

[image: image1.jpg]Microsoft

Windows Server2003

Building in Security for Applications

Microsoft Corporation

Published: November 2002
Abstract

This white paper outlines how the flexible, out-of-the-box security technologies in Microsoft® Windows® Server 2003 and the Microsoft® .NET Framework can help prevent malicious code from breaching a corporate firewall. It also offers suggestions for making programs of all kinds more secure and easier to manage.
This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2002 Microsoft Corporation. All rights reserved.

Microsoft, SQL Server, Visual Basic, Visual Studio, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Contents

4Introduction

5Security for Managed Code

5Type Safety Verification

6Evidence-Based Security

8System Policies

9Making Programs Security Aware

10Security at Runtime

11Manipulating the Stack Walk

11Making Security Demands

13Crypto Library

15Role-based Authorization in Managed Code

15Principals and Identity

15Threads and Principals

18ASP.NET applications

18Making Security Checks with PrincipalPermission

20Making Security Checks with GenericPrincipals

20Impersonation

21Securing Web Applications

22Authentication Choices

22Forms Authentication

25URL Authorization

26Securing User Configuration Information

28Using Windows Server 2003 Security

30Conclusion

31Related Links

Introduction

While security is not complex, there is a lot to learn and it can seem overwhelming. The information in this paper should give you the head start you need to come up to speed quickly.
Historically, it has been difficult to build and configure applications for maximum security in a networked environment. Windows® Server 2003 is the first server to address this out of the box.
Windows Server 2003 fully integrates the .NET Framework into the operating system and thus enables developers and systems administrators to use both Windows Server 2003 and .NET Framework security features in their applications in a seamless way. The .NET Framework sits on top of the operating system and provides classes that expose many features of the OS such as access to the Windows or Active Directory (AD) security system, easy access to cryptographic functionality, and tools to manage the security settings of the applications created using the .NET Framework.
Security for Managed Code

There are four key elements of security in the .NET Framework: the type safety verification process, code access security, role-based security, and cryptography.

The type safety verification process ensures that code is both well formed and type safe--not open to attacks like buffer overflows. Verifying an application's type safety helps close many holes commonly exploited by malicious hackers.

Role-based security provides support for authentication and authorization. The .NET Framework makes it easy for developers to build this logic into their code, creating custom roles and authorization rules or tying into the underlying Windows infrastructure to validate users’ credentials and determine whether or not they should have access to a particular resource.

Code access security is a complementary technology that allows administrators rather than users to identify code. Administrators can also set up rules determining whether or not a particular piece of code can access a particular resource.

The cryptographic library wraps and extends Microsoft's CryptoAPI, providing support for popular algorithms for encryption.

Type Safety Verification
When .NET Framework-based applications are compiled, their code is transformed into Microsoft Intermediate Language (MSIL). At runtime, the .NET Framework’s Common Language Runtime (CLR), Just in Time (JIT) compiles this MSIL to machine language. Before a .NET Framework-based, application (managed code) is loaded, however, it passes through the type safety verification process. This is done to ensure that the MSIL is well-formed and type safe. The compiler checks both the MSIL and the Metadata in a portable executable (PE) file to determine whether types are used correctly, exceptions are handled appropriately, and the metadata maps correctly with no stack underflows/overflows.

Typically, code that is unverifiable will not be loaded. A system administrator can configure security settings to ignore the type safety verification process. This might, for example, be necessary to run code using unverifiable pointer arithmetic. When code is invalid, fails to verify, or requests to skip the verification process, the evidence the code provides is used as input to the systems security policy to see if the code has Skip Verification permission. See the section below on evidence-based and code access security for more details. Without Skip Verification permission, the code will not run.

The Skip Verification privilege may also allow invalid code to run. When the JIT is unable to compile some part of the assembly to native code and the application is allowed to run anyway, it substitutes a stub that will throw an exception if that part of the code is ever executed.

To pass the type safety verification process, developers should ensure their applications are memory type safe. The difference between type safe and memory type safe is that a 32 bit int and a 32 bit float have the same memory footprint, and thus it would be memory type safe to cast between them. Strict type safety would not allow you to recast the two.

Some language compilers, like those for C# and VB.NET, are inherently type safe. C# can be used to write un-type safe code, but this is not recommended. Others, like the C++ compiler depend on the developer to ensure type safety. The resulting code may only be type safe if you avoid certain code constructs. If you are using a language that is not inherently type safe, you can verify the MSIL code for your application using the command-line peverify.exe tool.

Evidence-Based Security

Evidence-based and code access security is sometimes just called code access security (CAS) or evidence-based security. Evidence-based security and code access security are two separate but tightly-linked technologies. This section will focus on evidence-based security, but before defining this technology, it’s important to understand two key concepts: evidence and permissions.
Evidence is information about the code itself, such as its place of origin (such as a URL), or who the author was. Like entering another country, it's important that a piece of mobile code has its papers in order. The .NET Framework has several predefined kinds of evidence it looks for before loading an application, but you can instruct it to use custom evidence you specify as well. Table 1 lists the built-in evidence types.

Table 1: Evidence types for managed code

	Evidence
	Description

	Application Directory
	Directory from which the code is loaded

	Hash
	Hash of the assembly

	Publisher
	AuthentiCode® signer

	StrongName
	Public key+name+version

	Site
	Web site of code origin

	Url
	URL of code origin

	Zone
	Internet Explorer zone of code origin

	Custom
	Administrator-defined

Assemblies that bear a strong name receive additional protection from the CLR's security system. By default, only applications with full trust can link to an assembly with a strong name. It enforces this restriction by placing an implicit LinkDemand for Fulltrust on every public or protected method on every publicly accessible class in the assembly. See the section below on security demands. If you want partially trusted code to access a strong-named assembly you create, you must declare it with the AllowPartiallyTrustedCallers attribute (APTCA). For example, to declare the APTCA at the assembly level in Visual Basic you would use:

<assembly:AllowPartiallyTrustedCallers>

Permissions in the CLR are objects that represent the ability of code to perform a protected operation or use a protected resource. The .NET Framework includes several standard permission classes representing most system resources you might want to control. Some of these permissions were created before the AllowPartiallyTrustedCallers attribute was added to the .NET Framework and protect classes that now require full trust. This limits there usefulness as receiving the specified permission will not be enough to link to the protected resource. Table 2 shows the .NET Framework's permission classes. Those classes that protect resources that now require full trust are marked as Non-APTCA

Table 2: Default permission classes

	Permission class name
	Right represented

	DirectoryServicesPermission
	Access to the System.DirectoryServices classes. Non-APTCA.

