTypes>

<ClassType ID="$Config/Namespace$.$Config/TypeName$" Abstract="false" Accessibility="Public" Hosted="true" Base="$Reference/Self$!Microsoft.Windows.Service" />

</ClassTypes>

<RelationshipTypes />

</EntityTypes>

</TypeDefinitions>

The following example shows a monitor contained in the implementation section that uses configuration to the template to define the monitoring:

<UnitMonitor ID="$Config/Namespace$.$Config/TypeName$.ServiceRunning" Accessibility="Public" Target="$Config/Namespace$.$Config/TypeName$" Enabled="true" TypeID="$Reference/Self$!Microsoft.Windows.CheckServiceState" ParentMonitorID="$Reference/System$!System.EntityHealth">

<OperationalStates>

<OperationalState HealthState="Success" MonitorTypeStateID="Running" ID="Success"/>

<OperationalState HealthState="Error" MonitorTypeStateID="NotRunning" ID="Error"/>

</OperationalStates>

<Configuration>

<ServiceName>$Target/Property[Type="$Reference/Self$!Microsoft. Windows.Service"]/ServiceName$</ServiceName>

</Configuration>

</UnitMonitor>

See Also

Templates Section
Management Pack Schema Details
Presentation Types Detail

This topic covers the presentation types section of the Management Pack schema.

Views

The view types section consists of zero or more view type definitions.

[image: image115.png]



View Type Attributes

A view type has the following attributes:

	Name
	Type
	Use
	Details

	ID
	ManagementPackUniqueIdentifier
	Required
	Unique identifier in the management pack namespace for this view type.

	Comment
	ManagementPackString
	Optional
	Internal comment field for use by the management pack author.

	Accessibility
	ManagementPackAccessibility
	Required
	Determines whether views can be created from this type in other management packs. Valid values are either public or internal.


View Type Sections

Two sections are required for a view type definition: configuration and implementation.

[image: image116.png]| MeviewType [

o
e B | |
| Viewmptemerta





Configuration

When a view is created from a view type, configuration is required. This is similar to the configuration section of module types and monitor types and is an XSD that configuration must conform to. As with other configuration definitions it is possible to include schema types already defined in this management pack or a referenced management pack.

[image: image117.png]! mpconfigurationschematype





Implementation

A view type requires code to implement, so the view type must reference an assembly containing this code. This assembly must exist on the console where the view is opened and MOM is not responsible for distributing these assemblies.

The view implementation section requires an assembly and a type (only managed code is allowed).

[image: image118.png]



Below is a sample view type implementation:

<ViewType id="EventViewType" Accessibility="public">

   <IncludeSchemaTypes>

      <SchemaType TypeID="System.ViewCriteriaSchema"/>

   </IncludeSchemaTypes>

   <Configuration>

      <xsd:element name="Source" type="xsd:string" minOccurs="0"/>

      <xsd:element name="EventNumber" type="NumericCriteria" minOccurs="1" 

   maxOccurs="1" />

      <xsd:element name="Type" type=" xsd:string " />

      <xsd:element name="EventDescription" type=" xsd:string " />

      <xsd:element name="EventGeneratedTime" type="DateCriteria" />

   </Configuration>

   <ViewImplementation

      <Assembly>Microsoft.Mom.UI.Components</Assembly>

      <Type>Microsoft.EnterpriseManagement.Mom.UI.EventView</Type>

   </ViewImplementation>

</ViewType>

Reports

The report type section consists of zero or more report types.

[image: image119.png]-1 ReportType
ReportTypes. ReportTyp





[image: image120.png]Reporttype B2 TompintoroL





[image: image121.png]getllamespace |





[image: image122.png]


Note 

Further information on report types was not available for this release.

Images

The images section of the presentation types section can store zero or more image definitions.

[image: image123.png]



The image definition is defined as follows:

[image: image124.png]MPImage

\
| o]
e 1| |





The image requires the binary data for the image (stored in ImageData) and, optionally, can have image settings defined.

[image: image125.png]



Image Attributes

Each image has the following attributes:

	Name
	Type
	Use
	Details

	ID
	ManagementPackUniqueIdentifier
	Required
	Unique identifier in the management pack namespace.

	Comment
	ManagementPackString
	Optional
	Internal comment field for use by the management pack author.

