[image: image4.png]'Y

Disc.js Reference Guide

Josh Cohen

Microsoft Corporation
March 2005

Applies to:
 Microsoft® Windows Media® High Definition Video DVD

Summary: Describes how to create the Disc.js JScript file used to define the Windows Media High Definition Video DVD menu and playback experience on a computer. Also provides a reference section describing the objects, enumerations, and functions provided for use in that file.

Legal Notice

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2005 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows Media, Windows NT, Windows Server, Active Directory, ActiveSync, ActiveX, Direct3D, DirectDraw, DirectInput, DirectMusic, DirectPlay, DirectShow, DirectSound, DirectX, FrontPage, HighMAT, JScript, Microsoft Press, MSN, NetShow, Outlook, PowerPoint, Visual Basic, Visual C++, Visual InterDev, Visual J++, Visual Studio, WebTV, Win32, and Win32s are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

The links in this area will let you leave Microsoft's site. The linked sites are not under the control of Microsoft and Microsoft is not responsible for the contents of any linked site or any link contained in a linked site, or any changes or updates to such sites. Microsoft is not responsible for webcasting or any other form of transmission received from any linked site. Microsoft is providing these links to you only as a convenience, and the inclusion of any link does not imply endorsement by Microsoft of the site.

Table of Contents

1Introduction

Creating Your User Playback Experience
2
Creating a Menu
3
Creating a Playback Path
7
Global Variables
9
Code.htm Objects
9
menuObject
9
buttonObject
12
imageObject
15
audioclipObject
16
mediaObject
18
chapterObject
20
windowedmediaObject
21
animationObject
23
dialogObject
25
systemObject
27
discObject
28
textboxObject
30
Enumerations
32
ASPECT_... Enumeration
32
AUDIO_... Enumeration
33
btn_... Enumeration
33
controlMode_... Enumeration
33
lang_... Enumeration
34
MEDIA_... Enumeration
34
MENU_... Enumeration
35
NAV_... Enumeration
35
url_... Enumeration
36
Functions
36
eventHandler
36
For More Information
39

IntroductionDisc.js Reference Guide
This document is one of a set of documents that describes how to create a Microsoft® Windows Media® High Definition Video (WMV HD) DVD. This document describes how to create the menu and playback experience for a computer, using the Disc.js JScript® file. Before reading this document, you should read the overview document, "Overview and Design Guidelines for Windows Media High Definition Video DVDs," to learn the full process for creating a WMV HD DVD and to familiarize yourself with the files and concepts referred to here.
The WMV HD DVD sample code disc provided by Microsoft includes a Code.htm page hosted in the Start.hta hypertext application. This HTML page defines a number of objects, functions, global variables, and enumerated values that are used to create the menu and playback experience on a computer. The actual menu and playback experience are defined by the Disc.js file, a Microsoft JScript® file loaded by Code.htm. The sample code includes this file, but you will modify this file to create a custom menu system for your own DVD discs.
This document describes the objects provided in the Code.htm file, and how to use them in your Disc.js file. For additional menu design guidelines, see "Creating the Menu and Playback Experience" in the document, "Overview and Design Guidelines for Windows Media High Definition Video DVDs."
You will modify the Disc.js file for your own use; this file defines all the menu and media objects displayed on the disc. We recommend that you do not modify Code.htm.
Creating Your User Playback Experience
The following list shows the steps you should follow to create a menu and playback system on a computer.
1. Design your menu hierarchy and disc playback path on paper. The first step in creating your playback experience is to decide what menus and videos will be shown in what order. Menus and videos can be loaded automatically, or in the order you specify in Disc.js, or in an order specified by user input. DVD menu systems typically include a main menu, a chapter selection menu, an "extras" menu that can include bonus music or cast biographies, and a language setup menu. For more information about specifying the menu and video playback order, see "Creating a Playback Path" later in this document. The following diagram shows a simple sketch of a disc menu and playback path.
 [image: image2.png]FBI
warning