	DnsPermission
	Access to Domain Name System (DNS).

	EnvironmentPermission
	Read or write environment variables.

	EventLogPermission
	Read or write access to event log services. Non-APTCA.

	FileDialogPermission
	Access files that have been selected by the user in an Open dialog box.

	FileIOPermission
	Read, append, or write files or directories.

	IsolatedStorageFilePermission
	Access private virtual file systems.

	IsolatedStoragePermission
	Access isolated storage, which is storage that is associated with a specific user and with some aspect of the code's identity, such as its Web site, publisher, or signature.

	MessageQueuePermission
	Access message queues through the managed Microsoft Message Queuing Microsoft® Message Queuing (MSMQ) interfaces. Non-APTCA.

	OleDbPermission
	Access to databases using OLE DB. Non-APTCA.

	PerformanceCounterPermission
	Access performance counters. Non-APTCA.

	PrintingPermission
	Access printers.

	ReflectionPermission
	Discover information about a type at run time.

	RegistryPermission
	Read, write, create, or delete registry keys and values.

	SecurityPermission
	Execute, assert permissions, call into unmanaged code, skip verification, and other rights.

	ServiceControllerPermission
	Access running or stopped services. Non-APTCA.

	SocketPermission
	Make or accept connections on a transport address.

	SqlClientPermission
	Access to SQL databases.

	UIPermission
	Access user interface functionality.

	WebPermission
	Make or accept connections on a Web address.

Access to databases required full trust in version 1 of the .NET Framework, but is available to partially trusted assemblies in version 1.1.

Permission objects may contain several permission settings. FileIOPermission, for example, distinguishes four kinds of access: read, write, append, and path discovery. These are independent settings. Having permission for one does not imply permission for others. Permissions set for folders apply to all subfolders and files under that folder. The FileIOPermission object can also store permissions regarding access to multiple directories and files.

You can construct permissions in your application. These do not have any effect on your applications current permissions, but they may be used to check against the permissions your application received, to request or deny particular permissions, or to make demands of other assemblies that call methods in your assembly (as shown in the section Making Security Demands below.)

The following example sets read permissions to C:\test_r at the time the FileIOPermission object is created then adds read and write access to C:\example\out.txt using the AddPathList method:

Dim fp As New FileIOPermission(FileIOPermissionAccess.Read, "C:\test_r")

fp.AddPathList(FileIOPermissionAccess.Write Or _

 FileIOPermissionAccess.Read, "C:\example\out.txt")

Many permission objects implement special methods, like the AddPathList method. All permission objects, however, implement the iPermission interface. iPermission includes the following methods, Copy, Intersect, IsSubsetOf, ToXml, FromXml, and Union. Intersect and union combine the settings in two permission objects. IsSubsetOf returns true if a passed set of permissions includes all permissions in the permission object. ToXml and FromXML allows permission settings to be written in a standard readable format that can be exported and imported by other permission objects.

Permission objects can be combined into permission sets for easy administration. The .NET Framework comes with seven basic named permission sets to be used when setting security policies, FullTrust, SkipVerification, Execution, Nothing, LocalIntranet, Internet, and Everything.

Permission Sets are created as a result of system policy and assigned to your assembly. They are also used in the administration of system policies. You can also construct permission sets in your codes. Like with permissions, constructing a permission set in your code doesn't mean that your application has those permissions, but you can use them to check what permissions you do have, or to declare the permissions you will need.

An important note is that code access security does not replace system security. On Windows Server 2003, all the system level role-based security still applies. If a user does not have permissions to access a protected resource, CAS cannot give it to them. Code access security provides additional layers of security where the code itself cannot necessarily be trusted, either because it potentially contains harmful bugs or has malicious intent, or in situations where it could potentially be manipulated by other code with harmful bugs or with malicious intent.
System Policies

Having discussed evidence and permissions, its time to bring the two concepts together and explain evidence-based security. When the CLR loads an assembly (an EXE or DLL), it gathers all the available evidence on that assembly and uses that evidence to match the assembly to a particular code group or possibly multiple code groups. A code group is effectively a category created by establishing (a) membership conditions – that is, the evidence needed to qualify for a particular code group – and (b) affiliated permissions – now that we’ve identified the code as bearing a particular key or coming from a particular Zone, what permission set or sets should it be granted?

Administrators set policies controlling the rights that .NET Framework-based applications receive by creating code groups. The .NET Framework ships with default code groups that grant rights based on the Zone that the code originated from. By default, code coming from the Intranet Zone is given a very constrained set of rights. It can run, but it cannot directly access the local disk. Administrators might change these permissions or set up new code groups. For example, a new code group might say "if code was signed with a particular key or has a particular hash value, give it the right to read from the local disk regardless of its Zone evidence."

Security policies may be set at four different levels: across the enterprise, for a particular machine, for a particular user, or at the application domain level. The application domain level is controlled by the runtime host, for example, ASP.NET or Internet Explorer or a shell executable. It cannot be administered. Policies at the first three levels, however, can be created and manipulated using the .NET Framework Configuration Tool, an MMC Snap-in you will find under your Administration Tools folder in the Start menu or using the CasPol command line tool. The policies set at the application domain level can only be more restrictive than the user level policies which, in turn, can only be more restrictive than the machine level policies which, in turn, can only be more restrictive than the enterprise level policies.

For more information, see the following topic:

An Overview of Security in the .NET framework
.NET Framework Assemblies and the AllowPartiallyTrustedCallers Attribute
Application Domain FAQ
Making Programs Security Aware

The security permissions your application receives can change from computer to computer. Applications with no internal awareness of security will usually run fine from local systems where the default policies grant them full trust. These applications may fail to run, however, in a more restrictive environment. Alternatively, there may be situations where you want to restrict the privileges your application receives. If there were a security hole in your application, having fewer permissions may lessen the potential damage.

