Microsoft® Visual Studio® 2005 Extensions for Windows® Workflow Foundation

Beta 2 to Beta 2.2 Key Changes

Microsoft® Visual Studio® 2005 Extensions for Windows® Workflow Foundation
Beta 2 to Beta 2.2 Key Changes

This document supports a preliminary release of a software product that may be changed substantially prior to final commercial release. This document, including without limitation any samples referenced in this document, is provided for informational purposes only and Microsoft makes no warranties, either express or implied, in this document. Information in this document, including URL and other Internet Web site references, is subject to change without notice. The entire risk of the use or the results from the use of this document remains with the user. Unless otherwise noted, the companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted in examples herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2006 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows Server, Windows Vista and Visual Studio are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
All other trademarks are property of their respective owners.
1 Table of Contents

21
Table of Contents

52
Introduction

53
System.Workflow.ComponentModel

53.1
WorkflowChanges.AddAssemblyReference is removed

63.2
ActivityBind will no longer allow to bind to private members of an activity

63.3
DependencyObject.OnInitializeForRuntime() will be called InitializeProperties()

63.4
Enabling resource clean up for activities

83.5
SetTimer and CancelTimer methods will be removed from ActivityExecutionContext

83.6
RaiseEvent and RaiseGenericEvent methods of Activity will be protected

83.7
InvalidateProperty , OnPropertyInvalidated methods and PropertyInvalidatedCallback of DependencyObject will be removed

83.8
PropertyInvalidatedCallback property and 'propertyInvalidatedCallback' constructor parameter of PropertyMetadata class will be removed

93.9
GetDynamicActivities method moved from Activity to CompositeActivity

93.10
The ApplyTo and ValidateChanges methods of WorkflowChangeAction change from public to protected

94
System.Workflow.ComponentModel.Design

94.1
ActivityBind Dialog Update

115
System.Workflow.ComponentModel.Serialization

126
System.Workflow.Runtime

126.1
WorkflowInstance’s “Reason” parameter name will be changed to “Error” for Suspend and Terminate methods

126.2
WorkflowSuspendedEventArgs’s “Reason” property will be renamed to “Error”

126.3
WorkflowInstance dependency properties are removed and related TimerEventSubscriptionCollection will have new property

137
System.Workflow.Runtime.Hosting

137.1
System.Workflow.Runtime.Hosting.EventSubscription is removed

137.2
WorkflowPersistenceService will have new properties

147.3
WorkflowWebRequestContext will be removed

147.4
New Runtime Service: WorkflowLoaderService

157.5
Transaction retry support will be added to the Transaction Service, WorkflowTransactionService will be renamed to WorkflowCommitWorkBatchService with API changes

168
System.Workflow.Runtime.Tracking

168.1
TrackingWorkflowSuspendedEventArgs’s “Info” property will be renamed to “Error”

178.2
TrackingWorkflowExceptionEventArgs will contain two properties ContextGuid and ParentContextGuid

178.3
ContextIds used in ActivityTrackingRecord class will be ContextGuids and be mapped to ActivityExecutionContext’s ContextGuids

208.4
Schema changes in the Tracking Service to add a server-side time stamp to allow correct ordering of the events in a distributed environment

208.5
Various tracking types will use IList<> instead of List<>

308.6
New views for accessing TrackingPartitionInterval and TrackingPartitionSetName tables

308.7
WorkflowInstanceInternalId will be added to vw_AddedActivity, vw_RemovedActivity and vw_TrackingDataItemAnnotation views

309
System.Workflow.Activities

309.1
CorrelationAliasAttribute will work directly against EventArgs properties

319.2
RuleSetDialog and RuleConditionDialog will have a constructor that takes Type

319.3
Rules dependency assumptions changed to prevent excessive rule reevaluation

319.4
WorkflowType property and WorkflowType constructor parameter of ExternalDataEventArgs class will be removed

3210
System.Workflow.Activities.Rules

3210.1
Various types exposing List<> will change to expose IList<>

3811
Other

3811.1
/target:codegen argument is removed from wfc.exe

3811.2
TrackingProfile xmlns will be renamed

3911.3
Changes to tracking stored procedures

4012
Cross Reference by Migration Type

4012.1
XAML Changes

4012.2
SQL/Schema Changes

4112.3
Workflow Migration and Code Changes

4112.4
In-flight Instance Migration

4112.5
Host and Services Migration and Code Changes

4112.6
Activities and Rules Migration and Code Changes

4212.7
Custom Designer Migration and Code Changes

4212.8
Additional State Migration

2 Introduction

The purpose of this document is to describe the key API changes between the Beta 2 and the Beta 2.2 release of Microsoft Visual Studio 2005 Extensions for Windows Workflow Foundation. It does not intend to provide a complete list of all changes involved.
This document does not provide any information about changes from Beta 1.

 Please consult the documentation accompanying the release for discussion of specific features.
These Beta releases are not supported by Microsoft. A forum is available for peer discussion of the software at http://www.windowsworkflow.net/forums.

Code examples are provided in some sections. The examples are provided in C# syntax.
This document is organized by namespace. The changes are summarized under the namespaces and relevant notes for migrating developed solutions are given for each change. The notes are intended to be for informative purposes only and do not include tutorials.
The migration notes for each change are organized by migration areas. Each change may impact one or several of the following migration areas:
· XAML Changes

· SQL/Schema Changes

· Workflow Migration and Code Changes

· In-flight Instance Migration

· Host and Services Migration and Code Changes

· Activities and Rules Migration and Code Changes

· Custom Designer Migration and Code Changes

· Additional State Migration
There is a cross reference section at the end of the document that summarizes the changes by area type.

3 System.Workflow.ComponentModel

3.1 WorkflowChanges.AddAssemblyReference is removed
Removed from WorkflowChanges:

 public void AddAssemblyReference(Assembly assembly);

The WorkflowChanges class has one method that is removed. It is no longer needed because activities are not allowed to have type references identified by strings; instead they should use System.Type (just as InvokeWorkflow activity does).

3.1.1 Migration Notes
3.1.1.1 Custom Designer Migration and Code Changes
Workflow designers using this method will need to be modified accordingly.
3.2 ActivityBind will no longer allow to bind to private members of an activity

Binding to private/protected/internal members of an activity using ActivityBind is possible and they will be resolved correctly at runtime. Those members should not be accessible indirectly through Binds.
3.2.1 Migration Notes
3.2.1.1 XAML

XAML files specifying ActivityBinds to private/protected/internal members will give validation errors.
3.2.1.2 Workflow Migration and Code Changes

ActivityBinds to private/protected/internal members are no longer allowed, so such binds will need to change to reference public members.

3.2.1.3 In-flight Instance Migration

In flight workflows that use ActivityBinds to private/protected/internal members will see runtime exceptions when such a bind is resolved.
3.3 DependencyObject.OnInitializeForRuntime() will be called InitializeProperties()

DependencyObject.OnInitializeForRuntime will be renamed to InitializeProperties.

