
[image: image1.jpg]Microsoft

Windows Server2003

Change Management During Deployment
Microsoft Corporation

Published: November 2002
Abstract

This white paper outlines some of the many ways that Microsoft® Windows® Server 2003 and the Microsoft .NET Framework make it easy for administrators to deploy updates to managed applications—securely and efficiently. It describes the sophisticated change management, versioning, and deployment features that offer increased efficiency, reliability, and time savings.
This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2002 Microsoft Corporation. All rights reserved.

Microsoft, SQL Server, Visual Basic, Visual Studio, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Contents

4Introduction

4Deployment Challenges

4The Windows Server 2003 Solution

5The Architecture’s Impact on Change Rollout

7Determining What to Deploy

7Deploying Updated Components (Assemblies)

9Deploying Updated ASP.NET Web Applications

10Deploying Updated Windows and Other .EXE Applications

11Configuration Files

11Application Policy File

11Publisher Policy File

12Machine Policy File

13Version Numbers

13Version Probing

15Rolling out changes

15Deploying changes

15Verification and Rollback

17Conclusion

18Related Links

Introduction

The.NET Framework and Windows® Server 2003 provide clear advantages for deploying updates to managed applications. The .NET architecture can deploy updated components of applications without adversely affecting other applications that require different versions of the same components, thus avoiding “DLL Hell.” Configuration files at the publisher, machine, and application level offer complete control over .NET component versioning. Windows Server 2003 and Windows Installer can automatically update properly designed Windows applications without necessitating taking down the service.

Deployment Challenges

Changes need to be rolled out for various reasons, such as security updates and service packs, upgrades and feature enhancements, or enterprise-wide synchronization

Traditionally, managing updates was expensive and error-prone. Updating shared components could break existing applications that relied on the updated DLL. Prior to .NET, there was no way for multiple versions of a single DLL to be installed on one system. Furthermore, Web applications could not be updated while running, which required services to be shut down, and even for the machine to be rebooted, whenever an update was installed.

Enterprise-wide deployment offers additional challenges beyond those faced on a single machine. Changes have to be propagated to multiple application servers and clients. Redeploying full applications can require excessive bandwidth.

The Windows Server 2003 Solution

The Windows Server 2003 architecture offers sophisticated change management and deployment features. There are simple techniques such as copying files that can be used to update applications or parts of an application. More sophisticated, but still easy to use techniques such as the Windows Installer and auto-updateable applications allow you to tweak the change management process to your needs.

These techniques work because of the way the server architecture was designed for handling applications at the lowest level. Rich versioning support allows multiple versions of a component or control to run on a system simultaneously. Components can also be private to an application to protect applications from being affected by global updates. Runtime version checking and configuration files can ensure that the original components with which the application was built are used at runtime. Conversely, the developer can explicitly ensure that the latest version of a component is sought out and even auto-downloaded at runtime.

The appropriate method of change deployment depends on the nature of the application and extent of the update. We’ll outline them briefly here and discuss them in more detail once we’ve discussed version control features of Windows Server 2003.

In the simplest case, when updating private components on a single computer, you can use FTP or XCOPY or any other file management tool to copy the updated components into a private directory. Unlike in the past, when there was only a single DLL that was shared by the entire system, private assemblies (i.e., .NET DLLs) can be accessed by a single application by simply placing them in a local folder with the application. The assembly manifest, usually built when the EXE is being compiled, can also tell the runtime version checker to search folders besides the one containing the EXE itself. There is no need to register an updated private component in the Windows registry or the Global Assembly Cache (GAC). Regardless, in no case does installing an updated private assembly interfere with other executables that were built with other versions of the assembly.

Even shared assemblies can be deployed to clients or servers without interference among multiple versions of the same DLL or the executables that depend on them. The GAC is a centralized repository of assemblies (EXEs and DLLs). Because each assembly is strongly named and explicitly versioned, the GAC can contain multiple versions of a single assembly. The Microsoft Windows Installer is a sophisticated yet easy-to-use installation program which can update assemblies in the GAC as well as entire applications.

The .NET Framework installs the Shell Cache Views extension to Windows Explorer that lets you browse and edit the GAC (stored under C:\%windir%\Assembly. Windows Server 2003 also includes the command-line utility (gacutil.exe) with which you can edit the GAC.

Updates can also be driven from the client-side, as the architecture enables creation of auto-updating Windows and other applications. Developers can design the application to download the components of the application from Windows Server 2003 the next time the application is run. Alternatively, applications can periodically check the publisher’s policy file on the server to see if an updated version of an assembly is available. These features do require the developers to build them into their applications.

