Designing .NET Class Libraries
Session:
Understanding Interop
Speaker(s):
Sonja Keserovic
Transcription

Keserovic:
So good morning and welcome to our session about Interop. I’m sorry it’s so early. It wasn’t my idea. It was Michael’s idea. You can blame him. This session will be probably like an hour and 15 minutes, and at the end you’ll have some time to ask questions. We’ll be talking primarily about Interop between managed and native code. But before we start let me introduce myself. My name is Sonja Keserovic, and I am Program Manager in Common Language Runtime Team. I joined CLR Team almost four years ago, and I started working on Interop as soon as I started there. That’s my only team that I work in Microsoft, and Interop is the only area I worked with in CLR. So pretty much the only thing I can talk with you about is Interop. So make sure you have lots of questions for me afterwards. So let me, just first before we go into material in this lesson, set your expectations correctly. I got sometimes feedback after these lessons that people wanted more details about “How do I do XYZ, what’s the best way to use tools, how do I debug common Interop problems,” and things of that nature. Unfortunately, I have to warn you in advance that this lesson will be talking about types of Interop that exist currently, and how do you pick the type that’s best for your situation. So we will be talking mostly about how do you make correct design decisions when you are designing managed type libraries that use Interop in one direction or another. So after you complete this lesson, you will know, hopefully, how to make decisions and why behind those decisions, but not necessarily how to implement them once you’ve made these decisions.

In my defense, I will give you lots of pointers to resources you can find answers on those questions. But, please, I would really like you to understand how much important it is to know why before any type of Interop decision because there are so many things that can go wrong after you make the wrong decision, and your job gets really, really a lot more complicated than it needs to be if you just make the correct Interop decisions in the beginning while you’re still designing your product.

So since there are two directions of Interop, this lesson will have two parts. One part we’ll be talking about--which is the first part we will talk about now--is once you are writing your managed library, how do you expose this library to native clients? Maybe you have native clients. The second part of this lesson will be the opposite direction, which is how do you use existing native API’s from your managed library? At the end, we’ll have one part, which is about both of these directions. Like performance, for example. And at the end, you will be able to ask some questions.

So let’s start. Basically, when you are starting writing brand new managed library using all those great design guidelines that Brad and other people were telling you about, but then you find yourself in a situation when you need to expose this brand new API that you just designed to native clients. And the question that you need to ask yourself is how do I do this the best way? And so there are a couple of answers you can come up with, depending on your situation.

So the first one that’s probably most common situation is that you can decide to expose your managed APIs as COM APIs. So, native clients who know how to use COM can just go and use your APIs as they are for good old COM APIs. The second option, if that’s possible, you can decide, based on your clients, if they are C++ clients, to recompile them using new C++ compiler. What’s happening when you recompile C++ clients with new compiler is that they, from that moment on, can start using managed APIs directly. So let’s explore these two options in little bit more details. The first option is exposing managed APIs as COM APIs. This is relatively easy to do. I won’t say very easy, but relatively easy to do. CLR has facilities that will make this process for you relatively painless. So what will happen when you have a managed API, managed class you want to expose to COM client? Well, if you go and check, maybe if you generate step library from your assembly, what you will see is that all your public methods are automatically already exposed to COM. So you basically don’t need to do almost anything. As soon as you have a public class that has public methods, that will be visible to COM clients. You might ask yourself if you know how COM works. Well, I didn’t implement IUnknown. You know, that’s a requirement by COM rules. Well, that’s one of the things that CLR is doing for you. So CLR Interop Layer will, for every public managed class, implement IDispatch, IUnknown, and a whole bunch of other very well known COM interfaces. We will give tools and APIs to register your classes because as you know, COM requires objects to be registered. So we’ll give you ability to do that. And we will give you even something more than usually COM is giving to you. We will give you ability to register these classes side-by-side, which means that you can have multiple versions of your managed classes registered at the same time in the registry and your COM clients can pick which version they want. This wasn’t possible with old style COM objects. The other thing that you will notice, that you never need to take care of reference counting, for example, which is a requirement by COM. Again, CLR Interop Layer will do that for you. So as soon as your COM client does not reference your class anymore, we will notice that and make sure the garbage collector knows that your object is now available for collection.

But there is a big “but” at the end of all these nice things that CLR Interop is giving to you. There is always a “but,” which is if you don’t design your classes to be used from COM, they probably won’t be very usable to your COM clients. Good examples are classes that don’t have default constructor. You maybe know that co-creations, API that’s used for creating classes from COM, does not have any ability for you to pass any parameters. So if your class is visible to COM but can’t be created, obviously it won’t be very usable to COM clients. Also, static methods are not visible to COM clients at all. So if you have a significant portion of your functionality available in static methods, that won’t be usable to COM clients. And in the end, the versioning rule between managed world and COM world are very, very different. So you have to know both of these to make sure that something can version correctly from both perspectives. So the whole point of this is that, yes, exposing things to COM is easy because you don’t need to take care of any COM planning at all, but what needs to happen is that you have to design your classes to be used by COM.