3.3.1 Migration Notes

3.3.1.1 Activities and Rules Migration and Code Changes

Solutions with activities that override this method will need to change the method name and recompile.
3.4 Enabling resource clean up for activities

Activities can use resources at various times (e.g. Initialize, Execute). This change is introduced to help facilitate the resource cleanup within the custom activities.

· Uninitialize method that is the complement of Initialize is added
· The signature of OnClose is changed since it is not useful without IServiceProvider as a parameter (also name is changed to OnClosed)

· OnActivityExecutionContextLoad and OnActivityExecutionContextUnload methods are introduced that are called when the actual object is created/disposed

· Initialization and uninitialization are not optional; the Activity execution context must ensure they are always called, so the ActivityExecutionContext InitializeActivity method is removed

· The Dispose method of Dependency Object is currently private; it needs to be protected (.NET design guidelines)

The following are the summary of the changes

Added to Activity:

protected internal virtual void Uninitialize(IServiceProvider provider);

protected internal virtual void OnActivityExecutionContextLoad(IServiceProvider provider);

protected internal virtual void OnActivityExecutionContextUnload(IServiceProvider provider);

public bool IsDynamicActivity { get; }

Added to DependencyObject:

protected virtual void Dispose(bool disposing);

Activity:

Before:
protected virtual void OnClose()

After:
protected virtual void OnClosed(IServiceProvider provider)
Removed from ActivityExecutionContext:

public void InitializeActivity(Activity activity);

3.4.1 Migration Notes

3.4.1.1 Activities and Rules Migration and Code Changes
The custom activities which use OnClose need to be modified to conform to the new signature.

Custom composite activities that create ActivityExecutionContext’s (activities similar to CAG, Replicator) previously were responsible for calling InitializeActivity. Since initialization is not optional, the runtime must do this and as a consequence, InitializeActivity is not needed.
3.5 SetTimer and CancelTimer methods will be removed from ActivityExecutionContext

The SetTimer and CancelTimer methods of ActivityExecutionContext are not usable in current form: existing Delay activity does not use them. Additionally, timer management is not a logical part of execution context.

3.5.1 Migration Notes

3.5.1.1 Activities and Rules Migration and Code Changes
Custom activities that use SetTimer and CancelTimer (e.g. a custom delay activity) will need to use the APIs that Windows Workflow Foundation Delay activity uses. Recompile will be required.

3.6 RaiseEvent and RaiseGenericEvent methods of Activity will be protected
Activity class:

RaiseEvent and RaiseGenericEvent methods will be marked protected (currently public).
3.6.1 Migration Notes

3.6.1.1 Activities and Rules Migration and Code Changes

Any activities or workflows that accessed the members being removed will need to be updated and recompiled.
3.7 InvalidateProperty , OnPropertyInvalidated methods and PropertyInvalidatedCallback of DependencyObject will be removed

DependencyObject class:

· InvalidateProperty and OnPropertyInvalidated methods will be removed
· PropertyInvalidatedCallback delegate will be removed
3.7.1 Migration Notes

3.7.1.1 Activities and Rules Migration and Code Changes

Any activities or workflows that accessed the members being removed will need to be updated and recompiled.
3.8 PropertyInvalidatedCallback property and 'propertyInvalidatedCallback' constructor parameter of PropertyMetadata class will be removed

PropertyMetadata class:
· PropertyInvalidatedCallback property will be removed
· 'propertyInvalidatedCallback' constructor parameter will be removed
3.8.1 Migration Notes

3.8.1.1 Activities and Rules Migration and Code Changes

Any activities or workflows that accessed the members being removed would need to be updated and recompiled.
3.9 GetDynamicActivities method moved from Activity to CompositeActivity

The GetDynamicActivities method has been moved to CompositeActivity from Activity since only a composite activity can contain (dynamic) child activities.

3.10 The ApplyTo and ValidateChanges methods of WorkflowChangeAction change from public to protected

The ApplyTo and ValidateChanges methods of WorkflowChangeAction change from public to protected.
4 System.Workflow.ComponentModel.Design
4.1 ActivityBind Dialog Update
A new method the interface IExtendedUIService in System.Workflow.ComponentModel.Design will be added. Its signature is:

 public interface IExtendedUIService

 {

 ITypeDescriptorContext GetSelectedPropertyContext(); (New Method
 }

Properties will no longer expose “<Promote…>” and “<Activity Reference…>” in the property browser. These concepts have been merged and are presented in the dialog.
The dialog can be launched by:

· Double clicking on the blue “i” in the property browser regardless of which type of UITypeEditor is associated with an activity

· Right clicking on the activity and selecting “Bind Selected Property” (when a property has been selected)

	[image: image1.png][Properties . E|
codeActivityl System.viorkflon. Activie.CoceAc =
B EIES

B Actvity

R cocehctivityt
Desarption
natled True
& Handlers
Geatscode 00

‘Generate Handlers, Promote Bindable Properties,
Bind Selected Property

(Name)

Please specfy the identifier of the actvity. It has to
be unigue inthe worklow.

	[image: image2.png][E] view code
Generate Hondiers
Bromate Bindable Propeties
ind Selected Property.

=

& %

copy.

X Delte

Breskpoint

Disable

Create New Theme,
Select Custom Theme,

Properties

The dialog is broken into two functional areas across two tabs. The first allows you to select an existing member to bind to.

[image: image3.png]21
[LrEr i e ——

= T Woidonl
5 codebetviyl

2 DynamiclpdsteCondiion
2F Name

O Descipion

23 codkActviy!_EvecuteCode
sz

% Conpleted

oot R e T e e oy |
e

The tab allows you to create a new member.

[image: image4.png]Bind to an exiting member {BInd 0 3 e merber

[~ Provide deta about the new member ta create:
New merber name:

Type ofthe new member

System EventHander
[Choose kind of a membe to create:
& Create Feld

© Create Property

Typo e membet e you went 0 crete n he 1ot acivRy o propery promton and =]
chosss between ekher ek o & propery

4.1.1 Migration Notes
4.1.1.1 Custom Designer Migration and Code Changes

When hosting the designer, the GetSelectedPropertyContext method needs to be implemented on the IExtendedUIService interface.
5 System.Workflow.ComponentModel.Serialization
The System.Windows.Markup namespace has been removed. Of the 10 types that were in this namespace, 6 have moved to the System.Workflow.ComponentModel.Serialization namespace and 4 have been removed from the public API surface.