Languages Ghapter
Menu Meny

2. Design individual menu layouts on paper. There is no visual design tool for designing a menu system; menus are created by using function calls. Therefore, you must lay out your menus on paper, specifying the exact coordinates and dimensions of each object. You should design each menu for two display aspect ratios: 4 x 3 and 16 x 9. You might need separate graphics for both aspect ratios, and additional graphics for any alternate languages you will support. All menu elements are placed by using x- and y-coordinates and a z-index. All coordinates are specified on a fixed-size grid, regardless of the actual size of the viewing screen; this simplifies design and lets you use the same layout grid for everything, instead of using a different layout grid for each possible screen size. The grid dimensions are defined by the global disc object's layoutCoordinateWidth and layoutCoordinateHeight members: 1280 and 720, by default. You can change these values, but we recommend against it, because that might conflict with other elements in the code provided.
The Code.htm file includes a number of standard menu objects for you to use. These include buttons, images, embedded windows, embedded animations, borderless text boxes, and a dialog box.
3. Create your menu graphics. Menu graphics must be in PNG, JPG, GIF, or BMP format. For a discussion of these formats, see "Creating the Menu and Playback Experience for Computers" in the document, "Overview and Design Guidelines for Windows Media High Definition Video DVDs." You should save all the graphics in the appropriate submenu in the \menu folder on the disc.

4. Create background audio loops, video clips, and animations to use on each menu. You can assign looping audio clips to menu elements. You can also embed video clips and animations in any menu page. You will add these to the appropriate submenus inside the \menu folder on the disc. Animations must be in a format readable by Windows Media Player 6.4. Audio and video clips must be in a format readable by Windows Media Player 9 Series. These audio clips and embedded video windows are added to the global audioList and mediaList members, as described in following steps. Animations are added to a menu's animations member array.
5. List the video files used on the disc. You will create a new mediaObject to represent each video file on the disc, and add it to the global mediaList array of video files. To specify individual chapter points in the media object, create a series of chapterObjects and add them to the chapters member of the mediaObject. A chapterObject is just a pointer to a SMPTE time code location in the file. To navigate to a specific chapter, you would call the "chapter" action that is handled by the eventHandler function, as described in the "Functions" section of this document. A chapterObject does not include an ending time, so playback will start at the indicated time and continue to the end of the video. In order to play back a short block of video and return to a menu, you must create and store subclips on the disc.
6. List the audio files used on the disc. Any audio file used in a menu or as a bonus track should be instantiated as a new audioclipObject, and added to the global audioList array.
7. Create the individual menus. In the Disc.js file, you must create a new menuObject for each menu and add it to the global menuList array of menus. For more information about creating individual menus, see the next topic, "Creating a Menu."
8. Modify the global system and disc objects to specify any custom global playback settings. These settings include the default language, the disc title, and so on. The global objects provided are described in "Global Variables" later in this document.
Creating a Menu
A Windows Media High Definition Video (WMV HD) DVD menu is represented by a menuObject. This object lets you specify in code the display characteristics and behavior of the menu. Menus include visual elements, such as buttons or graphics, sound clips, and embedded videos. Menus can be displayed for an infinite amount of time, or can have a display time limit, after which, an action that you specify will occur.

Menus can contain buttons, images, background sounds, embedded video images, animations, and text boxes. You create these child objects, specifying where they should be displayed, and add them to the appropriate menu collection member: button objects to buttons, image objects to images, and so on.
Each graphical element of a menu is created with a width and height, and x and y coordinates. These values are all absolute screen values in the layout coordinate plane—not values relative to the menu they are assigned to. Therefore, if a menu background image has a left value of 50, and a button on the menu has a left value of zero, the button will be drawn off the left edge of the menu. The coordinates are specified on a plane with a range of 0 to disc.layoutCoordinateWidth and zero to disc.layoutCoordinateHeight. This plane is dynamically resized to match the user’s current screen resolution.

A menu has no background image associated with it—it is just a rectangular Web page with a background color you can specify. To display a background image for a menu, you must add an imageObject to its images array, sized to fit the menu.

