[image: image7.png]Microsoft

[image: image8.jpg]

DLinq

.NET Language Integrated Query
for Relational Data

Visual Basic Edition

May 2006 DOCVARIABLE Version * MERGEFORMAT
Notice

© 2006 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Visual Basic, Visual C#, and Visual C++ are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries/regions.

Other product and company names mentioned herein may be the trademarks of their respective owners.

Table of Contents

11. Introduction

2. A Quick Tour
3
2.1 Creating Entity Classes
3
2.2 The DataContext
4
2.3 Defining Relationships
5
2.4 Querying Across Relationships
6
2.5 Modifying and Saving Entities
6
3. Queries In Depth
9
3.1 Query Execution
9
3.2 Object Identity
10
3.3 Relationships
11
3.4 Projections
12
3.5 SQL Translation
15
4. The Entity Life Cycle
17
4.1 Tracking Changes
17
4.2 Submitting Changes
20
4.3 Simultaneous Changes
21
4.4 Transactions
21
4.5 Stored Procedures
23
5. Entity Classes In Depth
25
5.1 Using Attributes
25
5.2 Graph Consistency
32
5.3 Change Notifications
34
6. Advanced Topics
37
6.1 Creating Databases
37
6.2 Interoperating with ADO.NET
38
6.3 The Entity Class Generator Tool
40
6.4 Generator Tool XML Reference
41
7. New For Spring 2006
47
7.1 Inheritance
47
7.2 Multi-tier Entities
49
7.3 Remote Query Support for EntitySet
51
7.4 External Mapping
52
7.5 Stored Procedures and User-defined functions
53
7.6 Optimistic Concurrency Conflict Resolution
61
7.7 .NET Framework Function Support and Notes
66
7.8 Debugging Support
72

1. Introduction

Most programs written today manipulate data in one way or another and often this data is stored in a relational database. Yet there is a huge divide between modern programming languages and databases in how they represent and manipulate information. This impedance mismatch is visible in multiple ways. Most notably is that information in databases is accessed by programming languages through API’s that require queries to be specified as text strings. These queries are significant portions of the program logic yet they are opaque to the language, unable to benefit from compile-time verification and design-time features like IntelliSenseTM.

Of course the differences go far deeper than that. How information is represented, its data model, is quite different between the two. Modern programming languages define information in the form of objects. Relational databases use rows. Objects have unique identity as each instance is physically different from another. Rows are identified by primary key values. Objects have references that identify and link instances together. Rows are left intentionally distinct requiring related rows to be tied together loosely using foreign keys. Objects stand alone, existing as long as they are still referenced by another object. Rows exist as elements of tables, vanishing as soon as they are removed.

It is no wonder that applications expected to bridge this gap are difficult to build and maintain. It would certainly simplify the equation to get rid of one side or the other. Yet relational databases provide critical infrastructure for long-term storage and query processing, and modern programming languages are indispensable for agile development and rich computation.

Until now, it has been the job of the application developer to resolve this mismatch in each application separately. The best solutions so far have been elaborate database abstraction layers that ferry the information between the application’s domain specific object models and the tabular representation of the database, reshaping and reformatting the data each way. Yet by obscuring the true data source these solutions end up throwing away the most compelling feature of relational databases; the ability for the data to be queried.

DLinq, a component of the LINQ Project, provides a run-time infrastructure for managing relational data as objects without giving up the ability to query. It does this by translating language integrated queries into SQL for execution by the database and then translating the tabular results back into objects you define. Your application is then free to manipulate the objects while DLinq stays in the background tracking your changes automatically.

DLinq is designed to be non intrusive to your application. It is possible to migrate current ADO.NET solutions to DLinq in a piecemeal fashion, sharing the same connections and transactions, since DLinq is simply another component in the ADO.NET family.

DLinq applications are easy to get started. Objects linked to relational data can be defined just like normal objects, only decorated with attributes to identify how properties correspond to columns. Of course, its not even necessary to do this by hand. A design-time tool is provided to automate translating pre-existing relational database schemas into object definitions for you.

Together, the DLinq run-time infrastructure and design-time tools significantly reduce the work load for the database application developer. The following chapters provide an overview of how DLinq can be used to perform common database related tasks. It is assumed that the reader is familiar with Language Integrated Query and the Standard Query Operators.

DLinq is a language-agnostic. Any language built to provide Language Integrated Query can use it to enable access to information stored in relational databases. Although the samples in this document are shown in Visual Basic, DLinq can be used with the LINQ-enabled version of the C# compiler as well.
Code excerpts in this Overview were written using the LINQ Console Application template, which includes References and Imports appropriate for DLinq projects, including System.Query.Queryable, without which you will get in-memory execution of your queries.
To open a project using this template

1. On the Visual Studio File menu, click New Project.

2. Under Project types, expand Visual Basic, and then click LINQ.

3. In the Templates pane, click LINQ Console Application.

2. A Quick Tour

The first step in building a DLinq application is declaring the object classes you will use to represent your application data. Let’s walk through an example.

2.1 Creating Entity Classes

We will start with a simple class Customer and associate it with the customers table in the Northwind sample database. To do this, we need only apply a custom attribute to the top of the class declaration. DLinq defines the Table attribute for this purpose.

 <Table(Name:="Customers")> _

 Public Class Customer

 Public CustomerID As String

 …

 Public City As String

 …

 End Class

The Table attribute has a Name property that you can use to specify the exact name of the database table. If no Name property is supplied DLinq will assume the database table has the same name as the class. Only instances of classes declared as tables will be able to be stored in the database. Instances of these types of classes are known as entities, and the classes entity classes.
In addition to associating classes to tables you will need to denote each field or property you intend to associate with a database column. For this, DLinq defines the Column attribute.

 <Table(Name:="Customers")> _

 Public Class Customer

 <Column(Id:=True)> _

 Public CustomerID As String

 …

 <Column()> _

 Public City As String

 …

 End Class
The Column attribute has a variety of properties you can use to customize the exact mapping between your fields and the database’s columns. One property of note is the Id property. It tells DLinq that the database column is part of the table’s primary key.

As with the Table attribute, you only need to supply information in the Column attribute if it differs from what can be deduced from your field or property declaration. In this example, you need to tell DLinq that the CustomerID field is part of the table’s primary key yet you don’t have to specify the exact name or type.

Only fields and properties declared as columns will be persisted to or retrieved from the database. Others will be considered as transient parts of your application logic.

2.2 The DataContext

The DataContext is the main conduit by which you retrieve objects from the database and submit changes back. You use it in the same way that you would use an ADO.NET Connection. In fact, the DataContext is initialized with a connection or connection string you supply. The purpose of the DataContext is to translate your requests for objects into SQL queries made against the database and then assemble objects out of the results. The DataContext enables Language Integrated Query by implementing the same operator pattern as the Standard Query Operators such as Where and Select.

For example, you can use the DataContext to retrieve customer objects whose city is London as follows:

' DataContext takes a connection string
Dim db As DataContext = _
 New DataContext("c:\...\northwnd.mdf")
 'Get a typed table to run queries
 Dim Customers As Table(Of Customer) = db.GetTable(Of Customer)()
 'Query for customers from London

 Dim q = _

 From c In Customers _

 Where c.City = "London" _
 Select c
 For Each cust In q

 Console.WriteLine("id=" & Customer.CustomerID & _

 ", City=" & Customer.City)

 Next

Each database table is represented as a Table collection accessible via the GetTable() method using its entity class to identify it. It is recommended that you declare a strongly typed DataContext instead of relying on the basic DataContext class and the GetTable() method. A strongly-typed DataContext declares all Table collections as members of the context.
 Partial Public Class Northwind

 Inherits DataContext

 Public Customers As Table(Of Customer)

 Public Orders as Table(Of Order)

 Public Sub New(connection As String)

 MyBase.New(connection)

The query for customers from London can then be expressed more simply as:

 Dim db As New Northwind("c:\...\northwnd.mdf")

 Dim q = _

 From c In db.Customers _

 Where c.City = "London" _

 Select c
 For Each cust In q

 Console.WriteLine("id=" & Customer.CustomerID & _

 ", City=" & Customer.City)

 Next

We will continue to use the strongly-typed Northwind class for the remainder of the overview document.

2.3 Defining Relationships

Relationships in relational databases are typically modeled as foreign key values referring to primary keys in other tables. To navigate between them you must explicitly bring the two tables together using a relational join operation. Objects, on the other hand, refer to each other using property references or collections of references navigated using ‘dot’ notation. Obviously, dotting is simpler than joining, since you need not recall the explicit join condition each time you navigate.

For data relationships such as these that will always be the same, it becomes quite convenient to encode them as property references in your entity class. DLinq defines an Association attribute you can apply to a member used to represent a relationship. An association relationship is one like a foreign-key to primary-key relationship that is made by matching column values between tables.

 <Table(Name:="Customers")> _

 Public Class Customer

 <Column(Id:=True)> _

 Public CustomerID As String

 '...

 Private _Orders As EntitySet(Of Order)

 <Association(Storage:="_Orders", OtherKey:="CustomerID")> _

 Public Property Orders() As EntitySet(Of Order)

 Get

 Return Me._Orders

 End Get

 Set(ByVal value As EntitySet(Of Order))

 Me._Orders.Assign(value)

 End Set

 End Property

 End Class
The Customer class now has a property that declares the relationship between customers and their orders. The Orders property is of type EntitySet because the relationship is one-to-many. We use the OtherKey property in the Association attribute to describes how this association is done. It specifies the names of the properties in the related class to be compared with this one. There was also a ThisKey property we did not specify. Normally, we would use it to list the members on this side of the relationship. However, by omitting it we allow DLinq to infer them from the members that make up the primary key.
Notice how in the definition for the Order class, this is reversed.

 <Table(Name:="Orders")> _

 Public Class Order

 <Column(Id:=True)> _

 Public OrderID As Integer

 <Column()> _

 Public CustomerID As String

 Private _Customer As EntityRef(Of Customer)

 <Association(Storage:="_Customer", ThisKey:="CustomerID")> _

 Public Property Customer() As Customer

 Get

 Return Me._Customer.Entity

 End Get

 Set(ByVal value As Customer)

 Me._Customer.Entity = value

 End Set

 End Property

 End Class
The Order class uses the EntityRef type to describe the relationship back to the customer. The use of the EntityRef class is required to support deferred loading (discussed later). The Association attribute for the Customer property specifies the ThisKey property, since the non-inferable members are now on this side of the relationship.
Also take a look at the Storage property. It tells DLinq which private member is used to hold the value of the property. This allows DLinq to by-pass your public property accessors when it stores and retrieves their value. This is essential if you want DLinq to avoid any custom business logic written into your accessors. If the storage property is not specified, the public accessors will be used instead. You may use the Storage property with Column attributes as well.

Once you start introducing relationships in your entity classes, the amount of code you need to write grows as you introduce support for notifications and graph consistency. Fortunately, there is a tool (described later) that can be used to generate all the necessary definitions as partial classes, allowing you to use a mix of generated code and custom business logic.

For the rest of this document, we assume the tool has been used to generated a complete Northwind data context and all entity classes.
2.4 Querying Across Relationships

Now that you have relationships you can use them when you write queries simply by referring to the relationship properties defined in your class.

 Dim q = _

 From c In db.Customers, o in c.Orders _

 Where c.City = "London" _
 Select new c, o
The above query uses the Orders property to form the cross product between customers and orders, producing a new sequence of Customer and Order pairs.

It’s also possible to do the reverse.

 Dim q = _

 From o In db.Orders _

 Where o.Customer.City = "London" _
 Select new c
In this example, the orders are queried and the Customer relationship is used to access information on the associated Customer object.

2.5 Modifying and Saving Entities
Few applications are built with only query in mind. Data must be created and modified too. DLinq is designed to offer maximum flexibility in manipulating and persisting changes made to your objects. As soon as entity objects are available, by either retrieving them through a query or constructing them anew, you may manipulate them as normal objects in your application, changing their values or adding and removing them from collections as you see fit. DLinq tracks all your changes and is ready to transmit them back to the database as soon as you are done.

The example below uses the Customer and Order classes generated by a tool from the metadata of the entire Northwind sample database. The class definitions have not been shown for brevity.

 Dim db As New Northwind("c:…\northwnd.mdf")
 'Query for a specific customer
 Public Sub SpecificCustomer()

 Dim cust As Customers = _

 (_

 From c In db.Customers _

 Where c.CustomerID = "ALFKI" _

 Select c _

).First()

 End Sub
 'Change the name of the contact

 cust.ContactName = "New Contact"

 'Delete an existing Order

 Dim ord0 As Order = cust.Orders(0)
 'Removing it from the table also removes it from the Customer’s list

 db.Orders.Remove(ord0)

 'Create and add a new Order to Orders collection

 Dim ord as New Order (ord.OrderId := 12345)

 cust.Orders.Add(ord)
 'Ask the DataContext to save all the changes

 db.SubmitChanges()
On the call to SubmitChanges(), DLinq automatically generates and executes SQL commands in order to transmit the changes back to the database. It is also possible to override this behavior with custom logic or to direct changes to calls on specified database stored procedures.

3. Queries In Depth

DLinq provides an implementation of the standard query operators for objects associated with tables in a relational database. This chapter describes the DLinq-specific aspects of queries.

3.1 Query Execution

Whether you write a query as a high-level query expression or build one out of the individual operators, the query that you write is not an imperative execution. It is a description. For example, in the declaration below the local variable ‘q’ refers to the description of the query not the result of executing it.

 Dim q = _

 From c In db.Customers _

 Where c.City = "London" _
 Select c
 For Each c As Customer In q

 Console.WriteLine(c.CompanyName)

 Next

The actual type of ‘q’ in this instance is Query<Customer>. It’s not until the application requests to enumerate the contents of the query that it actually executes. In this example the foreach statement causes the execution to occur.

A Query object is similar to an ADO.NET command object. Having one in hand does not imply that a query was executed. A command object holds onto a string that describes a query. Likewise, a Query object holds onto a description of a query encoded as a data structure known as an Expression. A command object has an ExecuteReader() method that causes execution, returning results as a DataReader. A Query object has a GetEnumerator() method that causes the execution, returning results as an IEnumerator<Customer>.

Therefore, it follows that if a query is enumerated twice it will be executed twice.

 Dim q = _

 From c In db.Customers _

 Where c.City = "London" _
 Select c
 ' Execute first time

 For Each c As Customer In q

 Console.WriteLine(c.CompanyName)

 Next

 ' Execute second time

 For Each c As Customer In q

 Console.WriteLine(c.CompanyName)

 Next

This behavior is known as deferred execution. Just like with an ADO.NET command object it is possible to hold onto a query and re-execute it.

Of course, application writers often need to be very explicit about where and when a query is executed. It would be unexpected if an application were to accidentally execute a query multiple times simply because it needed to examine the results more than once. For example, you may want to bind the results of a query to something like a DataGrid. The control may enumerate the results each time it paints on the screen.

To avoid executing multiple times convert the results into any number of standard collection classes. It is easy to convert the results into a List or Array using the Standard Query Operators ToList() or ToArray().
 Dim q = _

 From c In db.Customers _

 Where c.City = "London" _
 Select c
 'Execute once using ToList() or ToArray()

 Dim list = q.ToList()

 For Each c As Customer In list

 Console.WriteLine(c.CompanyName)

 Next

 For Each c As Customer In list

 Console.WriteLine(c.CompanyName)

 Next
One benefit of deferred execution is that queries may be piecewise constructed with execution only occurring when the construction is complete. You can start out composing a portion of a query, assigning it to a local variable and then sometime later continue applying more operators to it.

 Dim q = _

 From c In db.Customers _

 Where c.City = "London" _
 Select c
 If orderByLocation Then

 q = _

 From c In q _

 Select c _

 Order By c.Country, c.City

 ElseIf orderByName Then

 q = _

 From c In q _

 Select c _

 Order By c.ContactName

 End If
 For Each c As Customer In q

 Console.WriteLine(c.CompanyName)

 Next
In this example ‘q’ starts out as a query for all customers in London. Later on it changes into an ordered query depending on application state. By deferring execution the query can be constructed to suit the exact needs of the application without requiring risky string manipulation.

3.2 Object Identity

Objects in the runtime have unique identity. If two variables refer to the same object they are actually referring to the same object instance. Changes made via a path through one variable are immediately visible through the other since they in fact refer the same instance. Rows in a relational database table do not have unique identity. They do have a primary key and that primary key may be unique, meaning no two rows may share the same key. Yet this only constrains the contents of the database table. So as long as we only ever interact with the data through remote commands it amounts to about the same thing.