Using security actions, developers can write assemblies that make requests for certain permissions to run or deny permissions they do not need. There are three members of the SecurityAction enumeration you can use to make permission requests: RequestMinimum, RequestOptional, and RequestRefuse.

RequestMinimum states up front what permissions your assembly requires to run effectively. If these are not granted, your assembly will not run. Without making a request, your assembly may run, but fail at the point that it attempts to access a protected resource. For example, an editing program could allow you to edit a file, only to be denied access to the file system when attempting to save the file. Establishing minimum requirements may save users a great deal of frustration.

RequestOptional states what permissions your application would prefer to have, if available, but doesn't need to run.

RequestRefuse refuses permissions that are superfluous to the requirements of your assembly. This allows developers to lock down their code, closing the door on some operations that are unnecessary but which may potentially pose security risks.

You use these security actions to set an attribute on a Permission or PermissionSet. Each Permission or PermissionSet has a corresponding Attribute class that holds attributes appropriate to that particular permission class. For example, you'll find the settings for FileIOPermission in the FileIOPermissionAttribute class.

The following Visual Basic .NET example snippet requests read access to the Example directory at minimum, optionally requests Write access, and denies the built-in FullTrust permission set.

<assembly: FileIOPermission(SecurityAction.RequestMinimum, Read := "C:\Example\")>

<assembly: FileIOPermission(SecurityAction.RequestOptional, Write := "C:\Example\")>

<assembly: PermissionSetAttribute(SecurityAction.RequestRefuse, Name := "FullTrust")>

Note: The Security action is actually performed against the Permission's attribute class, but may be called against the permission class itself. The above example could have used FileIOPermissionAttribute instead of FileIOPermission, and PermissionSet instead of PermissionSetAttribute. The two approaches are functionally equivalent and you are likely to see both in coding examples.

One benefit of declaring permissions is they can be examined directly from the assembly's manifest using the Permview utility. You can use this tool to determine that your application is requesting the appropriate permissions. An administrator might use Permview to discover specifically what permissions need to be granted for your assembly to run. Permview displays the permission sets for minimum, optional, and refuse requests in an XML format. Although not covered in this paper, you can also make a request for a custom XML defined permission set, either directly in the code or from a file stored on disk.

Attempts to perform actions not allowed by the current permission set throw security exceptions. You should place code for which you may optionally receive permission in a try block. For example:

Try

Dim MyLog As New Log()

MyLog.MakeLog()

Console.WriteLine("The Log has been created.")

Catch

Console.WriteLine(_

"This application does not have permission to write to the disk.")

End Try

For more information, see the following topics

Requesting Permissions
Security at Runtime

Now that you have some idea of the elements of evidence based and code access security, let's takes a look at some of the ways you can interact with the CLR and .NET security during runtime.
Manipulating the Stack Walk
The CLR is stack-based in its execution. Each new method call is pushed on a stack of calls until it completes its execution and then it is popped off. The stack will usually include multiple assemblies. Each assembly has its own permissions, perhaps more or less restrictive than the set assigned to your assembly. In some security systems this can open a system up to a luring attack, where a restricted application invokes a less restricted application to gain access to resources it should not.

In the .NET Framework, when a method requests access to a protected resource, a problem arises as to which permission to use. Your code will most certainly call methods defined in other assemblies that have different permissions than your own. Getting another piece of code with greater permissions than your own applications permissions is one way to compromise the security of a system. It's sometimes called the "luring" attack. Code that is not written using the .NET Framework (unmanaged code) is especially susceptible to luring attacks. Not subject to the same evidence-based security policies as managed code, unmanaged code is run with full trust. An application that gains access to unmanaged code could use that code to compromise system security.

To counter such attacks, the CLR's security system walks the call stack to ensure that all code in the stack has permission to access a resource or performs an operation, like run unmanaged code. The runtime compares the granted permissions of each caller to the permission being demanded. If any caller in the call stack does not have the demanded permission, a security exception is thrown and access is refused.

An assembly with sufficient security privileges can prevent a stack walk. You can override the outcome of security checks by using Assert, Deny, or PermitOnly SecurityActions on an individual permission object or a permission set object. These actions are called Demands, rather than requests. Depending on which demands you make, you can cause the security check to succeed or fail, even though the permissions of all callers on the stack might not have been checked.
Stopping a stack walk may give your application a performance boost, but it puts the burden of security back on the developer. When manipulating a stack walk, you should make further security demands of code that might call your assembly to make sure you are not opening a security hole.

Making Security Demands

When you use a demand, any application that includes your code will only execute if all direct and indirect callers have the permissions that the demand specifies. Most demands are resolved by the CLR with a stack walk, with the exception of link demands. A link demand causes a security check during just-in-time compilation and only checks the immediate caller of your code. Demands are particularly useful in situations in which your class uses protected resources that you do not want to be accessed by untrusted code.

The classes in the .NET Framework already have demands associated with them. You won't need to make additional demands of them, but you should use demands to protect custom resources for which you have established custom permissions, including setting special permissions for your own assembly.

Demands may be made declaratively or imperatively. Declarative demands, like requests, use attributes to place information into your code's metadata. Imperative demands are performed using new instances of classes within your code. You can place a declarative demand in either the class or method level of your code. (Requests can only be placed at the assembly level.) Imperative demands can only be placed at the method level. A declarative demand at the class level applies to all class members. When placed at the member level, it applies to only that member and overrides the permission specified at the class level. An imperative demand that you place in your code effectively protects all the remaining code in the method in which the Demand method is called.

Note: Demands should not be placed in constructors. Constructor code is not guaranteed to execute at any particular point or in any particular context. The state of the call stack in a class constructor is not well defined. Demands in a constructor can produce unexpected results.

Table 3 shows the members of SecurityAction, which can be used to make declarative demands:

Table 3: SecurityAction members for declarative demands

	Member name
	Description

	Assert
	The calling code can access the resource identified by the current permission object, even if callers higher in the stack have not been granted permission to access the resource

	Demand
	All callers higher in the call stack are required to have been granted the permission specified by the current permission object.