So just to illustrate my point and how disastrous can it be to just blindly expose your public classes to COM clients without really considering any of these design problems I was talking about, these are some examples from .NET Framework BCL Base Class Library. So we did all these mistakes I’m telling you about, and that’s how we basically build our experience so I can come here now and talk to you about all these things. The first example is system.mathclass. It’s visible to COM clients, but it contains only static methods. So COM clients can do anything with it, even though it’s visible. System.Collections.bitarray doesn’t have a default constructor. Again COM clients can’t take advantage of this class unless somebody else passes them instants so they can call methods on it. And probably the worst nightmare we ever had is the nightmare of versioning. The easiest way, let’s say, to expose managed classes to COM is use something that’s called Auto Dual Class Interface. What that means basically is that you put this attribute on your public class and what Interop Layer does for you is--because COM can talk only in terms of interfaces, not particular objects. So we need to create interface for this class. So what will do? Well, we’ll take all the public methods on your class, and not only that, but all the public methods on all of your base classes, make huge Interface, and expose that to COM as your Class Interface. So you can think, “Oh, that’s really cool. You know, I just write my class. I don’t need to implement any interfaces. Great. COM clients just go and start using me.” Well, what’s going on in the next version? Like, if you go and track a system.type type, that type was exposed with this huge Class Interface in version 1.0 of runtime. Well, what happened when we started working on version 2.0? Well people started adding methods on this type, obviously. You know, that’s what we do in next version, add more stuff. Well, guess what? You know, as soon as you start adding methods on this class, Class Interface that COM in triple layer generates for you starts changing. You know, I have a whole bunch of methods here, there without any ordering or anything. It’s just completely different in the second version. Well, what’s going on with your COM clients if you try to expose them this without any changes? Well, they get broken because interfaces are contract in COM. You can’t change them from version to version. So we had to do something about it. We can’t just go and ship version 2.0 and break everybody who was depending on COM Interfaces. I mean we could, but not that we want to. So we had to come out with this new interface. We had to kind of completely reverse engineer the whole interface that was exposed in version 1.0. And if you go to Base Class Library today with the Whidbey (inaudible), you will find this underscore type interface in system--in Interop services namespace, and it contains all the methods in precisely the same order that was exposed in version 1.0 and system.type now implements this interface. And it had to be named underscore.type because that was the name that Interop Layer generated in the version 1.0. That was our naming convention for generating these class interfaces. So you can imagine Brad’s surprise when we started checking in these interfaces because this type wasn’t the only one, unfortunately. So we have like 10, 15, 20 interfaces that have naming like underscore something checked in in the system namespaces. And Brad comes and starts screaming, like, “What are you guys doing? And what kind of naming convention is this? Who told you to check this thing in,” and so on, and so we had a big fight with Brad. But basically we had to check them in to preserve backward compatibility, so compromise was that we will move them instead of system namespaces to Interop services namespace, and if you go to that namespace, you will see that we really don’t follow any of the naming conventions and stuff like that. We kind of get some pardon in that namespace. But my point is really you have to take--think about these things in advance before you make your design decisions. And this caused us lots of pain, and lots of work went into these things to preserve this backward compatibility just because we didn’t think in advance. So learn from our mistakes and make sure you don’t do things like this. So what are the best practices then? So obviously, you had to design in advance if that’s a scenario you care about. If you know you’ll have COM clients and you want to expose your functionality to them, you have to design in advance. And after lots of thinking and trying different things, the recommendations we came up with was that you should really separate COM-friendly APIs from managed-only APIs. It is extremely difficult to follow both rules for designing something that’s manage-friendly on one side and COM-friendly on another side and have the same API that has both friendliness. So what we’re suggesting people is to start designing their managed APIs following all the design guidelines and have their set of APIs designed like that. Make this COM invisible. Their attribute, you can use COM visible through falls to make your classes come invisible. Then design a separate set of APIs that is for COM clients only and you follow all the design guidelines for these APIs. Obviously, these classes can internally just call into your managed only classes and just forward calls back and forth.

For COM-friendly, once you start designing COM-friendly APIs, there are certain rules you need to follow. Obviously, you have to have default constructor, you can’t have any static methods, and to avoid this versioning nightmare, you have to explicitly implement interfaces. So you basically have to do the same thing that COM world is doing. You have to put your contract in interfaces and you can’t change them from version to version. In next version, if something new gets added to your managed APIs, you have to add new interfaces to expose this to new COM clients. So you can’t allow breaking your COM clients by changing interfaces. Yes, there is a question.

Q:
Question from the Audience.
A:
So the question was this seems lots of work from designing perspective, implementing testing. So what’ s your team to do if they’re not willing to pay this price? Should they just block COM clients? So it depends from your scenario. Let’s say that you’re not quite sure if COM clients are your target or not, and if you see on the other side that the tax to pay for them is too high, you just make everything COM invisible and say, “I’m sorry, I’m not supporting COM clients.” Or you can go approach somewhere in the middle that’s which it’s like, “Well, I won’t expose everything I have to COM clients, but just this basic little functionality, I’ll just expose two, three classes.” That is not too bad. So you can decide to kind of split functionality that way. And the third way that we’ll be talking next is really preferred way, which is if your COM clients are C++ clients, just recompile them with new C++ compiler. And I’m not sure if you can see this, but this is example of how you actually go and design these COM friendly APIs. So there are a whole bunch of attributes, if you can see that you need to do. So the first thing up there is interface. So this interface, you need to, as I said, explicitly implement interfaces, so you just define your interface, add all the methods you want to expose to COM clients, and then decorate with certain attributes. So make it COM visible, obviously. Give it explicit good, so you can use the same good in the same version. Unless you put good, we will generate one automatically for you. So it’s better if you just explicitly set a good, yourself. And then, on the bottom, there is a definition of the class that implements this interface and this class also has a couple of attributes. Also, it has a good explicitly set. As I said, if you don’t do this, we’ll generate one automatically for you, but it’s better for you just to put the fixed one for yourself.

And then the most importantly, it says Class Interface is Class Interface type none, which means, “Please come Interop. Don’t generate any of those magical class interfaces for me. I’m implementing all interfaces I care about.” This is extremely important. This is the most important thing you need to do in exposing COM classes to COM. If you forget everything else, please just remember this one. Class Interface none. And you can say which one of your interfaces if there are more than one which you want to be default for COM. And that’s it.