However, this is rarely the case. Most often data is brought out of the database and into a different tier where an application manipulates it. Clearly, this is the model that DLinq is designed to support. When the data is brought out of the database as rows, there is no expectation that two rows representing the same data actually correspond to the same row instances. If you query for a specific customer twice, you get two rows of data, each containing the same information.

Yet with objects you expect something quite different. You expect that if you ask the DataContext for the same information again it will in fact give you back the same object instance. You expect this because objects have special meaning for your application and you expect them to behave like normal objects. You designed them as hierarchies or graphs and you certainly expect to retrieve them as such, without hordes of replicated instances merely because you asked for the same thing twice.

Because of this the DataContext manages object identity. Whenever an object is retrieved from the database it is logged in an identity table by its primary key. Whenever that same object is retrieved again the original object instance is handed back to the application. In this way the DataContext translates the database’s concept of identity (keys) into the language’s concept (instances). The application only ever sees the object in the state that it was first retrieved. The new data, if different, is thrown away.

You might be puzzled by this, since why would any application throw data away? As it turns out this is how DLinq manages integrity of the local objects and is able to support optimistic updates. Since the only changes that occur after the object is initially created are those made by the application, the intent of the application is clear. If changes by an outside party have occurred in the interim they will be identified at the time SubmitChanges() is called. More of this is explained in the section of chapter 4, Simultaneous Changes.
Of course, if the object requested by the query is easily identifiable as one already retrieved no query is executed at all. The identity table acts a cache of all previously retrieved objects.

3.3 Relationships

As we saw in the quick tour, references to other objects or collections of other objects in your class definitions directly correspond to foreign-key relationships in the database. You can use these relationships when you query by simply using dot notation to access the relationship properties, navigating from one object to another. These access operations translate to more complicated joins or correlated sub-queries in the equivalent SQL, allowing you to walk through your object graph during a query. For example, the following query navigates from orders to customers as a way to restrict the results to only those orders for customers located in London.

 Dim q = _

 From o In db.Orders _

 Where o.Customer.City = "London" _
 Select o
If relationship properties did not exist you would have to write them out manually as joins just as you would do in a SQL query.

 Dim customers = db.Customers

 Dim orders = db.Orders

 Dim q = _

 From c In customers, o In orders _

 Where c.CustomerID = o.CustomerID _

 AndAlso c.City = "London" _
 Select o
The relationship property allows you to define this particular relationship once enabling the use of the more convenient dot syntax. However, this is not the reason why relationship properties exist. They exist because we tend to define our domain specific object models as hierarchies or graphs. The objects we choose to program against have references to other objects. It’s only a happy coincidence that since object-to-object relationships correspond to foreign-key style relationships in databases that property access leads to a convenient way to write joins.

So in that respect, the existence of relationship properties is more important on the results side of a query than as part of the query itself. Once you have your hands on a particular customer, its class definition tells you that customers have orders. So when you look into the Orders property of a particular customer you expect to see the collection populated with all the customer’s orders, since that is in fact the contract you declared by defining the classes this way. You expect to see the orders there even if you did not particularly ask for orders up front. You expect your object model to maintain an illusion that it is an in memory extension of the database, with related objects immediately available.

DLinq implements a technique called deferred loading in order to help maintain this illusion. When you query for an object you actually only retrieve the objects you asked for. The related objects are not automatically fetched at the same time. However, the fact that the related objects are not already loaded is not observable since as soon as you attempt to access them a request goes out to retrieve them.

 Dim q = _

 From o In db.Orders _

 Where o.ShipVia = 3 _

 Select o
 For Each o As Order In q

 If o.Freight > 200 Then

 SendCustomerNotification(o.Customer)

 End If

 ProcessOrder(o)

 Next

For example, you may want to query for a particular set of orders and then only occasionally send an email notification to particular customers. You would not necessary need to retrieve all customer data up front with every order. Deferred Loading allows you to defer the cost of retrieving extra information until you absolutely have to.

Of course, the opposite might also be true. You might have an application that needs to look at customer and order data at the same time. You know you need both sets of data. You know your application is going to drill down through each customer’s orders as soon as you get them. It would be unfortunate to fire off individual queries for orders for every customer. What you really want to happen is to have the order data retrieved together with the customers.

 Dim q = _

 From c In db.Customers _

 Where c.City = "London" _
 Select c
 For Each c As Customer In q

 For Each o as Order in c.Orders

 ProcessCustomerOrder(o)

 Next

 Next
3.4 Projections
So far, we have only looked at queries for retrieving entities, objects directly associated with database tables. We need not constrain ourselves to just this. The beauty of a query language is that you can retrieve information in any form you want. You will not be able to take advantage of automatic change tracking or identity management when you do so. However you can get just the data you want.

For example, you may simply need to know the company names of all customers in London. If this is the case there is no particular reason to retrieve entire customer objects merely to pick out names. You can project out the names as part of the query.

 Dim q = _

 From c In db.Customers _

 Where c.City = "London" _
 Select c.CompanyName
In this case, ‘q’ becomes a query that retrieves a sequence of strings.

If you want to get back more than just a single name, but not enough to justify fetching the entire customer object you can specify any subset you want by constructing the results as part of your query.

 Dim q = _

 From c In db.Customers _

 Where c.City = "London" _
 Select New {c.CompanyName, c.Phone}
This example uses an anonymous object initializer to create a structure that holds both the company name and phone number. You may not know what to call the type, but with implicitly typed local variable declaration in the language you do not necessarily need to.

 Dim q = _

 From c In db.Customers _

 Where c.City = "London" _
 Select New {c.CompanyName, c.Phone}
 For Each c In q

 Console.WriteLine(c.CompanyName & ", " & c.Phone)

 Next

If you are consuming the data immediately, anonymous types make a good alternative to explicitly defining classes to hold your query results.

You can also form cross products of entire objects, though you might rarely have a reason to do so.

 Dim q = _

 From c In db.Customers, o In c.Orders _

 Where c.City = "London" _
 Select New {c, o}
This query constructs a sequence of pairs of customer and order objects.

It’s also possible to make projections at any stage of the query. You can project data into newly constructed objects and then refer to those objects’ members in subsequent query operations.

 Dim q = _

 From x In _

 (From c In db.Customers _

 Where c.City = "London" _
 Select New {Name := c.ContactName, c.Phone} _

) _

 Select x _

 Order By x.Name
Be wary of using parameterized constructors at this stage, though. It is technically valid to do so, yet it is impossible for DLinq to track how constructor usage affects member state without understanding the actual code inside the constructor.

 Dim q = _

 From x In _

 (From c In db.Customers _

 Where c.City = "London" _
 Select New MyType {c.ContactName, c.Phone} _

) _

 Select x _

 Order By x.Name

Because DLinq attempts to translate the query into pure relational SQL locally defined object types are not available on the server to actually construct. All object construction is actually postponed until after the data is retrieved back from the database. In place of actual constructors, the generated SQL uses normal SQL column projection. Since it is not possible for the query translator to understand what is happening during a constructor call it is unable to establish a meaning for the Name field of MyType.
Instead, the best practice is to always use object initializers to encode projections.

 Dim q = _

 From x In _

 (Select New MyType {Name := c.ContactName, HomePhone := c.Phone} _

 From c In db.Customers _

 Where c.City = "London" _

) _

 Select x _

 Order By x.Name
The only safe place to use a parameterized constructor is in the final projection of a query.

 Dim e = _

 New XElement _

 ("results", _

 From c In db.Customers _

 Where c.City = "London"

 Select New XElement("customer", New XElement("name", c.ContactName), _

 New XElement("phone", c.Phone)) _

)

 Console.Write(e)
You can even use elaborate nesting of object constructors if you desire, like this example that constructs XML directly out of the result of a query. It works as long as it’s the last projection of the query.

Still, even if constructor calls are understood, calls to local methods may not be. If your final projection requires invocation of local methods it is unlikely that DLinq will be able to oblige. Method calls that do not have a known translation into SQL cannot be used as part of the query. One exception to this rule is method calls that have no arguments dependent on query variables. These are not considered part of the translated query and instead are treated as parameters.

Still elaborate projections (transformations) may require local procedural logic to implement. For you to use your own local methods in a final projections you will need to project twice. The first projection extracts all the data values you’ll need to reference and the second projection performs the transformation. In between these two projections is a call to the ToSequence() operator that shifts processing at that point from a DLinq query into a locally executed one.

 Dim q = _

 From c In db.Customers _

 Where c.City = "London" _
 Select New {c.ContactName, c.Phone}
 Dim q2 = _

 From c In Query.ToSequence() _

 Select MyType := New {Name := DoNameProcessing(c.ContactName), _
 Phone := DoPhoneProcessing(c.Phone)}
Note that the ToSequence() operator, unlike ToList() and ToArray(), does not cause execution of the query. It is still deferred. The ToSequence() operator merely changes the static typing of the query, turning a Query<T> into an IEnumerable<T>, tricking the compiler into treating the rest of the query as locally executed.

3.5 SQL Translation

DLinq does not actually execute Language Integrated Queries; the relational database does. DLinq translates the queries you wrote into equivalent SQL queries and sends them to the server for processing. Because execution is deferred DLinq is able to examine your entire query even if assembled from multiple parts.

Since the relational database server is not actually executing IL, aside from the CLR integration in SQL Server 2005, the queries are not transmitted to the server as IL. They are transmitted as parameterized SQL queries in text form.

Of course, SQL, even T-SQL with CLR integration, is incapable of executing the variety of methods that are locally available to your program. Therefore the queries you write must be translated into equivalent operations and functions that are available inside the SQL environment.

Most methods and operators on .Net Framework built-in types have direct translations into SQL. Some can be produced out of the functions that are available. The ones that cannot be translated are disallowed, generating runtime exceptions if you try to use them. Section 7.9 details the framework methods that are implemented to translate into SQL.
4. The Entity Life Cycle

DLinq is more than just an implementation of the Standard Query Operators for relational databases. In addition to translating queries it is a service that manages your objects throughout their lifetime, aiding you in maintaining the integrity of your data and automating the process of translating your modifications back into the store.

In a typical scenario objects are retrieved through the use of one or more queries and then manipulated in some way or another until the application is ready to send the changes back to the server. This process may repeat a number of times until the application no longer has use for this information. At that point the objects are reclaimed by the runtime just like normal objects. The data however remains in the database. Even after being erased from their runtime existence objects representing the same data can still be retrieved. In this sense the object’s true lifetime exists beyond any single runtime manifestation.

The focus of this chapter is the Entity Life Cycle where a cycle refers to the time span of a single manifestation of an entity object within a particular runtime context. The cycle starts when the DataContext becomes aware of an new instance and ends when the object or DataContext is no longer needed.

4.1 Tracking Changes

After objects are retrieved from the database you are free to manipulate them as you like. They are your objects; use them as you will. As you do this DLinq tracks changes so that it can persist them into the database when SubmitChanges() is called.

DLinq starts tracking your objects the moment they are retrieved from the database, before you ever lay your hands on them. Indeed the identity management service discussed earlier has already kicked in as well. Change tracking costs very little in additional overhead until you actually start making changes.

 Dim cust = _

 (From c In db.Customers _

 Where c.CustomerID = "ALFKI" _
 Select c _

).First()

 cust.CompanyName = "Dr. Frogg's Croakers"
As soon as the CompanyName is assigned in the example above, DLinq becomes aware of the change and is able to record it. The original values of all data members is retained by the change tracking service. It is possible to undo all changes using the RejectChanges() method on the DataContext.

 db.RejectChanges()

 'Show the original name

 Console.WriteLine(cust.CompanyName)
The change tracking service also records all manipulations of relationship properties. You use relationship properties to establish the links between your objects, even though they may be linked by key values in the database. There is no need to directly modify the object members associated with the key columns. DLinq automatically synchronizes them for you before the changes are submitted.

 Dim cust1 As Customer = _

 (From c In db.Customers _

 Where c.CustomerID = custID1 _

 Select c _

).First()

 For Each o in db.Orders Where CustomerID = custID2

 o.Customer = cust1

 Next

You can move orders from one customer to another by simply making an assignment to their Customer property. Since the relationship exists between the customer and the order, you can change the relationship by modifying either side. You could have just as easily removed them from cust2’s Orders collection and added them to cust1’s collection, as shown below.

 Sub Change()

 Dim cust1 As Customer = _

 (db.Customers where CustomerID = custID1).First()
 Dim cust2 As Customer = _

 (db.Customers where CustomerID = custID2).First()
 ' Pick some order

 Dim o As Order = cust2.Orders[0]

 ' Remove from one, add to the other

 cust2.Orders.Remove(o)

 cust1.Orders.Add(o)

 ' Displays 'true'

 Console.WriteLine(o.Customer = cust1)

 End Sub
Of course, if you assign a relationship the value null, you are in fact getting rid of the relationship all together. Assigning a Customer property of an order to null actually removes the order from the customer’s list.

 Sub Remove()

 Dim cust1 As Customer = _

 (db.Customers where CustomerID = custID1).First()

 ' Pick some order

 Dim o As Order = cust.Orders[0]

 ' Assign null value

 o.Customer = Nothing

 ' Displays 'false'

 Console.WriteLine(cust.Orders.Contains(o))

 End Sub

Automatic updating of both sides of a relationship is essential for maintaining consistency of your object graph. Unlike normal objects, relationships between data are often bi-directional. DLinq allow you to use properties to represent relationships, however, it does not offer a service to automatically keep these bi-directional properties in sync. This is a level of service that must be baked directly into your class definitions. Entity classes generated using the code generation tool have this capability. In the next chapter we will show you how to do this to your own hand written classes.

It is important to note, however, that removing a relationship does not imply that an object has been deleted from the database. Remember, the lifetime of the underlying data persists in the database until the row has been deleted from the table. The only way to actually delete an object is to remove it from its Table collection.

 Sub Detach()

 Dim cust1 As Customer = _

 (db.Customers where CustomerID = custID1).First()

 ' Pick some order

 Dim o As Order = cust.Orders[0]

 ' Remove it directly from the table (I want it gone!)

 db.Orders.Remove(o)

 ' Displays 'false' ... gone from customer's Orders

 Console.WriteLine(cust.Orders.Contains(o))

 'Displays 'true' .. order is detached from its customer

 Console.WriteLine(o.Customer = Nothing)

 End Sub
Like with all other changes the order has not actually been deleted yet. It just looks that way to us since its been removed and detached from the rest of our objects. When the order object was removed from the Orders table it was marked for deletion by the change tracking service. The actually deletion from the database will occur when the changes are submitted on a call to SubmitChanges(). Note that the object itself is never deleted. The runtime manages the lifetime of object instances, so it sticks around as long as you are still holding a reference to it. However, after an object has been removed from its Table and changes submitted it is no longer tracked by the change tracking service.

The only other time an entity is left untracked is when it exists before the DataContext is aware of it. This happens whenever you create new objects in your code. You are free to use instances of entity classes in your application without ever retrieving them from a database. Change tacking and identity management only apply to those objects representing actually rows in database tables. Therefore neither service is enabled for newly created instances until you make the DataContext aware of them.

This can occur in one of two ways. You can call the Add() method on the related Table collection manually.

 Sub AddCustomer()

 Dim cust = New Customer {CustomerID := "ABCDE", _

 ContactName := "Frond Smooty", _

 CompanyTitle := "Eggbert's Eduware", _

 phone := "888-925-6000"}

 ' Add new customer to Customers table

 db.Customers.Add(cust)

 End Sub
Or you can attach a new instance to an object that the DataContext is already aware of.
 ' Add an order to a customer's Orders

 Sub AddOrder()

 cust.Orders.Add(New Order {OrderDate := DateTime.Now})

 End Sub

The DataContext will discover your new object instances even if they are attached to other new instances.

 Sub AddOrderDetails()

 Cust.Orders.Add(_

 New Order { _

 OrderDate := DateTime.Now, _

 OrderDetails := { _

 New OrderDetail { _

 Quantity := 1, _

 UnitPrice := 1.25M, _

 Product := someProduct} _

 } _

 } _

 } _

 End Sub
Basically, the DataContext will recognize any entity in your object graph that is not currently tracked as a new instance, whether or not you called the Add() method.
4.2 Submitting Changes

Regardless of how many changes you make to your objects, those changes were only made to in memory replicas. Nothing yet has happened to the actual data in the database. Transmission of this information to the server will not happen until you explicitly request it by calling SubmitChanges() on the DataContext.

 Dim db As New Northwind("c:\northwind\northwnd.mdf")

 ' Make changes here

 db.SubmitChanges()

When you do call SubmitChanges() the DataContext will attempt to translate all your changes into equivalent SQL commands, inserting, updating or deleting rows in corresponding tables. These actions can be overridden by your own custom logic if you desire, however the order of submission is orchestrated by a service of the DataContext known as the change processor.