Active Directory Services Interface (ADSI) is a programming API that allows Active Directory (AD) to deploy changes based on either a machine’s identity or a user identity. .NET Remoting, and other automation technologies can roll out application updates by automatically calling scripts to install application on remote server.

For server applications, Application Center can schedule and manage deployment across a server cluster. It can propagate changes from the master server to subordinate servers. It allows the application to be updated on the fly without interruption by routing requests to servers where the application has already been updated.

For more information, see the following topics:

· Deploying Versioned Components
· Active Directory Service Interfaces

· Preparation, Verification, and Deployment of Applications
The Architecture’s Impact on Change Rollout

When deploying updated private assemblies, you can simply copy the new component, such as a .DLL, over the old version of the component. If the application using the assembly is a Web application, there is no need to stop Internet Information Services (IIS) to perform the update. For more complicated installations, developers can deploy a Microsoft Windows Installer (.msi) file. Windows Installer programs are capable of rolling back to the previous configuration if the installation process fails or is cancelled. This transactional capability ensures that all components are updated in unison.

Multiple versions of shared assemblies can be installed on a single machine, eliminating the risk of overwriting old versions with a new version. However, with shared assemblies, as with private assemblies, it is best to implement a code revision tracking system for both private and shared assemblies. Microsoft Visual SourceSafe is a robust revision management system that works with other Microsoft and third-party products. It can and should be used to maintain complete revision histories of all your components, along with release notes for each revision.

Shared assemblies must be strong-named and installed into the GAC as described in Preparation, Verification, and Deployment of Applications. A Windows Installer application can update the GAC when the new component is installed and can optionally remove older versions of the same component. Removing old components is not necessary and should be done with caution as other applications may rely on old versions of the shared components. To make older applications use the newer version of a component, you can deploy an updated machine configuration (a.k.a. machine policy) file that instructs the application to use a new version of the shared component. Because shared components with a new version number don’t overwrite older versions of the same component, there is an attendant risk of bloating the GAC with unneeded modules. The architecture allows utilities to be written that, using reflection, inspect the manifest of an EXE to check what components it depends upon. Such a utility could delete unneeded shared components, especially those for which a later version exists in the GAC.

Administrators can also use the Windows Explorer to browse the GAC directory (C:\%windir%\Assembly) and delete components manually.

For more information, see Visual Source Safe.
Determining What to Deploy

The application’s type affects what must be deployed and where. For instance, a Web application may need to deploy new ASPX files while a Windows application may only require a component update. Understanding how these application types fit together make it much easier to deploy and update them.

Deploying Updated Components (Assemblies)

When deploying updated components to an application, it is important to understand the components used by that application. One way to determine this is to use the Microsoft .NET Framework Configuration tool, which is installed in Administrative Tools on a system running the .NET Framework. To view the dependencies of an assembly select Applications in the left pane, then click Add an Application to Configure, and then select either the application from the list of applications or browse to find its DLL or EXE file. Finally, click Assembly Dependencies under this assembly to list the modules the assembly uses, as shown in the following figure.

[image: image2.wmf]

Modules that are part of the .NET Framework, such as those starting with System, or Microsoft, Accessibility, modules, or others starting with “ms” such as mscorlib.dll, need not be deployed. Custom modules on which the application is dependent such as the class highlighted in the right pane above must be deployed.

We saw earlier that simply copying a private component to the application’s folder tree will allow an application to use the updated private component. Private components are not version-checked, so the version found is the one that will be used, even if it isn’t the version with which the EXE was built. For instance, the following figure shows a Windows applications bin folder, which in this case contains the .exe for the application and a DLL that is a component used by the application. This is the default folder where the executables for the application are stored. This folder is created automatically by Visual Studio.NET.

[image: image3.wmf]

This figure is also interesting because it shows the .pdb files. These files are used by the debugger to debug the application. You should not see these files deployed with an application because it means the application was compiled to debug mode not release mode and will therefore be larger in size and slower to execute.

Each assembly should declare its version and other description information using the AssemblyVersion attribute of the Assembly class. When developers use Visual Studio .NET to create an application with Visual Basic .NET or C#, an Assembly file is created for them. They can use this file to declare things like the applications name, title, copyright, and so forth.