	Deny
	The ability to access the resource specified by the current permission object is denied to callers, even if they have been granted permission to access it.

	InheritanceDemand
	The derived class inheriting the class or overriding a method is required to have been granted the specified permission.

	LinkDemand
	The immediate caller is required to have been granted the specified permission.

	PermitOnly
	Only the resources specified by this permission object can be accessed, even if the code has been granted permission to access other resources.

With the exceptions of LinkDemand, all of these actions affect the stack in some way. Assert, for example, is the action you would use to stop a stack walk to determine that all the callers in the stack have the permission necessary to perform an action. Deny will also stop a stack walk, but with an opposite result. All downstream callers are denied access to the specified resource, even if they would normally have had access to it. Permit only will deny downstream callers all other permissions other than the permissions specified. Callers above your code in the stack, are unaffected by these actions.

LinkDemand, rather than affecting the stack, only affects the immediate caller of your code. The action is performed during the assembly's Just-in-Time compilation. It is often used in conjunction with custom permissions, a permission that would only be shared by very specific code. If the caller does not have sufficient permission to link to your code, the link is not allowed and a runtime exception is thrown when the code is loaded and run. Link demands can be overridden in classes that inherit from your code. If you need to control this you could set an InheritanceDemand. InheritanceDemand checks are performed at load time, throwing an exception if the deriving class does not have the specified permission.

The following example requires all callers of the ReadData method to have the permission called CustomPermission. This is not a permission the .NETFramework provides, but rather one that you would create.

<CustomPermissionAttribute(SecurityAction.Demand, Unrestricted = True)>

Public Shared Function ReadData() As String

 'Read from a custom resource.

End Function

Here is the same demand made using imperative syntax. This code creates a new instance of the CustomPermission class, passing the PermissionState.Unrestricted flag to the constructor.
Public Shared Sub ReadData()

 Dim MyPermission As New CustomPermission(PermissionState.Unrestricted)

 MyPermission.Demand()

 'Read from a custom resource.

End Sub

For more information, see the following topics

Writing Secure Class Libraries
Securing Code Guidelines for the .NET Framework
Creating Your Own Code Access Permissions
Security Syntax
Crypto Library

Public networks such as the Internet do not provide a means of secure communication between entities. Communication over such networks is susceptible to being read or even modified by unauthorized third parties. In addition to file encryption and encryption on a local disk, cryptography enables you to create secure channels of communication over otherwise insecure channels, thus providing data integrity and authentication.

The classes in the .NET Framework cryptography namespace manage many details of cryptography for you. Some are wrappers for the unmanaged Microsoft CryptoAPI, while others are purely managed implementations. You do not need to be an expert in cryptography to use these classes. When you create a new instance of one of the encryption algorithm classes, keys are auto-generated for ease of use, and default properties are always as safe and secure as possible.

The .NET Framework's Crypto library consists of the following four primitives as shown in Table 4.

Table 4: Crypto library primitives
	Cryptographic Primitive
	Use

	Private-key encryption (symmetric cryptography)
	Performs a transformation on data, keeping the data from being read by third parties. This type of encryption uses a single shared, secret key to encrypt and decrypt data.

	Public-key encryption (asymmetric cryptography)
	Performs a transformation on data, keeping the data from being read by third parties. This type of encryption uses a public/private key pair to encrypt and decrypt data.

	Cryptographic signing
	Ensures that data originates from a specific party by creating a digital signature that is unique to that party. This process also uses hash functions.

	Cryptographic hashes
	Maps data from any length to a fixed-length byte sequence. Hashes are statistically unique; a different two-byte sequence will not hash to the same value.

The Crypto library's includes support for the following algorithms: asymmetric encryption - RSA and DSA; symmetric encryption - DES, TripleDES, RC2; hashes - MD5, SHA1. Drawing upon the strength of the CryptoAPI, the .NET Framework provides the support you need to secure data and data streams.

For more information, see the following topics

Cryptography Overview
.NET Framework Cryptography Frequently Asked Questions
Role-based Authorization in Managed Code

Historically, writing custom authorization code has not been easy. Managing these application-specific rules in addition to existing Windows/Active Directory groups can be particularly challenging. The .NET Framework's role-based security model vastly simplifies this task.

Principals and Identity

The two core objects in role-based security are Identity and Principal. Identity is about who a user is. An Identity is the result of authentication. Principal takes Identity, and binds it with a set of logical roles that help you make authorization decisions. A role is a named set of principals that have the same privileges with respect to security. Roles are similar to groups, like administrator or user. In concept, roles mirror business organization groups or roles and will map to job functions such as teller or manager.

At the most basic level, identity objects contain a name and an authentication type. The name could be a user's name or the name of a Windows account. The authentication type could be a supported logon protocol, such as Kerberos V5, or a custom value. Classes for identity objects implement Identity. The .NET Framework defines a GenericIdentity object that can be used for most custom logon scenarios and a more specialized WindowsIdentity object that can be used when you want your application to rely on Windows authentication. Additionally, you can define your own identity class that encapsulates custom user information.
A Principal is an abstraction of a user and the roles in which a user belongs. Applications that implement role-based security may grant permissions based on either the identity or the roles associated with a principal object. Similar to identity objects, the .NET Framework provides a GenericPrincipal object and a WindowsPrincipal object. You can also define your own custom principal classes.

Role-based security allows for three kinds of principals: WindowsPrincipals, GenericPrincipals, and custom defined principals which could be any class you create implementing the IPrincipal interface. When using the WindowsPrincipal, users and roles are tied to those of the underlying Windows security system (either local system security or domain security). The WindowsIdentity contains the authentication token granted at the time the user is authenticated. A user's local and domain group memberships become the roles associated with their identity. This works on any Windows operating system which supports a local security system or is part of an AD domain.

Threads and Principals

At runtime each thread has one and only one current principal object associated with it. Each Principal has one and one only Identity object. Logically the runtime structure of the objects resembles the following figure.

[image: image2.emf]Principal

Identity

Roles:

Manager

Teller

...