	Category
	MPImageCategories
	Required
	
The following values are valid:


16x16Icon


32x32Icon


DiagramIcon


BmpIcon


StatusIcon


Image Example

Below is an example of a 16x16 image:

<Image Category="_16x16Icon" ID="ADSynchronizedGroup16">

<ImageData>89504E470D0A1A0A0000000D49484452000000100000001008060000001FF3FF610000000467414D410000AFC837058AE90000001974455874536F6674776172650041646F626520496D616765526561647971C9653C000003CB4944415478DA62FCFFFF3F0308342EB8F65788978DE1F79F7F977FFDF99B5E11AD7992010A7A975E7662616599C9F0EF97D2B3D7DF993A732D1861720001C40832A066E6995DAC1C9CAEE591EA0C6F3EFDFE7FF6E60786E76FBEBCFBF9E94520232B7FBD918EAC93200F3BE3B3D73F188E9DB9C0C0FEEF0543457614D81080006202117F7EFF7CFFE3DB370646462686A397DE32FEFAF98D5157915FE8D5A7FFFB14A4389DD4657918B93898194405D9183E7EFFCF5071E538CC010C0001043600E80AE1DFBFBE020D60607034126510E061633879E539E3DBB7AF58F4D4C419F9B918FF0BF232FDE7E562616063E564D8C62706370020802006FCFBC7FEEBC737B0C0DE332F191E3CFFCE60A92BC5C0C3C1C870E7F12786D5FB9E32FEFBCBC4C8C6CAC8C0C6F29BE1954D10DC008000021BF0EFDF1FDE9F3FBE30FCF8F58FC1D7468A414F4580E1F8A5C70C3C5CAC0C9FBFFC6470B710FDCFC9F9FF3F071B03032FC77F86FB0F9EC00D00082016A801DC7FFFFE067B819599898197879B41515A9081559281C150479CE1F3D7FF8C2C2C8C0C1C6CCC0C2AB2FC0C6E1A95405DEE60030002086CC0FFBFBFB999FFFF64F8F59781E1CBF7BF0CDF7EFC651017E2669002E273B7BF322C5A7A94E1C98B0F402F31304C6FF365B8F92187E1FC86F6FFDFBF7D65000820B0015F3F3D0306C37F86DB4FBF33FCFEF587818BE51F83AC183BC3A11BFF19662F3AC12023C6C4B0BA2E84E1C3E7EF0C551DBB18FC5ABC19E414BE301CD8BD8F012000004100BEFF03241A0731E3F105740D0C0A00D3D0CE000E07FB001E1A0F006D7EC300FC0B19001F231E00D3D6DF00B8B8D9005D5128003832190014000400270CDC00D7DDF1000288E9E78F5FE71C55BF31D8297D667037606390E5FBC820CCF39F61719F0BC3BD33A718E424F9804E6460E86AF061E007FAE1FB5F5E86C484D50C3FB84C19C4246418000288E5CFDFBF0C412146E044044A954CFF991918185F3230B2FE675835C99A2130730BC3E2896E0CF2622C0C8FDF30326415AC6610D3D767F04AD8C6509926C70010402C7FFFFC0587E6EFF7A7819A8419FEFCF9C9C0F89F858191898BE11F131FC3DC46490661AE7B0C5F3E0933C467ED63B0F47767F8C92CC2F0F2E903869E794FFE000410D35FA00BFE7C38CDF0FFC73B86BF6FCE01F10986DFAF0E31FC7EB99FE1FFAB830C8CDF1E3264D55D04CABF605834C983E1FF9F6F0C37F66D65607EFBBAFFCCAE5C56800062610226A569739F33FCFCFE93E1C78F1F0CBF7EFE61F807F40A2BD00B3C7CFF181C3CA58169E1254352F36386EF7F5E32880973337C7AF33CF9F4AEBC792097030410232C3B930B00020C000D806AF62A806FF30000000049454E44AE426082</ImageData>

</Image>

User Interface Pages

The management pack can contain zero or more reusable user interface (UI) page definitions.  

[image: image126.png]UlPages





Each UI page requires an implementation section:

[image: image127.png]E

UPage gﬂ.} implomentation B





This implementation section contains assembly and type information that defines the page. All UI pages are implemented in managed code only:

[image: image128.png]| meManagedimolementatio

MPManagedimplementation

Fassembly





User Interface Page Attributes

Each UI page has the following attributes:

	Name
	Type
	Use
	Details

	ID
	ManagementPackUniqueIdentifier
	Required
	Unique identifier in the management pack namespace for this UI page.

	Comment
	ManagementPackString
	Optional
	Comment field for use by the management pack author.

	Accessibility
	ManagementPackAccessibility
	Required
	Determines whether this UI page can be referenced by UIPageSets in another management pack. Either public or internal.