A viewer can navigate the buttons on the current menu by using either the arrow keys or mouse on a computer, or a remote control on Windows Media Center Home Edition. Each button lets you specify an action to perform, typically selection of another button on the same menu. For more information, see the buttonObject reference topic later in this document.

Buttons, menus, and other objects also let you specify actions to take when events (such as a click) occur. The action or actions are specified in a string passed to the creation function (or assigned explicitly to member variables). The syntax of this string is fairly complex, and is explained in the eventHandler function reference topic later in this document.

After you have created your menu, you must add it to the global menuList variable instantiated for you in Code.htm. To keep track of your menus, refer to them by using custom MENU_... enumeration values. You should rename the list defined in the sample Disc.js file included with the sample code. You should create one MENU_... value for each menu on your disc.

The following code creates a chapter listing menu with eight buttons, three images, and four audio clips used for mouseover sounds. Clicking a button causes playback to begin at the specified chapter by calling the eventHandler function and specifying the "chapter" action. The exact syntax is described in the eventHandler function reference topic later in this document.
// Create a new menu, identified by
// the MENU_CHAPTERS enumeration value in the menuList array.

menuList[MENU_CHAPTERS] = new menuObject(ASPECT_16x9,audioList[AUDIO_MMBG],"menu:MENU_MAIN",false,false,false,0);

// Add three images. The first is the menu background image.
// The others are overlays on the background.

menuList[MENU_CHAPTERS].images[0] = new imageObject("chBG_16x9.bmp",1280,720,0,0,3);

menuList[MENU_CHAPTERS].images[1] = new imageObject("storm_filmstrip.png",1280,188,0,496,5);

menuList[MENU_CHAPTERS].images[2] = new imageObject("ch1_big.png",561,537,700,10,4,true);

// Add chapter navigation buttons. Each is rendered as a

// PNG file showing a still image from the chapter.

// The onenter event for each button is triggered on a mouseover,

// and performs two actions:

// 1. Plays menu.audioclips[0] (a click noise).
// 2. Calls a custom function, action_swapImage, to change

// an image in the menu dynamically by swapping a member of

// the menu's images array.

// The onclick event starts playback of a file at a chapter location.

menuList[MENU_CHAPTERS].buttons[0] = new buttonObject(
 "ch1.png", // Unselected image.

 "ch1_hi.png", // Selected image.

 197,111,35,526,6, // Location and size parameters.

 -1, "button:1", -1, "button:6", // Navigation parameters.

 "chapter:MEDIA_MAIN,0", // When clicked, go to

 // menuList[MEDIA_MAIN].chapters[0].
 // Next line is mouseover actions.

 "script:action_playAudioClip(0);action_swapImage(2,'ch1_big.png',true)",
 "setNav:6,0,NAV_UP@@setNav:7,0,NAV_UP");
menuList[MENU_CHAPTERS].buttons[1] = new buttonObject(
"ch2.png","ch2_hi.png",197,111,237,526,6,"button:0","button:2",-1,"button:6","chapter:MEDIA_MAIN,1","script:action_playAudioClip(0);action_swapImage(2,'ch2_big.png',true)","setNav:6,1,NAV_UP@@setNav:7,1,NAV_UP");

menuList[MENU_CHAPTERS].buttons[2] = new buttonObject(
"ch3.png","ch3_hi.png",197,111,439,526,6,"button:1","button:3",-1,"button:6","chapter:MEDIA_MAIN,2","script:action_playAudioClip(0);action_swapImage(2,'ch3_big.png',true)","setNav:6,2,NAV_UP@@setNav:7,2,NAV_UP");

menuList[MENU_CHAPTERS].buttons[3] = new buttonObject(
"ch4.png","ch4_hi.png",197,111,641,526,6,"button:2","button:4",-1,"button:6","chapter:MEDIA_MAIN,3","script:action_playAudioClip(0);action_swapImage(2,'ch4_big.png',true)","setNav:6,3,NAV_UP@@setNav:7,3,NAV_UP");