The first thing that happens when you call SubmitChanges() is the set of known objects are examined to determine if new instances have been attached to them. These new instances are added to set of tracked objects. Next, all objects with pending changes are ordered into a sequence of objects based on dependencies between them. Those objects whose changes depend on other objects are sequenced after the those they depend on. Foreign key constraints and uniqueness constraints in the database play a big part in determining the correct ordering of changes. Then just before any actual changes are transmitted, a transaction is started to encapsulate the series of individual commands unless one is already in scope. Finally, one by one the changes to the objects are translated into SQL commands and sent to the server.

At this point, any errors detected by the database will cause the submission process to abort and an exception will be raised. All changes to the database will be rolled back as if none of the submissions ever took place. The DataContext will still have a full recording of all changes so it is possible to attempt to rectify the problem and resubmit them by calling SubmitChanges() again.

 Dim db As New Northwind("c:\northwind\northwnd.mdf")

 ' Make changes here

 Sub MakeChanges()

 Try

 db.SubmitChanges()

 Catch e As Exception

 'make some adjustments
 '...

 'try again

 db.SubmitChanges()

 End Try

 End Sub

When the transaction around the submission completes successfully the DataContext will accept the changes to the objects by simply forgetting the change tracking information. You can do this manually anytime you want by calling the AcceptChanges() method. However, failure of the transaction to complete successfully will not lead to a call to the RejectChanges() method. A rollback of the SQL commands does not imply a rollback of the local change tracking state. As shown above, it may be necessary to resubmit the changes.

4.3 Simultaneous Changes

There are a variety of reasons why a call to SubmitChanges() may fail. You may have created an object with an invalid primary key, one that’s already in use, or with a value that violates some check constraint of the database. These kinds of checks are difficult to bake into business logic since they often require absolute knowledge of the entire database state. However, the most likely reason for failure is simply that someone else made changes to the objects before you.

Certainly, this would be impossible if you surrounded your use of the objects with a fully serialized transaction. However, this style of programming (pessimistic concurrency) is rarely used since it is expensive and true clashes seldom occur. The most popular form of managing simultaneous changes is to employ a form of optimistic concurrency. In this model, no locks against the database rows are taken at all, since usually a transaction is not brought into scope until the moment when SubmitChanges() is called. That means any number of changes to the database could have occurred between the time you first retrieved your objects and the time you submitted your changes.

So unless you want to go with a policy that the last update wins, wiping over whatever else occurred before you, you probably want to be alerted to the fact that the underlying data was changed by someone else.

The DataContext has built in support for optimistic concurrency. Individual updates only succeed if the database’s current state matches the state you understood the data to be in when you first retrieved your objects. This happens on a per object basis, only alerting you to concurrency violations if they happen to objects you have made changes to.

You can control the degree to which the DataContext uses optimistic concurrency when you define your entity classes. Each Column attribute has a property called UpdateCheck that can be assigned one of three values; Always, Never, and WhenChanged. If not set the default for a Column attribute is Always, meaning the data values represented by that member are always checked for concurrency violation. That is, unless there is an obvious tie-breaker like a version stamp. A Column attribute has an IsVersion property that allows you to specify whether the data value constitutes a version stamp maintained by the database. If a version exists, then the version is used instead to determine all concurrency violations.

When an optimistic concurrency violation does occur an exception will be thrown just as if it were any other error. The transaction surrounding the submission will abort yet the DataContext will remain the same allowing you the opportunity to rectify the problem and try again.

 Sub MakeChanges2()

 Dim retries, maxRetries As Integer

 While retries < maxRetries

 Dim db As New Northwind("c:\northwind\northwnd.mdf")

 ' fetch objects and make changes here

 Try

 db.SubmitChanges()

 Exit While

 Catch e As OptimisticConcurrencyException

 retries += 1

 End Try

 End While

 End Sub
If you are making changes on a middle-tier or server, the easiest thing you can do to rectify an optimistic concurrency violation is to simply start over and try again, recreating the context and reapplying the changes.

4.4 Transactions

A transaction is a service provided by a databases or any other resource manager that can be used to guarantee a series of individual actions occur atomically, meaning either they all succeed or they all don’t, and if they don’t then they are also all automatically undone before anything else is allowed to happen. If no transaction is already in scope, the DataContext will automatically start a database transaction to guard updates when you call SubmitChanges().

You may choose to control the type of transaction used, its isolation level or what it actually encompasses by initiating it yourself. The transaction isolation that the DataContext will use is known as ReadCommitted.

 Sub Transaction1()

 Dim prod As Product = _

 (db.Product Where ProductID = 15).First()
 If prod.UnitsInStock > 0 Then

 prod.UnitsInStock -= 1

 End If

 Using ts As New TransactionScope()

 db.SubmitChanges()

 ts.Complete()

 End Using

 End Sub

The example above initiates a fully serialized transaction by creating a new transaction scope object. All database commands executed within the scope of the transaction will be guarded by the transaction.

 Sub Transaction2()

 Dim prod As Product = _

 (db.Product Where ProductID = 15).First()

 If prod.UnitsInStock > 0 Then

 prod.UnitsInStock -= 1

 End If

 Using ts As New TransactionScope()

 db.ExecuteCommand("exec sp_BeforeSubmit")

 db.SubmitChanges()

 ts.Complete()

 End Using

 End Sub
This modified version of the same example uses the ExecuteCommand() method on the DataContext to execute a stored procedure in the database right before the changes are submitted. Regardless of what the stored procedure does to the database, we can be certain its actions are part of the same transaction.

Likewise, you can wrap a transaction around both the query and the changes to force the database to engage pessimistic locks around the data your are manipulating.
 Sub Transaction3()

 Using ts As New TransactionScope()

 Dim prod As Product = _

 (db.Product Where ProductID = 15).First()

 If prod.UnitsInStock > 0 Then

 prod.UnitsInStock -= 1

 End If

 db.SubmitChanges()

 ts.Complete()

 End Using

 End Sub

If the transaction completes successfully the DataContext automatically accepts all changes to the objects it is tracking. It does not, however, rollback the changes to your objects if the transaction fails. This allows you the maximum flexibility in dealing with problems during change submission.

It is also possible to use a local SQL transaction instead of the new TransactionScope. DLinq offers this capability to help you integrate DLinq features into pre-existing ADO.NET applications. However, if you go this route you will need to be responsible for much more.

 Sub Transaction4()

 Dim prod As Product = _

 (db.Product Where ProductID = 15).First()

 If prod.UnitsInStock > 0 Then

 prod.UnitsInStock -= 1

 End If

 db.LocalTransaction = db.Connection.BeginTransaction()

 Try

 db.SubmitChanges()

 db.LocalTransaction.Commit()

 ts.Complete()

 Catch

 db.LocalTransaction.Abort()

 Throw

 Finally

 db.LocalTransaction = Nothing

 End Try

 End Sub
As you can see, using a manually controlled database transaction is a bit more involved. Not only do you have to start it yourself, you have to tell the DataContext explicitly to use it by assigning it to the LocalTransaction property. Then you must use a try-catch block to encase you submit logic, remembering to explicitly tell the transaction to commit and to explicit tell the DataContext to accept changes, or to abort the transactions if there is failure at any point. Also, don’t forget to set the LocalTransaction property back to null when you are done.

4.5 Stored Procedures

When SubmitChanges() is called DLinq generates and executes SQL commands to insert, update and delete rows in the database. These actions can be overridden by application developers and in their place custom code can be used to perform the desired actions. In this way, alternative facilities like database stored procedures can be invoked automatically by the change processor.

Consider a stored procedure for updating the units in stock for the Products table in the Northwind sample database. The SQL declaration of the procedure is as follows.

create proc UpdateProductStock

@id

int,

@originalUnits
int,

@decrement

int
as

...
You can use the stored procedure instead of the normal auto-generated update command by defining a method on your strongly-typed DataContext. Even if the DataContext class is being auto-generated by the DLinq code generation tool, you can still specify these methods in a partial class of your own.

 Public Class Northwind

 Inherits DataContext

 <UpdateMethod()> _

 Public Sub OnProductUpdate(original As Product, _

 current As Product)

 Dim rowCount As Integer

 If original.UnitsInStock <> current.UnitsInStock Then

 Dim rowCount As Integer = Me.ExecuteCommand(_

 "exec UpdateProductsStock " & _

 "id=" & original.ProductID & ", originalUnits=" & _

 original.UnitsInStock & ", decrement=" & _

 (original.UnitsInStock - current.UnitsInStock) _

)

 End If

 If rowCount < 1 Then

 Throw New OptimisticConcurrencyException()

 End If

 End Sub

 End Class
The attribute UpdateMethod tells the DataContext to uses this method in place of a generated update statement. The original and current parameters are used by DLinq for passing in the original and current copies of the object of the specified type. The two parameters are available for optimistic concurrency conflict detection. Note that is you are override the default update logic, conflict detection is your responsibility.

The stored procedure UpdateProductStock is invoked using the ExecuteCommand() method of the DataContext. It returns the number of rows affected and has the following signature:

 Public Function ExecuteCommand(query As String, _

 ParamArray parameters() As Object) As Integer
The object array is used for passing parameters required for executing the command.

Similar to the update method, insert and delete methods may be specified using the InsertMethod and DeleteMethod attributes. Insert and delete methods take only one parameter of the entity type to be updated. For example methods to insert and delete a Product instance can be specified as follows:

 <InsertMethod()> _

 Public Sub OnProductInsert(prod As Product)

 '...

 End Sub

 <DeleteMethod()> _

 Public Sub OnProductDelete(prod As Product)

 '...

 End Sub
The method names can be arbitrary but the attributes are required and the signatures must follow the specified patterns.
5. Entity Classes In Depth

5.1 Using Attributes

An Entity Class is just like any normal object class that you might define as part of your application, except that is annotated with special information that associates it with a particular database table. These annotations are made as custom attributes on your class declaration. The attributes are only meaningful when you use the class in conjunction with DLinq. They are similar in nature to the XML serialization attributes in the .NET framework. These ‘data’ attributes provide DLinq with enough information to translate queries for your objects into SQL queries against the database and changes to your objects into SQL insert, update and delete commands.
5.1.1 Database Attribute

The Database attribute is used to specify the default name of database if it is not supplied by the connection. Database attributes can be applied to strongly-typed DataContext declarations. Use of this attribute is optional.
	Property
	Type
	Description

	Name
	String
	Specifies the name of the database. The information is only used if the connection itself does not specify the database name. If these Database attribute does not exist on context declaration and one is not specified by the connection, then database is assumed to have the same name as the context class.

 <Database(Name:="Database#5")> _

 Public Class Database5

 Inherits DataContext

 ...

 End Class
5.1.2 Table Attribute

The Table attribute is used to designate a class as an entity class associated with a database table. Classes with the Table attribute will treated specially by DLinq. They are
	Property
	Type
	Description

	Name
	String
	Specifies the name of the table. If this information is not specified it is assumed that the table has the same name as the entity class.

 <Table(Name:="Customers")> _

 Public Class Customer

 '...

 End Class
5.1.3 Column Attribute

The Column attribute is used to designate a member of a entity class that represents a column in a database table. It can be applied to any field or property, public, private or internal. Only members identified as columns are persisted when DLinq saves changes to the database.
	Property
	Type
	Description

	Name
	String
	The name of the column in the table or view. If not specified the column is assumed to have the same name as the class member

	Storage
	String
	The name of the underlying storage. If specified it tells DLinq how to bypass the public property accessor for the data member and interact with the raw value itself. If not specified DLinq gets and sets the value using the public accessor.

	DBType
	String
	The type of database column specified using database types and modifiers. This will be the exact text used to define the column in a T-SQL table declaration command. If not specified the database column type is inferred from the member type. The specific database type is only necessary if CreateDatabase() method is expected to be used to create an instance of the database.

	Id
	Bool
	If set to true the class member represents a column that is part of the table’s primary key. If more than one member of the class is designated as the Id, the primary key is said to be a composite of the associated columns. At least one member must have this attribute.

	AutoGen
	Boolean
	Identifies that the member’s column value is auto-generated by the database. Primary keys that are designated AutoGen=true should also have a DbType with the IDENTITY modifier. AutoGen members are synchronized immediately after the data row is inserted and are available after SubmitChanges() completes.

	IsVersion
	Boolean
	Identifies the member’s column type as a database timestamp or a version number. Version numbers are incremented and timestamp columns are updated every time the associated row is updated. Members with IsVersion=true are synchronized immediately after the data row is updated. The new values are visible after SubmitChanges() completes.

	UpdateCheck
	UpdateCheck
	Determines how DLinq implements optimistic concurrency conflict detection. If no member is designate as IsVersion=true detection is done by comparing original member values with current database state. You can control which members DLinq uses during conflict detection by giving each member an UpdateCheck enum value.
Always - always use this column for conflict detection
Never - never use this column for conflict detection
WhenChanged – only use this column when the member has been changed by the application

	IsDiscriminator
	Boolean
	Determines if the class member holds the discriminator value for an inheritance hierarchy.

A typical entity class will use Column attributes on public properties and store actual values in private fields.

 Private _city As String

 <Column(Storage:="_city", DbType:="NVarChar(15)")> _

 Public Property City() As String

 Get '...

 Set '...

 End Property
The DbType is only specified so that the CreateDatabase() method can construct the table with the most precise type. Otherwise, the knowledge that the underlying column is limited to 15 characters is unused.

Members representing the primary key of a database type will often be associated with auto generated values.

 Private _orderId As String

 <Column(Storage:="_orderId", Id:=True, _

 AutoGen:=True, DbType:="int NOT NULL IDENTITY")> _

 Public Property OrderId() As String

 Get '...

 Set '...

 End Property
If you do specify the DbType make sure to include the IDENTITY modifier. DLinq will not augment a custom specified DbType. However, if the DbType is left unspecified DLinq will infer that the IDENTITY modifier is needed when creating the Database via the CreateDatabase() method.

Likewise, if the IsVersion property is true, the DbType must specify the correct modifiers to designate a version number or timestamp column. If no DbType is specified DLinq will infer the correct modifiers.

You can control access to a member associated with an auto-generated column, version stamp or any column you might want to hide by designating the access level of the member, or even limiting the accessor itself.

 Private _customerId As String

 <Column(Storage:="_customerId", DbType:="NCHAR(5) ")> _

 Public ReadOnly Property CustomerId() As String

 Get '...

 End Property
The Order’s CustomerId property can be made read-only by not defining a set accessor. DLinq can still get and set the underlying value through the storage member.

You can also make a member completely inaccessible to the rest of the application by placing a Column attribute on a private member. This allow the entity class to contain information relevant to the classes business logic without exposing it in general. Even though private members are part of the translated data, since they are private you cannot refer to them in a language integrated query.

By default, all members are used to perform optimistic concurrency conflict detection. You can control whether a particular member is used by specifying its UpdateCheck value.

 <Column(Storage:="_city", UpdateCheck:=UpdateCheck.WhenChanged)> _

 Public Property City() As String

 Get '...

 Set '...

 End Property
The following table shows the permissible mappings between database types and the corresponding CLR type. This matrix is currently not enforced but is strongly recommended. Use this table as a guide when determine which CLR type to use to represent a particular database column.

	Database Type
	.NET CLR Type
	Comments

	bit, tinyint, smallint, int, bigint
	Byte, Int16, Uint16, Int32, Uint32, Int64, Uint64
	Lossy conversions possible. Values may not roundtrip

	Bit
	Boolean
	

	decimal, numeric, smallmoney, money
	Decimal
	Scale difference may result in lossy conversion, may not roundtrip

	real, float
	Single, double
	Precision differences

	char, varchar, text, nchar, nvarchar, ntext
	String
	Locale differences possible

	datetime, smalldatetime
	DateTime
	Different precision may cause lossy conversion and roundtrip problems

	Uniqueidentifier
	Guid
	Different collation rules. Sorting may not work as expected.

	Timestamp
	Byte[], Binary
	Byte array is treated as a scalar type. User is responsible for allocating adequate storage when constructor is called. It is considered immutable and is not tracked for changes.

	binary, varbinary
	Byte[], Binary
	

The type Binary is in the System.Data.DLinq namespace. It is essentially an immutable byte array.
5.1.4 Association Attribute
The Association attribute is used to designate a property that represents a database association like a foreign-key to primary-key relationship.
	Property
	Type
	Description

	Name
	string
	The name of the association. This is often the same as the database’s foreign-key constraint name. It is used when the CreateDatabase() is used to create an instance of the database in order to generate the relevant constraint. It is also used to help distinguish between multiple relationships in a single entity class referring to the same target entity class. In this case, relationship properties on sides of the relationship (if both are defined) must have the same name.

	Storage
	string
	The name of the underlying storage member. If specified it tells DLinq how to bypass the public property accessor for the data member and interact with the raw value itself. If not specified DLinq gets and sets the value using the public accessor. It is recommended that all association member be properties with separate storage members identified.