Moved:

· MarkupExtension
· ConstructorArgumentAttribute

· ContentPropertyAttribute

· RuntimeNamePropertyAttribute

· XmlnsDefinitionAttribute

· XmlnsPrefixAttribute

Removed:

· ArrayExtension
· NullExtension

· TypeExtension

· XmlnsCompatibleWithAttribute

6 System.Workflow.Runtime
6.1 WorkflowInstance’s “Reason” parameter name will be changed to “Error” for Suspend and Terminate methods

WorkflowInstance

Rename parameter name “reason” to “error” in Suspend and Terminate methods.
6.1.1 Migration Notes

None, unless code is dependent upon the name of the parameter.
6.2 WorkflowSuspendedEventArgs’s “Reason” property will be renamed to “Error”

WorkflowSuspendedEventArgs

 Change property “Reason” to “Error”

6.2.1 Migration Notes

Code that relied upon the Reason property will need to change and be recompiled.
6.2.1.1 Host and Services Migration and Code Changes

Code that makes use of WorkflowSuspendedEventArgs will need to change in line with the property name change and be recompiled.
6.3 WorkflowInstance dependency properties are removed and related TimerEventSubscriptionCollection will have new property
The WorkflowInstance class currently defines persistence-related dependency properties; these will be defined on the persistence service, and they will not be public (except for timers).
Remove from WorkflowInstance:

public static readonly DependencyProperty IsBlockedProperty;

public static readonly DependencyProperty SuspendOrTerminateInfoProperty;

public static readonly DependencyProperty TimerCollectionProperty;

public static readonly DependencyProperty WorkflowInstanceIdProperty;

public static readonly DependencyProperty WorkflowStatusProperty;

Add to TimerEventSubscriptionCollection:
public static readonly DependencyProperty TimerCollectionProperty;

Add to WorkflowPersistenceService:
protected static internal bool GetIsBlocked(Activity activity);

protected static internal string GetSuspendOrTerminateInfo(Activity activity);

protected static internal WorkflowStatus GetWorkflowStatus(Activity activity);

6.3.1 Migration Notes

6.3.1.1 Activities and Rules Migration and Code Changes
The custom timer activities that use WorkflowInstance.TimerCollectionProperty will change to use TimerEventSubscriptionCollection.TimerCollectionProperty. Recompile will be required.

7 System.Workflow.Runtime.Hosting
7.1 System.Workflow.Runtime.Hosting.EventSubscription is removed

The EventSubscription type was never used by the runtime; there are two derived classes and the functionality should move into these classes since this inheritance hierarchy is not needed.

7.2 WorkflowPersistenceService will have new properties

The WorkflowInstance class currently defines persistence-related dependency properties; these will be defined on the persistence service, and they will not be public (except for timers).
Add to WorkflowPersistenceService:
protected static internal bool GetIsBlocked(Activity activity);

protected static internal string GetSuspendOrTerminateInfo(Activity activity);

protected static internal WorkflowStatus GetWorkflowStatus(Activity activity);

7.2.1 Migration Notes

7.2.1.1 Host and Services Migration and Code Changes

Custom persistence services will now use the helper methods on WorkflowPersistenceService to access the three pieces of data instead of attached dependency property lookups. WorkflowInstanceId is already retrievable from the WorkflowEnvironment.
7.3 WorkflowWebRequestContext will be removed
The WorkflowWebRequestContext type will be removed to protect the WorkflowRuntime being accessed by all of the workflow instances.
The following will be added to WorkflowWebService:

 protected WorkflowRuntime WorkflowRuntime { get; }

7.3.1 Migration Notes
7.3.1.1 Host and Services Migration and Code Changes

Custom (i.e. hand crafted) web services and regular ASP pages that accessed WorkflowWebRequestContext are the only places affected; they will need to use WorkflowWebService or another custom mechanism to get the WorkflowRuntime. Default web services (created at compile/publish time in Windows Workflow Foundation Designer) will continue to work.
7.4 New Runtime Service: WorkflowLoaderService
public abstract class WorkflowLoaderService : WorkflowRuntimeService
{
 protected internal abstract Activity CreateInstance(Type workflowType);
 protected internal abstract Activity CreateInstance(
 XmlReader workflowDefinitionReader, XmlReader rulesReader);
}

public class DefaultWorkflowLoaderService : WorkflowLoaderService
{
 protected override Activity CreateInstance(Type workflowType) { … }
 protected override Activity CreateInstance(XmlReader workflowDefinitionReader,
 XmlReader rulesReader) { … }
}
1. Windows Workflow Foundation runtime currently has a hard-coded dependency on the WorkflowMarkupSerializer for markup activation. A very simple extensibility mechanism will allow custom markup serializers to be used in place of the default one. To use this extensibility point, the new service can derive from WorkflowLoaderService and simply be added to the WorkflowRuntime just like any other service.

2. The current implementation also accepts XmlReader as a parameter to WorkflowRuntime's CreateWorkflow method but the default markup deserialization only handles a subset of XAML. This is acceptable as default behavior, but a host should be able to be more robust in its handling of markup, especially given the API that is provided.
7.5 Transaction retry support will be added to the Transaction Service, WorkflowTransactionService will be renamed to WorkflowCommitWorkBatchService with API changes

The Out-of-Box transaction service will support transaction retries in the case of a connection failure. This will be particularly useful if the database servers Windows Workflow Foundation is using are clustered and a failover occurs.
Before:

namespace System.Workflow.Runtime.Hosting

{

 public abstract class WorkflowTransactionService : WorkflowRuntimeService

 {

 protected WorkflowTransactionService();

 protected internal virtual void Complete(Transaction transaction);

 protected internal virtual Transaction CreatePromotableTransaction(TransactionOptions options);

 protected internal virtual Transaction CreateTransaction();

 }

}

After:

namespace System.Workflow.Runtime.Hosting

{

 public abstract class WorkflowCommitWorkBatchService : WorkflowRuntimeService

 {

 protected WorkflowCommitWorkBatchService();

public delegate void CommitWorkBatchCallback ();

 protected internal virtual void CommitWorkBatch (CommitWorkBatchCallback commitWorkBatchCallback)

 }

}

The default implementation will provide a DefaultWorkflowCommitWorkBatchService with an un-configurable default number of retries equals to 3 (retries are based on connection timeout and the time in the connection string is already settable).
7.5.1 Migration Notes

7.5.1.1 Host and Services Migration and Code Changes

If custom transaction services are used, they need to be re-written to accommodate for the new service. If the solutions are explicitly adding WorkflowTransactionService or SharedConnectionWorkflowTransactionService in the app.config or using the APIs, they will be affected as a result of the name changes. If the solutions are using the default OOB Transaction Service implicitly, they will not be affected by this change. The new service will be added by default.
8 System.Workflow.Runtime.Tracking

8.1 TrackingWorkflowSuspendedEventArgs’s “Info” property will be renamed to “Error”

TrackingWorkflowSuspendedEventArgs

Change property “Info” to “Error”.
8.1.1 Migration Notes
8.1.1.1 Host and Services Migration and Code Changes