menuList[MENU_CHAPTERS].buttons[4] = new buttonObject(
"ch5.png","ch5_hi.png",197,111,843,526,6,"button:3","button:5",-1,"button:6","chapter:MEDIA_MAIN,4","script:action_playAudioClip(0);action_swapImage(2,'ch5_big.png',true)","setNav:6,4,NAV_UP@@setNav:7,4,NAV_UP");

menuList[MENU_CHAPTERS].buttons[5] = new buttonObject(
"ch6.png","ch6_hi.png",197,111,1045,526,6,"button:4",-1,-1,"button:6","chapter:MEDIA_MAIN,5","script:action_playAudioClip(0);action_swapImage(2,'ch6_big.png',true)","setNav:6,5,NAV_UP@@setNav:7,5,NAV_UP");

// Button to navigate to the main menu.

menuList[MENU_CHAPTERS].buttons[6] = new buttonObject(
"ch_btn1.png","ch_btn1_hi.png",286,53,481,650,7,-1,"button:7","button:0",-1,"menu:MENU_MAIN","script:action_playAudioClip(0);",null);

// Button to navigate to the next group of chapters.

menuList[MENU_CHAPTERS].buttons[7] = new buttonObject(
"ch_btn2.png","ch_btn2_hi.png",147,53,1087,650,7,"button:6",-1,"button:0",-1,"menu:MENU_CHAPTERS2","script:action_playAudioClip(0);",null);

// Audio clips for the "click" sound played on mouseover.
// Several identical clicks are provided, and each button
// links to a different one to enable smooth, complete playback,
// even when the user moves the mouse over several buttons quickly.

menuList[MENU_CHAPTERS].audioclips[0] = new audioclipObject("start.wav",50,false,false);

menuList[MENU_CHAPTERS].audioclips[1] = new audioclipObject("start.wav",50,false,false);

menuList[MENU_CHAPTERS].audioclips[2] = new audioclipObject("start.wav",50,false,false);

menuList[MENU_CHAPTERS].audioclips[3] = new audioclipObject("start.wav",50,false,false);
The following picture shows the menu created by the previous code.
[image: image3.jpg]aw

e E’/v«« ';'s‘.:rm‘ forE 4
: il

The preceding picture has several important elements. The numbers in the picture refer to the numbers in the following list.
9. The background image for the menu, represented by menuList[MENU_CHAPTERS].images[0].
10. A second image overlaid on the background. This image is a larger version of the currently selected button image, and it changes when a chapter button's onenter event is raised.
11. A filmstrip image (images[1]) overlaid by a row of six buttons, displayed as still images from the chapters. The mouse is over menu.buttons[2], which has caused both image 2 and the button image to change: the new button image has a highlight, and image 2 (the overlay) has been swapped to show an enlarged version of the button image (without the highlight).
12. A button that navigates to the main menu (MENU_MAIN).

13. A button that navigates to the next chapter list menu (MENU_CHAPTERS2).

Creating a Playback Path

Code.htm includes global arrays of menu and media objects (videos) used on the disc. The order in which you create and add menus and media objects to these global arrays is unimportant, because the order in which menus or videos are displayed is not determined by the order in which they are stored in the arrays. Rather, each menu lets you specify a timeout period (if any) and a menu to jump to if the timeout value is reached. You can also specify an infinite wait period, and attach menu navigation actions to buttons in the menu. For videos, you can specify the menu that appears after the video has finished playing.

Every media object you create lets you specify an action to take when the media file finishes. Similarly, every menu object includes a timeout time (which can be infinite), and an action to take when the menu times out.