User Interface Page Example

The following example shows two UI page definitions:

<UIPages>

   <UIPage ID="System.UIPage.Windows.ServiceNameAndIntervalPage" Accessibility="Public">

      <Implementation>

         <Assembly>Microsoft.Mom.UI.Components</Assembly>

            <Type>Microsoft.EnterpriseManagement.Mom.Internal. UI.Modules.ServiceStateProviderPage</Type>

         </Implementation>

   </UIPage>

   <UIPage ID="System.UIPage.Windows.ServiceNamePage" Accessibility="Public">

      <Implementation>

         <Assembly>Microsoft.Mom.UI.Components</Assembly>

         <Type>Microsoft.EnterpriseManagement.Mom.Internal. UI.Modules.ServiceStateProbePage</Type>

      </Implementation>

   </UIPage>

</UIPages>

User Interface Page Sets

UI page sets are used to group together sets of UI pages defined in the same management pack or a referenced management pack (as long as the UI page is declared public). The page set describes the UI that will be shown for a module, monitor type, or template. The UI page sets section consists of zero or more UI page sets.

[image: image129.png]UlPageSets





Each page set has two attributes:

	Name
	Type
	Use
	Details

	ID
	ManagementPackUniqueIdentifier
	Required
	Unique identifier in the management pack namespace for this UI page set.

	Comment
	ManagementPackString
	Optional
	Comment field for use by the management pack author.

	TypeDefinitionID
	ManagementPackIdentifierReference
	Required
	The type that this page set targets. This will be a module type, monitor type, or template.


The page set has a set of references to UI pages and, optionally, an output transform:

[image: image130.png]| mpuIPageset

\
| UpageReterences B |
\





The UI page references element contains one-to-many UI page references that have been defined previously:

[image: image131.png]UIPageReferences 1~

UlPageReference

Y




Each UI page reference requires the following attributes:

	Name
	Type
	Use
	Details

	ID
	ManagementPackUniqueIdentifier
	Required
	Unique identifier in the management pack namespace for this UI page reference.

	Comment
	ManagementPackString
	Optional
	Comment field for use by the management pack author.

	PageID
	ManagementPackIdentifierReference
	Required
	A reference to a UI page already defined in this management pack or a referenced management pack.


The page set appends the output of each page together in the order in which they are shown to create the configuration output for the monitor, rule, or template.  Optionally, if an output transform is specified, this xslt is applied to the output configuration before it is submitted. This transform is specified in the Output Transform element of the UI page set:

[image: image132.png]



A UI page reference within the UI page set has the following schema:

[image: image133.png]



The title and subtitle control the display of the page in the UI. These are internal names, and they can be referenced in the language pack sections for friendly, localized text. The tab name controls the name of the tab that this page will appear on when displayed in a tab control. In this situation, the title and subtitle are not used. Normally a page reference will contain a title and a tab name at a minimum. The page set definition has no knowledge or information on how it will be displayed in the UI, e.g., as a wizard page or a tab page. How the page is used is a UI decision.

Optionally, a page can take input parameters. These parameters are used by the page implementation as required. Details on how to use these parameters are in the UI implementation specs and are not discussed further here. Input parameters can be any XML configuration.

[image: image134.png]



A UI page takes the configuration of target object as input; e.g.; when I open the properties of a monitor, the configuration of that monitor is passed to each page. A page may be interested in only part of this configuration, so it is possible to apply a transform to this configuration so that only the required configuration is used by the page. This optional transform is specified in the Input Transform element of the page reference:

[image: image135.png]



User Interface Page Sets Examples

Here is an example of a basic set containing a single page:

<UIPageSet ID="System.UIPageSet.Modules.Windows.Event.DataProvider" TypeDefinitionID="System.Windows.Event.DataProvider">

<UIPageReferences>

<UIPageReference ID="System.UIPageSet.Modules.Windows.Event.DataProvider.Reference1" PageID="System.UIPage.Windows.EventLogNamePage">

<InputParameters/>

<InputTransform/>

</UIPageReference>

</UIPageReferences>

<OutputTransform/>

</UIPageSet>

Here is a more complex example combining two pages together and using input transforms:

<UIPageSet ID="System.UIPageSet.Modules.Windows.Event.LinkedDataProvider" TypeDefinitionID="System.Windows.Event.LinkedDataProvider">

<UIPageReferences>

<UIPageReference ID="System.UIPageSet.Modules.Windows.Event.LinkedDataProvider.Reference1" PageID="System.UIPage.Windows.EventLogNamePage">