A VB.NET application might contain an Assembly.VB file with the following information:

<Assembly: AssemblyTitle("CustomerService")>

<Assembly: AssemblyDescription("Customer Service Application")>

<Assembly: AssemblyCompany("NorthWind Traders")>

<Assembly: AssemblyProduct("")>

<Assembly: AssemblyCopyright("NorthWind Traders , 2002")>

<Assembly: AssemblyTrademark("")>

<Assembly: CLSCompliant(True)>

<Assembly: AssemblyVersion("1.0.1.0")>

This information can be inspected using Windows Explorer as shown below:

[image: image4.wmf]

You can see the version number and note that the Description attribute is shown in the Comments field.

If the assembly has a strong name, the developer should declare its key file (used for strong naming) using the AssemblyKeyFile attribute. For example, in Managed C++, the preamble within a shared DLL might look like this:

#using <mscorlib.dll>

using namespace System

using namespace System::Reflection;

[assembly:AssemblyVersion("1.0.0.0)];

[assembly:AssemblyKeyFile("..\\key\\originator.key")];

An updated version of the component might use a new revision number, such as:

[assembly:AssemblyVersion("1.0.1.0)];

Or it might use an updated minor version number, such as:

[assembly:AssemblyVersion("1.1.0.0)];

The VB.NET equivalent might look like:

Imports System::Reflection;

<assembly:AssemblyVersion("1.0.0.0)>

<assembly:AssemblyKeyFile("..\\key\\originator.key")>

Reflection can be used to create an application (in VB.NET or other .NET Framework-compatible language) that can inspect its own manifest for a list of dependencies.

For more information, see the following topics:

· Understanding and Using Assemblies and Namespaces in .NET
· Reflection
Deploying Updated ASP.NET Web Applications

For Web-based applications, you don’t necessarily deploy any changes to the client, as the deployment will most often be limited to one or more servers. For example, if updating a Web Forms application, simply update the corresponding aspx page(s) on the server. Although the HTML tags within an aspx page may not constitute code changes, if the HTML tags change, you’d still need to redeploy the aspx page containing them.

XML Web Services are typically defined in asmx files and are stored on a server with in a Web application. As with changes to aspx files, updating an asmx file on the server is sufficient to deploy the changes, insofar as calls to the existing Web Service will access the newest version.

If you change to the code in your Web application, you will need to deploy a new version of the applications DLL along with the any changes to aspx pages. The new changes to the code will be compiled to IL in the DLL. The only exception to this is if your ASP.NET application is written to auto compile. But this seems to be the rare exception and is not covered here.

Built-in server controls, such as those in the System.Web.UI.HtmlControls and System.Web.UI.WebControls namespaces are part of the .NET Framework. Microsoft is already providing new control libraries (such as the new WebControls for IE). Third party vendors are also providing control libraries. Usually, these new controls will have some type of install program (msi or exe) and the installation will be simple Microsoft can also provide updates to the .NET Framework through service packs which will be a typical service pack install.

For more information, see Internet Explorer WebControls Reference.
Deploying Updated Windows and Other .EXE Applications

Executable applications such as Windows applications are normally easy to update. You simply determine the files you need for the application, then deploy the .EXE along with those files. For instance, as discussed earlier a Windows application might need an assembly named ClassForTesting.dll. Let’s say a developer updates that applications .EXE file but not the assembly. In this case, you simply copy the new .EXE into the proper location. If the DLL had changed, simply copy in the .DLL.

Configuration Files

If you understand how the configuration files work, you can save yourself a tremendous amount of time and effort. The configuration files for .NET applications allow you to completely control the applications running on your systems.

Policy files are XML files that specify the version of a component to use. The .NET Framework includes snap-in for Microsoft Management Console (Microsoft .NET Framework Configuration) to edit policy files, or you can edit the XML by hand. Policy files (also known as configuration files) may be located on the local machine or a remote machine. There are three different policy files that control version at the application level, the publisher level, and the machine level, respectively.

Application Policy File

Each application can have a separate application policy file that specifies which version of a each component the application should use. The application policy file (also called the application configuration file) resides in same directory as application and has a .config extension. For example, the application policy file for MyApp.exe would be MyApp.exe.config (not simply MyApp.config). The policy file for an ASP.NET application residing on the server is always named Web.config.

Absent an application policy file, it is assumed that the application should use the version of the components present when it was originally compiled. These versions are specified in the assembly manifest, usually stored within the EXE file itself. Application configuration files are applied per application and not per assembly. Therefore, each application using a shared assembly (i.e. a DLL) could have a separate configuration file.

The application policy file takes a form similar to the one described in the next section on the publisher policy file. The configuration files are distinguished by their locations and their file names.