A playback path through the disc can be designed by specifying a list of media and menu objects, and pointing the ending action to the next item, or waiting for user input to branch the path. For instance, the FBI warning menu can specify a timeout value of 5 seconds, and specify a splash video to begin playing when the timeout time is reached. The splash video can specify that the main menu is displayed when the splash video ends. The main menu is given an infinite timeout value, so it waits for user input, either to navigate to another menu, or to begin playback of a video segment. Disc startup is determined by the disc.onstart event, which points to a startup function, typically main.
The next menu or video to be displayed is specified by a string in the format parsed by the eventHandler function. This string can specify a number of actions, but to display a menu, you would pass in the string "menu:menu_enum" where menu_enum is a value that indicates the menu's index in the menuList array. To play a video, you would pass in the string "video:video_enum" where video_enum is an enumeration value that indicates the video's index in the mediaList array of videos. Video playback is full-screen by default; you would not specify any images or buttons around the feature video.
Note that the global disc object has two values set by default: allowHIDActions = false, and licenseSupressErrors = true. The first value hides the cursor and prevents user input; the second hides licensing errors. This enables the full startup path to be uninterrupted until playback reaches the main menu, which is typically the first stopping point on the playback path. When creating a main menu, you should set the event_onload parameter to "setAvailable" to allow user input and display licensing errors. Alternatively, you would have to change these values explicitly in the startup function specified by the disc.onstart event property, which points either to a startup function, such as main, or directly to a media or menu object.
The following code shows the creation of four objects: an FBI warning menu; two short splash videos; and the main menu screen. Each specifies another object to display when it is done, except for the main menu, which waits for user input. Playback follows these steps:

14. Playback is launched by the startup main function.
15. The main function displays the FBI warning menu with a timeout of 5 seconds.

16. The FBI warning menu launches the first splash video, Splash.wmv.

17. When Splash.wmv is finished, it launches the second splash video, Macfree.wmv.

18. When Macfree.wmv is finished, it launches the main menu.
19. The main menu waits for user input. (It has an infinite timeout period.)
The main menu elements have been removed from the code for clarity. (The FBI warning is best handled as a menu, because creating it as a short video clip might let users skip or fast forward through the warning.)
// Code.htm defines two arrays:

// menuList, which holds menus, and

// mediaList, which holds videos.

// Create the FBI menu, which loads mediaList[MEDIA_SPLASH] when done.

menuList[MENU_FBI] = new menuObject(
 ASPECT_16x9, // Sets the aspect ratio.

 false, // No background audio.

 false, // No back menu.

 "script:hideCurs()", // Run a custom script.

 "video:MEDIA_SPLASH", // When timed out, load mediaList[MEDIA_SPLASH].

 5000); // Time out after 5 seconds.

// Create the splash.wmv video, which loads
// mediaList[MEDIA_PROVIDER] when done.
mediaList[MEDIA_SPLASH] = new mediaObject(
 "video/splash.wmv", // Specify the source video.

 1280,720,1, // Specify various display values.

 controlMode_NONE, // Display the image normally.

 false, // No captions.

 false, // Not DRM-protected.

 null, // No chapters.

 "video:MEDIA_PROVIDER"); // When done, load mediaList[MEDIA_PROVIDER].
// Create a second short splash video,
// which loads the main menu when done.

mediaList[MEDIA_PROVIDER] = new mediaObject(
 "video/macfree.wmv", // Specify the source video.

 1280,720,1, // Specify various display values.

 controlMode_NONE, // Display the image normally.

 false, // No captions.

 false, // Not DRM-protected.

 null, // No chapters.

 "menu:MENU_MAIN"); // When done, load menuList[MENU_MAIN].
// Create the main menu, which waits indefinitely for user input.
menuList[MENU_MAIN] = new menuObject(
 ASPECT_16x9, // Set the aspect ratio.

 audioList[AUDIO_MMBG], // Specify a background audio file.

 false, // No back menu, because this is the first menu.