<InputParameters/>

<InputTransform>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" indent="yes" omit-xml-declaration="yes"/>

<xsl:template match="/">

<xsl:copy-of select="/ComputerName"/>

<xsl:copy-of select="/LogName"/>

</xsl:template>

</xsl:stylesheet>

</InputTransform>

</UIPageReference>

<UIPageReference ID="System.UIPageSet.Modules.Windows.Event.LinkedDataProvider.Reference2" PageID="System!System.UIPage.ExpressionBuilderPage">

<InputParameters>

<DataType>System.Event.Data</DataType>

</InputParameters>

<InputTransform>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" indent="yes" omit-xml-declaration="yes"/>

<xsl:template match="/">

<xsl:copy-of select="/Expression"/>

</xsl:template>

</xsl:stylesheet>

</InputTransform>

</UIPageReference>

</UIPageReferences>

<OutputTransform/>

</UIPageSet>

See Also

Presentation Types Section
Management Pack Schema Details
Presentation Detail

This topic contains details for the Presentation section of the management pack.

Console Tasks

A console task has the following schema:

[image: image136.png]ConsoleTask





The application and working directory must be specified and parameters to be passed to the application can optionally be specified:

[image: image137.png]Parameters 1~

| Parameter

Y





Each task requires the following attributes:

	Name
	Type
	Use
	Details

	ID
	ManagementPackUniqueIdentifier
	Required
	The ID of the console task that is unique within the management pack namespace.

	Comment
	ManagementPackString
	Optional
	Comment field for use by the management pack author.

	Accessibility
	ManagementPackAccessibility
	Required
	Determines whether other management packs can reference this task. Allowed values are either "public" or "internal."

	Enabled
	xsd:Boolean
	Required
	Defines whether this task is enabled or disabled by default.

	Target
	ManagementPackIdentifierReference
	Required
	A reference entity type that this task is targeted to. This type must be defined in this management pack or a referenced management pack.


The following is an example of a console task:

<ConsoleTask ID="PingComputer" Accessibility="Public" Target="Windows!System.Windows.Computer" Enabled="true" >
<Application>ping</Application>
<Parameters>
<Parameter>-a</Parameter>
</Parameters>
<WorkingDirectory>%SystemRoot%</WorkingDirectory>
</ConsoleTask>
Views

The view section consists of zero or more views:

[image: image138.png]



When a view is defined, it must specify the configuration that is required by the view type. This configuration must validate against the XSD of the view type:

[image: image139.png]



A view has the following attributes:

	Name
	Type
	Use
	Details

	ID
	ManagementPackUniqueIdentifier
	Required
	The ID of the view. This must be unique in the management pack namespace.

	Comment
	ManagementPackString
	Optional
	Comment field for use by the management pack author.

	Accessibility
	ManagementPackAccessibility
	Required
	Determines whether other management packs can reference this view in knowledge.  Valid values are either "public" or "internal."

	Enabled
	xsd:Boolean
	Required
	Defines whether this view is enabled or disabled by default.

	Target
	ManagementPackIdentifierReference
	Required
	A reference entity type that this view is targeted to. This type must be defined in this MP or a referenced MP.

	TypeID
	ManagementPackIdentifierReference
	Required
	The view type that this view is defined from.

	Visible
	xsd:Boolean
	Optional
	Used to hide views. This is primarily for views used in knowledge that the author does not want to be present in the UI to reduce clutter.


The View type can also accept two optional parameters, URL and Query String. The following example shows a view defined with a URL:

<View Target="System!System.Entity" Enabled="true" TypeID="Microsoft.EnterpriseManagement.Mom.Samples.CustomURLView" ID="Samples.Views.DellURLView">
<Category>Operations</Category>
<URL>http://support.dell.com</URL>
</View>
Reports

The reports section has the following schema:

[image: image140.png]



[image: image141.png]MPReport ‘





Further information is not available for this release.

Folders

The folders section defines zero or more folders:

[image: image142.png]



Folders are used for logical grouping of management pack objects. Currently the UI only uses folders to group class types together, although the schema allows any uniquely referenced object to be grouped into a folder. Objects cannot be grouped cross management pack currently.

A folder has the following attributes:

	Name
	Type
	Use
	Details

	ID
	ManagementPackUniqueIdentifier
	Required
	The ID of the folder. This ID must be unique within the management pack namespace.

	Comment
	ManagementPackString
	Optional
	Comment field for authoring use.