Code that makes use of TrackingWorkflowSuspendedEventArgs will need to change in line with the property name change and be recompiled.
8.2 TrackingWorkflowExceptionEventArgs will contain two properties ContextGuid and ParentContextGuid
Currently The Exception event is at workflow level, it contains the activity name but not the context. In the case of replicator scenarios or activities in a loop there is not a way to correlate the exception to the proper instance. With this change there is a way to correlate which activity instance caused the exception by sufacing the ContextGuid and the ParentContextGuid for this activity instance.
Before
 public class TrackingWorkflowExceptionEventArgs : EventArgs

 {

 public string CurrentActivityPath { get; }

 public Exception Exception { get; }

 public string OriginalActivityPath { get; }

}

After

 public class TrackingWorkflowExceptionEventArgs : EventArgs

 {

 public string CurrentActivityPath { get; }

 public Exception Exception { get; }

 public string OriginalActivityPath { get; }

 public Guid ContextGuid { get; }

 public Guid ParentContextGuid { get; }

}

8.2.1 Migration Notes

This is an additive change and will not have migration implications.
8.3 ContextIds used in ActivityTrackingRecord class will be ContextGuids and be mapped to ActivityExecutionContext’s ContextGuids

ActivityTrackingRecord ContextIds will change to ContextGuids and their type will change from int to Guid to map to the ActivityExecutionContext’s ContextGuids.
Before:
 public class ActivityTrackingRecord : TrackingRecord

 {

 public ActivityTrackingRecord();

 public ActivityTrackingRecord(Type activityType, string qualifiedName, int context, int parentContext, ActivityExecutionStatus executionStatus, DateTime eventDateTime, int eventOrder, EventArgs eventArgs);

 public Type ActivityType { get; set; }

 public override TrackingAnnotationCollection Annotations { get; }

 public List<TrackingDataItem> Body { get; }

 public int Context { get; set; }

 public override EventArgs EventArgs { get; set; }

 public override DateTime EventDateTime { get; set; }

 public override int EventOrder { get; set; }

 public ActivityExecutionStatus ExecutionStatus { get; set; }

 public int ParentContext { get; set; }

 public string QualifiedName { get; set; }

}

After:
 public class ActivityTrackingRecord : TrackingRecord

 {

 public ActivityTrackingRecord();

 public ActivityTrackingRecord(Type activityType, string qualifiedName, int context, int parentContext, ActivityExecutionStatus executionStatus, DateTime eventDateTime, int eventOrder, EventArgs eventArgs);

 public Type ActivityType { get; set; }

 public override TrackingAnnotationCollection Annotations { get; }

 public List<TrackingDataItem> Body { get; }

 public Guid Context { get; set; }

 public override EventArgs EventArgs { get; set; }

 public override DateTime EventDateTime { get; set; }

 public override int EventOrder { get; set; }

 public ActivityExecutionStatus ExecutionStatus { get; set; }

 public Guid ParentContext { get; set; }

 public string QualifiedName { get; set; }

 }

8.3.1 Migration Notes

If any code was using ContextId and/or ParentContextId off ActivityTrackingRecord or from the database, it will need to change to accommodate for new types and names. SqlTrackingService schema will need to change as well to replace the old types and names with the new ones (ints to Guids).
8.3.1.1 SQL/Schema

Int ContextIds and ParentContextIds in the SqlTrackingService schema will need to change to GUIDs types to correctly store the Object Model’s ContextGuids. This will change in the tables and the stored procedures.
8.3.1.2 Workflow Migration and Code Changes
If the workflows are accessing the ContextIds from within the workflows, they will need to change and be re-compiled.
8.3.1.3 In-flight Instance Migration

The workflows will be needed to be re-compiled if the solutions are accessing the ContextIds from within the workflows. SqlTrackingService Migration will be needed to accommodate for in-flight instances using the SqlTrackingService.
8.3.1.4 Host and Services Migration and Code Changes

If the host/service code is accessing ContextId and ParentContextId on ActivityTrackingRecord or in the tables, a recompilation would be required to accommodate for new types and names.

8.3.1.5 Activities and Rules Migration and Code Changes
If the activity’s code is using the ContextId and ParentContextId on ActivityTrackingRecord, a change and a recompilation would be required.
8.3.1.6 Additional State Migration
The SqlTrackingService schema will be upgraded to the new one.
8.4 Schema changes in the Tracking Service to add a server-side time stamp to allow correct ordering of the events in a distributed environment
New attributes will be added to the existing schema to ensure proper time order of the events within the tracking store. The new fields are:
· WorkflowInstance.DbEndDateTime

· ActivityExecutionStatusEvent.DbEventDateTime

· UserEvent.DbEventDateTime

· WorkflowInstanceEvent.DbEventDateTime
8.4.1 Migration Notes

If the solutions are using the SqlTrackingService and are retrieving a list of ordered events, they should use the value of the new field for a guaranteed ordering.
8.4.1.1 SQL/Schema

SqlTrackingService will change to include new fields that will hold a server side ordering values. Applicable stored procedures that retrieve ordered lists will change to make use of the value of the new field.

8.4.1.2 Additional State Migration
The SqlTrackingService schema will need to be upgraded to the new one.
8.5 Various tracking types will use IList<> instead of List<>

SqlTrackingQuery Class
Before

 public sealed class SqlTrackingQuery

 {

 public SqlTrackingQuery();

 public SqlTrackingQuery(string connectionString);

 public string ConnectionString { get; set; }

 public List<SqlTrackingWorkflowInstance> GetWorkflows(SqlTrackingQueryOptions options);

 public bool TryGetWorkflow(Guid workflowInstanceId, out SqlTrackingWorkflowInstance workflowInstance);

}

After

 public sealed class SqlTrackingQuery

 {

 public SqlTrackingQuery();

 public SqlTrackingQuery(string connectionString);

 public string ConnectionString { get; set; }

 public IList<SqlTrackingWorkflowInstance> GetWorkflows(SqlTrackingQueryOptions options);

 public bool TryGetWorkflow(Guid workflowInstanceId, out SqlTrackingWorkflowInstance workflowInstance);

}

SqlTrackingWorkflowInstance Class
Before:
 public class SqlTrackingWorkflowInstance

 {

 public List<ActivityTrackingRecord> ActivityEvents { get; }

 public bool AutoRefresh { get; set; }

 public DateTime Initialized { get; set; }

 public List<SqlTrackingWorkflowInstance> InvokedWorkflows { get; }

 public Guid InvokingWorkflowInstanceId { get; set; }

 public WorkflowStatus Status { get; set; }

 public List<UserTrackingRecord> UserEvents { get; }

 public Activity WorkflowDefinition { get; }

 public bool WorkflowDefinitionUpdated { get; }

 public List<WorkflowTrackingRecord> WorkflowEvents { get; }

 public Guid WorkflowInstanceId { get; set; }

 public long WorkflowInstanceInternalId { get; set; }

 public Type WorkflowType { get; set; }

 public void Refresh();