	ThisKey
	string
	A comma-separated list of names of one or more members of this entity class that represent the key values on this side of the association. If not specified, the members are assumed to be the members that make up the primary key.

	OtherKey
	string
	A comma separated list of names of one or more members of the target entity class that represent the key values on the other side of the association. If not specified, the members are assumed to be the members that make up the other entity class’s primary key.

	Unique
	Boolean
	True if there a uniqueness constraint on the foreign key, indicating a true 1:1 relationship. This property is seldom used as 1:1 relationships are near impossible to manage within the database. Mostly entity models are defined using 1:n relationships even when they are treated as 1:1 by application developers.

	IsParent
	Boolean
	True if the target ‘other’ type of the association is the parent of the source type. With foreign-key to primary-key relationships, the side holding the foreign-key is the child and the side holding the primary key is the parent.

Association properties either represent a single reference to another entity class instance or they represent a collection of references. Singleton references must be encoded in the entity class using the EntityRef<T> value type to store the actual reference. The EntityRef type is how DLinq enables deferred loading of references.

 Class Order

 '...

 Private _Customer As EntityRef(Of Customer)

 <Association(Name:="FK_Orders_Customers", _

 Storage:="Customer", ThisKey:="CustomerID")> _

 Public Property Customer() As Customer

 Get

 Return Me._Customer.Entity

 End Get

 Set(ByVal value As Customer)

 Me._Customer.Entity = value

 End Set

 End Property

 End Class
The public property is typed as Customer, not EntityRef<Customer>. It is important not to expose the EntityRef type as part of the public API, as references to this type in a query will not be translated to SQL.

Likewise, an association property representing a collection must use the EntitySet<T> collection type to store the relationship.

 Class Customer

 '...

 Private _Orders as EntitySet(Of Order)

 <Association(Name:="FK_Orders_Customers", Storage:="Orders", _

 OtherKey:="CustomerID")> _

 Public Property Orders() as EntitySet(Of Order)

 Get

 Return Me._Orders

 End Get

 Set
 Me._Orders.Assign(Value)

 End Set

 End Property

 End Class
However, since an EntitySet(Of T) is a collection, it is valid to use the EntitySet as the return type. It is also valid to disguise the true type of the collection, using the Icollection(Of T) interface instead.

 Class Customer

 '...

 Private _Orders as EntitySet(Of Order)

 <Association(Name:="FK_Orders_Customers", Storage:="Orders", _

 OtherKey:="CustomerID")> _

 Public Property Orders() as ICollection(Of Order)

 Get

 Return Me._Orders

 End Get

 Set
 Me._Orders.Assign(Value)

 End Set

 End Property

 End Class
Make certain to use the Assign() method on the EntitySet if you expose a public setter for the property. This allows the entity class to keep using the same collection instance since it may already be tied into the change tracking service.

5.1.5 StoredProcedure Attribute

The StoredProcedure attribute is used to declare that a call to a method defined on the DataContext or Schema type is translated as a call to a database stored procedure.
	Property
	Type
	Description

	Name
	String
	The name of the stored procedure in the database. If not specified the stored procedure is assumed to have the same name as the method

5.1.6 Function Attribute

The Function attribute is used to declare that a call to a method defined on a DataContext or Schema is translated as a call to a database user-defined scalar or table-valued function.
	Property
	Type
	Description

	Name
	String
	The name of the function in the database. If not specified the function is assumed to have the same name as the method

5.1.7 Parameter Attribute

The Parameter attribute is used to declare a mapping between a method an the parameters of a database stored procedure or user-defined function.
	Property
	Type
	Description

	Name
	String
	The name of the parameter in the database. If not specified the parameter is assumed to have the same name as the method parameter.

	DBType
	String
	The type of parameter specified using database types and modifiers.

5.1.8 InherritanceMapping Attribute

The InheritanceMapping attribute is used to describe the correspondence between a particular discriminator codes and a an inheritance subtype. All InheritanceMapping attributes used for an inheritance hierarchy must be declared on the root type of the hierarchy.
	Property
	Type
	Description

	Code
	Object
	The discriminator code value.

	Type
	Type
	The Inheritance sub type. This may be any non-abstract type in the inheritance hierarchy including the root type.

	IsDefault
	Boolean
	Determines if the inheritance sub-type specified is the default type constructed when DLINQ finds a discriminator code that is not defined by the InheritanceMapping attributes. Exactly one of the InheritanceMapping attributes must be declared with IsDefault as true.

5.2 Graph Consistency

A graph is a general term for a data structure of objects all referring to each other by references. A hierarchy (or tree) is a degenerate form of graph. Domain specific object models often describe a network of references that are best described as a graph of objects. The health of your object graph is vitally important to the stability of your application. That’s why is important to make sure references within the graph remain consistent to your business rules and/or constraints defined in the database.

DLinq does not automatically manage consistency of relationship references for you. When relationships are bi-directional a change to one side of the relationship should automatically update the other. Note that it is uncommon for normal objects to behave this way so it is unlikely that you would have designed your objects this way otherwise.

DLinq does provide a few mechanism to make this work easy and a pattern for you to follow to make sure you are managing your references correctly. Entity classes generated by the code generation tool will automatically implement the correct patterns.

 Public Sub New()

 MyBase.New()

 Me._Orders = New EntitySet(Of Orders)(AddressOf Me.attach_Orders, _

 AddressOf Me.detach_Orders)

 End Sub

 Private Sub attach_Orders(ByVal entity As Orders)

 Me.OnChanging()

 entity.Customers = Me

 End Sub

 Private Sub detach_Orders(ByVal entity As Orders)

 Me.OnChanging()

 entity.Customers = Nothing

 End Sub

 Public Property Orders() As EntitySet(Of Orders)

 ' ...

 Set(ByVal value as EntitySet(Of Orders)

 '...

 Me._Orders = Value)

 End Set

 End Property
The EntitySet(Of T) type has a constructor that allow you to supply two delegates to be used as callbacks, the first when an item is added to the collection, the second when it is removed. As you can see from the example, the code you specify for these delegates can and should be written to update the reverse relationship property. This is how the Customer property on an Order instance is automatically changed when an order is added to a customer’s Orders collection.

Implementing the relationship on the other end is not as easy. The EntityRef(Of T) is a value type defined to contain as little additional overhead from the actual object reference as possible. It has no room for a pair of delegates. Instead the code managing graph consistency of singleton references should be embedded in the property accessors themselves.

 <Association(Name = "FK_Orders_Customers", Storage = _

 "_Customer", ThisKey = "CustomerID")> _

 Public Property Customer() As Customer

 Get

 Return Me._Customer.Entity

 End Get

 Set(ByVal value As Customer)

 Dim v As customer = Me._Customer.Entity

 If ((v Is Value) _

 = False) Then

 Me._Customer.Entity = Value

 If ((v Is Nothing) _

 = False) Then

 Me._Customer.Entity = Nothing

 v.Orders.Remove(Me)

 End If

 Me._Customer.Entity = Value

 If ((Value Is Nothing) _

 = False) Then

 Value.Orders.Add(Me)

 End If

 End If

 End Set

 End Property

Take a look at the setter. When the Customer property is being changed the order instance is first removed from the current customer’s Orders collection and then only later added to the new customer’s collection. Notice that before the call to Remove() is made the actual entity reference is set to null. This is done to avoid recursion when the Remove() method is called. Remember, the EntitySet will use is callback delegates to assign this object’s Customer property to null. The same thing happens right before the call to Add(). The actually entity reference is updated to the new value. This will again curtail any potential recursion and of course accomplish the task of the setter in the first place.

The definition of a one-to-one relationship is very similar to the definition of a one-to-many relationship from the side of the singleton reference. Except instead of Add() and Remove() being called in their respective slots, you’ll need the same code that went into the EntitySet delegates, assignment to new value and assignment to null.

Again, it is vital that relationship properties maintain the consistency of the object graph. Consider using the code generation tool to do the work for you.
5.3 Change Notifications

Your objects may participate in the change tracking process. It is not required that they do but if they do they can considerably reduce the amount of overhead needed to keep track of potential object changes. It is likely that your application will retrieve many more objects from queries than will end up being modified. Without proactive help from your objects, the change tracking service is limited in how it can actually track changes.

Since there is no true interception service in the runtime, the formal tracking does not actually occur at all. Instead, duplicate copies of the objects are stored when there are first retrieved. Later, when you call SubmitChanges() these copies are used to compare against the ones you’ve been given. If their values differ then the object has been modified. This means that every object requires two copies in memory even if you never change them.

A better solution is to have the objects themselves announce to the change tracking service when they are indeed changed. This can be accomplished by having the object implement an interface that exposes a callback event. The change tracking service can then wire up each object and receive notifications when they change.

 <Table(Name:="Customers")> _

 Partial Public Class Customer

 Implements INotifyPropertyChanging

 Public Event PropertyChanging As PropertyChangedEventHandler _

 Implements INotifyPropertyChanging.PropertyChanging

 Protected Overridable Sub OnPropertyChanging(ByVal propertyName As String)

 RaiseEvent PropertyChanging(Me, New _

 PropertyChangedEventArgs(propertyName))

 End Sub

 Private _CustomerID As String

 <Column(Storage:="_CustomerID", Id:=True)> _

 Public Property CustomerID() As String

 Get

 Return Me._CustomerID

 End Get

 Set(ByVal value As String)

 If (Not (Me._CustomerID Is value)) Then

 Me.OnPropertyChanging("Orders")

 Me._CustomerID = value

 End If

 End Set

 End Property

 End Class

To assist in improved change tracking your entity classes must implement the INotifyPropertyChanging interface. It only requires you to define an event called PropertyChanging. The change tracking service then registers with your event when your objects come into its possession. All you are required to do is raise this event immediately before you are about to change a property's value.

Don’t forget to put the same event raising logic in your relationship property setters too. For EntitySets, raise the events in the delegates you supply.

 Public Sub New()

 MyBase.New()

 Me._Orders = New EntitySet(Of Orders) _

 (AddressOf Me.attach_Orders, _

 AddressOf Me.detach_Orders)

 End Sub

 Private Sub attach_Orders(ByVal entity As Orders)

 Me.OnPropertyChanging("Orders")

 entity.Customers = Me

 End Sub

 Private Sub detach_Orders(ByVal entity As Orders)

 Me.OnPropertyChanging("Orders")

 entity.Customers = Nothing

 End Sub

 Public Property Orders() As EntitySet(Of Orders)

 ' ...

 Set(ByVal value as EntitySet(Of Orders)

 '...

 Me._Orders = Value)

 End Set

 End Property
6. Advanced Topics

6.1 Creating Databases

Since entity classes have attributes describing the structure of the relational database tables and columns it is possible to use this information to create new instances of your database. You can call the CreateDatabase() method on the DataContext to have DLinq construct a new database instance with a structure defined by your objects. There are many reasons you might want to do this. You might be building an application that automatically installs itself on a customer system or a client application that needs a local database to save its offline state. For these scenarios the CreateDatabase() is ideal, especially if a known data provider like SQL Server Express 2005 is available.

However, the data attributes may not encode everything about an existing database’s structure. The contents of user defined functions, stored procedures, triggers and check constraints are not represented by the attributes. The CreateDatabase() function will only create a replica of the database using the information it knows. Yet, for a variety of databases this is sufficient.

Here is an example of how you can create a new database named MyDVDs.mdf.

 <Table(Name:="DVDTable")> _

 Public Class DVD

 <Column(Id:=True)> _

 Public Title As String

 <Column()> _

 Public Rating As String

 End Class

 Public Class MyDVDs

 Inherits DataContext

 Public DVDs As Table(Of DVD)

 Public Sub New(ByVal connection As String)

 MyBase.New(connection)

 End Sub

 End Class
The object model can be used for creating a database using SQL Server Express 2005 database as follows:

 Public Sub CreateDatabase()

 Dim db As New MyDVDs("c:\...\mydvds.mdf")

 End Sub

DLinq also provides an API to drop an existing database prior to creating a new one. The database creation code above can be modified to first check for the an existing version of the database using DatabaseExists() and then drop it using DeleteDatabase().

 Public Sub CreateDatabase()

 Dim db As MyDVDs = New MyDVDs("c:\...\mydvds.mdf")

 If db.DatabaseExists() Then

 Console.WriteLine("Deleting old database...")

 db.DeleteDatabase()

 End If

 db.CreateDatabase()

 End Sub
After the call to CreateDatabase() the new database exists and is able to accept queries and commands like SubmitChanges() to add objects to the MDF file.

Its also possible to use CreateDatabase() with normal SQL server, using either an MDF file or just a catalog name. It all depends on what you use for your connection string. The information in the connection string is used to define the database that will exist, not necessarily one that already exists. DLinq will fish out the relevant bits of information and use it to determine what database to create and on what server to create it. Of course, you will need database admin rights or equivalent on the server to do so.

6.2 Interoperating with ADO.NET

DLinq is part of the ADO.NET family of technologies. It based on services provided by the ADO.NET provider model, so it is possible to mix DLinq code with existing ADO.NET applications.

When you create a DLinq DataContext you can supply it with an existing ADO.NET connection. All operations against the DataContext including queries will use the connection you provided. If the connection was already opened DLinq will honor your authority over the connection and leave it as is when finished with it. Normally DLinq closes its connection as soon as an operation is finished unless a transaction is in scope.

 Dim con new SqlConnection(...)

 con.Open()

 ...

 'DataConect takes a connection

 Dim db As New Northwind(con)

 ...

 Dim q = _

 From c In db.Customers _

 Where c.City = "London" _
 Select c
You can always access the connection used by your DataContext through the Connection property and close it yourself.

 db.Connection.Close()
You can also supply the DataContext with your own database transaction, in case you application has already initiated one and you desire the DataContext to play along with it.

 Sub BeginTransaction()

 Dim IDbTransaction = con.BeginTransaction()

 End Sub

 ...

 Sub SubmitChanges()

 Dim LocalTransaction = myTransaction

 db.SubmitChanges()

 LocalTransaction = Nothing

 End Sub

Whenever a LocalTransaction is set, the DataContext will use it whenever is issues a query or executes a command. Don’t forget to assign the property back to null when you are done.

However, the preferred method of doing transactions with the .NET framework 2.0 is to use the TransactionScope object. It allows you to make distributed transactions that work across databases and other memory resident resource managers. The idea is that transaction scopes start cheap, only promoting themselves to full on distributed transaction when actually do refer to multiple databases or multiple connection with the scope of the transaction.

 Using ts As New TransactionScope()

 db.SubmitChanges()

 ts.Complete()

 End Using
If you are not dealing with integration issues around using a pre-existing transaction, switching to transaction scopes makes using transaction a bit easier. Unfortunately, not all ADO.NET provider play nicely with the new darling. The SqlClient connection is incapable of promoting system transactions when working against a SQL Server 2000 server. SQL Server 2005 servers work fine. Instead, it automatically enlists to a full distributed transaction whenever its sees a transaction scope in use.

This is not likely what you want at all. Your application will seldom find itself engaged in a true distributed transaction, so why pay the cost? If you know you don’t need the power you can instruct the DataContext to prohibit the SqlClient connection from engaging in this gregarious activity.

 Using ts As New TransactionScope()

 db.UseLocalTransactionsOnly = True

 db.SubmitChanges()

 ts.Complete()

 End Using

The UserLocalTransactionsOnly property can be set to force the system transaction into using local database transactions only. This property must be set on the data context with the connection currently closed or it will have not effect. If later a request to promote to a true distributed transaction comes along it will be denied.

Connections and transactions are not the only way you can interoperate with ADO.NET. You might find that in some cases the query or submit changes facility of the DataContext is insufficient for the specialized task you may want to perform. In these circumstances it is possible to use the DataContext to issue raw SQL commands directly to the database.