So as I said, advantages of this approach: it’s you don’t need to take care of COM being in stuff. We’ll do that for you. You know, we’ll just make them visible to COM clients. They’ll be able to reference count them, use them in all the same ways they know to use COM server. But, as you could see, it’s really hard to maintain two sets of APIs following all these rules. So then, what are the alternatives? Well, if your clients are not C++ clients, that’s the only choice you have, but if your clients are C++ clients, there is one approach we really recommend people to try and explore, which is recompiling C++ clients with new C++ compiler, and use something we call C++ Interop. The thing that we were talking about before is called COM Interop. So just terminology. And C++ Interop is also known as IJW. Does anybody know what IJW stands for?

Q:
It Just Works.

Keserovic:
It Just Works. And that’s beauty of this approach. Well, doesn’t work all the time, but we’re working on it. We’re working on it. It’s getting better every day. And it’s really magical. What’s going on is that you have your C++ client, which is all native. You didn’t change any code. You just threw this magical CLR switch when you were compiling it with new compiler. And suddenly, you can start directing this code right calls to managed APIs. So did anybody have experience with using C++ in Interop? No? You know, when I did that the first time, it was really like, “Wow.” You know, I could not believe it. You just write the calls to managed APIs from your C++ clients, and everything just works. Mostly. So that is really approach we are recommending people to do if it’s possible. If C++ clients can be recompiled, go recompile them. You don’t need to worry about any of these COM rules anymore. You can just go and create your managed objects directly. Everything that’s accessible to managed clients is now accessible to these native clients. There are no wrappers. There’s no special APIs you need to define, nothing. The problem is that once you start doing this, there are certain rules you have to follow, and if you go and read C++ documentation, you will be able to see all these rules. Like I can keep a pointer from native class to managed class, but I have to do XYZ. I can keep a pointer from managed class to native class, but I have blah, blah, blah. So there are certain rules you have to be aware of when you are kind of mixing manage the native code this way.

So if you have a C++ client and recompiling is really option, we would really recommend people to first check latest guidelines and resources. As I said, IJW and C++ Interop are still technology that’s evolving. So there are things that we know are still not working and we are working on improving them. As we are going on, we are improving--we are updating our guidelines. So please make sure to check the latest guidelines if you decide you want to go this option just to make sure you are aware of all the issues and workarounds for them so you can make decisions based on all information you can get.

Also, if your clients are really big native applications, it doesn’t mean that you need suddenly to recompile everything in this huge application. If you know that you’ll be calling only from certain modules into managed APIs, well, you can just recompile those modules. You don’t need to recompile the whole application. And the only kind of issue that I want to highlight here to make sure you know about this is that C++ Interop is still not very good for dealing with AB domains. If you maybe heard about AB domains, like people were talking about that in the previous lessons, maybe you know that all managed code is executing in certain AB domains. So there is no managed code that executes outside of AB domain. So it’s usually a default AB domain, if you have only one, but maybe your application is creating multiple AB domains. If it’s ISP.NET application, it will have multiple AB domains. So you just need to be aware that currently C++ Interop is not dealing very well with AB domains because native code is executing outside of any AB domain. So once you have to make transition from native code to managed code, this transition needs to go into certain AB domain. Well, how do you decide in which AB domain it’s supposed to go? That’s a question. So currently there are some roles that C++ follows to go into AB domain. It will go in the last AB domain where the thread was, and if thread never went into managed code before, it will go to default AB domain. But you need to be aware of these rules. Maybe that’s not something you want. Maybe you want to go some other AB domain. And currently, there is no good way to specify directly in which AB domain you want to go. If you know this will be your situation, please contact me and I will find you latest resources and guidelines, and C++ team is also very busy adding new features to C++ language, so you will be able to specify relatively easily in which AB domain your code needs to go. Okay? So as I said, you should be aware, if this is option that looks interesting for you, just make sure you know what are advantages and disadvantages. As you could see, you are the managed library designer. If your clients are native C++ clients, that’s great. You don’t need to worry about anything. You know that you’ll just be able to use your APIs, no matter what you do. And you don’t need to worry about, “Oh, if I use tactics, oh, will that be accessible? Oh, if I use generics, will that be accessible?” You know, no matter what you do, it will be accessible from managed C++. Disadvantage is that this type of Interop technology is not as magical as the CLR Interop, so you have to really know what you are doing. You have to know how “Oh, how do I keep pointer from this to that?” You know, it’s nothing--there’s no magic there. You really have to know how all these things work, and you have to have a deep understanding of rules of native side and roles of managed side so you can follow them correctly.

So to finish with this first part, when you’re exposing managed APIs and you know that you have a native client, first option you should think about is recompiling those clients with new C++ compiler if that’s possible. If that is not possible, think about exposing COM Interfaces, and when you are deciding--when you are in this situation, also think hard if you need to expose everything or just part of your functionality will be good enough because that will save you lots of time and maintenance and testing and so on. Okay? So you are not too sleepy. I know it’s really early. I have an exercise for you. So imagine for a moment that you are big WinFS architect. Okay? And as you know, WinFS, new managed APIs will be exposed from WinFS. And then Office team comes along, asks you to use your functionality, and you are really happy. Like Office is a big team. If they take dependency of my features, well that’s really cool. So they ask you to use your APIs. You can’t be happier. But then, Office team tells you, “Well, but, we are not using managed code.” Office is native. What would you do? Oh, come on. Somebody. You know, you’re all Microsoft people. You shouldn’t be shy.

Q:
Question from the Audience.
A:
Okay. So core Office is C. So it needs no recompiling. Correct? I think C++ compiler can compile C too. But do you think Office would be willing to do that?

Q:
Question from the Audience.
A:
Switching compilers for whole Office? Not an option.

Q:
Question from the Audience.
A:
So how would you? Like, you’re an architect. Now you’re in a hot spot. How would you deal with the situation? Yes?

Q:
Question from the Audience.
A:
So one option is exposing COM wrappers for Office to use it. Okay, Office can use COM APIs. They would be happy about that. Would you be happy about that? Would you, as a Venefast architect, sign up for writing a separate layer of COM APIs for Office?