MyUser

Thread

Thread.CurrentPrincipal

Identity.Name

The application domain in which an application runs and the threads it executes are always associated with some principal. At run time each thread is associated with one and only one principal object. Each principal has one and one only Identity object. When attached to a thread a principal object represents the current context. By default no principal objects are created until a thread attempts to bind to one. If no PrincipalPolicy has been set indicating what kind of principal to bind to by default (NoPrincipal, UnauthenticatedPrincipal, or WindowsPrincipal), the runtime will bind to Principal and Identity objects that represent unauthenticated users.

Given Principal Control permission from the SecurityPermission PermissionSet, you can access and change the PrincipalPolicy or add a particular authenticated context to your application. To add an authenticated context, you can set the PrincipalPolicy to WindowsPrincipal or create other principal objects and attach them to a thread. Attaching a principal to a thread replaces the thread's existing principal so further calls will be made with the new identity.

The following two lines show how you could use this in a Windows Forms application. The code builds an identity based on the token associated with the current thread and use it to create a WindowsPrincipal:

Dim MyIdentity As WindowsIdentity = WindowsIdentity.GetCurrent()

Dim MyPrincipal As New WindowsPrincipal(MyIdentity)

This creates a principal you can use for simple role-based validations. If you need to make repeated validations and your application has ControlPrincipal permission, you should instead set the PrincipalPolicy for the Application Domain to WindowsPrincipal. The following example set's the PrincipalPolicy to WindowsPrincipal, then retrieves the CurrentPrincipal associated with the thread.

AppDomain.CurrentDomain.SetPrincipalPolicy(PrincipalPolicy.WindowsPrincipal)

Dim MyPrincipal As WindowsPrincipal = CType(Thread.CurrentPrincipal, _

WindowsPrincipal)

Dim MyIdentity As WindowsIdentity = CType(WindowsPrincipal.Identity, _

WindowsIdentity)

If you wish to set the AppDomain's Principal Policy, you must do it before binding a Principal to a thread. If you set Thread.CurrentPrincipal to a given principal (for example, a generic principal) and then set the PrincipalPolicy using SetPrincipalPolicy to WindowsPrincipal, the current principal will remain the generic principal.
ASP.NET applications

Making Security Checks with PrincipalPermission

While directly accessing a Principal object can be useful for retrieving user names or to make quick checks on roles, a PrincipalPermission object can be used to make authentication demands similar to the demands made in Code Access Security. The PrincipalPermission object represents the identity and role required to access a protected resource. Principal permissions are used in security demands made either declaratively or imperatively. Demands can be placed at the class level as well as on individual methods, properties, or events. If a declarative demand is placed at both the class and member level, the declarative demand on the member overrides (or replaces) the demand at the class level.
PrincipalPermissions are constructed using names and roles. They can optionally include authentication method as well. Once a permission is created it can be joined with other Permissions in a PermissionSet or used directly in a demand.
For example, the following declarative security check would restrict the use of a class method to the user MyUser, assuming they had the role Teller:

 Public Shared Sub _

 <PrincipalPermissionAttribute(_

SecurityAction.Demand, Name := "MyUser", Role := "Teller")> _

OpenAccount()

The application makes a security check whenever this method is invoked. It checks the demanded name and role against the current thread's Principal and throws an exception if they do not match. If you only want to check Name, or only want to check Role, you can leave the other out. You can also check for the value of Authenticated.

To use a PrincipalPermission imperatively, you must first construct a PrincipalPermission object, then invoke the Demand() method on that object:

Dim MyPermission As New PrincipalPermission("MyUser", "Teller")

MyPermission.Demand()

The following code performs the same task, except this works for all users in the Teller role:

Dim MyPermission As New PrincipalPermission(Nothing, "Teller")

MyPermission.Demand()

A security check is made when the method is invoked, and if the user does not match, a security exception is thrown. PrincipalPermission has two constructors you are likely to use. One is initialized with Name and Role, the other with Name, Role and Authentication. If you pass a Nothing (or null for C#) string to any of these values, that value will be ignored when performing permission checks.

PrincipalPermission objects can be combined to compactly represent a set of conditions you want to test by using the union operator.

The following code example is part of a module named SecurityChecker, from a Windows application. The module has one function named Checkrole.

Imports System.Security.Principal

Module SecurityChecker

Function CheckRole(ByVal sRoleName As String) As Boolean

'Create variables for domain or machine name and

'build fully qualified role name (as in domain\role)

Dim sDomain As String, i As Integer

Dim sFullPath As String

'Get the current identity and put it into an identity object.

Dim MyIdentity As WindowsIdentity = WindowsIdentity.GetCurrent()

'Put the previous identity into a principal object.

Dim MyPrincipal As New WindowsPrincipal(MyIdentity)

Dim bValidUser As Boolean

Dim IdentName As String = MyIdentity.Name

'Find the location of the \ in the user name and

'retrieve the domain or machine name

i = IdentName.IndexOf("\")

sDomain = IdentName.Substring(0, i)

'Build the full path for the role

sFullPath = sFullPath.Concat(sDomain, "\", sRoleName)

'Check if the user is in the specified role

bValidUser = MyPrincipal.IsInRole(sFullPath)

Return bValidUser

End Function

End Module

The highlighted line above calls IsInRole to determine if the user is in that role or not.

If you need to determine if a user is part of a built in role, then you must use the enumerations for those roles like this:

bInAdministrators = MyPrincipal.IsInRole(WindowsBuiltInRole.Administrator)

This returns True if the user is an Administrator and False if they are not.

For more information, see the following topics

PrincipalPermission Objects
Role-based Security Checks
Making Security Checks with GenericPrincipals

What if your application does not use Windows or AD security for some reason? That’s where the Generic Identity and GenericPrincipal come into play. GenericPrincipal provides a simple model for defining users and roles that are not tied to the underlying operating system. These users and roles might be stored in a database, pulled from another type OS such as Unix or a mainframe, or in a file and read into your application. Creating a GenericPrinicpal is basically a three step procedure:

1. Create an instance of GenericIdentity initialized to some user name

2. Create a new instance of the GenericPrincipal class

3. Initialize it with the GenericIdentity object and an array of strings that represent the roles associated with this principal.