The ExecuteQuery() method lets you execute a raw SQL query and the converts the result of your query directly into objects. For example, assuming that the data for the Customer class is spread over two tables customer1 and customer2, the following query returns a sequence of Customer objects.
 Dim results As IEnumerable(Of Customer) = _

 db.ExecuteQuery(Of Customer)(_

 "SELECT [c1].custID as CustomerID, [c2].custName as ContactName" & _

 "FROM customer1 AS [c1], customer2 as [c2]" & _

 "WHERE [c1].custid = [c2].custid")
As long as the column names in the tabular results match column properties of you entity class DLinq will materialize your objects out of any SQL query.
The ExecuteQuery() method also allows parameters. In the following code, a parameterized query is executed:

 Dim results As IEnumerable(Of Customer) = db.ExecuteQuery(Of Customer)(_

 "SELECT contactname FROM customers WHERE city = {0}, "London")
The parameters are expressed in the query text using the same curly notation used by Console.WriteLine() and String.Format(). In fact, String.Format() is actually called on the query string you provide, substituting the curly braced parameters with generated parameter names like @p0, @p1 …, @p(n)
6.3 The Entity Class Generator Tool

If you have an existing database it is unnecessary to create a complete object model by hand just to represent it. The DLinq distribution comes with a tool called SQLMetal. It is a command line utility that automates the task of creating an entity classes by inferring the appropriate classes from the database metadata..
You can use SQLMetal to extract SQL metadata from a database and generate a source file containing entity class declarations. Or you can split the process into two steps, first generating an XML file representing the SQL metadata and then later translating that XML file into a source file containing class declarations. This split process allows you to retain the metadata as a file so you may edit it. The extraction process producing the file make a few inferences along the way about appropriate class and property names given the table and column names of the database. You might find it necessary to edit the XML file in order for the generator to produce more pleasing results or to hide aspects of the database that you don’t want present in your objects.

The simplest scenario to use SQLMetal is to directly generate classes from an existing database. Here is how to invoke the tool:

SqlMetal /server:.\SQLExpress /database:Northwind /delayfetch /pluralize /namespace:nwind /code:Northwind.vb
Executing the tool creates a Northwind.vb file that contains the object model generated by reading the database metadata. This usage works well if the names of the tables in the database are similar to the names of the objects that you want to generate. If not you’ll want to take the two step approach.
To instruct SQLMetal to generate an XML file use the tool as follows:

SqlMetal /server:.\SQLExpress /database:Northwind /pluralize /xml:Northwind.xml

Once the xml file is generated, you can go ahead and annotate it with class and property attribute to describe how tables and columns map to classes and properties. Once you have finished annotating the xml file, you can generate your object model by running the following command:

SqlMetal /namespace:nwind /code:Northwind.vb Northwind.xml
The SQLMetal usage signature is as follows:

SqlMetal [options] [filename]
The following is a table showing the available command line options for SQLMetal.

	Option
	Description

	/server
	indicates the server to connect to in order to access the database

	/database
	indicates the name of the database to read metadata from

	/code:<filename>
	indicates that the output of the tool is a source file of entity class declarations.

	/lang:<language>
	use vb or csharp (default)

	/xml:<filename>
	indicates that the output of the tools is an XML file describing the database metadata and the first guess approximation of class and property names

	/pluralize
	indicates that the tool should perform Matt’s whiz-bang English language pluralizing / de-pluralizing heuristic to the names of the tables in order to produce appropriate class and property names.

	/namespace:<name>
	indicates the namespace the entity classes will be generated in

Note: In order to extract the meta data from an .mdf file, you must specify the .mdf filename after all other options. If no /server is specified localhost/sqlexpress is assumed.

6.4 Generator Tool XML Reference

The XML file is foremost a description of the SQL metadata for a given database. It contains attributes that mark up the metadata to describe simple object mapping, such as name changes or exclusion of tables or columns.

Here is a prototypical example of the XML syntax:

<Database

Name = “database-name”

Access = “public|internal”

Class = ”context-class-name” >

<Schema

Name = “schema-name”

Hidden = “true|false”

Access = “public|internal”

Class = “schema-class-name” >

<Table

Name = “…”

Hidden = “true|false”

Access = “public|internal”

Class = “element-class-name”

Property = “context-or-schema-property-name” >

<PrimaryKey

Name = “primary-key-constraint-name”

Hidden = ”true|false” >

<Column Name = ”key-column-name” />

...

</PrimaryKey>

...

<Unique

Name = “uniqueness-constraint-name”

Hidden = “true|false” >

<Column Name = “column-name” />

...

</Unique>

 ...

<Index

Name = “index-name”

Hidden = “true|false”

Style = “db-style-info like clustered etc”

IsUnique = “true|false”>

<Column Name = “column-name” />

...

</Index>

...

<Type

Name = “…”

Hidden = “true|false”

Access = “public|private|internal|protected”

InheritanceCode = “…”

IsInheritanceDefault = “true|false” >

<Column

Name = “…”

Hidden = “true|false”

Access = “public|private|internal|protected”

Property = ”property-name”

DbType = ”database-type”

Type = ”CLR-type”

Nullable = ”true|false”

IsIdentity = ”true|false”

IsAutoGen = ”true|false”

IsVersion = ”true|false”

IsReadOnly = ”true|false”

UpdateCheck = ”Always|Never|WhenChanged” />

...

<Association

Name = ”…”

Hidden = ”true|false”

Access = ”public|private|internal|protected”

Property = ”property-name”

Kind = ”relationship-kind”

Target = ”target-table-name”

UpdateRule = ”database-on-update-rule”

DeleteRule = ”database-on-delete-rule”>

<Column Name = “key-column-names” />

...

</Association>

...

<Type /> inheritance sub-types

...

</Type>

</Table>

...

<StoredProcedure

Name = ”…”

Hidden = ”true|false”

Access = ”public|private|internal|protected”

MethodName = “…” >

<Parameter

ParameterName = “parameter-name”

Type = “type-name”

DbType = “database-type”

ParameterDirection = “Input|Output|InputOutput|ReturnValue” />

...

<ResultShape

Name = ”…”

Hidden = ”true|false”

Access = ”public|private|internal|protected”

Class = “type-name” >

<Column /> same as previous

...

</ResultShape>

...

</StoredProcedure>

...

<Function

Name = ”…”

Hidden = ”true|false”

Access = ”public|private|internal|protected”

MethodName = “…”

IsTableValued = “true|false”

Type = “return-type”

DbType = “database-return-type”>

<Parameter

ParameterName = parameter-name”

Type = “type-name”

DbType = “database-type”

ParameterDirection = “Input|Output|InputOutput|ReturnValue” />

...

<ResultShape

Name = ”…”

Hidden = ”true|false”

Access = ”public|private|internal|protected”

Class = “type-name” >

<Column /> same as previous

...

</ResultShape>

...

</Function>

...

</Schema>

...

</Database>
The elements and their attributes are described as follows.

6.4.1 General Element Attributes
These attributes apply to all elements.
	Attribute Name
	Description

	Name
	Describes the name used by the database for the given element. This attribute is required for all elements.

	Hidden
	For all elements, hidden refers to whether the code generation considers this node or not. Hidden columns or associations won’t appear in the generated class code. Hidden containers (schemas/tables/etc) hide all their contents. The purpose of hidden is to allow the tree to maintain representation for all the database schema regardless of whether it is used in the given translation, so that subsequent changes to the database schema can be identified and merged into the document properly.

	Access
	The access attribute refers to the code access mode used for the associated code generated item. If not specified, access is assumed to be ‘public’.

6.4.2 Database Element

The Database element describes a database. It may contain one or more Schema elements.

	Attribute Name
	Description

	Class
	The name used by the code generator for the strongly-typed context class

6.4.3 Schema Element

The Schema element describes a database schema. It may contain one or more Table elements.
	Attribute Name
	Description

	Class
	The name used by the code generator for the schema class. Schema classes are used to extended the apparent namespace of the strongly-typed context class, allowing addition tables to be listed as members of a schema class. A schema with named dbo is treated specially by the code generator. All tables that are part of the dbo schema become top-level table collections on the generated context object.

	Property
	The property name for the schema on the context class or parent schema class.

6.4.4 Table Element

The Table element describes metadata for a database table. It may contain at most one PrimaryKey element, zero or more Unique elements, zero or more Index elements, one or more Column elements and zero or more Association elements.
	Attribute Name
	Description

	Class
	The name used by the code generator for the entity class.

	Property
	The property name for the table collection on the context class or parent schema class.

6.4.5 PrimaryKey Element

The PrimaryKey element describes a database primary key constraint. It contains one or more key-column elements that form the identity of the table.
6.4.6 Unique Element
The Unique element describes a database uniqueness constraint. It contains one or more key-column elements that together form a value that is must be unique within the table.
6.4.7 Index Element

The Index element describes a database index definition. Primary keys and unique column groups are good candidates for indices. SQL server will define indices automatically for these types of constraints. However, since additional indices may be specified and the even the style of an otherwise implied index may be customized all indices are defined explicitly within the metadata. The Index element contains one or more key-column elements that determine the columns used to define the index.

	Attribute Name
	Description

	Style
	The style attribute describes the database’s index style, which for SQL server may be something like CLUSTERED or NONCLUSTERED.

	IsUnique
	The IsUnique attribute describes whether the index is based on unique values. This may indeed be redundant information, given the uniqueness constraints. However, to date SQL maintains these values separately.

6.4.8 Type Element
The Type element describes the mapping of a table row onto a CLR type.
	Attribute Name
	Description

	InheritanceCode
	The discriminator value used to map a database table row into this CLR type. May be omitted if not hierarchy is present.

	IsInheritanceDefault
	True if this type is use to represent the database row when the discriminator code is not specified in the mapping. Exactly one Type in the inheritance hierarchy must have IsInheritanceDefault set to true, unless no hierarchy is present.

6.4.9 Column Element
The Column element describes a database column.
	Attribute Name
	Description

	Type
	The CLR type of the column. This determines the type for the property used in the generated class. This attribute is required.

	Property
	The name of the code generated property. If the attributes is not specified it is the name of the property is the same as the Name attribute.

	DbType
	The database type of the column. If not specified, it is inferred from the CLR type.

	IsIdentity
	Describes whether the column is part of the overall primary key. This is information redundant given the PrimaryKey element and may be removed.

	IsAutoGen
	Describes whether the column is a server generated identity.

	IsVersion
	Describes whether the column is a server generated version number or timestamp.

	IsReadOnly
	Describes whether the column is read-only. Also controls whether the property has a setter. Currently auto-generated identities and version stamps are considered read-only in the sense that they have no setter even if this property is not explicitly set to “true”. Computed columns should appear as read-only.

	UpdateCheck
	Matches the DLinq UpdateCheck enum values and semantics

 Public Enum UpdateCheck As Integer

 Always

 Never

 WhenChanged

 End Enum

6.4.10 Association Element

The Association element describes a value-based association between two tables. Association elements are originally inferred by SQLMetal from foreign-key relationship in the database. The Association element contains one or more key-column elements.
	Attribute Name
	Description

	Property
	The name of the code generated property. If the attributes is not specified it is the name of the property is the same as the Name attribute.

	Kind
	Describes the kind of relationship and the side of the relationship that it represents. This information is currently not carried forward directly into code attribute form. It controls the code generation in determination of use of EntitySet or EntityRef and associated logic. This attribute is required.

 Public Enum RelationshipKind

 OneToOneChild

 OneToOneParent

 ManyToOneChild

 ManyToOneParent

 End Enum

	Target
	Describes the target table name. If the association is not the child (the one containing the foreign key), the target table must contain a definition of a reverse association sharing the same association name. This attribute is required.

	UpdateRule
	Database specific update rule that controls how this table is modified when the related row is update. Currently used only to persist and re-generated SQL metadata.

	DeleteRule
	Database specific update rule that controls how this table is modified when the related row is deleted. Currently used only to persist and re-generated SQL metadata.

7. New For Spring 2006
The May 2006 Preview of DLinq introduces a number of new features. Some of the features such as inheritance, joins and mulit-tier programming support were outlined in the previous preview as “future directions” while others such as external mapping and significantly enhanced stored procedure support are based directly on preview users’ feedback.

7.1 Inheritance

DLinq supports single-table mapping, whereby an entire inheritance hierarchy is stored in a single database table. Each row in the single table contains the flattened union of all possible data columns for the whole hierarchy. The single-table mapping strategy provides good performance characteristics for many different categories of queries.
7.1.1 Mapping

To implement this mapping using DLinq, you need to specify the following attributes and attribute properties on the superclass:

· The <Table> attribute.
· An <InheritanceMapping> attribute for each class in the hierarchy structure. This attribute must always define a Code property (a value that appears in the database table in the Inheritance Discriminator column to indicate which class or subclass this row of data belongs to) and a Type property (which specifies which class or subclass the key value signifies).
· An IsDefault property on a single <InheritanceMapping> attribute. This property serves to designate a "fallback" mapping in case the discriminator value from the database table does not match any of the Code values in the inheritance mappings.
· An IsDiscriminator property for a <Column> attribute, to signify that this is the column that holds the Code value for inheritance mapping.
No special attributes or properties are required on the subclasses. Note especially that subclasses do not have the <Table> attribute.
In the following example, data contained in the Car and Truck subclasses are mapped to the single database table Vehicle. (To simplify the example, the sample code uses fields rather than properties for column mapping.)

 <Table()> _

 <InheritanceMapping(Code:="C", Type:=GetType(Car))> _

 <InheritanceMapping(Code:="T", Type:=GetType(Truck))> _

 <InheritanceMapping(Code:="V", Type:=GetType(Vehicle), _

 IsDefault:=True)> _

 Public Class Vehicle

 <Column(IsDiscriminator:=True)> _

 Private DiscKey As String

 <Column(Id:=True)> _

 Private VIN As String

 <Column()> _

 Private MfgPlant As String

 End Class

 Public Class Car

 Inherits Vehicle

 <Column()> _

 Private TrimCode As Integer

 <Column()> _

 Private ModelName As String

 End Class

 Public Class Truck

 Inherits Vehicle

 <Column()> _

 Private Tonnage As Integer

 <Column()> _

 Private Axles As Integer

 End Class

When you view the resulting database diagram in Server Explorer, you see that the columns have all been mapped to a single table, as shown here:

[image: image1.jpg]Server Explorer = & X | dbo.vehicle: Table(des...B.MDF)| Vehicle: Query(despens.. 6.
ENETE e Coumneme DataType | Alow s

= (3 Data Cornestons » [key] | warchar(sa00)]
3, MyDB.me g ViN nvarcher(4000) O
- (4 Database Disgrams WgPlant nverchar(4000) O
=a S"‘jsh) TrinCode int o
e s e N =
m Tomnags int O
(5] megPlant fxles int [m]
TrinCode o

ModelName
Tonnage
(5] Axles

7.1.2 Querying

The following code provides a flavor of how you can use derived types in your queries:

Dim q = From d in db.Vehicle Where TypeOf d Is Truck Select d

 'or

Dim q = From d As Truck in db.Vehicle Select d

 'or
Dim q = From d in db.Vehicle Where d <> Nothing Select CType(d, Truck)

 foreach (Truck p in q)

 Console.WriteLine(p.Axles);

7.1.3 Advanced

You can expand a hierarchy far beyond the simple sample already provided.

Example 1

Here is a much deeper hierarchy and more complex query:

 <Table()> _

 <InheritanceMapping(Code:="V", Type:=GetType(Vehicle), _

 IsDefault:=True)> _

 <InheritanceMapping(Code:="C", Type:=GetType(Car))> _

 <InheritanceMapping(Code:="T", Type:=GetType(Truck))> _

 <InheritanceMapping(Code:="S", Type:=GetType(Semi))> _

 <InheritanceMapping(Code:="D", Type:=GetType(DumpTruck))> _

 Public Class Truck

 Inherits Vehicle

 End Class

 Public Class Semi

 Inherits Truck

 End Class

 Public Class DumpTruck

 Inherits Truck

 End Class

The following query gets all trucks along with a flag indicating industrial application:
From d As Truck in db.Vehicles Select new {Truck := d, IsIndustrial := (TypeOf d Is Semi Or TypeOf d Is DumpTruck)}

Example 2

The following hierarchy includes interfaces:

 <Table()> _

 <InheritanceMapping(Code:="V", Type:=GetType(Vehicle), _

 IsDefault:=True)> _

 <InheritanceMapping(Code:="C", Type:=GetType(Car))> _

 <InheritanceMapping(Code:="T", Type:=GetType(Truck))> _

 <InheritanceMapping(Code:="S", Type:=GetType(Semi))> _

 <InheritanceMapping(Code:="H", Type:=GetType(Helicopter))> _

 Public Class Truck

 Inherits Vehicle

 End Class

 Public Class Semi

 Inherits Truck

 Implements IRentableVehicle

 End Class

 Public Class Helicopter

 Inherits Vehicle

 Implements IRentableVehicle

 End Class

Possible queries include the following:

From d As IRentableVehicle In db.Vehicles Order By d.RentalRate Select d

'Get commercial vehicles ordered by cost to rent.

From d In db.Vehicles Where Not (TypeOf v Is IRentableVehicle)
'Get all non-rentable vehicles

7.2 Multi-tier Entities

In two-tier applications, a single DataContext handles queries and updates. However, for applications with additional tiers, it is often necessary to use separate DataContext instances for query and updates. For example, in case of ASP.NET applications, query and update are done for separate requests to the web server. Hence, it is impractical to use the same DataContext instance across multiple requests. In such cases, a DataContext instance needs to be able to update objects that it has not retrieved. The multi-tier entity support in DLinq provides such a capability through the Attach() method.