Q:
Question from the Audience.
A:
Okay. So that’s one advantage. It wouldn’t be only for Office, for everybody else could use them. Okay. Any other options? No. How about suggesting Office to recompile only parts of Office that will use Venefast? Do you think they’d be willing to do so? Maybe?

Q:
Question from the Audience.
A:
Yeah, great. So there is a solution, saying that, well, Office team, if they’re real interested, they could write their own C++ wrappers using managed C++ to access on one side Venefast APIs, then the other side just exposed maybe C APIs to the rest of the Office. Yeah, that’s one option. So I can’t claim I know the answer on this question. I just want you to kind of think of different solutions that exist today, and weigh the pros and cons before you make any decision. That’s the whole point. Just to know all the options, advantages, disadvantages, and just based on this knowledge, you make your decision. It’s not because your buddy there in Office said “IJW sucks, or COM Interop really is really slow,” or something like that. So you just kind of need to know all these facts before you make your decision. Question?

Q:
Question from the Audience.

A:
Okay. Okay. Yeah. So to just repeat the question, the question was, well, are there any other design considerations that need to be taken into account because COM usually exposes like bigger chunks of functionality than, let’s say, framework APIs, managed APIs, where you can have a point that has only like two values, which typically you wouldn’t use maybe in COM, and how do you go about redesigning your really managed API to get into these COM design guidelines? And, yes, the question that’s a valid thing to think about. Maybe your managed APIs are too granular for a COM client, especially if you know there will be perf impact of transitioning between managed and COM. Do I really want to expose getters and sectors that only, like just operate on one value and change a value or give a value back? You know, would you expose that as a COM API? Well, maybe not. Depends. You know, if that’s something that’s called millions of times, that you expect it will be called very often, well, you probably don’t want to do that that way. You probably want to kind of then, re-architect your COM APIs to expose the functionality in a little bit more like chunky way so you don’t make so many transitions. That’s a valid thing to think about and we’ll be talking about performance concentrations a little bit more at the end of this talk. Okay.

Q:
Question from the Audience.
A:
The question was what Office did and what Venefast did?

Q:
Question from the Audience.
A:
Yeah. So we kind of can’t recommend people the same thing. We can, based on things we already still recommend these options, and tell you what pros and cons of all of them are and you have to make your choice because we can’t know as much about your applications and your situation as you know. I know for a certain period of time, Venefast was exposing COM APIs and they even had a tool that automatically generated them from their managed APIs, but I know that they want to move away from that, encourage everybody to use C++ because they were having huge maintenance costs and having problems keeping these in synch.

Q:
Question from the Audience.
A:
Yes, to use. Yes. As far as I know, Office still didn’t make any decision in this regard, so I don’t know what they’ll do. Okay.

So that was the first part, which is how you expose your managed libraries to native clients if you have any. Let’s talk about the other direction. You might not have any native clients for your managed libraries, but maybe you have to call some native libraries from your own libraries because you can’t afford to rewrite everything. And Shelton’s good example: they are using native components from a shell and they are writing parts of shell and manage code, part still is native, so they have to interact. And even .NET Framework is originally the top of native API. So .NET Framework API’s, in its implementation, they all call native APIs. So, as I said you shouldn’t be thinking that, “Well my new--you know, my managed library is managed; I should go and rewrite everything to be managed--all the other libraries that I use.” Well, it’s not really rewrite everything strategy. You know, this Interop technology works very well. So you can just say, “Well, all these libraries that I have that worked very well before, I’ll just continue using them, and just make these new managed libraries expose nice, managed interfaces.” And that’s probably the best thing to do. If you are working on a new version of your product and you say, “Well, I will expose managed APIs,” you start designing your managed APIs, following all the design guidelines you hear here, and then just decide where from your managed library you will use your existing native libraries.

That’s something we recommend people to do if they have obviously enough time. Sometimes people don’t have enough time to go and run the whole new managed library with a whole brand set of new APIs. So people ask, “So what I do then?” And if you have these time constraints/resources, well, as a temporary step--hopefully in some version after that, you will do right thing. But as a, like middle thing, before you can really spend time working on a real managed APIs, you can write the thin wrappers around your native libraries, and if your native libraries are COM libraries, you can use CLR tools to just generate these wrappers for you automatically, and those are called Interop assemblies. We do not recommend people to use that as a permanent strategy for exposing managed APIs because what will happen is that these Interop assemblies will just contain one-to-one mapping between your native APIs and the managed APIs that are generated. So if you had interfaces in your library, there will be corresponding interfaces Interop library. And as you can imagine when you were designing your COM APIs, you probably didn’t follow design guidelines for writing managed APIs. So what gets generated is not really by any means a good managed API. Usually. Yes, there is a question.

Q:
Question from the Audience.
A:
So the question was, when just wrapping native APIs, what should we do with the naming conventions? Should we use the new naming conventions for managed APIs or we should just use the same names that exist in the native library? And if you use these automatic tool, if you use the type library imported tool to generate Interop assembly, you don’t have a choice. It just generate the same names as a COM library used to have. If you are really writing a layer around your native library? Well, it depends. Ideally, what’s recommended approach is that you really spend time rethinking your APIs. You should expose a new set of APIs following design guidelines that you hear about here, and just internally call these native APIs. Obviously, naming convention for new APIs will be following managed native conventions. So that’s what’s recommended approach, and, you know--but that requires time for redesigning because you probably won’t have one-to-one mapping anymore. You’ll probably redesign/re-architect stuff differently. And if you really have to write one-to-one corresponding APIs, so you kind of know that people who used to use these APIs from a native code will be maybe confused if you just change--suddenly change names. You can keep maybe the same names, but as I said one-to-one mapping is really something we recommend as a temporary solution until you really work on the real managed APIs. So I don’t know. I hope that answers the question.

Okay. And also, if your native APIs are not COM APIs but flat APIs, they’re just static exports from a library, you can expose definitions for these APIs called P\Invokes, so people can use those. But, again, ideally you would just go and write a new wrapper around your native API.