}

After:
 public class SqlTrackingWorkflowInstance

 {

 public IList<ActivityTrackingRecord> ActivityEvents { get; }

 public bool AutoRefresh { get; set; }

 public DateTime Initialized { get; set; }

 public IList<SqlTrackingWorkflowInstance> InvokedWorkflows { get; }

 public Guid InvokingWorkflowInstanceId { get; set; }

 public WorkflowStatus Status { get; set; }

 public IList<UserTrackingRecord> UserEvents { get; }

 public Activity WorkflowDefinition { get; }

 public bool WorkflowDefinitionUpdated { get; }

 public IList<WorkflowTrackingRecord> WorkflowEvents { get; }

 public Guid WorkflowInstanceId { get; set; }

 public long WorkflowInstanceInternalId { get; set; }

 public Type WorkflowType { get; set; }

 public void Refresh();

}

SqlTrackingQueryOptions Class
Before:
 public class SqlTrackingQueryOptions

 {

 public SqlTrackingQueryOptions();

 public DateTime StatusMaxDateTime { get; set; }

 public DateTime StatusMinDateTime { get; set; }

 public List<TrackingDataItemValue> TrackingDataItems { get; }

 public WorkflowStatus? WorkflowStatus { get; set; }

 public Type WorkflowType { get; set; }

 public void Clear();

 }

After:
 public class SqlTrackingQueryOptions

 {

 public SqlTrackingQueryOptions();

 public DateTime StatusMaxDateTime { get; set; }

 public DateTime StatusMinDateTime { get; set; }

 public IList<TrackingDataItemValue> TrackingDataItems { get; }

 public WorkflowStatus? WorkflowStatus { get; set; }

 public Type WorkflowType { get; set; }

 public void Clear();

 }

ActivityTrackingLocation Class

Before:
 public sealed class ActivityTrackingLocation

 {

 public ActivityTrackingLocation();

 public ActivityTrackingLocation(string activityTypeName);

 public ActivityTrackingLocation(Type activityType);

 public ActivityTrackingLocation(string activityTypeName, IEnumerable<ActivityExecutionStatus> executionStatusEvents);

 public ActivityTrackingLocation(Type activityType, IEnumerable<ActivityExecutionStatus> executionStatusEvents);

 public ActivityTrackingLocation(string activityTypeName, bool matchDerivedTypes, IEnumerable<ActivityExecutionStatus> executionStatusEvents);

 public ActivityTrackingLocation(Type activityType, bool matchDerivedTypes, IEnumerable<ActivityExecutionStatus> executionStatusEvents);

 public Type ActivityType { get; set; }

 public string ActivityTypeName { get; set; }

 public TrackingConditionCollection Conditions { get; }

 public List<ActivityExecutionStatus> ExecutionStatusEvents { get; }

 public bool MatchDerivedTypes { get; set; }

}

After:
 public sealed class ActivityTrackingLocation

 {

 public ActivityTrackingLocation();

 public ActivityTrackingLocation(string activityTypeName);

 public ActivityTrackingLocation(Type activityType);

 public ActivityTrackingLocation(string activityTypeName, IEnumerable<ActivityExecutionStatus> executionStatusEvents);

 public ActivityTrackingLocation(Type activityType, IEnumerable<ActivityExecutionStatus> executionStatusEvents);

 public ActivityTrackingLocation(string activityTypeName, bool matchDerivedTypes, IEnumerable<ActivityExecutionStatus> executionStatusEvents);

 public ActivityTrackingLocation(Type activityType, bool matchDerivedTypes, IEnumerable<ActivityExecutionStatus> executionStatusEvents);

 public Type ActivityType { get; set; }

 public string ActivityTypeName { get; set; }

 public TrackingConditionCollection Conditions { get; }

 public IList<ActivityExecutionStatus> ExecutionStatusEvents { get; }

 public bool MatchDerivedTypes { get; set; }

}

WorkflowTrackingLocation Class
Before:
 public sealed class WorkflowTrackingLocation

 {

 public WorkflowTrackingLocation();

 public WorkflowTrackingLocation(List<TrackingWorkflowEvent> events);

 public List<TrackingWorkflowEvent> Events { get; }

 }

After:
 public sealed class WorkflowTrackingLocation

 {

 public WorkflowTrackingLocation();

 public WorkflowTrackingLocation(List<TrackingWorkflowEvent> events);

 public IList<TrackingWorkflowEvent> Events { get; }

 }

TrackingParameters Class
Before:
 public sealed class TrackingParameters

 {

 public TrackingParameters(Guid instanceId, Type workflowType, Activity rootActivity, List<string> callPath, Guid callerInstanceId, int context, int callerContext, int callerParentContext);

 public int CallerContext { get; }

 public Guid CallerInstanceId { get; }

 public int CallerParentContext { get; }

 public List<string> CallPath { get; }

 public int Context { get; }

 public Guid InstanceId { get; }

 public Activity RootActivity { get; }

 public Type WorkflowType { get; }

 }

After:
 public sealed class TrackingParameters

 {

 public TrackingParameters(Guid instanceId, Type workflowType, Activity rootActivity, List<string> callPath, Guid callerInstanceId, int context, int callerContext, int callerParentContext);

 public int CallerContext { get; }

 public Guid CallerInstanceId { get; }

 public int CallerParentContext { get; }

 public IList<string> CallPath { get; }

 public int Context { get; }

 public Guid InstanceId { get; }

 public Activity RootActivity { get; }

 public Type WorkflowType { get; }

 }

ActivityTrackingRecord Class
Before:
 public class ActivityTrackingRecord : TrackingRecord

 {

 public ActivityTrackingRecord();

 public ActivityTrackingRecord(Type activityType, string qualifiedName, int context, int parentContext, ActivityExecutionStatus executionStatus, DateTime eventDateTime, int eventOrder, EventArgs eventArgs);

 public Type ActivityType { get; set; }

 public override TrackingAnnotationCollection Annotations { get; }

 public List<TrackingDataItem> Body { get; }

 public int Context { get; set; }

 public override EventArgs EventArgs { get; set; }

 public override DateTime EventDateTime { get; set; }

 public override int EventOrder { get; set; }

 public ActivityExecutionStatus ExecutionStatus { get; set; }

 public int ParentContext { get; set; }

 public string QualifiedName { get; set; }

}

After:
 public class ActivityTrackingRecord : TrackingRecord

 {

 public ActivityTrackingRecord();

 public ActivityTrackingRecord(Type activityType, string qualifiedName, int context, int parentContext, ActivityExecutionStatus executionStatus, DateTime eventDateTime, int eventOrder, EventArgs eventArgs);

 public Type ActivityType { get; set; }

 public override TrackingAnnotationCollection Annotations { get; }

 public IList<TrackingDataItem> Body { get; }

 public int Context { get; set; }

 public override EventArgs EventArgs { get; set; }

 public override DateTime EventDateTime { get; set; }

 public override int EventOrder { get; set; }

 public ActivityExecutionStatus ExecutionStatus { get; set; }

 public int ParentContext { get; set; }

 public string QualifiedName { get; set; }

}

UserTrackingRecord Class
Before:
 public class UserTrackingRecord : TrackingRecord