 "setAvailable:all", // Run custom setup items.
 false, // No timeout event.
 false, // No timeout time—infinite duration.
 0, // Active button is menuObject.buttons[0].
 false, // No background color.
 "video:MEDIA_MAIN"); // If "Play" button is pressed on the remote control,

 // play mediaList[MEDIA_MAIN].
// Startup program. Begin the disc experience with the FBI menu.

function main()
{

 writeMenu(menuList[MENU_FBI]);

}
Global Variables

Code.htm creates several global variables for you to use in Disc.js. These variables include an object that controls disc settings; arrays to hold menus, audio, and video used on the disc; and a dialog box to display warnings or informational messages to users. If a global variable is provided that performs an action that you need, you should use the provided variable rather than creating your own. The global variables provided for you are described in the following table.
	Variable
	Type
	Description

	mediaList
	Array of mediaObjects
	This array holds all mediaObjects (videos) used on the disc. Items are indexed using your custom MEDIA_... enumeration values.

	audioList
	Array of audioclipObjects
	This array holds all audioclipObjects (background menu sounds) used on the disc. Items are indexed using your custom AUDIO_... enumeration values.

	menuList
	Array of menuObjects
	This array holds all menuObjects (menus) used on the disc. Items are indexed using your custom MENU_... enumeration values.

	system
	systemObject
	Describes some global system settings. This will require very little modification, if any.

	disc
	discObject
	Contains global disc settings, such as display and language settings. This is used infrequently.

	dialog
	dialogObject
	A Windows-style dialog box that can be used to display various error or important information messages.

The following sections explain how each object type is used.
Code.htm Objects

This section describes the objects that are defined in the Code.htm file for designing your menu and playback experience on a computer. This is not a complete list of all the objects described in Code.htm, but these should be the only objects you need to create your own custom menu system.
menuObject

The menuObject defines a menu that is displayed to the viewer.

Members
activeButton
The zero-based index of the default active button on the menu when it is loaded. This value is changed by user input. The default value is zero (the first button in buttons).
animations
An array of animationObjects on the menu. Animations are accessed by zero-based index.
aspectRatio
An ASPECT_... enumeration value describing the aspect ratio of the menu.
audioclips
An array of audioclipObjects used by the menu. Audio clips are accessed by zero-based index.
backgroundAudio
A string containing a URL that points to an audio file to play in the background while showing the menu. This audio file will loop automatically. False indicates that there is no background audio.
backgroundColor
A string describing the background color in HTML format. This can be either hexadecimal notation ("#000000") or a standard predefined color ("Black").
backMenu
A string value specifying a menu or event to call when the user presses the back key on the remote control or computer keyboard. Use the format required by the eventHandler function, or false to indicate that there is no back menu.
buttons

An array of buttonObjects used by the menu. Buttons are accessed by zero-based index.
images
An array of imageObjects on the menu. Images are accessed by zero-based index.
onload

A string value specifying what event to call when the menu is loaded. Use the format required by the eventHandler function.

onplaybutton

A string value specifying what event to call when the user clicks the Play button on the remote control. Use the format required by the eventHandler function.
ontimeout

A string value specifying what event to call when the menu times out, after the time specified in timeoutTime. Use the format required by the eventHandler function. This is also used to describe the next item to display if a menu, such as the FBI warning, does not allow input.

textboxes
An array of textboxObjects on the menu. Text boxes are accessed by zero-based index.
timeoutTime

The amount of time to wait, in milliseconds, before calling the onTimeoutEvent event.

windowedMedia

An optional windowedmediaObject used to display an embedded video window on the menu. A menu can have only one windowedmediaObject.
Creation Syntax

var menu = new menuObject(
 ASPECT_... enumeration enum_aspectRatio,
 audioclipObject audioclipObject_backgroundAudio,
 menuObject menuObject_backMenu,
 string event_onload,
 string event_ontimeout,
 int int_timeoutTime,
 int int_activeButton,
 string color_backgroundColor,
 string event_onplaybutton
);
Parameters

enum_aspectRatio

An ASPECT_... enumeration value that initializes aspectRatio.
audioclipObject_backgroundAudio

An audioclipObject that initializes backgroundAudio. False indicates that there is no background audio.
menuObject_backMenu

A string that initializes backMenu. False indicates that there is no back menu.

event_onload

A string that initializes onload. False indicates that there is no action.
event_ontimeout

A string that initializes ontimeout. False indicates that there is no action.
int_timeoutTime

An integer that initializes timeoutTime. Zero or false indicates infinite duration.

int_activeButton

An integer that initializes activeButton. False indicates that there is no active button.

color_backgroundColor

A string that initializes backgroundColor. False indicates that there is no background color.

event_onplaybutton

An event that initializes onplaybutton. An empty string indicates that there is no action.
Defined in: Code.htm

Example Code

The following code creates a settings menu page with six images and six buttons that let the user change captioning and audio tracks.
// Create the "languages" menu.

menuList[MENU_LANGUAGES] = new menuObject(
 ASPECT_16x9, // 16 x 9 aspect ratio, by default.

 audioList[AUDIO_MMBG], // The audio clip, from a previously defined
 // object.

 "menu:MENU_MAIN", // Navigate to the Main menu when "back"
 // is pressed.

 false, // No event defined for "on load."

 "menu:MENU_MAIN", // On timeout, go back to the Main menu.

 200000, // Timeout time of 200 seconds.

 0); // Active button on load is button 0.
// Add the images that will be used for the menu buttons.

menuList[MENU_LANGUAGES].images[0] = new imageObject("langBG2_16x9.bmp",1280,720,0,0,3);

menuList[MENU_LANGUAGES].images[1] = new imageObject("lang_dot.png",49,50,100,250,3,false,"disc.videoShowCaptions == false");

menuList[MENU_LANGUAGES].images[2] = new imageObject("lang_dot.png",49,50,100,320,3,false,"(disc.captioningLanguage == 'English')&&(disc.videoShowCaptions == true)");

menuList[MENU_LANGUAGES].images[3] = new imageObject("lang_dot.png",49,50,100,390,3,false,"(disc.captioningLanguage =='German')&&(disc.videoShowCaptions == true)");

menuList[MENU_LANGUAGES].images[4] = new imageObject("lang_dot.png",49,50,750,250,3,false,"mediaList[MEDIA_MAIN].currentLanguage == lang_ENGLISH");

menuList[MENU_LANGUAGES].images[5] = new imageObject("lang_dot.png",49,50,750,320,3,false,"mediaList[MEDIA_MAIN].currentLanguage == lang_GERMAN");

// Add the buttons to let the user select different languages.

menuList[MENU_LANGUAGES].buttons[0] = new buttonObject("lang_none.png","lang_none_hi.png",141,56,150,250,6,-1,-1,"button:1","button:0","subtitle:false","null","null");

menuList[MENU_LANGUAGES].buttons[1] = new buttonObject("lang_english.png","lang_english_hi.png",206,56,150,320,6,-1,-1,"button:1","button:0","subtitle:English","null","null");

menuList[MENU_LANGUAGES].buttons[2] = new buttonObject("lang_deutsch.png","lang_deutsch_hi.png",217,56,150,390,6,-1,-1,"button:1","button:0","subtitle:German","null","null");

menuList[MENU_LANGUAGES].buttons[3] = new buttonObject("lang_english.png","lang_english_hi.png",206,56,800,250,6,-1,-1,"button:1","button:0","audiolanguage:lang_ENGLISH","null","null");

menuList[MENU_LANGUAGES].buttons[4] = new buttonObject("lang_deutsch.png","lang_deutsch_hi.png",217,56,800,320,6,-1,-1,"button:1","button:0","audiolanguage:lang_GERMAN","null","null");

menuList[MENU_LANGUAGES].buttons[5] = new buttonObject("sf_back.png","sf_back_hi.png",135,56,70,620,6,-1,-1,"button:1","button:0","menu:MENU_MAIN","null","null");

buttonObject

The buttonObject represents a clickable button on a menu. The button can be assigned hover and normal images, and actions to perform when the button is selected or clicked.