And for this direction of Interop, again, there are a couple of ways you can go, and which Interop technology to use from your new managed library depends on what type of native API you have on the other side. There are a couple of types of native APIs. There are DLLs with static entry points, like Win32 APIs. For this you can use CLR Interop, which is called--for this type of Interop--is called P\Invoke, or you can again use C++ Interop. Then the second type of native APIs is COM APIs. Like ADO, for example, or Office APIs. For this type of native APIs, you can again use CLR Interop or C++ Interop. And the last type, third type of native APIs you can have are C++ library, like IMFC libraries, and for these, you can only use C++ Interop. So when you come to the situation like this, so you know you have unmanaged API, you know what the type is, you want to expose the managed APIs on top of these APIs so managed clients can use these more easily, what do you do? You know, which technology you should choose? And again, answer is the same as before: it depends. And you can think, “Yeah, well, that’s really great advice. Yeah, thank you.” But really, it really depends. And I want to really give you tools you can make decision for yourself. That’s really important. If you can make decision for yourself based on good information, then that’s really ideal. That’s what you should do. Nobody can give you really flat answer. Like, if somebody comes to you and tells you like, “Man, like C++ Interop, that rules. That’s always the better choice,” please don’t believe them. There are good situations when to use those; there are not really so good situations. So please make your decision based on information and facts and not just because somebody else had a good experience with some Interop technology. So in order to make this decision, again, to maintain, you have to know pros and cons of each one of those. So pros for using CLR Interop in this direction is, again, there’s lots of magic happening. There’s lots of things you get for free. CLR Interop takes--it’s really take layer, so it kind of hides a whole bunch of things for you. Like, data marshalling for example. You know, you pass a managed string to API, and poof, on the other side, it’s B string. And again you get back some COM type, and on managed side, well, you have nice managed type. So that type of magic’s happening automatically, so you don’t need to take care of data marshalling. Again, object lifetime, you never need to take care of reference counting. If you’re using COM object, you don’t need to do a draft release. You know, remember, “Oh did I leak any objects? Oh, my God.” You know, CLR Interop will do that for you. Even worse, if you ever worked with department transitions or contract transitions in Interop, that’s really scary. Again, CLR Interop will just do that for you. Exceptions, error handling whenever you get an error H result, it will be nice exception on the managed aside, so CLR Interop will take care of all these things. Also, there are still some mechanisms in place so you can find a tune this magic. So it’s not totally magic. You can influence what’s going on. You can, for example, manipulate a native memory directly and still stay verifiable, which is nice, but you have to know what you’re doing, too. There are disadvantages as well. If you are using flat APIs, for example, you have to write declarations manually and that’s something sometimes very difficult, depending on APIs you are calling. And that’s probably one of the most frequently asked questions we have is, “Why the hell I need to write P\Invoke declarations? Why don’t you guys publish declarations for everything? Why don’t you write tools that will declarations for me,” and so on. Also, even when we have tools in place, like type library importer to produce Interop assemblies, they are not perfect. Why they are not perfect? Well I want to say, “Oh, it’s not our fault,” but problem is that some COM objects are IDL-based. Once you take IDL and make a type library, some information gets lost in this process and type library importer takes type libraries, not IDL. So we don’t have all the information. So we can’t generate you correct Interop wrappers. So that’s a problem. And also, sometimes, if you are working in an environment where both the native and managed parts are changing you have to make sure you’re keeping them in synch. So C++ Interop on the other side, it’s really magical in a different sense, which is there are no wrappers. You just include header file in your C++ project and you just call it as you would call it always before so everything just works. And there’s a good thing, is that, “Ah-ha!” As soon as I include a header file, even if something is changing in this header file, I’ll have compiled time checks. So I’ll know. And also, for some scenarios it’s important. In this case, you have full control over every Interop transition you make. So there’s no distinct magic layer that hides all these things. Everything’s transparent, but then there is these cons. There is no magic in a sense that you have to know all the COM planning rules for example, if you are using COM APIs. So you have to continue using a draft release, make sure everything is released properly. Not only that, you have to do all the marshalling, so you have to convert from managed types to native types. C++ team developed a good set of templates to do this, but, again, you have to know how to use them.

And as I already mentioned, handling AB domain transitions is tricky, and so--especially if you’re writing libraries because your libraries might be used from different AB domains. You don’t have a control over that. You know, how your clients will create you. Maybe they’ll create you in separate AB domains; you never know. And this gets tricky, and so in order to handle these types of situations correctly, you have to really know a lot about how these things work.

So what are then best practices if you are in this situation? I just want you to remember that both Interop technologies work for all the--for all the situations you might be in. You know, sometimes people think, “Oh C++ Interop can’t handle maybe this situation or CLR Interop can’t.” Usually, both technologies can handle everything. It’s just a matter of effort, how much effort you need to put into these things to make them work, and sometimes work needed for one technology is much bigger than work needed when using a different technology. So that’s the type of thing you need to think about before you pick your Interop technology. So these are some recommendations we came up with after lots of thinking, experimenting, seeing what people are doing, types of problems they have. We say, well, use CLR Interop if you are using flat APIs that are simple, easy to declare, no problem, no big deal there and use CLR Interop is if you are using limited number of flat API. So if you don’t need to write like huge files of P\Invoke declarations. On the other side, we recommend using C++ Interop. Obviously, if C++ is already your language of choice and not C# this is kind of obvious. But, also, if you are calling very complex methods that use the types of parameters that are not really easy to represent in manage code, like structures with variable sizes, that’s not something that’s easy to represent in managed code, and if compiled time checks are really crucial for you because both sides are changing. Again, for COM objects, again, both technologies really work, and we recommend using CLR Interop if you’re using automation-compatible COM APIs. Yes, there is a question.

