Creating a Windows Mobile Line of Business (LOB) Application (Part 9 of 13): Web Services (Level 300)
Webcast Date: 2006-03-01
The steps as written down in this document are not tested thoroughly. Even though all information is hopefully here, you might run into some unexpected problems. If so, don’t hesitate to contact me via email: maarten.struys@pts.nl.

Today’s sample code is the end result of all the steps that are described in this document. You can take last week’s sample code and follow all steps in this document to get to this end result yourself. However, the downloadable source code is fully documented. Some documentation is omitted in the individual steps that are described in this step-by-step document. Note: To make sure that the described demos are working properly you must use last week’s sample code as initial project.
Demo1 – Using the MapPoint Web Service
In today’s first demonstration you will learn how to make use of the MapPoint Location Server Web Service to find our current location. This part of the demo makes partly use of an existing how-to document on the MapPoint Location Server (MLS) that is available on MSDN: http://msdn.microsoft.com/library/en-us/dnppcgen/html/med203_msdn_mappoint_location_server.asp
This means that you will not use a live Location Server, nor will you use a GSM receiver to retrieve location information. For both cases, additional hardware or additional subscriptions with mobile operators would be needed. However, the working of the MapPoint Location Server is perfectly explained in the article listed above, and the sample code is fully functional. The only thing different from a real situation is that we will fake our initial location by using the trial MapPoint Location Server that is setup to run demo code for the above mentioned article.
Using an existing Web Service from inside a managed Windows Mobile application using the .NET Compact Framework 2.0 is extremely simple, yet it adds a lot of power to your application, since code can run on a server on your behalf. Of course you must have a network connection in order to use Web Services. Connectivity will be covered later on in this document. For now you are going to concentrate on calling functionality on the MapPoint Web Service and on a MapPoint Location Server Web Service.
Adding a reference to a Web Service

1. Open the RoadAssistance solution in Visual Studio 2005

2. Follow steps 5 – 8 in the referred document to add a Web Reference to the MapPoint Location Server in your solution (see #MapPointArticle).

Note: Since we are using an existing MapPoint Location Server you have to provide the credentials exactly as they appear in the referred document.
Modifying the AssignmentsSummaryViewDialog
The next thing you need to do is show a map, containing route information to find the next assignment. You will use the AssignmentsSummaryViewDialog to show the map on. The AssignmentsSummaryViewDialog was auto generated by Visual Studio when we added the Assignments data grid on the MainForm. In order to display a map on this auto generated form, you need to modify it slightly. If you study the auto generated code in the AssignmentsSummaryViewDialog you will see that it makes smart use of docking controls on top of each other and hiding those controls that do not contain any data. You want to keep that mechanism as it is, but on the lower part of the screen we want to reserve space to display a map on. An easy way to achieve this is to put all controls that were auto generated on the AssignmentsSummaryViewDialog in a panel, instead of immediately on the form itself. To do so, you can take the following steps.
3. Select all the controls on the AssignmentsSummaryViewDialog and copy them to the clipboard (Note: Make sure not to copy mainMenu1 and the assignmentsBindingSource).

[image: image1.jpg]e B i i
ssianmentssu.g.cs oesinT” |

| asmnsndnasarce

Figure 1 - Selecting all controls except the assignmentsBindingSource and the mainMenu1

4. Delete the selected controls from the form.

5. Drag a Panel control from the toolbox to the empty AssignmentsSummaryViewDialog form.

6. Adjust its size property to the following value: 240, 105.

7. Dock the panel to the Top of the form.

8. Set the AutoScroll property of the Panel to True.

9. Paste all previously copied controls onto the Panel control.

10. Underneath the Panel, add a PictureBox and dock it to Fill. The AssignmentsSummaryViewDialog should now look like this:

[image: image2.jpg]BB Loy Sl

‘nssianmentssu. as [Desanl” |

B =

Hgrestngoace 5 et

Figure 2 - AssignmentsSummaryViewDialog with space to show a map
There are a few more things you need to do on the AssignmentsSummaryViewDialog. First off, the controls that are used to display assignment summary details are automatically hidden if a particular assignment field does not contain data. An autogenerated method, AttachVisibilityBindings is used for that purpose. However, if you take a look at the AssignmentsSummaryViewDialog constructor you will see the following statement:

 this.AttachVisibilityBindings(this.Controls);