Finally attach the principal to the current thread. For example, the following code is from a Windows Forms application with custom security:

Dim MyIdentity As New GenericIdentity("MyUser")

Dim MyStringArray As String() = {"Manager", "Teller"}

Dim MyPrincipal as New genericPrincipal(MyIdentity, MyStringArray)

Thread.CurrentPrincipal = MyPrincipal

Once you have a GenericPrincipal you can use it to make decisions, for example:

If (MyPrincipal.IsInRole("Administrator")) Then

‘Permit access to some code.

End If

Because they implement the same interface, a GenericPrincipal can be used in the same way a WindowsPrincipal is. The Identities they use, however, are not completely interchangeable. A WindowsIdentity contains more information about the user than does a GenericIdentity. We won't cover creating a custom Principal here, but it too would implement the IPrincipal interface and be used in the same way as a Windows or Generic Principal.

For more information, see the following topics

Directly Accessing a Principal Object
Impersonation

There are times your application may need to impersonate a Windows account, perhaps to access a database, or execute an application on the behalf of a user, then reverting to the regular user. You can also request a token from the unmanaged LogonUser method, passing it the user name, password and domain of the account you want. This method is located in the advapi32.dll

With the token you can create a new instance of WindowsIdentity, and use that to initialize a WindowsImpersonationContext object. Perform your tasks, then invoke the undo method on the impersonation context object. Interacting with unmanaged code is beyond the scope of this paper, but once you have the token, then the rest is in managed code.

For more information, see WindowsIdentity.Impersonate Method.

Securing Web Applications

As mentioned earlier, security has traditionally been hard to bake into applications. No place was this more cumbersome than in Web applications. This is primarily because Web applications did not have a secure front end like a Windows application. And beyond the authentication features of the Web server, authorization and other tasks were quite cumbersome to build and put into the applications.

Authentication is the process of discovering and verifying the identity of a principal by examining the user's credentials and validating those credentials against an authority. By default, the .NET Framework Windows Role-based security model has little to do with authentication because when you use WindowsPrincipals, authentication is performed by the operating system. You need only retrieve the authenticated value. And as shown in the Impersonation section, when you need authentication services, you need to bind to unmanaged COM objects to obtain it. If you want authentication with GenericPrincipals, you must provide it yourself.

Authentication for ASP.NET applications or .NET Framework-based Web applications is not much different. Web users communicate with ASP.NET applications through Internet Information Services (IIS), which deciphers and optionally authenticates the request (before ASP.NET ever gets involved). You can use the identity obtained by the authentication process in your code.

You control the authentication for an ASP.NET application by changing the authentication mode setting in the Web.Config file in the application root folder. The default tag looks like this:

<authentication mode = "Windows" />

The mode attribute can be one of these:

Windows

Forms

Passport

None

Windows authentication may be the most appropriate form of authentication to use in Web applications created for your intranet. It maps login credentials to users on your Windows network.

Forms authentication presents a Web form to collect information from a user. The client submits credentials directly to your application code for authentication. If your application authenticates the client, it issues a cookie to the client that the client presents on subsequent requests. Forms authentication is sometimes used for personalization—the customization of content for a known user. In some of these cases, identification is the issue rather than authentication, so a user's personalization information can be obtained simply by accessing the user name.

Each ASP.NET authentication provider supports an OnAuthenticate event that occurs during the authentication process, which you can use to implement a custom authorization scheme. The primary purpose of this event is to attach a custom object that implements the IPrincipal Interface to the context of the application.

Passport authentication is a centralized authentication service provided by Microsoft. There is no direct integration of Passport to any authentication and authorization mechanisms built into the operating system. While the .NET Framework does check for Passport cookies, if you maintain your own user database, you must implement your own code to map the Passport user to your own user, as well as implement your own authorization mechanism.

Setting Mode to None lets IIS provide no authentication services at all. Your application may still present users with forms to collect login credentials or perform some other custom authentication using a custom security system.

Authentication Choices

When creating Web applications for your intranet, it may be most appropriate to use Windows authentication mode. IIS will either collect the credentials from the user’s browser or ask the browser to present the user with a Windows login prompt and collect the credentials it needs to authenticate them as a user on that system. The work of authentication is all done for you. You can use the WindowPrincipal to check a user's group membership by calling the IsInRole method.

Outward facing applications usually call for custom authentication and user information. Forms authentication and URL authorization provide you more flexibility in rolling your own authentication solution.

Forms Authentication

Custom authentication is used in most public Internet and extranet applications. Using Custom authentication, you store user information (such as name and password) in a custom data store such as a database. Then when users access the application, you authenticate them against that store. Forms authentication refers to this type of system in which unauthenticated requests are redirected to an HTML form where the user can present the logon credentials, then are validated and redirected to another page. The redirection is done using HTTP client-side redirection.

Once the user accesses the logon form, they provide their credentials and submit the form. Then your application can authenticate the user, let the forms authentication engine know the user is authenticated, then the Forms Authentication system issues a form that contains the credentials or a key for reacquiring the identity. Subsequent requests are issued with the form in the request headers. They are authenticated and authorized by an ASP.NET handler using whatever validation method the application specifies. The real benefit of Forms Authentication is that the ASP.NET system takes care of handling authentication on each page. Your code does not. You should always use SSL to secure any login information you collect from users.
The easiest way to create a Forms Authentication system is to build a login form (such as Login.aspx). This form will obtain the username and password, validate against a trusted data source, and call the RedirectFromLoginPage method of FormsAuthentiction class. This will redirect the user to the originally requested URL or another URL specified in code. After the steps of authentication are complete and the user is identified, ASP.NET handles the remaining process.

The following code shows a sample Authentication section for Web.Config. The mode attribute has been changed to Forms and the forms tag sets the parameters. The loginUrl attribute points to the login page. The authorization tag should also have deny users set to "?". This will deny all anonymous users access to any resources and force the logon to occur.

<authentication mode="Forms">

<forms name=".ASPXUSERDEMO" loginUrl="login.aspx" protection="All"
timeout="60" />

</authentication>

<authorization>

<deny users="?"/>

</authorization>

There are several attributes for the forms tag. Table 5 describes them.