	ParentFolderID
	ManagementPackUniqueIdentifierReference
	Optional
	Defines a parent folder if this folder is to be contained in a parent.


Each folder can contain one or more folder objects:

[image: image143.png]Folderitem





The folder item has a single attribute to reference management pack objects:

	Name
	Type
	Use
	Details

	ElementID
	ManagementPackUniqueIdentifier
	Required
	The ID of the object that this folder item refers to.


The following is an example of a folder containing two classes:

<Folder ID="MyLOBApps">
<FolderItem ElementID="MySAPSQLDB"/>
<FolderItem ElementID="MySAPWebService"/>
</Folder>
Image References

The image references section defines either zero or more references:

[image: image144.png]ImageReferences FJ—{—-— [T ImageReference





Each image reference has the following attributes:

	Name
	Type
	Use
	Details

	ImageID
	ManagementPackIdentifierReference
	Required
	The ID of the image that should be used for this object.

	RefID
	ManagementPackIdentifierReference
	Required
	The ID of the management pack object that is linked to the image.


The following example shows two references that link images stored in this management pack with class types defined in another management pack:

<ImageReferences>
<ImageReference RefID="Windows!System.Windows.Service" ImageID="WindowsNTService80"/>
<ImageReference RefID="Windows!System.Windows.OperatingSystem" ImageID="WindowsOS16"/>
</ImageReferences>
See Also

Presentation Section
Language Packs Detail

The language packs section consists of zero or more language packs. A single language pack is used for one language:  

[image: image145.png]LanguagePacks

LanguagePack




The language pack consists of both display settings and knowledge articles:

[image: image146.png]



Language Pack Attributes

The language pack has the following attributes:

	Name
	Type
	Use
	Details

	ID
	MPLanguagePackElement (restricted)
	Required
	The ID of this language pack. This value is restricted to three lowercase letters, for example, "ENG."

	Comment
	ManagementPackString
	Optional
	Internal comment field for use by the management pack author.

	IsDefault
	Xsd:Boolean
	Optional
	Specifies whether this is the default management pack.  If a language is not available for the locale of the console, the console will fall back to use the default.  Only one default is allowed per management pack.


See Also

Display Strings Detail
Knowledge Articles Detail
Display Strings Detail

The display strings section addresses the display name localization requirements for Operations Manager 2007. Each management pack object that is visible in the Operator Console needs to have a display name that can be localized. This DisplayString section provides a string table that maps the ID for a management pack object (which must be unique in the namespace of the management pack) to a display string.

For each supported language, the management pack author will need to create a different language pack. In that language pack, the Display Settings section provides this string table mapping for display names.

Management pack objects that can have a localized name include managed entities, module types, data types, monitor types, rules, views, tasks, and monitors. Any name that is visible in the user interface should be localizable through this section.

Display String Schema

The DisplayString section has the following schema:

[image: image147.png]



Display String Attributes

The display string has the following attributes that link it to an object in the management pack:

	Name
	Type
	Use
	Details

	ElementID
	ManagementPackUniqueIdentifierReference
	Required
	The ID of the object that this display string is linked to.

	SubElementID
	ManagementPackIdentifierReference
	Optional
	The sub-element of the object that this display string is linked to, if applicable; for example, the property of a class type.


Example

The following sample shows a display string for the management pack (System.Windows.MP), a class (System.Windows.Computer) and a class property (the PrincipalName property of the System.Windows.Computer class)

<DisplayStrings>
<DisplayString ElementID="System.Windows.MP">
<Name>Windows System Management Pack</Name>
<Description>This Management Pack contains the definitions that are specific to the Windows platform.</Description>
</DisplayString>
<DisplayString ElementID="System.Windows.Computer">
<Name>Windows Computer</Name>
<Description>Windows specific Computer type.</Description>
</DisplayString>
<DisplayString ElementID="System.Windows.Computer" SubElementID="PrincipalName">
<Name>Principal Name</Name>
</DisplayString>
</DisplayStrings>
See Also

Language Packs Detail
Knowledge Articles Detail
Knowledge Articles Detail

A knowledge article can be created for any management pack object. Knowledge articles are stored using MAML (Microsoft Assistance Markup Language) schema. This schema is included in the Operations Manager 2007 management pack schema with no modification. 

The knowledge articles section consists of zero or more knowledge articles. Because this section is in the language packs of the management pack, a set of knowledge articles can exist for each language.