Here is an example of how a Customer object can be changed using a different DataContext instance –

 Dim db1 As New Northwind(...)

 Dim c1 As Customer = _

 (_

 From c In db1.Customers _

 Where c.CustomerID = "ALFKI" _

 Select c _

).First()

 'Customer entity changed on another tier --for example,

 'through a browser.

 'Back on the mid-tier, a new context needs to be used.

 Dim db2 as new Northwind(...)

 'Create a new entity for applying changes

 Dim c2 As New Customer

 c2.CustomerID = originalID

 'Set other properties needed for optimistic concurrency check.

 c2.CompanyName = originalCompanyName

 '...

 'Tell DLinq to track this object for an update;

 'that is, not for insertion.

 db2.Customers.Attach(c2)

 'Now apply the changes

 c2.ContactName = "Mary Anders"

 'DataContext now knows how to update the customer

 db2.SubmitChanges()
In multi-tier applications, the entire entity is often not sent across tiers for simplicity, interoperability or privacy. For example, a supplier may define a data contract for a web-service that differs from the Order entity used on the middle tier. Likewise, a web page may show only a subset of the members of an Employee entity. Hence, the multi-tier support is designed to accommodate such cases. Only the members belonging to one or more of the following categories need to transported between tiers and set before calling Attach().

1. Members that are part of the entity’s identity

2. Members that have been changed

3. Members that participate in optimistic concurrency check

If a timestamp or a version number column is used for optimistic concurrency check, then the corresponding member must be set before calling Attach(). Values for other members need not be set before calling Attach(). DLinq uses minimal updates with optimistic concurrency checks; i.e. a member that is not set or checked for optimistic concurrency is ignored.

Original values required for optimistic concurrency checks may be retained using a variety of mechanisms outside the scope of DLinq APIs. An ASP.NET application may use a view state (or a control that uses the view state). A web service may use the DataContract for an update method to ensure that the original values are available for update processing. In the interest of interoperability and generality, DLinq does not dictate the shape of the data exchanged between tiers or the mechanisms used for roundtripping the original values.

Entities for insertion and deletion do not require the Attach() method. The methods used for two-tier applications – Table.Add() and Table.Remove() can be used for insertion and deletion. As in case of two-tier updates, a user is responsible for handling foreign key constraints. A customer with Orders cannot be just removed without handling its Orders if there is a foreign key constraint in the database preventing the deletion of a Customer with Orders.

DLinq also handles attachment of entities for updates transitively. The user essentially creates the pre-update object graph as desired and calls Attach(). All changes can then be “replayed” on the attached graph to accomplish the necessary updates as shown below:

 Dim db1 As New Northwnd(...)

 'Assume Customer c1 and related orders o1, o2 are retrieved.

 'Back on the mid-tier, a new context needs to be used

 Dim db2 as New Northwnd(...)

 'Create new entities for applying changes

 Dim c2 As New Customer()

 c2.CustomerID = c.CustomerID

 Dim o2 as New Order()

 o2.OrderID = ...

 c2.Orders.Add(o2)

 'Add other related objects needed for updates

 'Set properties needed for optimistic concurrency check

 '...

 'Order o1 to be deleted

 Dim o1 as New Order()

 o1.OrderID = ...

 'Tell DLinq to track the graph transitively

 db2.Customers.Attach(2)

 'Now "replay" all the changes.

 'Updates

 c2.ContactName = ...

 o2.ShipAddress = ...

 'New object for insertion

 Dim o3 as New Order()

 o3.OrderID = ...

 c2.Orders.Add(o3)

 'Remove order o1

 db2.Orders.Remove(o1)

 'DataContext now knows how to do ooupdate/insert/delete

 db2.SubmitChanges()
7.3 Remote Query Support for EntitySet

EntitySet now provides a way for executing queries remotely. Consider the following:

 Dim c As Customers = _

 (_

 From c In db.Customers _

 Where x.CustomerID = "..." _

 Select c _

).First()

 For Each ord As Orders In (From o In c.Orders _

 Where o.ShippedDate.Value.Year = 1998 _

 Select o)

 '...

 Next

Here if you have thousands of orders, you don’t want to have to retrieve them all in order to just process a small subset. EntitySet in the previous preview would have loaded the entire set of orders and executed the filtering predicate in Where() operator locally. Now EntitySet implements Iqueryable(Of T) and ensures that such queries can be done remotely. This helps in two ways – unnecessary data is not retrieved; and in some cases, a remotely executed query may be more efficient due to database indices.

In other situations, the entire set of related entities may be needed locally. EntitySet adds a new method – Load() to explicitly load all the members of the EntitySet. If an EntitySet is already loaded, subsequent queries are executed locally. This helps in two ways – if the entire set needs to be used locally or multiple times, remote queries and associated latencies can be avoided; and the entity can be serialized as a complete entity. The following code fragment illustrates how local execution can be obtained:

 Dim c As Customers = _

 (_

 From c In db.Customers _

 Where x.CustomerID = "..." _

 Select c _

).First()

 c.Orders.Load()

 'Henceforth c.Orders is a local -- IEnumerable(Of T) collection

 For Each ord As Orders In (From o In c.Orders _

 Where o.ShippedDate.Value.Year = 1998 _

 Select o)

 '...

 Next

Together, these two capabilities provide a powerful combination of options – remote execution for large collections and local execution for small collections or where the entire collection in needed. Remote execution is obtained through Iqueryable(Of T) while local execution is against an in-memory collection which is Ienumerable(Of T).

There is an important difference between a local collection which implements Ilist(Of T) and a collection that provides remote queries that are executed against unordered sets in a relational database. Ilist(Of T) methods such as those that use index values require list semantics which in general, cannot be obtained through a remote query against an unordered set. Hence, such methods implicitly load the EntitySet to allow local execution. Indeed, in the previous preview, these methods always caused a loading of the EntitySet.

Another key difference is that unless and until loaded, an EntitySet enables multiple remote queries. Since concurrent changes may occur in the database, separate executions of the same query may provide different results due to concurrent changes in between the executions. The results reflect the inserts/deletes in the database but do not reflect any local changes done to the EntitySet membership through Add() and Remove() calls. The queries against an EntitySet that has not been loaded are truly remote while call to Load() – either explicit or implicit, results in local execution of subsequent queries. The locally executed queries reflect local changes but do not reflect concurrent changes in the database.
7.4 External Mapping

In addition to attribute-based mapping, DLinq now also supports external mapping. The most common form of external mapping is an XML file. Mapping files enable additional scenarios where separating mapping from code is desirable.

DataContext provides an additional constructor for supplying a MappingSource. One form of MappingSource is an XmlMappingSource that can be constructed from an XML mapping file. Here is an example of how mapping file can be used:
 Dim path As String = "C:\Mapping\NorthwindMapping.xml"

 Dim prodMapping As _

 XmlMappingSource.FromXml(File.ReadAllText(path))

 Dim db As New Northwnd _

 ("Server=.\SQLExpress;Database=c:\Northwind\Northwnd.mdf", _

prodMapping)
Here is a corresponding snippet from the mapping file showing the mapping for Product class. It shows the class Product in namespace Mapping mapped to the Products table in Northwind database. The elements and attributes are consistent with the attribute names and parameters.

<Database Name="Northwind">

 <Table Name="Products">

 <Type Name="Mapping.Product">

 <Column Name="ProductID" Member="ProductID" Storage="_ProductID"

 DbType="Int NOT NULL IDENTITY" IsIdentity="True" IsAutoGen="True" />

 <Column Name="ProductName" Member="ProductName" Storage="_ProductName"

 DbType="NVarChar(40) NOT NULL" />

 <Column Name="SupplierID" Member="SupplierID" Storage="_SupplierID"

 DbType="Int" />

 <Column Name="CategoryID" Member="CategoryID" Storage="_CategoryID"

 DbType="Int" />

 <Column Name="QuantityPerUnit" Member="QuantityPerUnit"

 Storage="_QuantityPerUnit" DbType="NVarChar(20)" />

 <Column Name="UnitPrice" Member="UnitPrice" Storage="_UnitPrice"

 DbType="Money" />

 <Column Name="UnitsInStock" Member="UnitsInStock" Storage="_UnitsInStock"

 DbType="SmallInt" />

 <Column Name="UnitsOnOrder" Member="UnitsOnOrder" Storage="_UnitsOnOrder"

 DbType="SmallInt" />

 <Column Name="ReorderLevel" Member="ReorderLevel" Storage="_ReorderLevel"

 DbType="SmallInt" />

 <Column Name="Discontinued" Member="Discontinued" Storage="_Discontinued"

 DbType="Bit NOT NULL" />

 <Association Name="FK_Order_Details_Products" Member="OrderDetails"

 Storage="_OrderDetails" ThisKey="ProductID"

 OtherTable="Order Details" OtherKey="ProductID" />

 <Association Name="FK_Products_Categories" Member="Category"

 Storage="_Category" ThisKey="CategoryID" OtherTable="Categories"

 OtherKey="CategoryID" IsParent="True" />

 <Association Name="FK_Products_Suppliers" Member="Supplier"

 Storage="_Supplier" ThisKey="SupplierID" OtherTable="Suppliers"

 OtherKey="SupplierID" IsParent="True" />

 </Type>

 </Table>

 <Table Name="Order Details">

 <Type Name="Mapping.OrderDetail">

 …

 </Type>

 </Table>

 …

</Database>

Other tables/classes and elements for stored procedures and functions are elided for brevity. A sample mapping file for Northwind database and corresponding sample code are included in the preview MSI. The schema is also listed in “DLinq Mapping Schema.xsd”. The set of features supported through attributes and external mapping is currently the same. The features are covered in Sections Error! Reference source not found. and Error! Reference source not found..

7.5 Stored Procedures and User-defined functions

7.5.1 DLinq Approach to Stored Procedures and User-defined Functions

DLinq supports stored procedures and user-defined functions. DLinq maps these database-defined abstractions to code-generated client objects, so that you can access them in a strongly typed manner from client code. You can easily discover these methods using IntelliSense, and the method signatures resemble as closely as possible the signatures of the procedures and functions defined in the database. A resultset returned by a call to a mapped procedure is a strongly typed collection. DLinq can automatically generate the mapped methods, but also supports manual mapping in situations where you choose not to use code generation.

DLinq maps stored procedures and functions to methods through the use of attributes. The StoredProcedure, Parameter, and Function attributes all support a Name property, and the Parameter attribute also supports a DBType property. Here are a couple examples:

<StoredProcedure(Name:="CustOrderHist")> _
Public Function CustOrderHist(<Parameter(Name:="CustomerID")> _
ByVal customerID As String) As _
StoredProcedureResult(Of CustOrderHistResult)
Return Me.ExecuteStoredProcedure(Of _

 CustOrderHistResult)(CType(MethodInfo.GetCurrentMethod,MethodInfo), _

customerID)

End Function
<[Function](Name:="[dbo].[ReverseCustName]")> _
Public Function ReverseCustName(ByVal [string] As String) As String

Dim mc As MethodCallExpression = _
Expression.Call(CType(MethodInfo.GetCurrentMethod,MethodInfo), _
Expression.Constant(Me), New Expression() {Expression.Constant([string],_
GetType(String))})

 Return Sequence.Single(Me.CreateQuery(Of String)(mc))

End Function

7.5.2 Stored Procedures
The following examples show mappings for various kinds of stored procedures.

Example 1

The following stored procedure takes a single input parameter and returns an integer:

CREATE PROCEDURE GetCustomerOrderCount(@CustomerID nchar(5))
AS

Declare @count int
SELECT @count = COUNT(*) FROM ORDERS WHERE CustomerID = @CustomerID
RETURN @count

The mapped method would be as follows:

<StoredProcedure(Name:="GetCustomerOrderCount")> _
Public Function GetCustomerOrderCount(<Parameter(Name:="CustomerID")> _

ByVal customerID As String) As Integer
Dim result As StoredProcedureResult = _
Me.ExecuteStoredProcedure(CType(MethodInfo.GetCurrentMethod, _
 MethodInfo), customerID)
Return result.ReturnValue.Value

End Function
Example 2

When a stored procedure can return multiple result shapes, the return type cannot be strongly typed to a single projection shape. In the following example, the result shape depends on the input:

CREATE PROCEDURE VariableResultShapes(@shape int)
AS

if(@shape = 1)
 select CustomerID, ContactTitle, CompanyName from customers
else if(@shape = 2)
 select OrderID, ShipName from orders

The mapped method is as follows:

'''<summary>
'''Can return the following result types:
'''VariableResultShapesResult1
'''VariableResultShapesResult2
'''</summary>

<StoredProcedure(Name:="VariableResultShapes")> _
Public Function VariableResultShapes(ByVal shape As
System.Nullable(Of Integer)) _
As StoredProcedureMultipleResult

Return CType(Me.ExecuteStoredProcedure(CType(MethodInfo.GetCurrentMethod,_
 MethodInfo), shape), StoredProcedureMultipleResult)

End Function
You could use this stored procedure as follows:

Dim db As New Northwnd("C:\program files\linq preview\C#\data\northwnd.mdf")
Dim result As StoredProcedureMultipleResult = db.VariableResultShapes(1)

For Each c As VariableResultShapesResult1 In result.GetResults(Of _
 VariableResultShapesResult1)()
Console.WriteLine(c.CompanyName)
Next

result = db.VariableResultShapes(2)
For Each o As VariableResultShapesResult2 In result.GetResults(Of _
 VariableResultShapesResult2)()
 Console.WriteLine(o.OrderID)
Next
Here you need to use the GetResults pattern to get an enumerator of the correct type, based on your knowledge of the stored procedure. DLinq can generate all possible projection types, but has no way of knowing in what order they will be returned. The only way you can know which generated projection types correspond to a mapped method is by using generated code comments on the methods.

Example 3

Here is the T-SQL of a stored procedure that returns multiple results shapes sequentially:

CREATE PROCEDURE MultipleResultTypesSequentially
AS
select * from products
select * from customers

DLinq would map this procedure just as in Example 2 above. In this case, however, there are two sequential resultsets.

'''<summary>
'''Can return the following result types:
'''MultipleResultTypesSequentiallyResult1 '''MultipleResultTypesSequentiallyResult2
'''</summary>

<StoredProcedure(Name:="MultipleResultTypesSequentially")> _

Public Function MultipleResultTypesSequentially() As StoredProcedureMultipleResult

Return _
 Type(Me.ExecuteStoredProcedure(CType(_
 MethodInfo.GetCurrentMethod,MethodInfo)), _
 StoredProcedureMultipleResult)

End Function
You could use this stored procedure as follows:

Dim db As New Northwnd("C:\program files\linq preview\C#\data\northwnd.mdf")
Dim sprocResults As StoredProcedureMultipleResult = _
 db.MultipleResultTypesSequentially()
'first read products
For Each p As Products In sprocResults.GetResults(Of Products)()
 Console.WriteLine(p.ProductID)
Next
'next read customers
For Each c As Customers In sprocResults.GetResults(Of Customers)()
 Console.WriteLine(c.CustomerID)
Next
Example 4

DLinq maps out parameters to reference parameters (ref keyword), and for value types declares the parameter as nullable (for example, int?). The procedure in the following example takes a single input parameter and returns an out parameter.

CREATE PROCEDURE GetCustomerCompanyName(
 @customerID nchar(5),
 @companyName nvarchar(40) output
)
AS

SELECT @companyName = CompanyName
FROM Customers
WHERE CustomerID=@CustomerID

The mapped method is as follows:

<StoredProcedure(Name:="GetCustomerCompanyName")> _

Public Function GetCustomerCompanyName(ByVal customerID As String, _
 ByRef companyName As String) As Integer
Dim result As StoredProcedureResult = _
Me.ExecuteStoredProcedure(_
 CType(MethodInfo.GetCurrentMethod,MethodInfo), _
 customerID, companyName)
companyName = CType(result.GetParameterValue(1),String)
Return result.ReturnValue.Value

End Function
In this case, the method does not have an explicit return value, but the default return value is mapped anyway. For the output parameter, a corresponding output parameter is used as expected.

You would call the above stored procedure as follows:
Dim db As New Northwnd("C:\program files\linq preview\C#\data\northwnd.mdf")
Dim CompanyName As String = ""
Dim customerID As String = "ALFKI" db.GetCustomerCompanyName(customerID, CompanyName) Console.WriteLine(CompanyName)
Example 5

In this example, the return type (StoredProcedureResult<GetCustomerOrders_Result>) provides strongly typed access to the resultset after the method has returned. The return type implements IEnumerable<GetCustomerOrders_Result>. The type GetCustomerOrders_Result is a code-generated projection type, containing properties for all the columns in the resultset. Before the mapped method returns, the results are force-buffered by the call to GetParameterValue.