11. Since you just created a panel to host all controls on, you need to change this statement with the following:

 this.AttachVisibilityBindings(panel1.Controls);

You probably have also noticed that the edit menu is removed from the AssignmentsSummaryView after placing all controls in a separate panel.
12. Restore the edit menu by adding the following code to the AssignmentsSummaryViewDialog constructor:
 this.mainMenu1.MenuItems.Add(this.editMenuItemMenuItem);

 this.editMenuItemMenuItem.Text = "Edit";

 this.editMenuItemMenuItem.Click += new System.EventHandler(this.editMenuItemMenuItem_Click);

Right now you are done with the User Interface part of this demo. The next thing you need to do is get route information from the MapPoint Web Service. To calculate a route, a starting point and a destination must be specified. Ideally, you would make use of a GPS receiver, or the MapPoint Location Server to determine your current location. This functionality is no part of the RoadAssistance application, because additional hardware would be needed or a specific subscription to a mobile operator to provide location information.
For the RoadAssistance application you will make use of an existing MapPoint Location Server that you will use to get a fake current location from. To use the MapPoint Location Server, you will now create a new class that will contain functionality to retrieve our current (fake) location as well as functionality to calculate a route between two points. Both methods will make extensive use of the MapPoint Location Server Web Service. If you want to know more about the MapPoint Web Service, you should read the basics at MapPoint SDK.
13. To have credential information for the MapPoint Location Server available inside the RoadAssistance application, you will now create a number of string resources, using the resource editor:
	MLS_DOMAIN
	mls

	MLS_USERNAME
	bjohnson

	MLS_PASSWORD
	Password1!

Creating a class to access the MapPoint Location Server
14. Add a new Class to the RoadAssistance project and name it MapPointHelper.cs. An empty class is created and displayed in the Visual Studio Editor.

15. Add the following using directives to the class:
using System.Net;

using RoadAssistance.MLSService;
The next thing to do is create an enum holding friendly error codes for errors that might occur when working with the MapPoint Location Server.

16. Add the following code to define the MapPointResults enum:

 public enum MapPointResults

 {

 Successful = 0,

 ContactNotFound,

 LocationInformationUnavailable,

 RouteInformationUnavailable

 }

17. Create the following static and instance variables in the MapPointHelper class:

 private static MapPointResults lastResult;

 private static string errorInfo;

 private RenderServiceSoap renderService = new RenderServiceSoap();

 private LocationServiceSoap locationService = new LocationServiceSoap();

 private RouteServiceSoap routeService = new RouteServiceSoap();

What you have just created are two static variables to store error information and three objects that you will use to communicate with the MapPoint Location Server. The Render Service allows you to render maps for a given location, and set the size of the rendered map and the desired view of the map. The Location Service allows you to determine the geographic position of a user carrying a locatable device such as a SmartPhone or a Pocket PC Phone Edition. The Route Service allows you to generate routes, calculate distances between routes and provide driving directions. In this demo we are not concentrating on the capabilities of the MapPoint Web Service and the MapPoint Location Server, we are simply using them to get an idea of the capabilities of these services for line-of-business applications.
18. Create the following properties for error information retrieval by callers of methods of the MapPointHelper class:

 public static MapPointResults LastResult

 {

 get

 {

 return lastResult;

 }

 }

 public static string MapPointHelperErrorInfo

 {

 get

 {

 return errorInfo;

 }

 }

The first thing you will do in the newly created MapPointHelper class is write a method to set credentials to access the MapPoint services.
19. Add the following public method to the MapPointHelper class:

 public void SetCredentials()

 {

 NetworkCredential myCredentials = new NetworkCredential(Properties.Resources.MLS_USERNAME,

 Properties.Resources.MLS_PASSWORD,

 Properties.Resources.MLS_DOMAIN);