The knowledge article is either of type MAML or HTML. HTML is allowed for backward-compatibility reasons. It is not possible during conversion to convert HTML to MAML XML, so the knowledge is kept as HTML. On first edit of the knowledge article, it is anticipated to transform this to MAML XML. 

Knowledge Article Schema

The knowledge article section has the following schema:

[image: image148.png]KnowledgeArticle

KnowledgeArticles [}—{——-




[image: image149.png]



A MAML piece of knowledge consists of one or more MAML sections:

[image: image150.png]MamiContent [}~

mamk:section

1=

Decebes  zaion i
vt Th secton
larment suppors recusion
(i ther words, n ntance
o5 seeion slement can
Rave s or mars secon
derents 2 hian. The
et e deines the
Rerarchy of sectons it :
Topi though nesing. Esch
section comsponds 1
Raading leveln th s,
vnderad documant, For
crampl, the op st s
Squvlen o the st
heading leveland s chid
<ecion oF tht et
section of that sernent




In-Line Tasks

Tasks can be included in line with the knowledge so that a user can launch a task in context straight from the knowledge. The schema for this task is as follows:

[image: image151.png]Contains desrive et for
i

et
|

Speciies the LRI for 3
| navigaion k.




To define a task, the condition attribute on the uri element is set to Task, the href to the task reference, and the uri to MOM.Console.Exe. This identifies the link as an Operations Manager link.

The following shows an example of an in-line task:

<maml:navigationLink>
<maml:linkText>Start the Service</maml:linkText>
<maml:uri condition="Task" href="Microsoft.Demo.NTService.StartService" uri="MOM.Console.Exe"/>
</maml:navigationLink>
In-Line Console Tasks

Console tasks are defined as tasks except that the condition is set to ConsoleTask. For example:

<maml:navigationLink>
Ping the server</maml:linkText>
<maml:uri condition="ConsoleTask" href="Windows!Ping" uri="MOM.Console.Exe"/>
</maml:navigationLink>
In-Line Views

An in-line view is defined in a similar fashion to a task using a MAML navigation link. A view reference is provided instead of a task reference, and the condition is set to View. For example: 

<maml:navigationLink>
<maml:linkText>View all events</maml:linkText>
<maml:uri condition="View" href="System!System.Views.EventView" uri="MOM.Console.Exe"/>
</maml:navigationLink>
Knowledge Article Attributes

Each knowledge article has the following attributes:

	Name
	Type
	Use
	Details

	ID
	ManagementPackUniqueIdentifier
	Required
	The ID of the knowledge article. This ID must be unique within the management pack namespace.

	Comment
	ManagementPackString
	Optional
	Internal comment field authoring use.

	ElementID
	ManagementPackUniqueIdentifierReference
	Required
	Contains the ID of the object that this knowledge article is linked to.

	SubElementID
	ManagementPackIdentifierReference
	Optional
	Contains the ID of the sub-element of the object that this knowledge article is linked to, if applicable; for example, the state of a monitor.

	Visible
	xsi:boolean
	Optional
	Indicates the visibility of this knowledge.


Knowledge Article Example

The following is an example of a MAML knowledge article for a monitor with a single section showing a list:

<KnowledgeArticle ID="NTServiceKnowledge" ElementID="Microsoft.Demo.NTService.ServiceRunning">
<MamlContent>
<maml:section>
<maml:title>Summary</maml:title>
<maml:para>This monitor checks the status of a Windows service by querying WMI on a timed interval. When the service is in an unhealthy state, an alert will be raised. MOM views the service in one of two operational states:</maml:para>
<maml:list>
<maml:listItem>
<maml:para>Running</maml:para>
</maml:listItem>
<maml:listItem>
<maml:para>Not Running</maml:para>
</maml:listItem>
</maml:list>
</maml:section>
</MamlContent>
</KnowledgeArticle>
See Also

Language Packs Detail
Management Pack Schema Details
Language Packs Section
Deletions Detail

The language packs section consists of zero or more deletions. Deletions are only valid when the “Update” attribute is set to true in the management pack element. This is used as a mechanism to submit deletions to the SDK.

Deletions Schema

The following diagram shows the schema of the deletions section:

[image: image152.png]



Deletion Attributes

A deletion has two attributes:

	Name
	Type
	Use
	Details

	ElementID
	ManagementPackLocal

IdentifierReference
	Required
	The ID of the element that is to be deleted. Note this element cannot be defined in the Management Pack, since it is not possible to delete and update the same element at once.

	ElementType
	ManagementPackString
	Required
	The type of element that is being removed.


See Also

Management Pack Schema Details
Deletions Section
PAGE  