CREATE PROCEDURE GetCustomerOrdersAndCount(
 @customerID nchar(5),
 @count int OUTPUT
)
AS
SELECT OrderID, ShipName, OrderDate, Freight
FROM orders
WHERE customerid = @customerID
SELECT @count=@@ROWCOUNT

The mapped method is as follows:

<StoredProcedure(Name:="GetCustomerOrdersAndCount")> _
Public Function GetCustomerOrdersAndCount(ByVal customerID As String, _
 ByRef count As System.Nullable(Of Integer)) _
 As StoredProcedureResult(Of GetCustomerOrdersAndCountResult)

Dim result As StoredProcedureResult(Of GetCustomerOrdersAndCountResult)=_
 Me.ExecuteStoredProcedure(Of GetCustomerOrdersAndCountResult)_
 (CType(MethodInfo.GetCurrentMethod,MethodInfo), _
 customerID, count)

count = CType(result.GetParameterValue(1),System.Nullable(Of Integer))
Return result

 End Function
7.5.3 User-defined Functions
DLinq supports both scalar-valued and table-valued functions, and supports the inlining of both.

DLinq handles inline scalar calls similarly to the way system-defined functions are called. Consider the following query:

Dim q = _
 From p In db.Products _
 Select New {pid := p.ProductID, unitp := Math.Floor(p.UnitPrice.Value)}

Here the method call Math.Floor is translated to a call to the system function ‘FLOOR’. In the same way, a call to a function that is mapped to a UDF is translated to a call to the UDF in SQL.

Example 1

Here is a scalar user-defined function (UDF) ReverseCustName(). In SQL Server, the function might be defined as follows:

CREATE FUNCTION ReverseCustName(@string varchar(100))
RETURNS varchar(100)
AS
BEGIN
 DECLARE @custName varchar(100)
// Impl. left as exercise for the reader

 RETURN @custName

END

You can map a client method defined on a schema class to this UDF using the code below. Note that the body of the method constructs an expression that captures the intent of the method call, and passes that expression to the DataContext for translation and execution. (This direct execution happens only if the function is called outside a query.)

<[Function](Name:="[dbo].[ReverseCustName]")> _
Public Function ReverseCustName(ByVal [string] As String) As String
Dim mc As MethodCallExpression = _

Expression.Call(CType(MethodInfo.GetCurrentMethod,MethodInfo), _
 Expression.Constant(Me), _
 New Expression(){Expression.Constant([string], _
 GetType(String))})

 Return Sequence.Single(Me.CreateQuery(Of String)(mc))
End Function
Example 2

In the following query, you can see an inline call to the generated UDF method ReverseCustName. In this case the function is not executed immediately. The SQL built for this query translates to a call to the UDF defined in the database (see the SQL code following the query).

Dim q = _
 From c In db.Customers _
 Select New {c.ContactName, Title := db.ReverseCustName(c.ContactTitle)}

SELECT [t0].[ContactName],

 dbo.ReverseCustName([t0].[ContactTitle]) AS [Title]

FROM [Customers] AS [t0]

When you call the same function outside a query, DLinq creates a simple query from the method call expression with the following SQL syntax (where the parameter @p0 is bound to the constant passed in):

SELECT dbo.ReverseCustName(@p0)

In DLinq:

Dim str As String = db.ReverseCustName("DLinq")

Example 3

A table-valued function (TVF) returns a single rowset (unlike stored procedures, which can return multiple result shapes). Because the TVF return type is table, you can use a TVF anywhere in SQL that you can use a table, and you can treat the TVF in the same way as you would a table.

Consider the following SQL Server definition of a table-valued function:

CREATE FUNCTION ProductsCostingMoreThan(@cost money)
RETURNS TABLE
AS

RETURN
SELECT ProductID, UnitPrice
FROM Products
WHERE UnitPrice > @cost

This function explicitly states that it returns a TABLE, so the returned rowset structure is implicitly defined. DLinq maps the function as follows:

<[Function](Name:="[dbo].[ProductsCostingMoreThan]")> _

Public Function ProductsCostingMoreThan(
 ByVal cost As System.Nullable(Of Decimal)) _
 As IQueryable(Of ProductsCostingMoreThanResult)

Dim mc As MethodCallExpression = _
 Expression.Call(CType(MethodInfo.GetCurrentMethod,MethodInfo), _
 Expression.Constant(Me), New Expression() {Expression.Constant(cost, _
 GetType(System.Nullable(Of Decimal)))})

Return Me.CreateQuery(Of ProductsCostingMoreThanResult)(mc)

End Function
The following SQL code shows that you can join to the table returned by the function and otherwise treat it as you would any other table:

SELECT p2.ProductName, p1.UnitPrice
FROM dbo.ProductsCostingMoreThan(80.50)
AS p1 INNER JOIN Products AS p2
ON p1.ProductID = p2.ProductID

In DLinq, the query would be rendered as follows:

Dim q = _
 From p In db.ProductsCostingMoreThan(80.5), p1 In db.Products _
 Where p.ProductID = p1.ProductID _
 Select New {p.ProductID, p1.UnitPrice}

7.5.4 DLinq Limitations on Stored Procedures and User-defined Functions
Stored Procedures

DLinq supports code generation for stored procedures that return statically determined resultsets. Thus DLinq does not support the following:

•
Stored procedures that use dynamic SQL to return resultsets. When a stored procedure contains conditional logic to build a dynamic SQL statement, DLinq cannot acquire metadata for the resultset because the query used to generate the resultset is unknown until runtime.

•
Stored procedures that use temporary tables directly.

User-defined Functions

You will find the same limitations on user-defined functions in DLinq as you will in SQL Server. For example, you cannot use a UDF to return multiple tables, nor can you use one to execute update/delete statements.

7.6 Optimistic Concurrency Conflict Resolution

7.6.1 Description

An optimistic concurrency conflict occurs when the client attempts to submit changes to an object and one or more values used in the update check have been updated in the database since the client last read them. (Note: Only members mapped as UpdateCheck.Always or UpdateCheck.WhenChanged participate in optimistic concurrency checks. No check is performed for members marked UpdateCheck.Never.)

Resolution of this conflict includes discovering which members of the object are in conflict, and then deciding what to do about it.

7.6.2 Detecting, Reporting, and Resolving Conflicts in DLinq—Details

Conflict resolution is the process of refreshing a conflicting item by requerying the database and reconciling any differences. When an object is refreshed, the change tracker has the old original values and the new database values. DLinq determines which members are in conflict. If the new database value for a member is different from the old original (which was used for the update check that failed), this is a conflict. All such member conflicts are added to a conflict list.

For example, in the following scenario, User1 begins to prepare an update by querying the database for a row and making modifications. Before User1 can submit the changes, User2 has changed the database. User1’s submission fails because the values expected for Col B and Col C have changed.
	
	Col A
	Col B
	Col C

	original state
	Alfreds
	Maria
	Sales

	User1
	Alfred
	
	Marketing

	User2
	
	Mary
	Service

In DLinq, objects that fail to update because of optimistic concurrency conflicts cause an exception (OptimisticConcurrencyException) to be thrown. You can specify whether the exception should be thrown at the first failure or whether all updates should be attempted with any failures being accumulated and reported in the exception.

db.SubmitChanges(ConflictMode.FailOnFirstConflict);

db.SubmitChanges(ConflictMode.ContinueOnConflict);

When thrown, the exception provides access to an OptimisticConcurrencyConflict collection. Details are available for each conflict (mapped to a single failed update attempt), including access to the OptimisticConcurrencyMemberConflict list. Each member conflict maps to a single member in the update that failed the concurrency check.

7.6.3 Conflict Handling

In the preceding scenario, User1 employs the RefreshMode options described below for reconciling the differences before attempting to resubmit. In all cases, the record on the client is first ‘refreshed’ by pulling down the updated data from the database. This action ensures that the next update attempt will not fail on the same concurrency checks.

KeepChanges

Here User1 chooses to merge database values in with the current client values so that the database values are overwritten only when the current changeset has also modified that value. (See Example 1 later in this section.)

In the scenario above, after conflict resolution, the result in the database is as follows:

	
	Col A
	Col B
	Col C

	KeepChanges
	Alfred (User1)
	Mary (User2)
	Marketing (User1)

Col A: User1’s change (Alfred) appears.

Col B: User2’s change (Mary) appears. This value was merged in because User1 has not changed it.

Col C: User1’s change (Marketing) appears. User2’s change (Service) is not merged in because User1 has also changed that item.

KeepCurrentValues

Here User1 chooses to overwrite any database values with the current values. (See Example 2 later in this section.)

After the refresh, User1’s changes are submitted. The result in the database is as follows:

	
	Col A
	Col B
	Col C

	KeepCurrentValues
	Alfred (User1)
	Maria (Original)
	Marketing (User1)

Col A: User1’s change (Alfred) appears.

Col B: The original Maria remains; User2’s change is discarded.

Col C: User1’s change (Marketing) appears. User2’s change (Service) is discarded.

OverwriteCurrentValues

Here User1 chooses to allow the database values to overwrite the current values in the client. (See Example 3 later in this section.)

In the scenario above, after conflict resolution, the result in the database is as follows:

	
	Col A
	Col B
	Col C

	OverwriteCurrentValues
	Alfreds (Original)
	Mary (User2)
	Service (User2)

Col A: The original value (Alfreds) remains; User1’s value (Alfred) is discarded.

Col B: User2’s change (Mary) appears.

Col C: User2’s change (Service) appears. User1’s change (Marketing) is discarded.

After conflicts have been resolved, you can attempt a resubmit. Because this second update might also fail, consider using a loop for update attempts.

7.6.4 Summary of DLinq Additions to Support OCCR

Classes and features to support OCCR in DLinq include the following:

· Additions to the OptimisticConcurrencyException class

· OptimisticConcurrencyConflict class

· OptimisticConcurrencyMemberConflict class

· A Datacontext.SubmitChanges() overload taking a ConflictMode specification
· A RefreshMode enum used to specify the refresh strategy to use during conflict resolution.
For additional details, open the Visual Studio Object Browser.

7.6.5 Examples

The following code excerpts show some of the informational members at your disposal to discover member conflicts.

Example 1

In this example, conflicts are resolved “automatically.” That is, database values are merged in with the current client values unless the client has also changed that value (KeepChanges). No inspection or custom handling of individual member conflicts takes place.

 '...

 Try

 context.SubmitChanges(ConflictMode.ContinueOnConflict)

 Catch ex As OptimisticConcurrencyException

 'automerge database values into current for members

 'that client has not modified

 ex.Resolve(RefreshMode.KeepChanges)

 End Try

 'submit succeeds on second try

 context.SubmitChanges(ConflictMode.FailOnFirstConflict)
Example 2

In this example, conflicts are resolved again without any custom handling, but this time database values are NOT merged into current client values.

 '...

 Try

 user1.SubmitChanges(ConflictMode.ContinueOnConflict)

 Catch ex As OptimisticConcurrencyException

 For Each cc As OptimisticConcurrencyConflict In ex.Conflicts

 'No database values are automerged into current

 cc.Resolve(RefreshMode.KeepCurrentValues)

 Next

 End Try
Example 3

Here again no custom handling takes place, but in this case all client values are updated with the current database values.
 '...

 Try

 user1.SubmitChanges(ConflictMode.ContinueOnConflict)

 Catch ex As OptimisticConcurrencyException

 For Each cc As OptimisticConcurrencyConflict In ex.Conflicts

 'All database values overwrite current values
 cc.Resolve(RefreshMode.OverwriteCurrentValues)

 Next

 End Try
Example 4

This example shows a way of accessing information on an entity in conflict.

 '...

 Try

 user1.SubmitChanges(ConflictMode.ContinueOnConflict)

 Catch ex As OptimisticConcurrencyException

 Console.WriteLine("Optimistic concurrency error")

 Console.ReadLine()

 For Each cc As OptimisticConcurrencyConflict In ex.Conflicts

 Dim table As ITable = cc.Table

 Dim entityInConflict As Object = cc.Object

 Console.WriteLine("Table name: " & table.Name)

 Console.Write("Customer ID: ")

 Console.WriteLine(entityInConflict.CustomerID)

 Console.ReadLine()

 Next

 End Try
Example 5

This example adds a loop through the individual members. Here you could provide custom handling of any member. (Note: you must add Imports System.Reflection to support MemberInfo.)

 '...

 Try

 user1.SubmitChanges(ConflictMode.ContinueOnConflict)

 Catch ex As OptimisticConcurrencyException

 Console.WriteLine("Optimistic concurrency error")

 Console.ReadLine()

 For Each cc As OptimisticConcurrencyConflict In ex.Conflicts

 Dim table As ITable = cc.Table

 Dim entityInConflict As Object = cc.Object

 Console.WriteLine("Table name: " & table.Name)

 Console.Write("Customer ID: ")

 Console.WriteLine(entityInConflict.CustomerID)

 For Each mc In cc.GetMemberConflicts()

 Dim currVal As Object = mc.CurrentValue

 Dim origVal As Object = mc.OriginalValue

 Dim databaseVal As Object = mc.DatabaseValue

 Dim mi As MemberInfo = mc.MemberInfo

 Console.WriteLine("Member: " & mi.Name)

 Console.WriteLine("current value: " & currVal)

 Console.WriteLine("original value: " & origVal)

 Console.WriteLine("database value: " & databaseVal)

 Console.ReadLine()

 Next

 Next

 End Try
Example 6
This example is designed for your experimentation in resolving member conflicts. The code block simulates two different users. User1 begins the update process first, but before User1’s changes can be submitted, User2 has changed the data in the database.

You can run and rerun and enhance this code block after changing the RefreshMode option (KeepChanges, KeepCurrentValues, or OverwriteCurrentValues) to see how database values change. As written here, values for the two member conflicts (Col B and Col C) are written to the Console.

For simplicity only one row is updated in this example, but ConflictMode is set to ContinueOnConflict, and looping code is included for the conflict list and the member conflict list.

 Imports System.Reflection

 Module Module1

 Sub Main()

 'Reset table to original values to allow reuse.

 Dim resetdb As Northwnd = New _

 Northwnd("C:\program files\linq preview\data\northwnd.mdf")

 Dim q = _

 (From c In resetdb.Customers _

 Where c.CustomerID = "ALFKI" _

 Select c).First()

 q.CompanyName = "Alfreds Futterkiste"

 q.ContactName = "Maria Anders"

 q.ContactTitle = "Sales Representative"

 resetdb.SubmitChanges()

 resetdb.Connection.Close()

 'User1 begins update process by querying database.

 Dim user1 As New Northwnd(resetdb.Connection)

 Dim q1 = _

 (From c In user1.Customers _

 Where c.CustomerID = "ALFKI" _

 Select c).First()

 'User2 makes changes before User1 has submitted changes.

 Dim user2 As New Northwnd(resetdb.Connection)

 Dim q2 = _

 (From c In user2.Customers _

 Where c.CustomerID = "ALFKI" _

 Select c).First()

 q2.ContactName = "Mary Anders"

 q2.ContactTitle = "Service Representative"

 user2.SubmitChanges()

 user2.Connection.Close()

 'User1 tries to submit changes.

 q1.CompanyName = "Alfred Futterkiste"

 q1.ContactTitle = "Marketing Representative"

 'user1.Log = Console.Out

 Try

 user1.SubmitChanges(ConflictMode.ContinueOnConflict)

 Catch ex As OptimisticConcurrencyException

 Console.WriteLine("Optimistic concurrency error")

 Console.ReadLine()

 For Each cc As OptimisticConcurrencyConflict _

 In ex.Conflicts

 'Change RefreshMode options here:

 cc.Resolve(RefreshMode.KeepChanges)

 Dim entityInConflict As Object = cc.Object

 Dim table As ITable = cc.Table

 Console.WriteLine("Table name: " & table.Name)

 Console.Write("Customer ID: ")

 Console.WriteLine(entityInConflict.CustomerID)

 Dim mc As OptimisticConcurrencyMemberConflict

 For Each mc In cc.GetMemberConflicts()

 Dim currVal As Object = mc.CurrentValue

 Dim origVal As Object = mc.OriginalValue

 Dim databaseVal As Object = mc.DatabaseValue

 Dim mi As MemberInfo = mc.MemberInfo

 Console.WriteLine("Member: " & mi.Name)

 Console.WriteLine("current value: " & currVal)

 Console.WriteLine("original value: " & origVal)

 Console.WriteLine("database value: " & databaseVal)

 Console.ReadLine()

 'manual merge

 If Not mc.HaveModified Then

 'Resolve can take one of the values, or

 'you can choose a RefreshMode option.

 mc.Resolve(databaseVal)

 End If

 Next

 Next

 End Try

 'User1 tries again to submit

 user1.SubmitChanges()

 Console.WriteLine("Changes submitted")

 Console.ReadLine()

 End Sub

End Module

7.7 .NET Framework Function Support and Notes
The following paragraphs provide basic information regarding DLinq type support and differences from the .NET Framework.
7.7.1 Primitive Types

Implemented
Arithmetic and comparison operators

Translation uses SQL’s POWER
Cast, Object.ToString:

Conversion between char and numeric is done by UNICODE / NCHAR; otherwise SQL’s CONVERT is used

Not implemented
(Of Type).Parse

Enums can be used and mapped to integers in a table, however DLinq does not support conversions between integers / enums and the corresponding string values (Parse / ToString).