Q:
Question from the Audience.
A:
Okay. The question was how to mark P\Invoke methods to make FxCop happy, basically to have a safe bucket/unsafe bucket, and how do you do about deciding which one goes in which bucket. I’m not quite sure. I’m not sure if you already had FxCop talk or not? Or that’s today. So maybe it’s a good question to ask also during that presentation. Safe P\Invoke methods are basically P\Invokes that even if somebody calls them there is nothing they can do. Like get to system time maybe. That type of API. So then, when the tools are evaluating who is calling this API, they can see, oh, do you take user input and just pass it to this P\Invoke? And if it’s safe, then that’s probably okay. But if you have a P\Invoke that will go and erase a file on your hard drive, that probably should go in unsafe bucket, and then tools can see this one is unsafe and if I go this code path, this user input will go directly to this P\Invoke. That’s probably something that shouldn’t be happening. So I think that’s kind of general, but more precise. Maybe FxCop people can come up with the better guidelines there.

Okay. And so to finish this one, we recommend using C++ Interop if, again, C++ is your language of choice. That’s obvious. But if COM APIs are ideal-based because CLR Interop then won’t generate correct signatures for you. But we also kind of have this caveat that you should use C++ Interop only when you are fully aware of all C++ requirements. So if you think that you are not--maybe not I don’t know enough about this and you’re not sure that you want to spend time making all your team come up to the speed with C++ rules, well, maybe you can consider still CLR Interop. And then if you really decide to go C++ route, these are things that you need to keep in mind. First, as I already mentioned, check latest guidelines and resources. Use new C++ templates, new in Whidbey that will make making Interop transitions easier. There are a couple of those here. And we recommend people to use them because it’s extremely hard to get certain aspects of Interop correctly if you’re doing it manually in C++. Like if you ever had to do anything with apartment transitions or context transitions, that’s extremely hard to do manually. It’s probably like three persons on the whole Earth know all the rules related to this, and one is in CLR team, one is C++. So please use templates because they promote correct usage. And if you are in any way know that will be affected with AB domains, there will be more AB domains than one, please make sure that you check specifically this topic as well. And I would also like to mention one aspect that’s interesting, we addressed in Whidbey as well, was taking care of native handles. We developed these new classes called safe handle and critical handle for wrapping precious handles. Precious means that you absolutely can’t leak these handles. And before Whidbey, it was really hard to do this because if you go and check even if you see like two lines--well, actually one line, like, oh, yeah, I call this P\Invoke method that gives me back native handle and I assigned it to this managed variable, you think, “Oh well, that’s safe.” Well, if you go and check an IL for this one line of code, you’ll see there are multiple lines of IL generated, and as soon as there are multiple lines of IL generated, exception can happen in between any of those. So what can happen is basically that you call this P\Invoke, it gives you a handle, but before you actually store a handle in your managed variable, exception happens. Now even when you have your finally blocks you don’t have a handle assigned to manage variables, so you can’t release it. So after that point, your handle is leaked. So if you can’t tolerate situations like this, if you can’t recycle process, we recommend people strongly to use safe handle. Safe handle will wrap a handle in a safe way. So we guarantee it won’t leak. There are also some other guarantees associated with these, like security. We will reference (Inaudible)?, so there won’t be any security problems related with reusing handles. Maybe you’ve heard about that. But we recommend you to not use these because they’re really heavyweight. There’s lots of guarantees they are giving to you. So if you don’t need these guarantees don’t use safe handles. But there is a link to the safe handle spec you can check if you know that you’ll be in a similar situation. Okay?

So just to summarize, you, as I said, couple of times, maybe one too many, pick appropriate technology for your scenario. Check the latest guidelines and resources, and there will be a slide with resources. And maybe it really sounds silly, but please make sure before you call some native APIs that the equivalent--that there is no equivalent in managed code. You would be surprised how many of these we found in the managed code across the company. We are writing a tool that would go over managed a source code, check all the native P\Invoke calls you are making, and make sure that you are really making calls to APIs that do not exist in framework. And as occurred last time, there’s like more than half of all the P\Invokes are actually P\Invokes that could be avoided altogether. So please don’t make this mistake.

And maybe one other short exercise in this direction, if you were on a lone team, and you need to use some very, very complicated native flat API, what would you do? And you probably know that Avalon is written in C# too. Any takes? Oh, sorry? P\Invoke to this. Okay. So that’s a valid option. Okay, so there is like an option that is really complicated. Should I use this just C++ wrapper to get the call. Yeah, that’s a valid option. Would you kind of ask some other questions before you make decision? Would you kind of try to kind of probe situation a little bit more? Like, if it’s only one API, what would you do? P\Invoke, okay. It probably doesn’t make sense to introduce yet another source file, but there’ll be hundreds, then I guess that affects your decision as well. Or do you have anybody on your team that knows C++? Well, maybe that’s also a thing to take into account. Or maybe there’s intern coming and you’ll get him to write these P\Invokes. That’s okay. So those are just like things you need to think about when you are designing these things. There are two options; you really just kind of need to pick which one’s really working for you.

Q:
I have a question.

A:
Yes?

Q:
Question from the Audience.
A:
Yeah. The question was, since in a COM world, you know that a COM object will go away as soon as you drop the last reference on it, what is going on when you are using this COM object from a managed code?

Q:
Question from the Audience.
A:
Okay. Okay, so the other direction. Okay.

Q:
Question from the Audience.
A:
So what is going on if you don’t use a managed object from a COM client when you’re in COM world? What’s going on as soon as the last reference is dropped, your object goes away? Well, in this case, if you use COM Interop, what will happen is that there is object in between these two. So there’s this magic happening in between your COM client and your managed server, and so what COM clients actually see is this object in between. So when a COM object drops the last reference, this object in between will say, “A-ha! So I’m not needed anymore. So what I’ll do, I will make this guy I’m referenced to available for collection.” So that’s what happened. So this guy will then become available for collection. It will not go away immediately as the COM client drops the last reference, but it will wait till the next GC cycle. So that’s what’s going on. Okay. Yeah?

Q:
Question from the Audience.
A:
So the question was, if you need to P\Invoke to a native API that as parameters has like huge structures maybe or pointers to huge parts of memory, what should you do?

Q:
Question from the Audience.
A:
Yeah. Yeah. Okay. So if you declare your P\Invoke so it takes managed parameters, like managed structures, but it’s huge structures, huge array, you don’t need to do anything. Interop Layer knows to pin everything and marshal everything correctly. If that’s a huge performance overhead and we just have that on the slide, then you can say, “Well, I really don’t want to take all these native arrays, make managed arrays from them, and then do some modification and pass this back and then marshaller takes this array again. You know, marshals it to native memory, so there’s lots of work happening there. If you know that, for example, even arrays are huge, you will just access a couple of elements in this array, then you can go route of a manual marshalling. Even when you’re using P\Invoke, you can do that. You don’t need C++ for that. You can use pointer, int-pointer type to do this. And if you go and check a marshal class in Interop services namespace, you will see lots of methods on this class that enable you to actually operate on these pointers and manipulate memory directly. So you can actually use the same native memory from your P\Invoke. You don’t need to pin if you use native memory for arrays, so you just keep a pointer to array in native memory and not on a native keep, and just go use arithmetic to figure out which element you need and then just read that element and just that element that gets converted to managed type. So depends on the situation. You don’t need typically to do any pinning manually. Yes?

Q:
Question from the Audience.
A:
Are both sides now managed or one is still unmanaged, one is managed?

Q:
Question from the Audience.
A:
Okay. Okay. So the question was what’s going on with apartments? What’s the boundary between managed and native? If you have a managed server if your API library is managed, and if you go and talk when it’s registered--it has to be registered--you will see it’s registered as a free threaded.

Q:
Question from the Audience.
A:
And the question is what’s going on in the different direction when the object is a COM object and you are calling from a managed client, what’s going on? If you’re using COM Interop as a managed client, you won’t notice, but COM Interop Layer will take care that--COM Interop Layer will know in which context or apartment your code is executing currently and it will make sure transition apartments or contacts if necessary.

Q:
Question from the Audience.
A:
When you’re kind of calling from a managed client, there is again an object in between, and this guy behaves like to be on the border. I’m not quite sure in the implementation--probably to native code, and then native part of COM Interop will transition and correct contacts or apartment.

Okay. So let’s quickly just finish with slides, and we can take questions at the end. So for a performance, you need to make sure you take this into account, obviously, when you’re designing your solutions, and if you didn’t already here in performance lesson, you need to know your performance goals and measure carefully against them, and always, if you can, design this make call worth of transition because if you can see for P\Invoke, it takes 10 machine instructions to make P\Invoke transition and around 70 in Whidbey to make COM Interop transition. Plus, on this, you have to call--you have to add custom marshaling. If you use primitive types like integers, there is no cost there. But if you’re using strings and they need to be converting from B-strings, Unicode, ANSI, there will be a cost there. So you need to know about this, too. Also, one of the things that’s coming up now because we are supporting 64-bit platforms, you need to take care about portability. So make sure if you have any native parts, using some native libraries from your managed libraries, and you want your libraries to continue working on 64-bit platforms, you need to make sure that native parts exist in 64-bit version as well. And there are some tidbits that you need to take keep in mind. Like, if you’re using structures to make P\Invoke calls maybe and they are defined as unions or if they are defined like elements with exact offsets from the beginning of structure, you have to be careful about these offsets. So probably won’t be able to make it so it’s portable, but unions are fine because offset is zero for every element, so that’s portable. And do not use integers to represent pointers. Use int-pointer type. Integers are 32-bit and they are not very good in 64-bit platform. And if you want to say, well, you are really, like, why are you giving me such advice? Who would ever use integer for a pointer? Well, that’s your example. We did it in .NET Framework in version 1.0. So if you look at go in the beginning, there is a COM version of this interface, an invariant, and as you see, there is two parameters that are pointers. So the second definition is definition from version 1.0 .NET Framework, and as you can see all the pointers are integers. So we had to make a new definition of this interface. Obviously, we can’t change existing shipped interface definition. That’s a contract. We can’t break people. So we had to add yet another interface definition with correct parameter declarations. So please make sure you don’t do these types of mistakes.

And so just to summarize this whole Interop session, as I said 100 times already, please know your options. Do not rewrite everything, but use appropriate Interop technology for your specific case. And be careful, obviously, about performance. You’ll probably, if you didn’t hear already, will hear today a lot about performance. And there are some tools also for you as developers, you can use. Did you ever heard about managed debugging systems, MDAs or CDPs, customer debug probes? Nobody? Well, this is something great. Everybody should know about these. MDAs or CDPs; they’re kind of changing names all the time. We shipped them in Everett, so they exist today. And what they are, are actually mechanisms for you to see what’s going on inside runtime. Usually, when you’re writing application, you can’t--unless you have obviously runtime sources, but even then, you probably don’t want to look at those sources anyway. You don’t know what’s going on. For example, in Interop, people often like take a P\Invoke, write a P\Invoke declaration, and something is not working. What do you do then? You know, you don’t have any choice. So managed debugging assistants, MDAs actually enable you to peek inside runtime. Unfortunately, these assistants, we have to implement them, so it’s not extensible mechanism. But there are a whole bunch of them, especially now in Whidbey that are--and most of them are Interop related. So what you need to do is only to put the small config file next to your application, and when you start debugging, you will start getting notification if something’s going wrong. And there are different types of these and there are documentations on them, so please, please, if you’re doing any type of Interop, turn those probes on when you are developing. It’s really tremendous help. And besides this, use FxCop. It’s great Interop rules there. And sometimes people forget, but you need to turn on mixed mode debugging.

So that would be everything for this time. As you could see, CLR Interop and C++ Interop can provide you support for all scenarios you are facing in your job. You don’t need to rewrite lots of things. Some of them you should, maybe. And you need to pick the best strategy for your particular situation. And at the end, these are some resources. You have them on your deck, so you don’t need to try to write them here, but the first thing I recommend people always to do is to check this whitepaper. It’s not very long, I promise. But it kind of summarizes everything that we’re talking here today. Then if you want to do a little bit deeper in that part, how will I do, blah, blah, blah, go and check this book. It’s written by Adam Nathan, our test lead, and it’s really great. It has 1800 pages, but it’s really worth--you don’t need to read everything, just parts that you are kind of working on. And then, MDAs, I mentioned, if you go to this, Adam has a blog. Adam Nathan has a blob. You can find lots about MDAs, and he wrote a great tool called CLR Spy. You can use with nice interface. Instead of kind of writing these config files manually in Notepad, you take a tool and just click a couple of check boxes and it’s great. And then there are a couple of blogs you would like to--probably want to check from time to time. CLR Interop Team has internal website, so if you go there, you’ll be able also to find some interesting resources and the names of people, you can send questions, which is also important. Some names are here, but you can find more names on the website. So that’s it. Any questions now? Yes?

Q:
Question from the Audience.
A:
Okay. So question was when you are calling some P\Invokes and on a native side, in this case, string was allocated, how do you make a P\Invoke call that works? Do you pass a managed object to this parameter and hope Interop will just deal with memory correctly? What are the ways to deal with this? The short answer is you have to know what the contract the native code is having towards its callers. So who is responsible for allocating memory and who is responsible for cleaning memory afterwards? So if a contract is, well if you call me, I will allocate this string and I will give you pointer back. You obviously can’t call with passing a string as parameter because Interop Marshaller will say, “A-ha! I have to take this managed string, it’s allocated here, and I need to copy this may be to ANSI. So I need to allocate a different memory and copy everything and then pass a pointer to this method.” And that this method doesn’t do anything with it, or maybe crashes if you pass it at something that’s not empty. So, again, it depends on the contract and on the rules that Interop Marshaller has. So in the case like this, when a native matter will allocate the thing by itself what you need to do is then, instead of declaring a string, declare as int-pointer because then Interop Marshaller says, “Well, this is a pointer or I don’t have anything to do with it, and you deal with it.” So then you pass a pointer and know when you get back, you will get a pointer to string, so there is again, in marshal class, matter that says, “Oh, no, no, convert this to managed string, and do marshaling manually.” And so it’s just one other thing is that you need to also know, at any time, not only in managed native interaction, but in native code as well, that the way that memory is allocated, the same kind of--the reverse API needs to call to clean the memory. So you can’t allocate using this allocator and then free using some other de-allocator obviously. So a managed Interop Marshaller actually assumes certain allocations. So, for example, default is CoTaskMemAlloc, CoTaskMemFree, which is maybe not something that’s you would expect. If it’s BSTRs, for example? Oh, okay, we know how to deal with BSTRs, so we know how to allocate/de-allocate those. So you have to kind of think about if it’s a little bit complicated managed native interaction and if it involves like strange maybe memory allocations.

Q:
Question from the Audience.
A:
Can we maybe take that, like, after, just to give a (inaudible) because I would have to kind of really understand your API.

Q:
Question from the Audience.
A:
Okay. So question was why not use a string builder? And yeah, so, it depends, really, you know. You may be using string builder. How string builder works is that we will allocate the buffer and then you’ll call native APIs, and then native APIs can write into this buffer, and you will get result back, and that’s okay. But sometimes you have maybe pointer to the pointer to string, you know. String builder then can’t be that because string builder is a pointer to string. So you have to know how many levels of--in direction your API expects, in order to call it correctly. You know, if it’s pointer to pointer to string, well then you have to declare it as ref in-point, because that’s the only way to express two levels of interaction.

Q:
Question from the Audience.
A:
So I have to kind of really understand what the API is before I can say what’s the--really the best way to do this. But any other questions because we are now close to--no? Yeah? Oh, yes, there is. Oh, sorry. Go ahead.

Q:
Question from the Audience.
A:
Yes. So question was is there a way to fine-tune Interop Marshaller to marshal only in one direction if that’s the semantic of your API, and the answer is yes. Interop Marshaller has certain defaults, so sometimes it will marshal to the native and then back to managed, and maybe that’s not behavior you need. Maybe you just need back or just a marshal into the native, and there are attributes in Interop services namespace. They’re called in-attributes and out-attribute, you can use to give a hint to Marshaller what needs to happen. Yeah. So, yes?

Q:
Question from the Audience.
A:
The question was, sometimes a buffer of memory needs to be passed to native APIs that expect that and they need to be able to write into this memory. And question is do I need to allocate this buffer and then pin it and what’s the correct way to deal with situations like that? So there is two ways you can do with this. You can allocate a memory, manage memory, like array, for example, if that’s what your native API expects, pin this memory, and pass this to a native call to avoid Marshaller marshaling these arrays if you know that it’s only integers maybe. Even though Interop Marshaller--we know that, oh, this guy is the same as in native version. I just can pin it. And sometimes, this is what will happen. Interop Marshaller will pin these things for you. The other approach you can take is to actually use, again, magic methods from a marshal class to allocate buffer directly on a native heap. You can do that from a marshal class. So you can allocate a buffer directly on a native heap and pass pointer to this buffer to your P\Invoke call, and this will work. So you have a couple of options depending what’s kind of the best thing for you. Yeah. And obviously, if you can allocate the buffer on a native heap, you don’t need to pin it. Everything is pinned there. So I think that will be all the questions. I can just talk with you offline, but thank you very much for coming so early.

Designing .NET Class Libraries

Page 1 of 18
© 2004 Microsoft Corporation