 //apply these credentials to the 3 MapPoint Services

 renderService.Credentials = myCredentials;

 renderService.PreAuthenticate = true;

 locationService.Credentials = myCredentials;

 locationService.PreAuthenticate = true;

 routeService.Credentials = myCredentials;

 routeService.PreAuthenticate = true;

 //Additionally, we need to set each services URL manually.

 renderService.Url = "https://mls.connectedinnovation.com/mmlsservice/RenderService.asmx";

 locationService.Url = "https://mls.connectedinnovation.com/mmlsservice/LocationService.asmx";

 routeService.Url = "https://mls.connectedinnovation.com/mmlsservice/RouteService.asmx";

 }

With the method you just added, you set credentials to access the three different services you will use to get location and route information.
The next thing you will do is write a method to find the user’s current location.

20. Add the following public method to the MapPointHelper class:

 public LatLong GetMyLocation()

 {

 lastResult = MapPointResults.Successful;

 try

 {

 LocatableContact[] myContacts;

 SetCredentials();

 //Make the call to the Location Server

 myContacts = locationService.GetContacts();

 string myDomainAlias = myContacts[0].DomainAlias;

 try

 {

 PositionResults posRes = locationService.GetPositions(new string[] { myDomainAlias });

 //If we found a position...

 if (posRes != null && posRes.PositionsFound > 0)

 {

 return posRes.Positions[0].LatLong;

 }

 }

 catch (Exception ex)

 {

 lastResult = MapPointResults.ContactNotFound;

 errorInfo = ex.ToString();

 return null;

 }

 }

 catch (Exception ex)

 {

 lastResult = MapPointResults.LocationInformationUnavailable;

 errorInfo = ex.ToString();

 }

 return null;

 }

This method looks for existing contacts on the MapPoint Location Server. For demo purposes you just take the first found contact and retrieve their location. In a live situation, you would specify your user’s domain and alias and immediately get their location, calling the GetPositions method. Using the sample MapPoint Location Server, we take the location of the first contact and assume it is the RoadAssistance user’s initial location.
The last method you need to write is used to create a route, based on two positions.

21. Add the following public method to the MapPointHelper class:

 public MapImage CalculateRoute(LatLong myLocation, LatLong assignmentLocation, int width, int height)

 {

 Route myRoute;

 MapImage[] myMaps;

 //Calculate a route between me and the next assignment

 LatLong[] latLongs = new LatLong[2];

 latLongs[0] = myLocation;

 latLongs[1] = assignmentLocation;

 try

 {

 myRoute = routeService.CalculateSimpleRoute(latLongs, "MapPoint.NA", SegmentPreference.Quickest);

 //Get a map of the route

 ViewByHeightWidth[] myRouteView = new ViewByHeightWidth[1];

 myRouteView[0] = myRoute.Itinerary.View.ByHeightWidth;

 MapSpecification mapSpec = new MapSpecification();

 mapSpec.DataSourceName = "MapPoint.NA";

 mapSpec.Route = myRoute;

 mapSpec.Views = myRouteView;

 mapSpec.Options = new MapOptions();

 mapSpec.Options.Format = new ImageFormat();

 mapSpec.Options.Format.Width = width;

 mapSpec.Options.Format.Height = height;

 myMaps = renderService.GetMap(mapSpec);

 }

 catch (Exception ex)

 {

 lastResult = MapPointResults.RouteInformationUnavailable;

 errorInfo = ex.ToString();

 return null;

 }

 return myMaps[0];

 }

This method takes a start and end location, between which a route is calculated. The route is then rendered on a map. The map is returned to the user and can immediately be displayed (for instance in a PictureBox).

Rebuild the solution using the Build menu or F6. Suppose you didn’t get compilation errors, you can now continue adding code to determine if we have a valid network connection.