 {

 public UserTrackingRecord();

 public UserTrackingRecord(Type activityType, string qualifiedName, int context, int parentContext, DateTime eventDateTime, int eventOrder, string userDataKey, object userData);

 public Type ActivityType { get; set; }

 public override TrackingAnnotationCollection Annotations { get; }

 public List<TrackingDataItem> Body { get; }

 public int Context { get; set; }

 public override EventArgs EventArgs { get; set; }

 public override DateTime EventDateTime { get; set; }

 public override int EventOrder { get; set; }

 public int ParentContext { get; set; }

 public string QualifiedName { get; set; }

 public object UserData { get; set; }

 public string UserDataKey { get; set; }

 }

After:
 public class UserTrackingRecord : TrackingRecord

 {

 public UserTrackingRecord();

 public UserTrackingRecord(Type activityType, string qualifiedName, int context, int parentContext, DateTime eventDateTime, int eventOrder, string userDataKey, object userData);

 public Type ActivityType { get; set; }

 public override TrackingAnnotationCollection Annotations { get; }

 public IList<TrackingDataItem> Body { get; }

 public int Context { get; set; }

 public override EventArgs EventArgs { get; set; }

 public override DateTime EventDateTime { get; set; }

 public override int EventOrder { get; set; }

 public int ParentContext { get; set; }

 public string QualifiedName { get; set; }

 public object UserData { get; set; }

 public string UserDataKey { get; set; }

 }

8.5.1 Migration Notes

The types above are used in the query layer and in the tracking services. All code using these types will need to be re-compiled.
8.5.1.1 Workflow Migration and Code Changes
Workflow re-compilation will be required if any of these types are used.
8.5.1.2 Host and Services Migration and Code Changes

Custom Tracking Services using these types will need to be re-compiled

8.5.1.3 Activities and Rules Migration and Code Changes
Activities using these types will need to be re-compiled.
8.5.1.4 Additional State Migration
Tools utilizing the SqlTrackingQuery and the various Tracking Records will need to be recompiled.
8.6 New views for accessing TrackingPartitionInterval and TrackingPartitionSetName tables
Two new views will be added to the SqlTrackingService schema with a 1-1 mapping to the existing tables. TrackingPartitionInterval and TrackingPartitionSetName. It is recommended that any queries against the database are done through the views.
8.6.1 Migration Notes

8.6.1.1 SQL/Schema

Two new views will be added to the SqlTrackingService schema with a 1-1 mapping to the existing tables. TrackingPartitionInterval and TrackingPartitionSetName. The views are vw_ TrackingPartitionInterval and vw_TrackingPartitionSetName respectively.
8.7 WorkflowInstanceInternalId will be added to vw_AddedActivity, vw_RemovedActivity and vw_TrackingDataItemAnnotation views
The filed WorkflowInstanceInternalId will be added to vw_AddedActivity, vw_RemovedActivity and vw_TrackingDataItemAnnotation views to make sure they are in-sync, 1-1- mapping, with their corresponding tables.

8.7.1 Migration Notes

8.7.1.1 SQL/Schema
The new field listed above will be added to the Tracking schema.
9 System.Workflow.Activities
9.1 CorrelationAliasAttribute will work directly against EventArgs properties

String representation of a correlation alias is unintuitive to use.

Current:

[CorrelationAlias("Foo", "e.Bar")]

event EventHandler<MyEventArgs> MyEvent;

New:

[CorrelationAlias("Foo", "Bar")]

event EventHandler<MyEventArgs> MyEvent;

The only difference is that the leading “e.” will not be required. The existing usage will continue to be supported not to break existing code.

9.2 RuleSetDialog and RuleConditionDialog will have a constructor that takes Type
In System.Workflow.Activities.Rules.Design, two new APIs:

1. public RuleConditionDialog(Type activityType, TypeProvider typeProvider, CodeExpression expression)
2. public RuleSetDialog(Type activityType, TypeProvider typeProvider, RuleSet ruleSet)
The ability to execute rules outside of a workflow was added in Beta 2 and it is only possible to model them against an Activity type. This change is done to enable scenarios if the editor is rehosted to model rules against a Type which is not an Activity.
9.3 Rules dependency assumptions changed to prevent excessive rule reevaluation
The default assumptions for when rules are reevaluated are being changed to be more conservative. For the case where “this.a.Method()” is invoked in a condition we will only assume that the target object (“this.a”) is read from, not the members of the target object. This means that chaining will only automatically occur when the “this.a” reference is reassigned, not if, for example, a property on the “a” object is modified in an action (e.g. this.a.B = 5).
9.4 WorkflowType property and WorkflowType constructor parameter of ExternalDataEventArgs class will be removed
ExternalDataEventArgs class:

· WorkflowType property will be removed

· workflowType constructor parameter will be removed

9.4.1 Migration Notes

9.4.1.1 Activities and Rules Migration and Code Changes

Any activities or workflows that accessed the members being removed would need to be updated and recompiled.
10 System.Workflow.Activities.Rules
10.1 Various types exposing List<> will change to expose IList<>

IWorkflowChangeDiff Class

Changes to this interface will propagate changed to RuleDefinitions, RuleConditionCollection, and RuleSetCollection. Those types are used mostly in tracking and the changes will require changes to the host/tracking code if they were used.
Before

 public interface IWorkflowChangeDiff

 {

 public List`1<WorkflowChangeAction> Diff(object originalDefinition, object changedDefinition);

 }

After

 public interface IWorkflowChangeDiff

 {

 public IList`1<WorkflowChangeAction> Diff(object originalDefinition, object changedDefinition);

 }

RuleDefinitions Class
Before

 public sealed class RuleDefinitions: IWorkflowChangeDiff

 {

 public RuleDefinitions();

 public static readonly DependencyProperty RuleDefinitionsProperty;

 public RuleConditionCollection Conditions { get; }

 public RuleSetCollection RuleSets { get; }

 public List`1<WorkflowChangeAction> Diff(object originalDefinition, object changedDefinition);

 }

After

 public sealed class RuleDefinitions: IWorkflowChangeDiff

 {

 public RuleDefinitions();

 public static readonly DependencyProperty RuleDefinitionsProperty;

 public RuleConditionCollection Conditions { get; }

 public RuleSetCollection RuleSets { get; }

 public IList`1<WorkflowChangeAction> Diff(object originalDefinition, object changedDefinition);

 }

RuleConditionCollection Class
Before

 public sealed class RuleConditionCollection: KeyedCollection`2, IList, IList`1<RuleCondition>, IWorkflowChangeDiff

