Creating a Windows Mobile Line of Business (LOB) Application (Part 8 of 13): State & Notification Broker + Message Interception (Level 300)
Webcast Date: 2006-02-22
The steps as written down in this document are not tested thoroughly. Even though all information is hopefully here, you might run into some unexpected problems. If so, don’t hesitate to contact me via email: maarten.struys@pts.nl.

Today’s sample code is the end result of all the steps that are described in this document. You can take last week’s sample code and follow all steps in this document to get to this end result yourself. However, the downloadable source code is fully documented. Some documentation is omitted in the individual steps that are described in this step-by-step document. Note: To make sure that the described demos are working properly you must use last week’s sample code as initial project.
Demo1 – Connectivity
In today’s first demonstration you will learn how to make use of the State & Notification Broker (SNB) that is part of the Windows Mobile 5.0 Managed API’s. The S&N Broker is probably the most powerful assembly that is part of the WM Managed API’s. For the first time, SNB gives you access to over 100 different device states, easily accessible in a consistent way using managed code. You can check current states but also monitor changes in device states. You will use SNB to monitor network connectivity and device cradle states. Network connectivity states will be used later throughout the webcast series to find out if you can for instance access a Web Service. You will use the device cradled state to find out if you can synchronize your SQL Mobile Edition database with the back-end server using Merge Replication. Even though Merge Replication can be used with a network connection as well, after all, you are communicating with a web server when synchronizing, for the RoadAssistance sample code you will only allow synchronization when the device is cradled. This is simply a limitation in the RoadAssistance application, not a technical limitation, but it allows you to react in a different way to several state changes for demo purposes only.

Monitoring System States
1. Open the RoadAssistance solution in Visual Studio 2005

2. Add the following references to the solution by right clicking References in Solution Explorer and selecting Add Reference in the popup menu (see figure 1):

Microsoft.WindowsMobile

Microsoft.WindowsMobile.Status

[image: image1.jpg]Add Reference

1T projcts | Bronse | Recent|

Component Name
CustomMarshaers

Micosoft VisualBasic

Migrosoft. WindowsCE. Forms

Microsoft. WindowsNoble
Mirosoft.WindowsMobie. Configuration
Mizosoft. WindowsMobile.DirectX
Mirasoft WindowsMobie. Forms
Mizosoft. WindonsMobile PocketOutiook
[Microsoft. WindonsMobile. Status
Microsoft. WindowsMobie. Telephony.
mscorib

System

System Dats

System Data.SclClent

Sustem Nata. SelServerCe

<

Version
2000
5000
2000
10.0.0
10.00
2000
10.00
10.0.0
10.0.0
10.0.0
2000
2000
2000
3.0.3600.0
03000

Runtime
2000

Path
Coprogn

V20.50727 Ci\progr,

20.00
Viias20
VL4322
2000
viLas2
V114322
V113322
VLL4322
2000
2000
20,00

C:Pprogr
C:Proa!
Coprogn
CoPprogn
CiPprogn
C:progr
C:Prog:
CoProgn
CoPprogn
Ciprogn
Coprogn

V20.50727 Co¥erogr
V205077 Coroer

Figure 1 - Adding references to Windows Mobile assemblies
3. Open MainForm.cs in the source code editor of Visual Studio 2005.

4. Import the following namespaces, by adding using directives at the beginning of MainForm.cs:

using Microsoft.WindowsMobile;

using Microsoft.WindowsMobile.Status;

5. Add the following instance variables to MainForm.cs:

 private SystemState networkConnectionState;

 private SystemState cradleState;

6. Add the following method to MainForm.cs:

 private void SnapiInit()

 {

 cradleState = new SystemState(SystemProperty.CradlePresent);

 cradleState.Changed += new ChangeEventHandler(cradleState_Changed);

 networkConnectionState = new SystemState(SystemProperty.ConnectionsNetworkCount);

 networkConnectionState.Changed += new ChangeEventHandler(networkConnectionState_Changed);

 }

In this method you create two SystemState objects, one to monitor the number of network connections found on the device, the other one to determine if the device is cradled or not. To be informed about changes in these states, you also add event handlers to the Changed event. Intellisense helps you to create new empty event handlers for the events you subscribe to, using the Tab key. Note: If you are copying and pasting the preceding code, the event handlers are not automatically inserted, so it is best to really type in the preceding code yourself. Also note that you need to have opening and closing braces for the constructor in place before adding the event handler, otherwise, Visual Studio 2005 inserts the event handler code add an odd location, causing you problems to fix opening and closing braces for other methods.

For today’s demo code you will leave the networkConnectionState_Changed event handler unused. However, since the newly created event handler will throw an exception when called, you have to remove the throw statement from the networkConnectionState_Changed event handler.
7. Find the networkConnectionState_Changed event handler and remove the statement in it, or comment it out as follows:

 void networkConnectionState_Changed(object sender, ChangeEventArgs args)

 {

 // throw new Exception("The method or operation is not implemented.");

 }

This will prevent your application against an exception whenever the ConnectionNetworkCount system state changes.

8. Find the cradleState_Changed event handler and replace its code by the following statement:

 menuItemSynchronize.Enabled = (int)args.NewValue != 0;

This statement simply enables the Synchronize menu item when the device is cradled, allowing to synchronize the local RoadAssistance database with the back-end server and it disables the menu item when the device is not cradled. This event handler only reacts on changes in the cradled state. During application start you have to determine if the device is currently cradled.

9. Find the MainForm_Load event handler in MainForm.cs and add the following statement anywhere above the statement splashScreenThread.Join():

 menuItemSynchronize.Enabled = SystemState.CradlePresent;

10. Immediately above the just entered statement, make sure to add a call to the newly created method SnapiInit as well:

 SnapiInit();

Rebuild the solution using the Build menu or F6. Suppose you didn’t get compilation errors, you can now test the new functionality by starting the RoadAssistance application in the emulator. Using the Device Emulator Manager that you can find under the Tools menu of Visual Studio 2005, you can switch between cradling and uncradling the device. Verify if the Synchronize menu item is enabled accordingly.

Demo2 – Intercepting SMS Messages
In the next demonstration you will learn how to intercept SMS messages. You will intercept a particular SMS message, identified by the keyword “RoadAssist”, so that it will not appear in Pocket Outlook’s Inbox, but instead will be caught by the RoadAssistance application for further processing. The format of an SMS message that can be captured by the RoadAssistance application looks like this:

RoadAssist;1=STRUM01;4=47.27;5=122.18;6=Mazda;7=626;8=0

The message content should start by the keyword RoadAssist, followed by a semi-colon. The remainder of the message contains coded information that is relevant for a new assignment. You can enter the following information in the message, each item separated by a semi-colon and starting with a number.

Message format description:
This method is used to add a new assignment to the Assignments table of the RoadAssistanceDatabase. The assignment is encoded to allow it to fit in a standard SMS message. Encoding looks like this:
 [FieldNr]=fielddata;

Not all different fields have to be present. Field numbers are defined as:
 1=MemberID (either 1 or 2,3 optional)

 2=Client name

 3=PhoneNr

 4=Lattitude (optional)
 5=Longitude (optional)
 6=CarBrand (optional)

 7=CarModel (optional)

 8=DescriptionID (optional, ID of a description in the Description table).

Adding a notification control
To have a visual indication that a new SMS message is received in the RoadAssistance application, you begin to add a Notification control to the MainForm.

11. Open MainForm.cs in designer mode.

12. Drag a Notification control from the ToolBox to the designer surface.

13. Select the just added Notification control and change its name in the Properties window to assignmentNotification.

14. Add the following text to the Text property of the Notification control in the Properties window: You just received a new assignment by SMS, check the last record in the assignment list.
15. Set the Caption property of the just added Notification control to: Assignment.

16. Add a BalloonChanged event handler to MainForm.cs, using Events in the Properties window.
17. Replace the code in the event handler to the following code:

 if (e.Visible == false)

 {

 assignmentNotification.Visible = false;

 }

Intercepting SMS Messages
The next thing to do is adding code to intercept SMS messages send to the device that start with the string RoadAssist;. To do so, you will need to add interception code to the MainForm_Load event handler.
18. Add the following reference to the solution by right clicking References in Solution Explorer and selecting Add Reference in the popup menu (see figure 1):

Microsoft.WindowsMobile.PocketOutlook

19. Open MainForm.cs in the source code editor of Visual Studio 2005.

20. Import the following namespaces, by adding using directives at the beginning of MainForm.cs:

using Microsoft.WindowsMobile.PocketOutlook;

using Microsoft.WindowsMobile.PocketOutlook.MessageInterception;

21. Add the following instance variable to MainForm.cs:

 private MessageInterceptor sms;

22. Find the MainForm_Load event handler in MainForm.cs and add the following statement anywhere above the statement splashScreenThread.Join():

 // Define the SMS messages that needs to be intercepted by the RoadAssistance

 sms = new MessageInterceptor(InterceptionAction.NotifyAndDelete);

 sms.MessageCondition = new MessageCondition(MessageProperty.Body,

 MessagePropertyComparisonType.StartsWith,

 "RoadAssist");

 sms.MessageReceived += new MessageInterceptorEventHandler(sms_MessageReceived);

This code informs the device that the RoadAssistance should get a notification when an SMS message is received whose message body starts with the string RoadAssist. You also specify that the message should be deleted after it arrives in the RoadAssistance application to prevent it from showing up in the Inbox as well. Finally you subscribe to the MessageReceived event to process the just received SMS message. Intellisense will help you to create new empty event handler for the event, using the Tab key. Note: If you are copying and pasting the preceding code, the event handler is not automatically inserted, so it is best to really type in the preceding code yourself.
23. Find the sms_MessageReceived event handler and replace the statement in it by the following:

#if PocketPC

 assignmentNotification.Visible = true;

#endif

This results in display of the notification control when a new SMS message meeting your criteria is received in the RoadAssistance application. The reason that you use conditional compilation is that notification controls are not supported in SmartPhones. This is simply a preparation for targeting multiple devices in the future.

Rebuild the solution using the Build menu or F6. Suppose you didn’t get compilation errors, you can now test the new functionality by starting the RoadAssistance application in the emulator or on a Pocket PC Phone Edition device. Send an SMS message with the following message body to your device (see the note for sending SMS messages using the device emulator).

RoadAssist;1=STRUM01;4=47.27;5=122.18;6=Mazda;7=626;8=0

Note: If you want to test the newly added functionality using the emulator, make sure to run the application on a Windows Mobile 5.0 Pocket PC Phone Emulator. The emulator has a virtual radio, meaning you can send SMS messages to it. Using the Messaging application on the emulator, simply send an SMS message to yourself. The phone number of the emulator is: 1(425)001-0001.
Demo3 – Updating Assignments
The real power of receiving the SMS message that you saw in the previous demo, is to take the message contents, create a new assignment record from it and store that to the RoadAssistance database.

To retrieve assignments from the received SMS message and to store them in the Assignments table of the RoadAssistance database, you need to add some functionality to the application.

Generating both a DataSet and a SqlCeResultSet for the Assignments table
So far, you have already used a DataSet to display records of the Assignments table in a data grid on the MainForm. Because it is very simple to add new records to a table using a strongly typed SqlCeResultSet, you now will create one for the Assignments table as well.
24. Select the AssignmentsDataSet.xsd file in Solution Explorer and look at its Properties window. You will see that the Custom Tool property is set to MSDataSetGenerator. This means that a strongly typed DataSet was generated for the Assignments table.

25. Change the Custom Tool property to MSDataSetResultSetGenerator. Now both a strongly typed DataSet and a strongly typed SqlCeResultSet will be generated for the Assignments table. Both will be stored in the AssignmentsDataSet.xsd file (and the files in its tree).

Because the tool overwrites the existing DataSet, you have to repeat steps 48 – 57 of last week’s Demo_StepByStep description to re-create the method FillByActiveAssignments. Just in case you don’t have that document by hand, the steps are repeated here in this document.
Adding an additional fill method to the AssignmentsDataSet
It is possible to extend strongly typed datasets, so they contain additional functionality, e.g. to filter database table data before adding that data to a dataset. This is exactly what you are going to implement for the AssignmentsDataSet.

26. Open the dataset designer in Visual Studio for the AssignmentsDataSet by right clicking on the AssignmentsDataSet.xsd file and selecting View Designer from the popup menu.

27. Add a new query by right clicking the AssignmentsTableAdapter class in the dataset designer and selecting Add Query in the popup menu (as shown in figure 7)

[image: image2.jpg]Encioyeetd

iy
prore
DateTmegeest
Lot
Latue
G
G

Ve code
Proeres

Figure 7 - Adding a new query

28. In the TableAdapter Query Configuration Wizard accept all default settings until you reach the screen shown in figure 8.

[image: image3.jpg]TableAdaper

i3

LR —

‘Specify 2 SQUSELECT statement ">‘_“1

Tipe your SQL sttementor e e Bl t ot Wt i shukbeloaed i e e?
Wihat data should the tabe osd?

speasylotees il canes lcon)

Figure 8 - TableAdapter Query Configuration Wizard
29. Click the Query Builder button to show the Query Builder (see figure 9).

30. In the Query Builder window locate the Pending column and add a filter to it. The filter should simply contain = 1, meaning that only records will be selected with Pending = 1.

[image: image4.jpg]Query Bulder

SSECT 15, Envloyee, Meroerd, e, P, DateTreReauest, Longtude, Laude, Corbrnd, Catiod), Froblenbeseld
. rongid

FROV Assgrments

ERE (Penng - 1)

Figure 9 - Adding a filter in the Query Builder

31. Click OK after you have added the Filter.

32. The TableAdapter Query Configuration Wizard continues. Click Next on the screen where you see the just created query.

33. Make sure to only check the “Fill a DataTable” check box in the next screen (see figure 10).

34. Change the method name to “FillByActiveAssignments”.

35. Click the Finish button to add the newly created method to the AssignmentsDataSet.

Adding the DbAccessAssignment Class to the RoadAssistance project

To easily insert new records to the Assignments table, the first thing to do is create a new class to maintain the Assignments table. This class will again be derived from DbAccess so we have a proper connection string available and the ability to pass error information to callers of methods in the new class.

36. Add a new Class to the RoadAssistance project and name it DbAccessAssignments.cs. An empty class is created and displayed in the Visual Studio Editor.

37. Add the following using directives to just created class:

using System.Data;

using System.Data.SqlServerCe;

38. Modify the class such that it derives from the DbAccess class, by changing the first line of the class definition into:

 class DbAccessTimeSheet : DbAccess

The DbAccessAssignments class contains a number of methods to insert a new assignment to the Assignments table and to decode contents of an SMS message containing a new assignment.

39. Add the following instance variable to the DbAccessTimeSheet class:

 private AssignmentsResultSets.AssignmentsResultSet assignmentsRS;

Now you will add a constructor to the DbAccessAssignments class. In the constructor you will instantiate a AssignmentsResultSet object. You have to provide a connection string to this object to allow it to connect to the database. Since you already have a ConnectString available in the base class of DbAccessAssignments, you can simply pass that string.

40. Add the following constructor code to the DbAccessAssignments class:

 public DbAccessAssignments()

 {

 System.Data.SqlServerCe.ResultSetOptions resultSetOptions = System.Data.SqlServerCe.ResultSetOptions.Scrollable;

 resultSetOptions = (resultSetOptions | System.Data.SqlServerCe.ResultSetOptions.Sensitive);

 resultSetOptions = (resultSetOptions | System.Data.SqlServerCe.ResultSetOptions.Updatable);

 assignmentsRS = new AssignmentsResultSets.AssignmentsResultSet(ConnectionString, resultSetOptions);

 }

To easily allow you to decode information from the received SMS message you will now add an enum, containing message field id’s and a helper function to retrieve a string belonging to a particular field of the SMS message.

41. Add the following enum to the DbAccessAssignments class:

 private enum AssignmentCode

 {

 MemberID = 1,

 CustomerName,

 CustomerPhoneNr,

 Latitude,

 Longitude,

 CarBrand,

 CarModel,

 Description

 }

42. Add the following private method to the DbAccessAssignments class:

 private string RetrieveFromAssignmentSMS(AssignmentCode ac, string assignment)

 {

 string[] assignmentFields = assignment.Split(';');

 string fieldToFind = (int)ac + "=";

 foreach (string assignmentField in assignmentFields)

 {

 if (assignmentField.StartsWith(fieldToFind))

 {

 return assignmentField.Substring(2);

 }

 }

 return null;

 }

The method RetrieveFromAssignmentSMS takes the entire SMS message body and a field identifier for a particular field (AssignmentCode). It searches the message body until the assignment code is found. The string following the assignment code is returned to the caller.
The last thing to add to the DbAccessAssignments class is a method that actually inserts a new record in the Assignment table.

43. Add the following public method to the DbAccessAssignments class:

 public bool AddAssignment(string newAssignment)

 {

 bool success = true;

 string memberID = RetrieveFromAssignmentSMS(AssignmentCode.MemberID, newAssignment);

 memberID = (memberID == null) ? "" : memberID;

 string customerName = RetrieveFromAssignmentSMS(AssignmentCode.CustomerName, newAssignment);

 customerName = (customerName == null) ? "" : customerName;

 string customerPhone = RetrieveFromAssignmentSMS(AssignmentCode.CustomerPhoneNr, newAssignment);

 customerPhone = (customerPhone == null) ? "" : customerPhone;

 string latitude = RetrieveFromAssignmentSMS(AssignmentCode.Latitude, newAssignment);

 latitude = (latitude == null) ? "0.0" : latitude;

 string longitude = RetrieveFromAssignmentSMS(AssignmentCode.Longitude, newAssignment);

 longitude = (longitude == null) ? "0.0" : longitude;

 string carBrand = RetrieveFromAssignmentSMS(AssignmentCode.CarBrand, newAssignment);

 carBrand = (carBrand == null) ? "" : carBrand;

 string carModel = RetrieveFromAssignmentSMS(AssignmentCode.CarModel, newAssignment);

 carModel = (carModel == null) ? "" : carModel;

 string description = RetrieveFromAssignmentSMS(AssignmentCode.Description, newAssignment);

 description = (description == null) ? "0" : description;

 if (success)

 {

 assignmentsRS.AddAssignmentsRecord(DbAccess.UserID,

 memberID,

 customerName,

 customerPhone,

 DateTime.Now,

 Convert.ToDouble(longitude),

 Convert.ToDouble(latitude),

 carBrand,

 carModel,

 Convert.ToInt32(description),

 0,

 0,

 true);

 }

 return success;

 }

In the method you just added, the entire SMS message that the application received is decoded, after which it is inserted in the Assignments table using the newly created AssignmentsResultSet.

To make sure that you have not made any errors in the DbAccessAssignments class, rebuild the solution using the Build menu or F6. Suppose you didn’t get compilation errors, you are now done with the DbAccessAssignments class so you can close it. The next thing to do is add functionality to the MainForm to incorporate the newly added functionality.
Adding functionality to automatically add newly received assignments
Assignments can be received at any time. The user might be busy doing other work; therefore you don’t want to temporarily make the application unavailable to the user when a new SMS message containing an assignment is received. The State & Notification Broker helps you partly by generating an event when a new SMS message is captured. To process the newly received assignment that is enclosed in the SMS message, you will use a separate thread to allow the user to continue working with the application. Processing a new assignment is a relatively short amount of work. Instead of creating a new thread yourself you can make use of the ThreadPool, which contains a pool of re-usable classes. Using the ThreadPool class you eliminate the overhead of creating a new thread class and setting up its resources to be able to blend in seamlessly with the operating system. Since creating a thread is a relatively expensive operation, it makes sense to reuse threads from the ThreadPool. Because thread pool threads are shared resources, it is not recommended to run long lasting threads inside the thread pool, because if no thread is available in the thread pool when the method QueueUserWorkItem is called, the specified delegate will only execute once a thread pool thread becomes available. Since processing received SMS messages is a relative short operation, this functionality can be perfectly executed inside a ThreadPool thread. Be aware though that running code in a different thread also adds complexity to the application.

One of the more common mistakes that many developers run into is trying to update / access user interface controls directly from within threads that did not create the UI controls. In the .NET Compact Framework 2.0 this will result in an exception being thrown. Instead, the thread that creates a UI control should update it. To still be able to update a UI control from another thread, you can use the Control.Invoke method. This method executes a specified delegate on the thread that owns the control's underlying window handle; in other words the thread that created the control. The code that you will enter to capture SMS messages in the MainForm will make use of this technique. If you want to learn more about multithreading in the .NET Compact Framework you should take a look at this article: http://msdn.microsoft.com/library/en-us/dnnetcomp/html/multithreaded_netcf_apps.asp. There is also a step-by-step Hands-on lab available about multithreading: http://msdn.microsoft.com/library/en-us/dnnetcomp/html/med204_msdn_dev_multithread_apps_netcf2.asp.

44. Locate the sms_MessageReceived event handler in MainForm.cs and add the following statement as first statement of this method:

 ThreadPool.QueueUserWorkItem(StoreNewAssignment, e);

This statements queues a method with the signature of the WaitCallback delegate. When a thread is available in the ThreadPool, the method StoreNewAssignment will run in that thread.
45. Declare two delegates to allow you to update user interface controls to the MainForm class and add the method StoreNewAssignment as well:

 private delegate void SelectRowDlgt(int row);

 private delegate void SimpleControlDlgt();

 private void StoreNewAssignment(object info)

 {

 MessageInterceptorEventArgs e = (MessageInterceptorEventArgs)info;

 SmsMessage msg = (SmsMessage)e.Message;

 DbAccessAssignments dbaAssignments = new DbAccessAssignments();

 SimpleControlDlgt updateControl;

 SelectRowDlgt selectRow;

 if (dbaAssignments.AddAssignment(msg.Body))

 {

 int originalSelection = assignmentsDataGrid.CurrentRowIndex;

 this.Invoke(updateControl = delegate()

 {

 this.assignmentsTableAdapter.FillByActiveAssignments(this.assignmentsDataSet.Assignments);

 });

 this.Invoke(updateControl = delegate()

 {

 this.radioButtonRepairTime.Visible = true;

 });

 this.Invoke(selectRow = delegate(int row)

 {

 assignmentsDataGrid.CurrentRowIndex = (row == -1) ? 0 : row ;

 }, new object[] { originalSelection });

 }

 }

In step 44 you passed the MessageInterceptorEventArgs parameter on to StoreNewAssignment. This parameter contains the received SMS message, so you retrieve it inside StoreNewAssignment. You also declared two delegates that will be used to update user interface controls from inside this ThreadPool thread. First, the SMS message is decoded and added to the Assignments table (by calling dbaAssignments.AddAssignment). After that, the Assignments dataset is updated to hold the newly received assignment as well. Also, the radioButtonRepairTime is enabled if the newly received assignment is the only assignment available. As you can see, updating UI controls is done using the Invoke method. You can also see a new C# 2.0 feature in action, anonymous methods. To learn more about anonymous methods you can listen to an on-demand webcast from November 4th, 2005 with the following title: Using C# 2.0 Language Features in .NET CF 2.0 Applications.
You are now done with today’s exercise. Rebuild the solution using the Build menu or F6. Deploy it to the device or the emulator. Experiment with the newly added code and don’t hesitate to extend it yourself. Newly received SMS messages with the format described on page 6 of this document should be captured by the RoadAssistance application. When a new assignment is received in an SMS message, it will automatically appear in the Assignments datagrid on the main form and it will be stored in the RoadAssistance database as well.
NOTE: The final download of this week’s RoadAssistance application might contain a number of additional changes that are not described in this document.