Creating a class to determine network connectivity
Last week you have learned how to make use of the State & Notification Broker (SNB) that is part of the Windows Mobile 5.0 Managed API’s. In last week’s first demo you added functionality on the MainForm to monitor network connectivity and device cradle states. Since you need to find out about network connectivity in order to make use of Web Services as well, it makes sense to separate monitoring connectivity from the MainForm. Therefore you will create a separate class now that exclusively deals with monitoring several SystemStates. This class will be used inside the AssignmentsSummaryViewDialog, so it knows if it makes sense to retrieve MapPoint data (when either cradled or a network connection is present) or not.
[image: image3.jpg]Snapiticper
o

@ Feds
= wethods
49 cadistate_changed
s DeviceCraded
¥ wstance
9 NetworkComection
39 networkComectionstate_Changed

L9 snapirepar
o e

7 Nencradiesite

7 NestetworkComecionsite
= Nested Types

Cradiestatetventrandier
[

‘NetworkConnectionStateEventHand... ¥ |
= I

®

s

AssignmentsSummaryfiewDilog &
Caet

S

@ Feds
= properties
2 MyLocation
P NetworkComectionPresent
5 vethods

y EssignmentsSummaryendisiog
4 AssignmentsSummaryVienDialog_Cosng
29 assignmentsSunmaryVienDiaiog_Keyoom
59 assignmentssummaryiendialog_Loxd

P
¥ edimenuttenensiem Cick

5% onpaine
39 plawreBon_Clek

5 Pressrenerienatiss

29 Retneveiian

29 snapl_NewCradiestate

59 snopi NewietworkComnectiorstte

= Nested Types

[MapDisplayDelegate
Do

The first thing to do is create the SnapiHelper class.

22. Add a new Class to the RoadAssistance project and name it SnapiHelper.cs. An empty class is created and displayed in the Visual Studio Editor.

23. Add the following using directives to the class:

using Microsoft.WindowsMobile;

using Microsoft.WindowsMobile.Status;

SnapiHelper will subscribe to WM 5.0 State & Notification Broker changes for the cradled state and the number of network connections. SnapiHelper itself will inform other classes about changes, using its own events. Users can subscribe to these events using the corresponding EventHandler delegates.

24. Create the following events and delegates inside the SnapiHelper class:
 public delegate void NetworkConnectionStateEventHandler(object sender, ChangeEventArgs e);

 public event NetworkConnectionStateEventHandler NewNetworkConnectionState;

 public delegate void CradleStateEventHandler(object sender, ChangeEventArgs e);

 public event CradleStateEventHandler NewCradleState;

25. Create the following instance variables inside the SnapiHelper class, to monitor the system states you are interested in:

 private SystemState networkConnectionState;

 private SystemState cradleState;
 private static SnapiHelper snapiHelper;

26. Add a constructor to the SnapiHelper class:

 private SnapiHelper()

 {

 cradleState = new SystemState(SystemProperty.CradlePresent);

 cradleState.Changed += new ChangeEventHandler(cradleState_Changed);

 networkConnectionState = new SystemState(SystemProperty.ConnectionsNetworkCount);

 networkConnectionState.Changed += new ChangeEventHandler(networkConnectionState_Changed);

 }

SnapiHelper is implemented as a singleton. It can be used anywhere inside the RoadAssistance application, but there will only one instance of SnapiHelper be available. This makes perfect sense, since SnapiHelper itself is small, does not store a lot of instance variables and makes use of events to inform callers about changes in system status. Because events can have multiple subscribers, even having one instance of SnapiHelper does not limit its use in multiple areas of the RoadAssistance application. Implementing SnapiHelper as a singleton helps the application to perform slightly better since the object is instantiated once only. To instantiate SnapiHelper, of to retrieve the already created instance of the object you now create the following method.
27. Add the following public method to the SnapiHelper class:

 public static SnapiHelper Instance()

 {

 if (snapiHelper == null)

 {

 snapiHelper = new SnapiHelper();

 }

 return snapiHelper;

 }

Finally you will add four additional methods to the SnapiHelper class to get the current cradle state, to get the current number of network connections and to subscribe to changes in cradled state and network connections.