Table 5: Forms Authentication configuration options

	Attribute Option
	Description

	name
	Specifies the HTTP cookie to use for authentication, default is .ASPXAUTH. If multiple applications are running on a single server and each application requires a unique cookie, you must configure the cookie name in each application's Web.Config file.

	loginUrl
	Specifies the URL to which the request is redirected for logon if no valid authentication cookie is found. The default value is default.aspx.

	protection
	Controls the type of encryption for authentication cookie.

	All
	Specifies that the application uses both data validation and encryption to protect the cookie. This option uses the configured data validation algorithm (based on the <machineKey> element). Triple-DES (3DES) is used for encryption, if available and if the key is long enough (48 bytes or more). All is the default (and recommended) value.

	None
	Specifies that both encryption and validation are disabled for sites that are using cookies only for personalization and have weaker security requirements. Using cookies in this manner is not recommended; however, it is the least resource-intensive way to enable personalization using the framework.

	Encryption
	Specifies that the cookie is encrypted using Triple-DES or DES, but data validation is not performed on the cookie. Cookies used in this way might be subject to chosen plain text attacks.

	Validation
	Specifies that a validation scheme verifies that the contents of an encrypted cookie have not been altered in transit. The cookie is created using cookie validation by concatenating a validation key with the cookie data, computing a Message Authentication Code, and appending the Message Authentication Code to the outgoing cookie.

	Timeout
	Specifies the amount of time, in integer minutes, after which the cookie expires. The default value is 30. The timeout attribute is a sliding value, expiring at the specified number of minutes after the time the last request was received. To prevent compromised performance, and to avoid multiple browser warnings for users that have cookie warnings turned on, the cookie is updated when more than half the specified time has elapsed. This might result in a loss of precision. Persistent cookies do not time out.

	Path
	Specifies the path for cookies issued by the application. The default value is a backslash (\), because most browsers are case-sensitive and will not send cookies back if there is a path case mismatch.

Credentials can be stored in any place. You can place credentials in Web.Config by using the Credentials tag. This allows definition of name and password credentials within the configuration file.

You also can implement a custom password scheme to use an external source, such as a database, to control validation. The following examples will demonstrate using a database credentials store.
The interface for the login page is shown in the next figure.
[image: image3.png]3 http://localhost/WebSecurityDemos/Login.aspx - Microsoft Internet Explorer

Ele Edt View Favortes Toos Help

Q- © - N B @] P Frrwns @it @] 3 B
ddress | €] https flocalhost/wiebSecurtyDemosfLogin.aspx

ks E]5ex R)aexFTP @) 32chel] sebromcts E]MsOWA E] Deka Ar nes (2] Goode (2] Meps (2] Gutarabout £ Lyrcs

Login Page

Employee ID

Password

Login

Plaase log in with your empleyee ID and password.

Access is restricted to employees and authorized individuls.

CIeT

Once the user clicks the Login button, the code behind the button authenticates the user and redirects them to another page. The security code for the page is shown below:

 Const sConnectionString = _

"server=secserver;uid=logger;pwd=123we132;database=NorthWind"

 Private Sub cmdLogin_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles cmdLogin.Click

 'TODO: Set breappoint on If CheckLogin statement

 'Next line calls CheckLogin to validate user

 If CheckLogin(txtEmployeedID.Text, txtPassword.Text) Then

 FormsAuthentication.SetAuthCookie(txtEmployeedID.Text, False)

 Response.Redirect("default.aspx")

 Else

 'If user is not valid, then display error

 lblMessage.Text = "Invalid Credentials: Please try again"

 lblMessage.Visible = True

 End If

 End Sub

 Function CheckLogin(ByVal iEmployeeID As Integer, _

ByVal sPassword As String) As Boolean

‘Code to validate user

 If iUser = 1 Then

 Return True

 Else

 Return False

 End If

 End Function
When the user clicks the Login button, the Click event code executes and calls the CheckLogin function, passing to it the employee ID and the password. The actual database code in CheckLogin is emitted, but it simply does a count on the employee ID and password value. If 1 is returned, the user is ok, if anything else is returned, the user is not valid and is not authenticated.

If the user is valid, they are redirected to Default.aspx. You can also redirect them to the page they tried to access by using this function:

FormsAuthentication.RedirectFromLoginPage(txtEmployeedID.Text, False)

Passing in the employee ID to this method sets this as the login in value for the forms engine.

There are several comments that are important here. The user name and password are input data at this point and must be validated. There have many SQL injection attacks because applications failed to do this. If the application is doing a database lookup, it should always use a parameterized stored procedure and should not build up SQL statements in code. Lastly, as mentioned before, your applications should always use SSL to protect authentication data.

You can also control authorization by using declarative or imperative demands in your code, as shown above in the section on role-based security.

URL Authorization

URL authorization is performed by the URLAuthorizationModule, which maps users and roles to pieces of the URI namespace. This module implements both positive and negative authorization assertions. That is, the module can be used to selectively allow or deny access to arbitrary parts of the URI namespace for certain sets, users, or roles. This allows you to authorize access to particular URLS based upon user or role IDs.

The URLAuthorizationModule is available for use at any time. To use it, you only need to place a list of users and/or roles in the <allow> or <deny> elements of the <authorization> section of a configuration file.

You can map either user accounts or roles to Windows users if you are using IIS Authentication. When doing so, simply set a domain or server name prefix to the username or role. For instance, if the “Engineers” role maps to the “Engineers” group in the MyCo domain, the authorization will appear like this:

< authorization>

<Allow user= "Ken"

roles= “MyCo\Engineers"/>

<deny users= "*"/>

</authorization>

You can also map users to Forms based ids as well as shown in this Web.Config:
<configuration>

<system.web>

<authorization>

<allow users="2" />

<deny users="*" />

</authorization>

</system.web>

</configuration>

The Allow and Deny elements accept two wildcards for users. A question mark (?) allows / denies anonymous users while an asterisk (*) allows/denies all users.

Now, let's say you have a folder in the Web site named ConfidentialDocs that you want to restricts users’ access to. You can simply put the above Web.Config file in this directory and user with an employee ID of 2 will be able to get in and all other users will not.