Difference from .NET
The output of ToString for double uses CONVERT(NVARCHAR(30), @x, 2) on SQL, which always uses 16 digits and “Scientific Notation”, e.g. “0.000000000000000e+000” for 0, so it does not give the same string as .NET’s Convert.ToString().
7.7.2 System.String

Implemented
Non-shared methods:

Length, Substring, Contains, StartsWith, EndsWith, IndexOf, Insert, Remove, Replace, Trim, ToLower, ToUpper, LastIndexOf, PadRight, PadLeft, Equals, CompareTo. All signatures are supported, except when they take the StringComparison parameter, etc., as detailed below.

Shared methods:

 Concat(...) As String 'all signatures
 Compare(strA As String, strB As String) As Integer
 String(integer) As Char
 Equals(a As String, b As String) As Boolean
Constructor:

 New (c As Char, count As Integer)
Operators:

 &, =, <>
Not implemented

Methods that take or produce an array of char, methods that take a CultureInfo / StringComparison / IFormatProvider

Shared:

 Copy(str As String) As String
 Compare(strA As String, strB As String, ignoreCase As Boolean) As Integer
 Compare(strA As String, strB As String, comparisonType As StringComparison) As Integer
 Compare(strA As Atring, strB As String, ignoreCase As Boolean, culture As CultureInfo) As Integer
 Compare(strA As Atring, indexA As Integer, strB As Atring, indexB As Integer, length As Integer) As Integer
 Compare(strA As String, indexA As Integer, strB As String, indexB As Integer, length As Integer, ignoreCase As Boolean) As Integer
 Compare(strA As String, indexA As Integer, strB As String, indexB As Integer, length As Integer, comparisonType As StringComparison) As Integer
 Compare(strA As String, indexA As Integer, strB As String, indexB As Integer, length As Integer, ignoreCase As Boolean, culture As CultureInfo) As Integer
 CompareOrdinal(strA As String, strB As String) As Integer
 CompareOrdinal(strA As String, indexA As Integer, strB As String, indexB As Integer, length As Integer) As Integer
 Join(separator As String, value (,...) As String()) As String
Non-shared:

 ToUpperInvariant() As String
 Format(format As String, arg0 As Object) + overloads As String
 IndexOf(value As String, startIndex As Integer, comparisonType As StringComparison) As Integer
 IndexOfAny(anyOf As char()) As Integer
 Normalize() As String, IsNormalized() As Boolean
 Normalize(normalizationForm As NormalizationForm) As String
 Split(...) As String()
 StartsWith(value As String, comparisonType As StringComparison) As Boolean
 ToCharArray() As Char()
 ToUpper(culture As CultureInfo) As String
 TrimEnd(ParamArray trimChars As char()) As String
 TrimStart(ParamArray trimChars As char()) As String
Restrictions / Difference from .NET

SQL uses collations to determine equality and ordering of strings. These can be specified on a SQL Server Instance, a database, a table column, or an expression.

The translations of the functions implemented so far do not change the collation or specify a different collation on the translated expressions. So if the default collation is case-insensitive, functions like CompareTo or IndexOf can give results that differ from what the (case sensitive) .NET functions would give.

The methods StartsWith(str) / EndsWith(str) assume the argument str is a constant or an expression that is evaluated on the client. That is, it is currently not possible to use a column for str.

7.7.3 System.Math

Implemented shared methods

Abs, Acos, Asin, Atan, Atan2, BigMul, Ceiling, Cos, Cosh, Exp, Floor, Log, Log10, Max, Min, Pow, Sign, Sinh, Sqrt, Tan, Tanh, Truncate --all signatures

Not implemented

IEEERemainder

DivRem has an out parameter, so you cannot use that in an expression. The constants Math.PI and Math.E are evaluated on the client, so they do not need a translation.

Difference from .NET

The translation of the .NET function Math.Round is the SQL function ROUND. However, ROUND works slightly differently on SQL than it does on .NET. .NET uses “Banker’s rounding,” which rounds to the next even number when the last digit is 5 (for example, 2.5  2, 3.5  4. The SQL function ROUND rounds up when the last digit is 5.

7.7.4 System.Convert

Implemented

Methods of form To(Of Type1)(x As Of Type2) where Type1, Type2 is one of:

boolean, byte, char, DateTime, decimal, double, float, Int16, Int32, Int64, string.
The behavior is the same as a cast:

For ToString(double) there is special code to get the full precision.

For conversion integer / char, DLinq uses SQL’s UNICODE / NCHAR function

Otherwise the translation is a CONVERT.

Not Implemented

ToSByte, UInt16, 32, 64: These types do not exist in SQL.

To(Of Type as Integer)(value As String, fromBase As Integer), ToString(... value, toBase As Integer) As Integer
IsDBNull(value As Object) As Boolean
GetTypeCode(value As Object) As TypeCode
ChangeType(...) As Object
Versions with the IFormatProvider parameter

Methods that involve an array (To/FromBase64CharArray, To/FromBase64String)
7.7.5 System.TimeSpan

Implemented

Constructors:

 TimeSpan(ticks As Long)

 TimeSpan (year As Integer, month As Integer, day As Integer)

 TimeSpan (year As Integer, month As Integer, day As Integer, hour As Integer, minutes As Integer, seconds As Integer)

 TimeSpan (year As Integer, month As Integer, day As Integer, hour As Integer, minutes As Integer, seconds As Integer, milliseconds As Integer)

Operators:

 Comparison operators (<, =, etc.)

 +, -

Shared methods:

 Compare(t1,t2)

Non-shared methods / properties:

 Ticks, Milliseconds, Seconds, Hours, Days

 TotalMilliseconds, TotalSeconds, TotalMinutes, TotalHours, TotalDays

 Equals, CompareTo(value As TimeSpan)

 Add(TimeSpan), Subtract(TimeSpan)

 Duration() (= ABS), Negate()

Not implemented

 ToString()

 Shared FromDays(value As Double) As TimeSpan

 Shared FromHours(value As Double) As TimeSpan
 Shared Parse(s As String) As TimeSpan
7.7.6 System.DateTime

Implemented

Constructors:

 DateTime(year As Integer, month As Integer, day As Integer)

 DateTime(year As Integer, month As Integer, day As Integer, hour As Integer, minutes As Integer, seconds As Integer)

 DateTime(year As Integer, month As Integer, day As Integer, hour As Integer, minutes As Integer, seconds As Integer, milliseconds As Integer)

Operators:

 Comparisons

 DateTime – DateTime (gives TimeSpan),

 DateTime + TimeSpan (gives DateTime)

 DateTime – TimeSpan (gives DateTime)

Shared methods:

 Add (TimeSpan), AddTicks(long),

 AddDays/Hours/Milliseconds/Minutes (double)

 AddMonths/Years(Integer)

 Equals

Non-shared methods / properties:

 Day, Month, Year, Hour, Minute, Second, Millisecond

 DayOfWeek

 CompareTo(value As DateTime) As Integer
 TimeOfDay() As TimeSpan
 Equals, ToString()

Difference from .NET

SQL’s datetime values are rounded to .000, .003 or .007 seconds, so it is less precise than .NET’s.

The range of SQL’s datetime starts at January 1st, 1753.

SQL does not have a built-in type for TimeSpan. It uses different DATEDIFF methods that return 32bit integers. One is DATEDIFF(DAY,…), which gives the number of days; another is DATEDIFF(MILLISECOND,…), which gives the number of milliseconds. An error results if the DateTimes are more than 24 days apart. In contrast, .NET uses 64bit integers and measures TimeSpans in ticks.

To get as close as possible to the .NET semantics in SQL, DLinq translates TimeSpans into 64bit integers and uses the two DATEDIFF methods mentioned above to calculate the number of ticks between two dates.

DateTime UtcNow is evaluated on the client when the query is translated (like any expression that does not involve database data).

Not implemented

 IsDaylightSavingTime() As Boolean
 IsLeapYear(year As Integer) As Boolean
 DaysInMonth(year As Integer, month As Integer) As Integer
 ToBinary() As Long
 ToFileTime() As Long
 ToFileTimeUtc() As Long
 ToLongDateString() As String
 ToLongTimeString() As String
 ToOADate() As Double
 ToShortDateString() As String
 ToShortTimeString() As String
 ToUniversalTime() As DateTime
 FromBinary(dateData As Long), FileTime, FileTimeUtc, OADate

 GetDateTimeFormats(...) As String()
 DateTime(ticks As Long)
 Parse(string)

 property DayOfYear
7.8 Debugging Support

7.8.1 DataContext Methods to Get Generated SQL

DataContext provides methods and properties to obtain the SQL generated for queries and change processing. These methods can be useful for understanding DLinq functionality and for debugging specific problems.

	Member
	Purpose

	Log
	Prints SQL before it is executed. Covers query, insert, update, delete commands. Usage:

db.Log = Console.Out;

	GetQueryText(query)
	Returns the query text of the query without of executing it. Usage:

 Console.WriteLine(db.GetQueryText(db.Customers));

	GetChangeText()
	Returns the text of SQL commands for insert/update/delete without executing them. Usage:

Console.WriteLine(db.GetChangeText());

7.8.2 DLinq Query Visualizer
You can use this tool as a visual helper for refining your queries. The query visualizer applies to database queries and shows the query expression together with the generated SQL.

In default mode, the Visualizer constructs a SQL query text that is equivalent to the command that will be executed. This text can be modified and executed; the result is a grid view of the data received. Executing this query uses a new connection with the same connection string as the original query.

For example, type in the following query against a Northwind database:

 Imports System.Query.Queryable

 Module Module1

 Sub Main()

 Dim db As New Northwnd _

 ("c:\program files\linq preview\data\northwnd.mdf")

 Dim q = _

 From c In db.Customers _

 Where c.City = "London" _

 Select c

 'Place breakpoint here:

 For Each cust As Customers In q

 Console.WriteLine(cust.CustomerID)

 Next

 Console.ReadLine()

 End Sub

 End Module

When your program stops at the breakpoint, open a Watch window to look at ‘q’ or hover over the variable q to see the tool tip; you should see a magnifying glass icon which you can click to open the visualizer window.

[image: image2.jpg]EEISOL Server Query Visualizer.

SELECT [t0],[CustomerID], [+0]{Companyame], [t0][Contactiiame], [t0] [ContactTitle], [t0] [Address], [t0].[Cty], [t0]. [Region],
[t0] [PostaiCodel, [t0] [Cauntry], [t0]Phore], (0] {Fax]

FROM [Customers] 45 [£0]

WHERE [t0].[City] = Londor

] Orginelquery

When you click Execute, you will see the result grid, as follows.

[image: image3.jpg]& QuenyResult Il

CustoredD Comparyhlame Cortacthame ContactTille Address Ciy

L :-ou1 | troundthe Hom | Thomas Hardy | Sales Represent.. | 120 Hanover Sa._| London |
BsBEV 8 Boverages |Vt Aot | Sals Fpresen.__| FaunteyCicus P’d 1

consH | Consolidated Hol.. | EleabethBron | Saes Represent.. | Bekely Garden... | London 1|

 feestc [EasonComect. |AmDevon |Sekshgent | 35KingGeage Lordon

|
NoRTS Notsauh | SinenCoonther | Selesssocite | St House 30.. Loron I
]

seves [Sovonscas mp._|Hoiumar|3aks Woroger | 30Wauast Rl |London

Selecting “Original query” lets you see and execute the query in a form that is identical to what DLinq executes when the query is evaluated:

[image: image4.jpg]EEISOL Server Query Visualizer.

(Customers). Where(c => op_Eaualty(c. ity "London’)

| SELECT [t0] [CustomerID], [t0].[CompanyName], [t0].[Contactame, [t0] [CantactTile] [t2][Adsress], 0] [City], 0] [Region],
[t0] PostalCodel, [t0] [Cauntry], [t0](Phore], [t0] [Fax]
RO [Ctomers] 5 0]

| @0 [5ystem.string] > [WVar Char]: Londort

Here you see the original query text (with @p0, etc., in the SQL text), and for each parameter the CLR type, SQL type, and value. In this mode, the text cannot be modified.

You can switch back and forth between “Original query” and the user modifiable text, where your changes are remembered. You can use this feature to compare the results of your modified queries with the original query.

In rare cases it is possible that the result of executing the text form of the SQL query gives different results than the original form since the type information is lost when the parameters are replaced by a text representation of their value. The original form should always give the same results as the actual query.
An example for this is the following query against a Northwind database:

 Dim x As Double = 1

 Dim q = _

 From c In db.Customers _

 Select (c.Orders.Count + x).ToString()

In this case, the text representation of x is just “1”, which results in strings representing integers, whereas in the original form SQL receives the information that x is a floating point number and generates different string expressions.

If the DLinq query results in two SQL queries, additional radio buttons “Query 1” and “Query 2” appear on the visualizer. Use these buttons to switch from one SQL text to the other. If you make changes to them, they are remembered, so you can switch back and forth during changing.

The “Execute” button executes both queries and gives a side by side display of both result sets.

For example,

Imports System.Query.Queryable

Module Module1

 Sub Main()

 Dim db As New Northwnd _

 ("c:\program files\linq preview\data\northwnd.mdf")

 Dim q2 = _

 From c In db.Customers _

 Where c.Country = "France" _

 Group By New {c.PostalCode, c.ContactName} _

 Select New {it.Key, g := it}

 'Place breakpoint here:

 Console.ReadLine()

 End Sub

End Module

[image: image5.png]EE| SQL Server Query Visualizer

Table{Customers). Where(c =3 EQ(Comparestring(c.Country, "France, Faks), 0)) GroupBy(c => new _Ananymous_Main
{PostalCode = c.PostalCode, Contacthame = c.Contacthame}).Select(t => new _Anonymous_ain_3_13 {Key = It Key,

SELECT [t1].[Contacthame], [t1] [PostalCode],
SELECT COUNT(")
FROM [Customers] 45 [t2]
WHERE ([t1] [Contactlame] = [¢2] [Cortacthame]) AND ([+1][PostalCode] = [+2][PostalCode]) AND (¢
(case
WHEN [£2].[Country] < France! THEN -1
WHEN [e2] [Country] 3
ELSE L
END)) = 0)
)45 [Group]
FROM (
SELECT [t0].[ContactName], [t0] [PostalCode]
FROM [Customers] 45 [t0]
WHERE {

[Jorigna auery ©aeyt Oz Ereate

The result displays:

[image: image6.png]ery Result

Cortactame PostalCads. Growp CustoreiD Comparyhlame_ Cortacthame Cortact]
1000 1 Lamaison dAsie | Armetie Roulet | Sales Mo
Caiine Schmit | 44000 1 FRANR France restaualion | Carne Schmit | Marketing
Dariel Torini | 78000 1 LACOR Lacome dabond... Dariel Torini | Sales el
Doririque Perier | 75016 1 SPECD Spécialtés dumo... Dominiaue Perier | Marketing
Frédérque Cleaur | 67000 1 BLONP Blondesddslpire... | Frédériaue Citeaus | Marketing
Janine Labune | 44000 1 DUMON Dumonds ertier | Jarine Labrune | Qurer
Lawence Lebihan | 13008 1 BONAP. Bon app Lauence Lebihan | Ouner
Marie Bertand | 75012 1 PARIS Fois spécialtés | Marie Bertiand | Owner
Matine Rancé | 53000 1 FOLIG Folies goumandes | Matine Rancs | Assistan
Mary Saveley | 63004 1 vICTE Victuailes en stock | Mary Saveley | Sales Ag)

Paul Herrit

51100

VINET

Vins et aloaols C.

Paul Herrit

Accouni|

The first query gives the number of entries in each group. The second query retrieves the data.

If the DLinq query results in more than 2 SQL queries (when the result of the query is a group of groups), the query visualizer currently only shows the first two queries.

Copyright SYMBOL 211 \f "Symbol" Microsoft Corporation 2006

IF DATE \@ "yyyy" = "1998" "1998-" . All Rights Reserved.

Copyright SYMBOL 211 \f "Symbol" Microsoft Corporation 2006

IF DATE \@ "yyyy" = "1998" "1998-" . All Rights Reserved.