28. Add the following methods to the SnapiHelper class:

 public bool DeviceCradled()

 {

 return ((int)cradleState.CurrentValue != 0);

 }

 public bool NetworkConnection()

 {

 return ((int)networkConnectionState.CurrentValue != 0);

 }

 private void cradleState_Changed(object sender, ChangeEventArgs args)

 {

 if (NewCradleState != null)

 {

 NewCradleState(this, args);

 }

 }

 private void networkConnectionState_Changed(object sender, ChangeEventArgs args)

 {

 if (NewNetworkConnectionState != null)

 {

 NewNetworkConnectionState(this, args);

 }

 }

Rebuild the solution using the Build menu or F6. Suppose you didn’t get compilation errors, you can now continue extending the AssignmentsSummaryViewDialog to be able to use the just added functionality.

Using the MapPoint Location Server inside the RoadAssistance application
29. Open the file AssignmentsSummaryViewDialog.cs in Visual Studio and the following using directives:

using System.Threading;

using RoadAssistance.MLSService;

30. add the following instance variables inside the class AssignmentsSummaryViewDialog:
 private bool mapPointRequestPending = false;

 private bool mapDownloaded = false;

 private bool connected = false;

 private bool cradled = false;

 private double latitude;

 private double longitude;

 private int mapWidth;

 private int mapHeight;

 private SnapiHelper snapi;

 private static LatLong myLocation;

All these instance variables are used to determine if a map can be displayed, with what size, if we have access to a network and to keep track of the user’s current location.

31. Add the following property immediately under the just added instance variables:

 public static LatLong MyLocation

 {

 get

 {

 return myLocation;

 }

 set

 {

 myLocation = value;

 }

 }

32. Add a Load event handler to the AssignmentsSummaryViewDialog and add the following code to it:

 snapi = SnapiHelper.Instance();

 connected = snapi.NetworkConnection();

 snapi.NewNetworkConnectionState += new SnapiHelper.NetworkConnectionStateEventHandler(snapi_NewNetworkConnectionState);

 connected |= snapi.DeviceCradled();

 snapi.NewCradleState += new SnapiHelper.CradleStateEventHandler(snapi_NewCradleState);

 DataRowView currentRowView = (DataRowView)assignmentsBindingSource.Current;

 AssignmentsDataSet.AssignmentsRow currentRow = (AssignmentsDataSet.AssignmentsRow)currentRowView.Row;

 latitude = currentRow.Latitude;

 longitude = currentRow.Longitude;

 mapDownloaded = false;

 // Make sure to set the origanal size of the PictureBox and the Panel on which assignment details

 // are displayed.

 // This is necessary, since the last time we might have left the AssignmentsSummaryViewDialog

 // in full map mode, which means the original sizes of these controls are lost.

 this.pictureBox1.Size = new System.Drawing.Size(240, 157);

 this.panel1.Size = new System.Drawing.Size(240, 105);

 if (connected && (latitude != 0.0 || longitude != 0.0))

 {

 PrepareRetrievingMap();

 }

 else

 {

 panel1.Height = ClientRectangle.Height;

 }

The Load event handler first subscribes to the connection states in SnapiHelper. Intellisense will help you to create new empty event handlers for the events, using the Tab key. Note: If you are copying and pasting the preceding code, the event handlers are not automatically inserted, so it is best to really type in the preceding code yourself (at least the first 5 statements).

It also determines which row in the Assignments datagrid is currently selected, and it takes the Latitude and Longitude values from that row. Whenever you have a connection to the Internet, and valid values for Longitude and Latitude, a map containing route information is retrieved from the MapPoint Web Service, otherwise, the Assignment Summary is simply displayed in full screen.

33. Add a Closing event handler to the AssignmentsSummaryViewDialog and add the following code to it:

 if (mapPointRequestPending)

 {

 e.Cancel = true;

 }

 else

 {

 snapi.NewNetworkConnectionState -= new SnapiHelper.NetworkConnectionStateEventHandler(snapi_NewNetworkConnectionState);

 snapi.NewCradleState -= new SnapiHelper.CradleStateEventHandler(snapi_NewCradleState);

 }

In the Closing event handler you cancel the closing event when a request to display a map is still pending (otherwise you will run into object disposed errors, since the map data will arrive after the form has already closed). If no map request is pending, simply unsubscribe to connection states and the form will be closed.

34. Find the snapi_NewCradleState event handler in AssignmentsSummaryViewDialog.cs and replace its code by the following:

 cradled = ((int)e.NewValue > 0);

 if (connected || cradled)

 {

 if (!mapDownloaded && (latitude != 0.0 || longitude != 0.0))

 {

 PrepareRetrievingMap();

 }

 }

This code makes sure that a map will be displayed if we just got informed that there now is internet connectivity on the device. If a map is already displayed, or no route information is available, we only keep track of the cradled state of the device.

35. Find the snapi_NewNetworkConnectionState event handler in AssignmentsSummaryViewDialog.cs and replace its code by the following:

 connected = ((int)e.NewValue > 0);

 if (connected || cradled)

 {

 if (!mapDownloaded && (latitude != 0.0 || longitude != 0.0))

 {

 PrepareRetrievingMap();

 }

 }

This code makes sure that a map will be displayed if we just got informed that there now is internet connectivity on the device. If a map is already displayed, or no route information is available, we only keep track of the network connection state of the device.
36. Add the following method to the AssignmentsSummaryViewDialog.cs source file:

 private void PrepareRetrievingMap()

 {

 mapWidth = pictureBox1.Width;

 mapHeight = pictureBox1.Height;

 this.ControlBox = false;

 LatLong ll = new LatLong();

 ll.Latitude = latitude;

 ll.Longitude = longitude;

 mapPointRequestPending = true;

 pictureBox1.Visible = false;

 ThreadPool.QueueUserWorkItem(RetrieveMap, ll);

 }

This method sets the width and height for the map to be displayed, it takes the latitude and longitude of the destination the user needs to go to and it makes use of a ThreadPool thread to request the MapPoint Web Service to return a map with route information. The reason to run this request on a separate thread is that calling out to a web service might be time consuming. Running this in parallel allows the user to do other things simultaneously, in this case for instance scrolling through the assignments details.

37. Add the following delegate to the AssignmentsSummaryViewDialog.cs source file to safely allow updating user interface controls from inside the ThreadPool thread.

 private delegate void MapDisplayDelegate();

38. Add the following method to the AssignmentsSummaryViewDialog.cs source file:

 private void RetrieveMap(object pars)

 {

 MapPointHelper mph = new MapPointHelper();

 LatLong assignmentLocation = (LatLong)pars;

 mph.SetCredentials();

 if (myLocation == null)

 {

 myLocation = mph.GetMyLocation();

 }

 if (myLocation != null)

 {

 MapImage currentMap = mph.CalculateRoute(myLocation, assignmentLocation, mapWidth, mapHeight);

 if (currentMap != null)

 {

 MapDisplayDelegate displayMap = delegate()

 {

 pictureBox1.Image = new System.Drawing.Bitmap(new System.IO.MemoryStream(currentMap.MimeData.Bits));

 pictureBox1.Visible = true;

 this.ControlBox = true;

 };

 this.Invoke(displayMap, null);

 }

 else

 {

 string errorMsg = "MLS Error: Map unavailable. ";

 errorMsg += MapPointHelper.MapPointHelperErrorInfo;

 MessageBox.Show(errorMsg);

 }

 }

 else

 {

 string errorMsg;

 switch (MapPointHelper.LastResult)

 {

 case MapPointHelper.MapPointResults.ContactNotFound:

 errorMsg = "MLS Error: Contact not found. ";

 break;

 default:

 errorMsg = "MLS Error: Location information unavailable. ";

 break;

 }

 errorMsg += MapPointHelper.MapPointHelperErrorInfo;

 MessageBox.Show(errorMsg);

 }

 mapPointRequestPending = false;

 mapDownloaded = true;

 }

In the above method you first set credentials to access the MapPoint Location Server. The next thing to do is retrieve the user’s location, when no user location is set yet. Note that this part of the demo is using a trial version of the MapPoint Location Server that returns a fixed location. When the user’s current location is available or retrieved, we take that together with the new location to calculate a route, using MapPoint. The route is returned in a map that is displayed on the screen. Note how you make use of Control.Invoke to display the map information on the screen, since RetrieveMap is running on a separate thread. Also note how you are using a new C# 2.0 language feature, called anonymous delegates to update the user controls using Control.Invoke.
More information about multithreading and updating UI controls can be found in this article: http://msdn.microsoft.com/library/en-us/dnnetcomp/html/multithreaded_netcf_apps.asp. If you want to know more about C# 2.0 language features, you can watch this on-demand webcast:

MSDN Webcast: Using C# 2.0 Language Features in .NET Compact Framework 2.0 Applications (Level 300)
Rebuild the solution using the Build menu or F6. Suppose you didn’t get compilation errors, you can now test the newly added functionality. To do so, make sure you have an active assignment, containing the following location information: longitude = -122.18, latitude = 47.32. If you now run the application with the device connected to the network you should see a map appearing on the AssignmentsSummaryViewDialog screen like this:

[image: image4.png]

As you might have noticed, the user experience while retrieving the MapPoint map is not that good. There is no indication that a map is currently retrieved. In the next demo you will fix this.

Demo2 – User feedback while loading a MapPoint map

To give visual feedback to the user while a map with route information is loading, you will directly paint on the AssignmentsSummaryViewDialog, just as you have done earlier in this series on the SplashScreen. You will now override the OnPaint method to display additional information on the AssignmentsSummaryViewDialog when a request for a MapPoint map is pending.

39. Add the following method to the AssignentsSummaryViewDialog class:

 protected override void OnPaint(PaintEventArgs e)

 {

 base.OnPaint(e);

 if (mapPointRequestPending)

 {

 Graphics graphics = e.Graphics;

 Font textFont = new Font(FontFamily.GenericSansSerif, 16, FontStyle.Bold | FontStyle.Italic);

 string infoText = "Retrieving Route ...";

 Rectangle clientRect = this.ClientRectangle;

 SizeF txtSize = graphics.MeasureString(infoText, textFont);

 // adjust slightly because the measured string is clipped by a few pixels.

 txtSize.Width += 10;

 StringFormat sf = new StringFormat();

 sf.Alignment = StringAlignment.Center;

 sf.LineAlignment = StringAlignment.Center;

 int xPosStart = clientRect.Width / 2 - ((int)txtSize.Width / 2);

 int yPosStart = (clientRect.Height * 2) / 3;

 graphics.DrawString(infoText,

 textFont,

 new SolidBrush(Color.Blue),

 new RectangleF(xPosStart, yPosStart, txtSize.Width, txtSize.Height),

 sf);

 textFont.Dispose();

 }

 }

In this method, whenever a map is requested but not yet available, a string is displayed directly on the form.

Rebuild the solution using the Build menu or F6. Suppose you didn’t get compilation errors, you can now test the newly added functionality. When the map is loading you should see the string “Retrieving Route” displayed on the screen area where the picture box is located.

Demo3 – Updating the current location

As explained before, this application is not making use of true location awareness. To compensate for that, you are now going to adjust the current location programmatically. The idea is that you can make the location, specified in the current assignment as the user’s location as soon as the user closes the current assignment.

40. Open the file MainForm.cs in the editor and add the following using directive:
using RoadAssistance.MLSService;

41. Find the menuItemCloseAssignment_Click event handler and add the following code immediately under the statement currentRow.Pending = false
 LatLong currentLocation = new LatLong();

 currentLocation.Latitude = currentRow.Latitude;

 currentLocation.Longitude = currentRow.Longitude;

 AssignmentsSummaryViewDialog.MyLocation = currentLocation;

You are now done with today’s exercise. Rebuild the solution using the Build menu or F6. Deploy it to the device or the emulator. Experiment with the newly added code and don’t hesitate to extend it yourself. Try closing an assignment and opening another assignment and verify that the route starts at the just closed assignment. NOTE: The final download of this week’s RoadAssistance application does contain a number of additional changes that are not described in this document, like support for high resolution screens to display maps properly and zoom functionality to display the map full screen as well. Make sure to take a look at the final solution to learn about these features.