To force all executables on machines to use an updated version of an assembly, the component's publisher can provide a publisher policy file (see below) with the updated component to each client. To force all executables on a machine to use an updated version of an assembly, you can use a machine configuration file instead (see below).

Publisher Policy File

The publisher policy file is normally created by an applications creator (publisher). The publisher policy file (also called the publisher configuration file) overrides the application policy file. The publisher policy file is distributed when a new version of the component is published. The publisher policy file must be installed in the GAC. Because it is installed in the GAC, the file must be converted into a signed assembly. The publisher policy is set via the Binding Policy tab from the MiscInfo Properties dialog box, accessible when configuring an assembly in the .NET Framework Configuration tool as shown below.

[image: image5.wmf]

You can see the default setting in this figure, which is to enable the publisher policy.

Publishers should take care not to enforce an upgrade policy via the publisher policy file if the update will break legacy applications. Therefore, it is more common to deploy policy files when incremented the build, revision, or minor version number than a major version.

Ultimately, however, the system administrator of the client machine can control the versioning policy by overriding the publisher configuration file with a machine configuration file. You can also turn off policy file checking using the dialog above for an assembly by unchecking the Enable publisher policy checkbox.

Machine Policy File

The machine policy file (also called the machine configuration file or administrator policy file) overrides both the publisher and application policy files. The machine configuration file must be named Machine.config and be stored in the Config directory where the .NET runtime is installed. The default location is:

%windir%\Microsoft.NET\Framework\v1.0.3705\CONFIG

The machine policy file can be used to override the publisher policy file’s version recommendations to ensure that either older or current component versions are used at the administrator’s discretion.

For more information, see the following topics:

· Creating a Publisher Policy File
· Publisher Configuration Files

·
Machine Configuration Files

· Per-application Configuration

·
<bindingRedirect> Element

Version Numbers

We saw earlier how an assembly should declare its version using the AssemblyVersion attribute of the Assembly class. When deploying a revised shared assembly, be sure to increment its version number, which has four parts: major.minor.revision.build. Setting the AssemblyVersion attribute to “1.0.*” allows .NET to auto-increment the build and revision numbers, but developers must updated the minor and major version numbers manually when appropriate.

Changing the build number implies that the revision is a mandatory bug fix upgrade and should be installed. These so-called Quick Fix Engineering (QFE) bug fixes should be compatible with previous versions. Likewise, changing the revision number implies that only minor changes have been made, but the new version is still fully backward-compatible. Changing the minor version number implies substantial changes have been made but that backward-compatibility has been maintained whenever possible. Minor versions might include features not available in their predecessors, but older features should remain unaffected by the revision. Changing the major version number implies that the new version is substantially different from the previous version and is most likely not backward-compatible.

Global attributes, including version numbers, can appear in multiple source files in a project, but they are generally placed in the file AssemblyInfo.* (where * is the language extension such as VB or CS) file created automatically with Visual Basic .NET projects.

For more information, see the following topics

· Global Attributes
· See “Version Numbers in Visual Basic .NET” in Managing Versions of an Application
Version Probing

We saw above how the machine, application, and publisher policy files can be used to enforce a versioning policy. Using these configuration files and the assembly manifest, .NET can figure out the version of the component to load and run.

Strong-named assemblies (those that are signed with a unique identifier and registered in the GAC) are version-checked at runtime in order to avoid “DLL Hell”. By default, .NET applications will not use updated, strong-named assemblies. But .NET can find the appropriate version at runtime using configuration files also known as binding policy files that override defaults. You can use the Assembly Binding Log Viewer (Fuslogvw.exe), included with the .NET Framework SDK, to view binding information.

Thus, a component publisher can encourage an application to use new version with publisher policy file, but the machine policy file can override the publisher policy, effectively reverting back to a previous version of a component (even the old component version remains stored in the GAC).

A summary of the precedence implemented by the probing mechanism for shared assemblies is:

· The runtime checks for a machine policy file containing system-wide override for this component.

· Absent machine information, the runtime checks for publisher policy file that overrides version information for this component in all applications.

· Absent a publisher policy file, the runtime checks for an application policy file that overrides version information for this component in this application only.

· Absent any overriding policy, the original version from the assembly manifest will be loaded.

Remember that private (local) assemblies are not version checked, but there is still a search hierarchy that dictates the order in which folders will be searched (the first copy of the DLL found will be used). The search order is as follows:

· The assembly manifest is consulted. It contains a list of dependencies, assemblies on which the application itself depends.

· The runtime checks the local folder where the EXE resides for the sought after assemblies. The manifest may specify that certain files are in different folders from the default.

· If an assembly isn’t found in the same folder as the EXE, the runtime searches any subfolder with the same name as the EXE. For example, if the application in question is called MyApp.exe, Windows will search any subfolder named “MyApp.”

· If no version of the assembly is present, the runtime directs the Windows Installer to download the assembly (i.e., an install-on-demand feature).

Rolling out changes

In order to roll out changes, you’ll most likely want to package them into a Microsoft Windows Installer (.msi) file. The Windows Installer is appropriate for simple to complex upgrades. It also has an easy-to-use interface from which you can instruct it to install or uninstall shared components from the GAC. It also supports custom actions to change things such as database or file system items.

There are many other deployment options, such as letting users manually download and install Zip files, or using SMS to install CAB files, which minimizes download time by compressing resources. As addressed in Preparation, Verification, and Deployment of Applications, these techniques are largely the same whether deploying an initial application or an update to it.

If you are running a Web application in a Web farm, you basically update the application by rolling out the changes to each server. You can do this manually but this is time intensive. You can also use a tool like Microsoft Application Center that can roll out the changes for you to all servers, even cycling certain servers out of the farm as the update is rolled in.

Deploying changes

A .NET applications runs as a process separated into one or more domains (an application domain acts like a process within a process). Because application domains are isolated from each other, individual application domains with a process can be halted, replaced, and restarted without affecting other domains within the process. Although most processes use a single application domain, you can create additional domains using AppDomain.CreateDomain to, say load third-party plugins or apply different security constraints for each domain.

The net result is that you can swap assemblies and at runtime without halting an application or affecting other applications. Furthermore, for ASP.NET applications, you can use Application Center to deploy changes across a Web farm as mentioned earlier.

For Windows applications, the user must shut down the application before a component it uses can be replaced.

Active Directory Services Interface (ADSI) offers a complete scriptable interface with which to deploy applications to users, groups of users, or groups of machines.

Whether using a Windows Installer, ADSI, xcopy, a WebForms-based application, or an auto-updating WinForms application when rolling out changes, you’ll usually upload them to a deployment server from which the latest copy can be obtained.

Verification and Rollback

The Windows Installer can perform a transactional installation, meaning it can detect whether the update succeeded (files were downloaded and installed). If not, it can automatically roll back to the previous version. Likewise, when using Windows Installer, an uninstallation hook is automatically added to the installer, allowing the user to back out even after completing the installation.

Regardless, you should test the installation procedure and retest the updated application for proper operation on systems that are representative of the target platforms. Remember to test other applications that rely on any shared components. You can always use the configuration files to ensure that each application uses the desired version of shared assemblies, but this is also a common source of errors. Be sure that your policy configuration files are updated, or your application might not use the newly updated assemblies at all.

If testing reveals problems, consider a complete refresh, that is, reinstalling all the component dependencies rather than just those that theoretically changed. This ensures that the system has uncorrupted versions of the latest files.

If your application is using strong named assemblies and you have rolled out changes, you have some control over the application after the rollout. If you do need to roll back to a previous version, such as if the update causes incompatibilities, you can do either a virtual rollback or a physical rollback. To perform a virtual rollback, you can adjust your policy files to use the older version of the software in all circumstances. For a physical rollback, you would remove the offending code. Remember, when rolling out changes to a deployment server, you must remove them from the server as well as the client if you want to revert the system (if you leave the updated software on the staging server, clients that need the software might download the version with the problems.

Rolling back private assemblies is a bit simpler in some cases and a bit more difficult in others. On the one hand, deleting a private assembly is sufficient to uninstall it; there is no need to unregister the component. Because updating a private component overwrites older versions, however, there is no way to roll back to a previous version of a private assembly that has been overwritten, other that to replace the new assembly with the old one. Therefore, if there is a bug within a private assembly, it is advisable to issue a bug fix and deploy it promptly. Overwriting of shared assemblies isn’t an issue because they don’t overwrite older versions of the assembly.

Conclusion

.NET offers a robust versioning mechanism to ease deployment and head off version conflicts. It offers complete control over multiple versions of strong-named assemblies in shared directories. Windows Server 2003 has the ability to hot-swap components without halting the application or the server. The .NET architecture's varied auto-deployment mechanisms offer increased efficiency, reliability, and time savings.

The features of Windows Server 2003 and the .NET Framework make it easy for you to protect your applications and systems from each other. You can always revert back to changes or take other steps to make sure your systems stay up and running.

Related Links

· What's New in Application Services
· Application Server Technologies
· Preparation, Verification, and Deployment of Applications

· Deploying Applications