For more information, see the following topic
Designing Secure ASP.NET Applications
Authentication in ASP.NET: .NET Security Guidance
Securing User Configuration Information

IsolatedStorage permissions allow applications to access private virtual file systems developers can use to store data associated with a specific user. A .NET application can use isolated storage to store user settings in much the same way that Windows applications have traditionally used .ini files or the HKEY_CURRENT_USER key in the Windows Registry. With isolated storage, the CLR places the information in a unique data compartment within a data store. This is usually a directory on the file system, or stored as part of a roaming user's profile. While you can place any kind of information in isolated storage, typically you will store text in the form of name-value pairs. A separate file stores the data for each user. The data is further isolated by some aspect of the code's identity, such as its point of origin, publisher, signature, or application domain.

Administrators can limit which applications can use isolated storage and set how much isolated storage individual applications using the IsolatedStorageFilePermission and IsolatedStoragePermission. With these stores, you can read and write data that less trusted code cannot access and prevent the exposure of sensitive information that can be saved elsewhere on the file system. Because the data is stored in compartments that are isolated by the current user and by the assembly in which the code exists, these private virtual file systems are protected from other managed applications.
Using isolated storage is fairly straightforward. To write to isolated storage, you create an instance of an IsolatedStorageFileStream initialized with a filename and a file mode (create, append, etc.):

IsolatedStorageFileStream configFile = new IsolatedStorageFileStream("Tester.cfg",FileMode.Create);

StreamWriter writer = new StreamWriter(configFile);

Using Windows Server 2003 Security

Maintenance is another problem that IT professionals have faced with applications using role based security. This was not maintenance of the application but rather maintenance of the business rules that controlled user access. Its fine to place a call to IsInRole to determine if a user can execute a function but what about a check to see if the user can authorize a purchase order of 500 or 700 or something else? That is usually hard to check and it’s hard to manage.
Windows NT introduced a Private Object Security model that used an access control list (ACL), a table that tells Window which access rights each user has to a particular system object, such as a file directory or individual file. Each ACL contains one or more access control entries (ACEs) containing the name of a user or group of users and a string of bits, an access mask, indicating what specific access privileges each ACE receives. This provides fine grained security over folders and files and other objects in the operating system.

Windows Server 2003 introduced AuthZ, an enhancement of the Private Object Security model. AuthZ is a new user mode API design for applications that manage resources and require higher performance than Private Object Security provides. Instead of representing security contexts with kernel-based access tokens, AuthZ represents them with user-mode data structures. This new approach provides the advantage that security access checks do not require kernel-mode system calls. In addition, an AuthZ client can cache the results of access checks for even better performance.

AuthZ can be used to make very sophisticated access checks. For example, this method could be used to allow access only to the vice presidents in an organization during normal business hours, and to the CEO during any hour using Active Directory services to map a user name to their title.

Windows Server 2003 includes AuthZ and ACL support through the Private Object Security API. It also introduces a new Role-based security model, the Authorization Manager. Where the ACL model provides an object-centric view of resource management, Role-based Access control (RBAC) focuses on the organizational structure of a company. For example, a role might be Employee, Manager, or Administrator, each of which maps to job descriptions. In RBAC administrators will create roles that define the permissions required by that role. The RBAC system handles translating those role based permissions to application permissions. Since permissions are granted at the role, permissions can be queried and changed at the role without examining the specific resources.

A role in the RBAC system is given permissions to tasks, rather than to objects. Tasks are collections of lower-level operations that make up some meaningful unit of work. The developers of an application managing resources and using this system would define the operations that make up a given task, as well as the scope of the application, and the protected resources to which it provides access. These Tasks and operations become a part of an authorization policy kept in an Authorization Manager store, either an XML file (stored on an NTFS volume and protected by an ACL) or as entries in Active Directory.

A developer can also include business rules (BizRules) in the authorization policy. A BizRule is a small script attached to a task object or role definition at the application level. This allows for a fine grain control over access to a task. For example, this method could be used to allow access only to the vice presidents in an organization during normal business hours, and to the CEO during any hour. BizRules return true or false. If false, access to denied to the specified role or task. Here is a VBScript BizRule ensuring an amount passed to a method is less than 500:

Dim Amount

BizRuleContext.BusinessRuleResult = FALSE

Amount = BizRuleContext.GetParameter("ExpAmount")

if Amount < 500 then BizRuleContext.BusinessRuleResult = TRUE

Because business rules are defined in a store external to the application, they can be changed without having to touch the source code of the application.

Windows Authorization Manager is the next step in application authorization on the Windows platform. In many ways it implements role-based techniques developers had been using to work around the ACL model already. Building the RBAC into Windows Server 2003 will help to standardize practices. It will slowly change the way that applications are written.

Conclusion

Security is a huge topic, and this paper only scratches the surface, presenting a whirlwind tour of building security into your applications. Windows Server 2003 and the .NET Framework offer security models that are extremely flexible. They can meet virtually any security demand.

Keep in mind that security is about more than the programming models themselves. This paper is about the technologies, but the way you use those technologies is equally important. Tight security can be compromised by poor management policy. When you implement your own authorization and authentication, or write code that effects system defaults, like manipulating a stack walk, you can introduce security holes as well. The .NET Framework helps contain or prevent malicious code coming from outside your firewall, but code from within executes with many privileges that can be dangerous.

One of the big topics that we did not cover in depth in this paper is cryptography. The .NET Framework provides a rich set of classes that implement the CryptoAPI. These classes provide developers with an easy to use development system for performing tasks such as encryption. For instance, you would never store passwords in plain text in a database for Forms Authentication in ASP.NET applications. Instead, you would generate a hash to validate users with. You can use these functions to perform many different tasks.
Learn all you can about security. Understand good security practices, how your system works, and how your actions can compromise that security. The following books are highly recommended by Microsoft.

· “Writing Secure Code” by Michael Howard and David LeBlanc, published by Microsoft Press

· “Designing Secure Web-Based Applications for Microsoft Windows 2000” by Michael Howard, published by Microsoft Press

Cryptographic Services
Related Links

What's New in Application Services
Application Server Technologies

_1086766592.vsd
Thread�

Principal�

Identity�

Roles:
Manager
Teller
...�

MyUser�

�

Thread.CurrentPrincipal�

Identity.Name�

