
[image: image10]

The Microsoft Office Open XML Format

Preview for Developers

White Paper

Published: June 2005

For the latest information, please see http://www.microsoft.com/office/preview
[image: image12.png]I‘ Microsoft*

L4 Office

Contents

1Summary

Introducing the Microsoft Office Open XML Format
2
File Structure
3
ZIP Package
3
Parts
4
Relationships
5
Macro-Enabled Files versus Macro-Free Files
7
File Extensions
7
Solution Development
9
Data Interoperability
9
Content Manipulation
10
Content Sharing and Reuse
11
Document Assembly
12
Document Security
13
Managing Sensitive Information
13
Document Styling
13
Document Profiling
14
Conclusion
15
References
15

Summary
Microsoft® “Office 12” will introduce new default XML file formats for Microsoft Office Word word processing, Excel® spreadsheet, and PowerPoint® presentation graphics programs, and will change the way developers can approach solutions based on Office documents. This white paper explores the new file format and discusses solution opportunities and scenarios for developers.
Introducing the Microsoft Office Open XML Format

By default, documents created in Microsoft “Office 12” will be based on an XML file format definition. This new format is distinct from the binary-based file format that has been a mainstay of past Office versions. The new Microsoft Office Open XML Format introduces a number of benefits that will accrue not only to developers and the solutions they build, but also to individual users and organizations of all sizes. The following highlights are some of overall benefits of the Open XML Format:

· Open and Royalty-Free – The Open XML Format is based on XML and ZIP technologies, thereby making it universally accessible. The specification for the format and schemas will be published and made available under the same royalty-free license that exists today for the Microsoft Office 2003 Reference Schemas and which is openly offered and available for broad industry use.

· Interoperable – With industry standard XML at the core of the Open XML Format, exchanging data between Microsoft Office applications and enterprise business systems is greatly simplified. Without requiring access to the Office applications, solutions can alter information inside an Office document or create a document entirely from scratch by using standard tools and technologies capable of manipulating XML.

· Robust – The Open XML Format has been designed to be more robust than the binary formats, and, therefore, will reduce the risk of lost information due to damaged or corrupted files. Even documents created or altered outside of Office are less likely to corrupt, as Office programs have been designed to recover documents with improved reliability by using the new format.

· Efficient – The Open XML Format uses ZIP and compression technologies to store documents. This type of file compression offers potential cost savings as it reduces the disk space required to store files and decreases the bandwidth needed to transport files by way of e‑mail, over networks, and across the Web.

· Secure – The openness of the Open XML Format translates to more secure and transparent files. Documents can be shared confidently because personally identifiable information and business sensitive information, such as user names, comments and file paths, can be easily identified and removed. Similarly, files containing content, such as OLE objects or Visual Basic® for Applications (VBA) code can be identified for special processing.

For further discussion on the Microsoft Office Open XML Format and its associated benefits, refer to the Microsoft “Office 12” Preview Web site listed in the reference section at the end of this document. The remainder of this document will focus on a technical discussion of the Open XML Format and the opportunities it presents for developers.
File Structure

[image: image2]
At the core of the new Microsoft Office Open XML Format is the usage of XML reference schemas and a ZIP container. The combination of XML and ZIP allows for a very robust and modular format that enables a large number of new scenarios.

Each file is composed of a collection of any number of parts; this collection defines the document. Document parts are held together by the container file or package using the industry standard ZIP format. Most parts are simply XML files that describe application data, metadata, and even customer data stored inside the container file. Other non-XML parts may also be included within the container package, and include such parts as binary files representing images or OLE objects embedded in the document. Parts can specify a relationship to other parts; this design provides the structure for an Office file. While the parts make up the content of the file, the relationships describe how the pieces of content work together.

The result is an XML file format for Office documents that is tightly integrated but modular and highly flexible. The next few sections will explore each component of the Open XML Format in greater detail and cover specific discussions about how the three participating Office programs utilize the format.

ZIP Package

[image: image3]
There are many elements that go into creating an Office document. Some of these are commonly shared across all the Office applications, for example, document properties, styles, charts, hyperlinks, comments, and annotations. Other elements are specific to each application, like worksheets in Excel, slides in PowerPoint or headers and footers in Word.

When users save a document with the current or previous versions of Microsoft Office, a single file is written to disk, which can then easily be opened subsequently. This metaphor is important to how documents are stored, managed and shared in practice. By wrapping the individual parts of an “Office 12” file in a ZIP container, documents will still remain a single file instance. The use of a single package file to represent the entity of a single document means users will have the same experience that they do today when saving and opening documents with “Office 12.”

[image: image1.png]

[image: image4.emf]“Office 12" File Container

Custom-Defined XML

Document Properties

Comments

WordML / SpreadsheetML, etc.Charts

Images, Video, Sound

Embedded Code/Macros

With previous Office versions, developers looking to manipulate the content of an Office document had to know how to read and write data according to the structured storage defined within the binary file. This process is known to be complex and challenging, notably because the Office binary file formats were designed to be primarily accessed through the Office programs. The formats were structured to mirror the in-memory structures of the applications and to run on low memory machines with slow, hard drives. Altering Office binary files programmatically without the Office applications has also been identified as a leading cause of file corruption, and has deterred some developers from even attempting to try to make alterations to the files.

ZIP was chosen because it is a well-understood industry standard. There are many tools available today to work with the ZIP format, and using ZIP provides a flexible, modular structure that allows for an expansion of functionality, going forward. Therefore, developers will have access to the complete contents of “Office 12” documents by using any of the numerous tools and technologies that work with industry-standard ZIP files. Once a container package file has been opened, developers can manipulate any of the document parts found within the package that define the document. For instance, a developer can open a Word document that uses the Open XML Format, locate the XML part that represents the body of the Word document, alter the part by using any technology capable of editing XML, and return the XML part to the container package to create an updated Office document. This scenario is only one of the essentially countless others that will be possible as a result of new format.

Parts

[image: image5]
Within an Open XML Format package, many items are stored as individual parts. This modularity is one of the key characteristics of the file format. Modularity enables a developer to quickly locate a specific part and work directly with just that part. Parts can be edited, exchanged, or even removed depending on the desired outcome of a specific business need.

All the Office programs share some types of parts, such as the thumbnail, metadata, and relationships parts. Others exist consistently within all files as a specific part, such as document properties. Many parts however, are unique to the application document type they represent. For example, a worksheet part will only be found in an Excel document, while a slide master part will only appear in a PowerPoint document.

Parts can be of different physical content types. Parts used to describe Office program data are stored as XML. These parts conform to the XML reference schema that defines the associated Office feature or object. For example, in an Excel file, the data that represents a worksheet is found in an XML part that adheres to the Office schema for an Excel Worksheet. Additionally, if there were multiple worksheets in the workbook, there would be a corresponding XML part stored in the package file for each worksheet. All of the schemas that represent parts of Office documents will be fully documented and made available from Microsoft with a royalty free usage license. Then, by using any standard XML based technologies, developers can apply their knowledge of the Office schemas to easily parse and create "Office 12" documents.

In many instances, it is advantageous to have parts stored in their native content type. These parts are not stored as XML. Images in an Office document, for example, are stored as binary files (.png, .jpg, and so on.) within the document package. Therefore, you can open the package container by using a ZIP utility and immediately view, edit, or replace the image in its native format. Not only is this storage approach more accessible, but it requires less internal processing and disk space than storing an image as encoded XML. Other notable parts stored as binary parts are VBA projects and embedded OLE objects. For developers, accessibility makes many scenarios more attractive. For instance, you could build a solution that iterates a collection of “Office 12” documents to update an existing OLE object with a newer version. This idea, and any number of others, can be accomplished without having to use the Office program or alter the document-specific XML.
Relationships

[image: image6]
Whereas parts are the individual elements that make up an Office document, relationships are the method used to specify how the collection of parts come together to form the actual document. Relationships are defined by using XML, which specifies the connection between a source part and a target resource. For example, the connection between a slide and an image that appears in that slide is identified by a relationship. Relationships themselves are stored within XML parts or “relationship parts” in the document container. If a source part has multiple relationships, all subsequent relationships are listed in same XML relationship part.

Relationships play a key role in the Open XML Format, and every part is referenced by at least one relationship. The implementation of relationships makes it possible for parts never directly to reference other parts, and connections between parts are directly discoverable without having to look within the content of parts. Within parts, all references to relationships are represented using a Relationship ID, which allows all connections between parts to stay independent of content-specific schema.

[image: image7.emf]Document Properties

Application Properties

Custom Doc. Props.

Workbook

Sheet 2

Sheet 3

Sheet 1Styles

Chart

Strings

Relationship

...

...

 High-level relationship diagram of an “Excel 12” workbook

The following is an example of a relationship part in an “Excel 12” workbook containing two worksheets:

<Relationships xmlns="http://schemas.microsoft.com/package/2005/06/relationships">
<Relationship ID="rId3"

Type="http://schemas.microsoft.com/office/2005/8/relationships/xlStyles"

Target="styles.xml"/>

<Relationship ID="rId2"

Type="http://schemas.microsoft.com/office/2005/8/relationships/xlWorksheet"

Target="worksheets/Sheet2.xml"/>

<Relationship ID="rId1"

Type="http://schemas.microsoft.com/office/2005/8/relationships/xlWorksheet"

Target="worksheets/Sheet1.xml"/>

<Relationship ID="rId5"

Type="http://schemas.microsoft.com/office/2005/8/relationships/xlMetadata"

Target="metadata.xml"/>

<Relationship ID="rId4"

Type="http://schemas.microsoft.com/office/2005/8/relationships/xlSharedStrings"

Target="strings.xml"/>
</Relationships>
It is also important to note that relationships represent not only internal document references but also external resources. For example, if a document contains linked pictures or objects, these are represented using relationships as well. This makes links in a document to external sources easy to locate, inspect and alter. It offers developers the opportunity to repair broken external links, validate unfamiliar sources or remove potentially harmful links.

The use of relationships in the Open XML Format benefits developers in a number of ways. Relationships simplify the process of locating content within a document because you do not need to parse document-specific XML to find parts — neither do you need to do so to find internal and external document resources. Relationships allow you to quickly take inventory of all the content within a document. For example, if you need to count the number of worksheets in an Excel workbook, you can inspect the relationships for how many sheet parts exist. You can also use relationships to examine the type of content in a document. This is helpful in instances where you need to identify if a document contains a particular type of content that may be harmful, such as an OLE object that is suspect, or helpful, as in a scenario where you want to extract all JPEG images from a document for reuse elsewhere.

Relationships also allow developers to manipulate documents without having to learn application specific syntax or content markup. For example, without any knowledge of how to program PowerPoint, a developer solution could easily remove extraneous slides for a presentation by editing the document’s relationships.

Macro-Enabled Files versus Macro-Free Files

[image: image8]
The default “Office 12” documents saved in the Open XML Format are considered to be macro-free files and therefore cannot contain code. This behavior ensures that malicious code residing in a default document can never be unexpectedly executed. While documents can still contain and use macros in “Office 12,” the user or developer will be required to specifically save these documents as a macro-enabled document type. This safeguard will not affect a developer’s ability to build solutions, but will allow organizations to use documents with more confidence.

Macro-enabled files have the exact same file format as macro-free files, but contain additional parts that macro-free files do not. The additional parts depend on the type of automation found in the document. A macro-enabled file that uses VBA will contain a binary part that stores the VBA project. Any Excel workbook that utilizes Excel 4.0-style macros (XLM macros) or any PowerPoint presentation that contains action buttons are also saved as macro-enabled files. If a code-specific part is found in a macro-free file, whether placed there accidentally or maliciously, the Office applications will not allow the code to execute—without exception.

Developers can now determine if any code exists within an “Office 12” document before opening it. Previously this “advance notice” wasn’t something that could be easily accomplished outside of Office. A developer can inspect the package file for the existence of any code-based parts and relationships without running Office and potentially risky code. If a file looks suspicious, a developer can remove any parts capable of executing code from the file, so the code can cause no harm.

File Extensions

[image: image9]
Documents saved by using the Open XML Format in “Office 12” will have new file extensions and will allow “Office 12” to differentiate Open XML Format documents from binary documents used by previous Office versions. The new extensions borrow from the existing binary file extensions by appending a letter to the end of the suffix. The default extensions for documents created in Word, Excel, and PowerPoint using the Open XML Format will append the letter “x” and are .docx, .xlsx, and .pptx, respectively. Other Office document formats types that leverage the new file format, including templates, add-ins, and PowerPoint shows, will also being receiving new extensions.

Another new change being introduced in “Office 12” is that there will be different extensions for files that are macro-enabled versus those that are macro-free. Documents that are macro-enabled will have a file extension that ends with the letter “m” instead of an “x.” For example, a macro-enabled Word document will have a .docm extension, and thereby allow any users or software program, before a document opens, to immediately identify if it might contain code.

The following is a list of file extensions for “Office 12” document types:

	“Microsoft Office “Word 12” File Types
	Extension

	“Word 12” XML Document
	.docx

	“Word 12” XML Macro-Enabled Document
	.docm

	“Word 12” XML Template
	.dotx

	“Word 12” XML Macro-Enabled Template
	.dotm

	
	

	“Microsoft Office “Excel 12” File Types
	Extension

	“Excel 12” XML Workbook
	.xlsx

	“Excel 12” XML Macro-Enabled Workbook
	.xlsm

	“Excel 12” XML Template
	.xltx

	“Excel 12” XML Macro-Enabled Template
	.xltm

	“Excel 12” Binary Workbook
	.xlsb

	“Excel 12” XML Macro-Enabled Add-In
	.xlam

	
	

	“Microsoft Office “PowerPoint 12” File Types
	Extension

	“PowerPoint 12” XML Presentation
	.pptx

	“PowerPoint 12” Macro-Enabled XML Presentation
	.pptm

	“PowerPoint 12” XML Template
	.potx

	“PowerPoint 12” Macro-Enabled XML Template
	.potm

	“PowerPoint 12” Macro-Enabled XML Add-In
	.ppam

	“PowerPoint 12” XML Show
	.ppsx

	“PowerPoint 12” Macro-Enabled XML Show
	.ppsm

Solution Development

The Open XML Format for “Office 12” introduces or improves on many types of solutions involving documents that developers can build. You can access the contents of an Office document in the Open XML Format by using any tool or technology capable of working with ZIP archives. The document content can then be manipulated using any standard XML processing techniques, or for parts that exist as embedded native formats, such as images, processed using any appropriate tool for that object type.

In addition, being able to open the container file of an “Office 12” document manually as a ZIP archive has some interesting benefits for developers, as well. For example, developers building Office-based solutions can examine the contents and structure of a document without having to write any code. This facility can be very helpful in solution design and building prototypes.

Once inside an “Office 12” document, the structure makes it easy to navigate a document’s parts and its relationships, whether it is to locate information, change content, or remove elements from a document. Having the use of XML, along with the published Office reference schemas, means you can easily create new documents, add data to existing documents, or search for specific content in a body of documents.

The rest of this document is going to explore some scenarios in which the Open XML Format enables document-based solutions. These few are only part of an almost endless list of possibilities:

· Data Interoperability

· Content Manipulation

· Content Sharing and Reuse

· Document Assembly

· Document Security

· Managing Sensitive Information

· Document Styling

· Document Profiling

Data Interoperability

The emergence of XML as a popular standard for data exchange means the new Open XML Format makes document-based data more accessible amongst heterogeneous systems. Whether users are sharing document data across a department, or two organizations are trading business data, XML as a default file format for Office documents means Office applications can participate in business processes without the imitations previously imposed by the binary formats.

The openness of the Open XML Format unlocks data and introduces a broad, new level of integration beyond the desktop. For example, developers could refer to the published specification of the new file format to create data-rich documents without using the Office applications. Server-side applications could process documents in bulk to enable large-scale solutions that mesh enterprise data within the familiar, flexible Office applications. Standard XML protocols, such as XPath (a common XML query language) and XSLT (Extensible Stylesheet Language Transformations), could be used to retrieve data from documents or to update the contents inside of a document from external data.

One such scenario could involve personalizing thousands of documents to distribute to customers. Information programmatically extracted from an enterprise database or customer relationship management (CRM) application could be inserted into a standard document template by a server application that uses XML. Creating these documents would be highly efficient because there is no requirement that Office programs need to be run; yet the capability still exists for producing high-quality, rich Office documents.

The use of custom schemas in Office is another way documents can be leveraged to share data. Information that was once locked in a binary format is now easily accessible and therefore, documents can serve as openly exchangeable data sources. Custom schemas not only make insertion or extraction of data simple, but they also add structure to documents and are capable of enforcing data validation.

Content Manipulation

Editing the contents of existing Office documents is another valuable example where the Open XML Format enhances a process. The edit could involve updating small amounts of data, swapping entire parts, removing parts, or adding new parts altogether. By using relationships and parts, the Open XML Format makes content easy to find and manipulate. The use of XML and XML schema means common XML technologies, such as XPath and XSLT, can be used to edit data within document parts in virtually endless ways.

One scenario might involve the need to edit text in the header of a Word document. Of course, it wouldn’t make any sense to automate that one task for one document. But, in another scenario, what if a company merged and needed to update their new company name in the header of hundreds of different pieces of documentation? A developer could write code that loops through all the documents, locates the header part in the Word file structure, and performs an XPath query to find the old text. Then new text could be inserted, the header part replaced, and the process repeated until every document had been updated. Automation could save a lot of time, enable a process that might otherwise not be attempted, as well as prevent potential errors that might occur during a manual process.

Another scenario might be one in which an existing Office document must be updated—by changing only an entire part. In an Excel workbook, an entire worksheet that contained old data or outdated calculation models could be replaced with a new one by simply overwriting its part. This kind of updating also applies to binary parts. An existing image or even an OLE object could be swapped out for a new one, as necessary. A Visio drawing embedded as an OLE object in Office documents, for instance, could be updated by overwriting that binary part. URLs in hyperlinks could be updated to point to new locations.

Here are some additional application-specific scenarios.

Word—Content Manipulation
It’s a common business practice to incorporate “boilerplate” text inside of a Word document. For example, an official legal disclaimer or a disclosure of terms and conditions can be required in every public document created by an organization. Another example of boilerplate is, typically, a “Company Overview” section that is used in authoring sales proposals or public releases of company announcements. Word offers features such as AutoText that is capable of accomplishing the insertion of formatted text, but this feature is limited in scale as it requires either Word automation or direct user interaction.

Microsoft Office “Word 12” offers a very flexible alternative for developers to insert content into a document. The Open XML Format allows you to add to container structure document fragments that will be referenced by the overall document when it is opened in Word. This more extensive alternative means you can build a library of document fragments, which can be derived from document formats that Word is capable of rendering and programmatically reuse them as needed in Word document solutions.

This broader ability to manipulate word content offers some interesting scenarios, such as server-side document assembly. Going back to the example given above — a legal disclaimer can automatically be inserted into a document being created on a server. Imagine a multinational company that requires that all of its documents contain a legal disclaimer in local languages. The company could create the appropriate language-specific disclaimers as .html files and save them on a server. A program constructing documents can insert the corresponding document fragment for the language required as a part inside the document container. This fragment will then be rendered as a seamless part of a Word document.

Excel—Content Manipulation
In order to optimize loading and saving performance and file size, “Excel 12” stores only one copy of repetitive text within the Excel file. In order to do so, “Excel 12” implements a shared string table in a document part called [strings.xml]. Each unique text value found within a workbook is listed once in this part. Individual worksheet cells then reference the string table to derive their values.

So while this process optimizes Excel’s XML file format, it also introduces some interesting opportunities for additional content manipulation solutions. Developers in a multinational organization could leverage the shared string table to offer a level of multilanguage support. Instead of building unique workbooks for each language supported, a single workbook could utilize string tables that correspond to different languages. Another possibility would be to use string tables to search for keyword terms inside a collection of workbooks. Processing a single, text-only XML document of strings is faster and simpler than having to manipulate the Excel object model over many worksheets and workbooks.

PowerPoint—Content Manipulation

When a PowerPoint presentation has been stored using the Open XML Format, the content remains highly accessible. Because this is the first version of PowerPoint to offer an XML format, it opens up many scenarios that simply were not possible in previous versions. Developers will now have full access to slides and slide notes as text. Solutions that require searching, indexing and creating presentation content are now possible. Data-driven presentations can be easily produced using XML. Equally, developers can access slide masters and slide layouts through XML parts to programmatically format existing or new PowerPoint presentations.

A developer could take a different approach to assembling or reusing content from PowerPoint presentations by building an application that uses a catalog of slides stored independently of existing presentations. Slides are represented as individual XML parts, therefore, a solution could optimize the way an organization stores and manages PowerPoint slides as data. Developers could even write a slide “viewer” that allows a user to discover and select slides to build a presentation from outside of PowerPoint. The application could even be Web-based to allow centralized management.

Content Sharing and Reuse

The modularity of the Open XML Format opens up the possibility for generating content once and then repurposing it in a number of other documents. As a developer, you can imagine building a number of core templates and reusing portions as building blocks for other documents. A table created in one Word document, for instance, could be used in other Word documents. Charts, which will have a common schema across Office programs, could be built once and reused a number of times in different document types. The accessibility of the format lends itself to unlimited content-sharing opportunities.

One such scenario could be one in which there’s a desire to build a repository of images used in documents. A developer can create a solution that extracts images out of a collection of Office documents and allow users to reuse them from a single point of access. Because Office documents store images intact as binary parts, the solution could build and maintain a library of images fairly easily. Then, users looking to incorporate previously used images wouldn’t have to browse through an entire collection of documents, opening and closing each individually, to find images. They could use the custom application to find images in the repository and immediately insert them into the document with which they are working.

A developer could build a similar application that reuses document “thumbnail” images extracted from documents, and add a visual aspect to a document management process.

Document Assembly
One of the most common requests from developers has been to give them the ability to create Office documents on a server without automating the Microsoft Office applications. Organizations needing to produce complex, data-enriched documents or assemble documents in mass quantities want more efficient processing for high-end purposes with the Office programs. Technically, Office programs were not written and have not been supported to be run from a server.
In the Microsoft Office 2003 editions, the introduction of XML document formats that could be produced according to the Office 2003 XML Reference Schemas helped overcome this limitation. Any technology capable of assembling XML can build a Word or Excel document as long as it adheres to the Office schemas. A tremendous advance at the time, unfortunately it only applied to Excel and Word, and only the latter application truly offered full fidelity in its XML file support. Microsoft “Office 12” builds on this effort by adding PowerPoint XML files with full fidelity and bringing Excel XML files up to full fidelity by round-tripping every feature using the Open XML Format.

This advance in technology means, that with “Office 12,” a developer can build an Office solution that produces Excel, Word and PowerPoint documents without ever opening Office. They simply must be able to create XML according to the “Office 12” schemas and build the package contents as defined by the Open XML Format. And although the Office schemas are quite extensive, in order to fully represent the rich feature sets that the Microsoft Office programs provide, all structures defined by the format are not required to generate a document. Each of the Office applications is quite capable of opening the file with a minimal amount of items defined, thereby making it easy to create many documents.

Note that document assembly doesn’t pertain to only new documents, either. Of course, by following the rules of the Open XML Format, you can build documents from scratch. But often, document assembly means building documents by using portions of existing documents, data and other content. The new Open XML Format plays well into this scenario because it has a modular architecture and its content is XML-based.

A document assembly example applies to PowerPoint presentations. Many organizations have vast collections of PowerPoint files that have reusable value. But often, users borrow slides from several pre-existing presentations to create one new presentation. Finding, coordinating, and integrating (copying and pasting) slides is typically a time-consuming, redundant process that many organizations look to automate for customer-facing presentations. With “Office 12,” individual slides within a PowerPoint presentation file are readily accessible as each one is self-contained in its own XML part within the presentation container package. A custom solution can leverage this architecture to totally automate the assembly process for presentations. Custom XML could be used to hold metadata pertaining to individual slides, thus allowing users to easily search them by using predefined keywords. Once a user has selected a slide, the solution would insert the slide’s XML part into the presentation being assembled and create the referencing relationship.

Document Security
Security is very important today in information technology. The Open XML Format allows developers to be more confident about working with Office documents and delivering solutions that take document security into full account. With the Open XML Format, developers can build solutions that search for and remove any identified, potential vulnerabilities before they cause issues.

For example, a company needs a solution to prepare documents either for storage in an archive library where they would never need to run custom code, or for sending macro-free documents to a customer. An application could be written that removes all VBA code from a body of Office documents by iterating through the documents and removing the [VBAProject.bin] part and its corresponding relationship. The result would be a collection of higher-quality documents.

Unfortunately, code within documents is not the only potential security threat that has surfaced. Developers can circumvent potential risks from binaries, such as OLE objects or even images, by interrogating those Office documents and removing any exposures that arise. For example, if a specific OLE object is identified as a known issue, a program could be created to locate and cleanse or quarantine any documents containing the object. Likewise, any external references being made from an “Office 12” document can be readily identified. This identification will allow solution developers to decide if external resources being referenced from a document are trustworthy or require corrective action.

Managing Sensitive Information
As they seek to protect users from malicious content, developers can also help protect users from accidentally sharing data inappropriately. This protection might be in the form of personally identifiable information (PII) stored within a document, or comments and annotations that information so marked shouldn’t leave the department or organization. Developers can programmatically remove both types of information directly without having to scour an entire document. To remove document comments, for example, a developer can check for the existence of a comment part relationship and, if found, remove the associated comment part.