 {

 public RuleConditionCollection();

 public void Add(RuleCondition item);

 public List`1<WorkflowChangeAction> Diff(object originalDefinition, object changedDefinition);

 protected override string GetKeyForItem(RuleCondition item);

 protected override void InsertItem(int index, RuleCondition item);

 protected override void RemoveItem(int index);

 protected override void SetItem(int index, RuleCondition item);

 }

After

 public sealed class RuleConditionCollection: KeyedCollection`2, IList, IList`1<RuleCondition>, IWorkflowChangeDiff

 {

 public RuleConditionCollection();

 public void Add(RuleCondition item);

 public IList`1<WorkflowChangeAction> Diff(object originalDefinition, object changedDefinition);

 protected override string GetKeyForItem(RuleCondition item);

 protected override void InsertItem(int index, RuleCondition item);

 protected override void RemoveItem(int index);

 protected override void SetItem(int index, RuleCondition item);

 }

RuleSetCollection Class
Before

 public sealed class RuleSetCollection: KeyedCollection`2, IList, IList`1<RuleSet>, IWorkflowChangeDiff

 {

 public RuleSetCollection();

 public void Add(RuleSet item);

 public List`1<WorkflowChangeAction> Diff(object originalDefinition, object changedDefinition);

 protected override string GetKeyForItem(RuleSet item);

 protected override void InsertItem(int index, RuleSet item);

 protected override void RemoveItem(int index);

 protected override void SetItem(int index, RuleSet item);

 }

After

 public sealed class RuleSetCollection: KeyedCollection`2, IList, IList`1<RuleSet>, IWorkflowChangeDiff

 {

 public RuleSetCollection();

 public void Add(RuleSet item);

 public IList`1<WorkflowChangeAction> Diff(object originalDefinition, object changedDefinition);

 protected override string GetKeyForItem(RuleSet item);

 protected override void InsertItem(int index, RuleSet item);

 protected override void RemoveItem(int index);

 protected override void SetItem(int index, RuleSet item);

 }

Rule Class

The changes to the constructors of the Rule class shouldn’t have an impact.
Before

 public class Rule

 {

 public Rule();

 public Rule(string name);

 public Rule(string name, RuleCondition condition, List`1<RuleAction> thenActions);

 public Rule(string name, RuleCondition condition, List`1<RuleAction> thenActions, List`1<RuleAction> elseActions);

 public bool Active { get; set; }

 public RuleCondition Condition { get; set; }

 public string Description { get; set; }

 public IList`1<RuleAction> ElseActions { get; }

 public string Name { get; set; }

 public int Priority { get; set; }

 public RuleReevaluationBehavior ReevaluationBehavior { get; set; }

 public IList`1<RuleAction> ThenActions { get; }

 public Rule Clone();

 public override bool Equals(object obj);

 public override int GetHashCode();

 }

After

 public class Rule

 {

 public Rule();

 public Rule(string name);

 public Rule(string name, RuleCondition condition, IList`1<RuleAction> thenActions);

 public Rule(string name, RuleCondition condition, IList`1<RuleAction> thenActions, IList`1<RuleAction> elseActions);

 public bool Active { get; set; }

 public RuleCondition Condition { get; set; }

 public string Description { get; set; }

 public IList`1<RuleAction> ElseActions { get; }

 public string Name { get; set; }

 public int Priority { get; set; }

 public RuleReevaluationBehavior ReevaluationBehavior { get; set; }

 public IList`1<RuleAction> ThenActions { get; }

 public Rule Clone();

 public override bool Equals(object obj);

 public override int GetHashCode();

 }

RuleSet Class

The changes to the RuleSet will trigger changes to the workflow code if it is used in the workflow code. Custom activities will be affected by this change as well.
Before

 public class RuleSet

 {

 public RuleSet();

 public RuleSet(string name);

 public RuleSet(string name, string description);

 public RuleChainingBehavior ChainingBehavior { get; set; }

 public string Description { get; set; }

 public string Name { get; set; }

 public List`1<Rule> Rules { get; }

 public RuleSet Clone();

 public override bool Equals(object obj);

 public void Execute(RuleExecution ruleExecution);

 public override int GetHashCode();

 public bool Validate(RuleValidation validation);

 }

After

 public class RuleSet

 {

 public RuleSet();

 public RuleSet(string name);

 public RuleSet(string name, string description);

 public RuleChainingBehavior ChainingBehavior { get; set; }

 public string Description { get; set; }

 public string Name { get; set; }

 public ICollection`1<Rule> Rules { get; }

 public RuleSet Clone();

 public override bool Equals(object obj);

 public void Execute(RuleExecution ruleExecution);

 public override int GetHashCode();

 public bool Validate(RuleValidation validation);

 }

10.1.1 Migration Notes

RuleDefinitions, RuleConditionCollection and RuleSetCollection are only exposed in Tracking and the impact will be in the workflows. RuleSet is expected to be used in the hosting code and workflow code as well.

10.1.1.1 Workflow Migration and Code Changes
Modifications are necessary if RuleSet.Rules is used in the workflow code. Changes might be required; it really depends on how the returned collections are used.
10.1.1.2 In-flight Instance Migration

Care must be taken if RuleSet.Rules is used in the workflow code.
10.1.1.3 Host and Services Migration and Code Changes

Host code might need to change is those types are used either within the tracking service or the host for dynamic update scenarios

10.1.1.4 Activities and Rules Migration and Code Changes
If Policy activities are used no migration will be needed. Migration will be required if the custom activity accesses the RuleSet.Rules property. More specfically, only if the custom activity treats the resulting collection as an IList instead of an ICollection
10.1.1.5 Custom Designer Migration and Code Changes
Rules custom design tools may be affected by the RuleSet.Rules change.

11 Other
11.1 /target:codegen argument is removed from wfc.exe

11.1.1 Migration Notes

Solutions using this feature will need to implement a new tool using the CodeDom serializer to emit code from a markup file.
11.2 TrackingProfile xmlns will be renamed

Currently the Windows Workflow Foundation Tracking Profile uses http://www.microsoft.com/WFTrackingProfile namespace. It will be changed to http://schemas.microsoft.com/winfx/2006/workflow/TrackingProfile
11.2.1 Migration Notes

The solutions that use tracking profiles XML will be affected

1. All workflow tracking profile represented in xml will need to change to use the new xmlns
2. Tracking profiles that are serialized and saved will have to change.
3. SqlTrackingService implementation saves per instance and per type tracking profiles in the database depending on the solution scenarios. All these saved tracking profile instances need to be changed as well
11.2.1.1 SQL/Schema

Default Tracking Profile inserted in the SqlTrackingService schema will need to change, otherwise the tracking profile will fail deserialization and the service will throw an exception.