Besides securing PII and comments, the Open XML Format enables access to this information that may be useful in other ways. A developer could create a solution that uses PII data to return a list of documents authored by an individual person or from a specific organization. This list can be produced without having to open Office or use its object model with the Open XML Format. Similarly, an application could loop through a folder or volume of Office documents and aggregate all of the comments within the documents. Additional criteria could be applied to qualify the comments and help users better manage the collaboration process as they create documents.

Document Styling

Like so many other aspects of Office documents using the Open XML Format, document styles, formatting, and fonts are maintained in separate XML parts within the container package. So once again, developers can create solutions that take advantage of this separation. Some organizations have very specific document standards, and managing these can be quite consuming. However, developers can, for example, modify or replace fonts in documents without opening Office.

Also, it is a fairly common practice to have a document or collection of documents that contain the same content, but that have been formatted differently by another department, location, subsidiary, targeted customer, or such. Developers can maintain the content within a single set of documents, and then apply a new set of styles, as necessary. To do this, they would exchange the [styles.xml] part found in an Office document with another part. This ability to exchange simplifies the process of controlling a document’s presentation without having to manage content in numerous documents.

Document Profiling
Managing documents effectively has been a long-standing issue in information technology practices. In current versions of Office, developers have access to the traditional Office document properties, such as Author, Title, Subject, and so on, through the use of OLE. In the new Open XML Format, document properties are also readily accessible as they reside in their own part within a document.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<CoreProperties xmlns="http://schemas.microsoft.com/package/2005/06/md/core-properties">

<Title>Word Document Sample</Title>

<Subject>Microsoft Word</Subject>

<Creator>“Office 12” User</Creator>

<Keywords/>

<Description>“Office 12” .docx file</Description>>

<LastModifiedBy>“Office 12” User</LastModifiedBy>

<Revision>2</Revision>

<DateCreated>2005-05-05T20:01:00Z</DateCreated>

<DateModified>2005-05-05T20:02:00Z</DateModified>
</CoreProperties>
Document Properties part in Word.docx file (docProps\Core.xml)

However, Office documents using the Open XML Format allow you to add your own data and content beyond what Office-based properties offer, for example, for advanced document profiling. Developers can create their own custom-defined XML and place it in the file as “just another” part. This XML can then be utilized by any tool or application capable of accessing the Open XML Format.

Conclusion
Users, organizations, and developers—all will benefit from the advantages of the new Microsoft Office Open XML Format in “Office 12”. As an open, default file format based on XML, Open XML Format unlocks the possibilities for many new solution types and scenarios that developers can build. Documents can be accessed as sources of data, manipulated without the Office applications, and processed in enterprise solutions. Organizations that combine existing business system investments with the Microsoft Office System platform, "Office 12," and the new XML-based file format can only reap benefits.
References
· Microsoft Office Preview Site
http://www.microsoft.com/office/preview

· Microsoft Office 2003 XML Reference Schemas License Overview

[image: image10]http://www.microsoft.com/office/xml/licenseoverview.mspx

Macro-free files to ensure confidence that code will not execute

Separate macro-enabled file type for files containing executable code

Applies to an VBA, Excel Macro-Sheets, PowerPoint Action Commands

A part that provides the connection between two other parts

Connections described using XML

Defines the file format structure with easy navigation

Can reference external, linked resources

Modular pieces that make up an Office file

Each part is essentially a ‘file’ itself

Primarily XML

Native formats used for developer convenience (images, OLE objects)

Industry standard format

User gets a ‘single file’ experience

Compression reduces storage requirements

Developers can process file with standard tools

ZIP container with compression

Multiple XML parts describing file data, metadata, customer data

Non-XML parts supported as native files (images, OLE objects)

Relationships define file structure

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2005 Microsoft Corporation. All rights reserved.

Microsoft, Excel, PowerPoint, Visual Basic, and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

All other trademarks are property of their respective owners.

New file extensions for all documents, templates

Default macro-free files end with ‘x’

Macro-enabled files end with ‘m’

2

[image: image11.png](W

_1177910909.vsd
“Office 12" File Container

Custom-Defined XML

Document Properties

Comments

WordML / SpreadsheetML, etc.

Charts

Images, Video, Sound

Embedded Code/Macros

_1178093755.vsd
Document Properties

Application Properties

Custom Doc. Props.

Workbook

Sheet 2

Sheet 3

Sheet 1

Styles

Chart

Strings

Relationship

...

...