11.2.1.2 Workflow Migration and Code Changes
Re-compilation would be required if customers are using tracking and the tracking profiles used are authored using XML and are stored in string/xml variables in the workflow.
11.2.1.3 In-flight Instance Migration

All tracking profiles that are stored in xml format need to change to hold the new xmlns otherwise the service will throw an exception upon deserializing the profile.
11.2.1.4 Host and Services Migration and Code Changes

Re-compilation of the code will be required if customers are using tracking, the tracking profiles used are authored using XML and are stored in string/xml variables in the workflow.
11.2.1.5 Additional State Migration
Stored tracking profiles in SqlTrackingService schema will change. The code will select the Tracking Profiles from DefaultTrackingProfile, TrackingProfile, and TrackingProfileInstance and update the xmlns attribute.

11.3 Changes to tracking stored procedures

Several stored procedures for the out-of-box SqlTrackingService have been updated. Re-running the logic script Tracking_Logic.sql will recreate the stored procedures with the necessary updates.
The following tracking stored procedures have been updated:
· GetTypeId: Added a bit parameter @IsInstanceType to indicate whether the workflow type you want to retrieve is xoml-based or compiled
· InsertWorkflow: Added a bit parameter @IsInstanceType to indicate whether the workflow type you want to insert is xoml-based or compiled
· GetWorkflowInstanceInternalId: Changed the int parameter ContextId to uniqueidentifier ContextGuid

· GetActivityInstanceId: Changed the int parameters ContextId, ParentContextId to uniqueidentifiers ContextGuid and ParentContextGuid respectively

· InsertActivityExecutionStatusEvent: Changed the int parameters ContextId, ParentContextId, WorkflowInstanceContext to uniqueidentifiers ContextGuid and ParentContextGuid and WorkflowInstanceContextGuid respectively, added a ActivityExecutionStatusEventId as a big int output parameter

· InsertWorkflowInstance: Changed the int parameters Context, CallerContext, CallerParentContext to uniqueidentifiers ContextGuid and CallerContextGuid and CallerParentContextGuid respectively

· InsertUserEvent: Changed the int parameters Context, ParentContext to uniqueidentifiers ContextGuid and ParentContextGuid respectively, added a UserEventId as a big int output parameter

· InsertTrackingDataItem: Removed EventOrder parameter and added a bigint EventId and a char(1) EventTypeId

· InsertEventAnnotation: Removed EventOrder parameter and added a bigint EventId and a char(1) EventTypeId

· Added Stored Proc: GetWorkflowChangeEventArgs
11.3.1 Migration Notes

Migration impact from the updates of the stored procedures should be minimal, since the stored procedures are called from the Windows Workflow Foundation runtime, and should not be called directly from host code.
11.3.1.1 SQL/Schema

The tracking stored procedures need to be updated as per above. It is recommended to re-run the logic script Tracking_Logic.sql to re-create the stored procedures.
11.3.1.2 Host and Services Migration and Code Changes

If the host code calls the tracking stored procedures directly, calls to tracking stored procedures from the host code would need to be updated as per the list of changes above.

12 Cross Reference by Migration Type
12.1 XAML Changes

· 3.2 ActivityBind will no longer allow to bind to private members of an activity
12.2 SQL/Schema Changes

· 8.3 ContextId’s used in ActivityTrackingRecord class will be ContextGuid’s and be mapped to ActivityExecutionContext’s ContextGuid’s
· 8.4 Schema changes in the Tracking Service to add a server-side time stamp to allow correct ordering of the events
· 8.6 New views for accessing TrackingPartitionInterval and TrackingPartitionSetName tables
· 8.7 WorkflowInstanceInternalId will be added to vw_AddedActivity, vw_RemovedActivity and vw_TrackingDataItemAnnotation views
· 11.2 TrackingProfile xmlns will be renamed
· 11.3 Changes to tracking stored procedures
12.3 Workflow Migration and Code Changes

· 3.2 ActivityBind will no longer allow to bind to private members of an activity
· 8.3 ContextId’s used in ActivityTrackingRecord class will be ContextGuid’s and be mapped to ActivityExecutionContext’s ContextGuid’s
· 8.5 Various tracking types will use IList<> instead of List<>
· 10.1 Various types exposing List<> will change to expose IList<>
· 11.2 TrackingProfile xmlns will be renamed
12.4 In-flight Instance Migration

· 3.2 ActivityBind will no longer allow to bind to private members of an activity
· 8.3 ContextId’s used in ActivityTrackingRecord class will be ContextGuid’s and be mapped to ActivityExecutionContext’s ContextGuid’s
· 10.1 Various types exposing List<> will change to expose IList<>
· 11.2 TrackingProfile xmlns will be renamed
12.5 Host and Services Migration and Code Changes

· 7.2 WorkflowPersistenceService will have new properties
· 7.5 Transaction retry support will be added to the Transaction Service, WorkflowTransactionService will be renamed to WorkflowCommitWorkBatchService with API changes
· 8.1 TrackingWorkflowSuspendedEventArgs’s “Info” property will be renamed to “Error”
· 8.3 ContextId’s used in ActivityTrackingRecord class will be ContextGuid’s and be mapped to ActivityExecutionContext’s ContextGuid’s
· 8.5 Various tracking types will use IList<> instead of List<>
· 10.1 Various types exposing List<> will change to expose IList<>
· 11.2 TrackingProfile xmlns will be renamed
· 11.3 Changes to tracking stored procedures
12.6 Activities and Rules Migration and Code Changes

· 3.3 DependencyObject.OnInitializeForRuntime() will be called InitializeProperties()
· 5 System.Workflow.ComponentModel.Serialization
· 3.4 Enabling resource clean up for activities
· 3.5 SetTimer and CancelTimer methods will be removed from ActivityExecutionContext
· 3.6 RaiseEvent and RaiseGenericEvent methods of Activity will be protected
· 3.7 InvalidateProperty , OnPropertyInvalidated methods and PropertyInvalidatedCallback of DependencyObject will be removed
· 3.8 PropertyInvalidatedCallback property and 'propertyInvalidatedCallback' constructor parameter of PropertyMetadata class will be removed
· 8.3 ContextId’s used in ActivityTrackingRecord class will be ContextGuid’s and be mapped to ActivityExecutionContext’s ContextGuid’s
· 8.5 Various tracking types will use IList<> instead of List<>
· 9.4 WorkflowType property and WorkflowType constructor parameter of ExternalDataEventArgs class
· 10.1 Various types exposing List<> will change to expose IList<>
12.7 Custom Designer Migration and Code Changes

· 3.1 WorkflowChanges.AddAssemblyReference is removed
· 4.1 ActivityBind Dialog Update
· 10.1 Various types exposing List<> will change to expose IList<>
12.8 Additional State Migration
· 8.3 ContextId’s used in ActivityTrackingRecord class will be ContextGuid’s and be mapped to ActivityExecutionContext’s ContextGuid’s
· 8.4 Schema changes in the Tracking Service to add a server-side time stamp to allow correct ordering of the events
· 8.5 Various tracking types will use IList<> instead of List<>
© 2006 Microsoft Corporation.

Page 38 (42)