Members
src
A relative URI of the button image to display when the button is not selected.
hoverSrc
A relative URI of the button image to display when the button is selected or the mouse is hovering over the button.
width
Integer width of the button, from 0–1280. See Remarks.
height

Integer height of the button, from 0–720. See Remarks.

left

Integer left position of the button, in pixels. See Remarks.
top

Integer top position of the button, in pixels, where the top of the page is zero. See Remarks.
zIndex
Integer z-index of the button. The default value is 5.
navLeft
An action to take when the user clicks the left button on the remote control. The default value is -1. This should be in a format that can be handled by the eventHandler function. See Remarks.
navRight
An action to take when the user clicks the right button on the remote control. The default value is -1. This should be in a format that can be handled by the eventHandler function. See Remarks.
navUp
An action to take when the user clicks the up button on the remote control. The default value is -1. This should be in a format that can be handled by the eventHandler function. See Remarks.
navDown
An action to take when the user clicks the down button on the remote control. The default value is -1. This should be in a format that can be handled by the eventHandler function. See Remarks.
display
A string that evaluates to a Boolean value of true or false, indicating whether the button is visible. This string is evaluated at run time, and so can be used to check for conditions such as the current language or menu.
onclick
A string specifying what action to take when the button is clicked. This must be in the format handled by the eventHandler function.
onenter
A string specifying what action to take when the button gets the focus. This must be in the format handled by the eventHandler function.
onexit
A string specifying what action to take when the button loses focus. This must be in the format handled by the eventHandler function.
Defined in: Code.htm

Creation Syntax

var menu = new menuObject(
 string uri_src,
 string uri_hoverSrc,
 int int_width,
 int int_height,
 int int_left,
 int int_top,
 int int_zIndex,
 var variant_navLeft,
 var variant_navRight,
 var variant_navUp,
 var variant_navDown,
 string event_action,
 string event_enterAction,
 string event_exitAction,
 string string_displayCondition
);
Parameters

uri_src

Initializes src.

uri_hoverSrc

Initializes hoverSrc.

int_width

Initializes width.

int_height

Initializes height.

int_left

Initializes left.

int_top

Initializes top.

int_zIndex

Initializes zIndex.

variant_navLeft

Initializes navLeft.

variant_navRight

Initializes navRight.

variant_navUp

Initializes navUp.

variant_navDown

Initializes navDown.

event_action
Initializes onclick. An empty string indicates no action.
event_enterAction

Initializes onenter. An empty string indicates no action.

event_exitAction

Initializes onexit. An empty string indicates no action.

string_displayCondition

Initializes display. null indicates no conditions.
Remarks

The navUp/Down/Left/Right members handle navigation input from a viewer, retrieved either by keyboard clicks on a computer, or by remote control button presses on a computer. Typically, therefore, the event handlers are a string with the format "button:index" where index is the zero-based index of the button on the same menu to navigate to. If no button can be navigated to in a particular direction, set index to -1. In addition to the "button:index" action, you can add other actions to take when a user navigates away from a button.
Example Code

menuList[MENU_5DOT1].buttons[1] = new buttonObject(
 "newBtn_stopTest.png", // Unselected image.

 "newBtn_stopTest_hi.png", // Hover image.

 296, // Width, height, left, top values.

 58,
 937,
 358,
 6, // Z index.

 -1, // No left, right, or up neighbors.

 -1,
 -1,
 "button:2", // Down neighbor.

 // Now provide a long list of actions to
 // take when the button is selected.

 "script:disc.currentMenu.localIsPlaying = false; disc.currentMenu.windowedMedia.stop();disc.currentMenu.redraw();action_setNavigation(2,0,NAV_UP);disc.currentMenu.buttons[0].highlight()",
 "null", // No actions if the button gets

 "null", // or loses focus.

 "disc.currentMenu.localIsPlaying == true;"); // Display condition

imageObject

The imageObject represents an image in a menu. Images can represent background images for menus, or image elements that can remain static or be changed according to user input or disc settings.
Members
src
A relative URI to the image to display.
width
Integer width of the image, from 0–1280. See Remarks.
height

Integer height of the image, from 0–720. See Remarks.

left

Integer left position of the image, in pixels. See Remarks.
top

Integer top position of the image, in pixels, where the top of the page is zero. See Remarks.
zIndex
Integer z-index of the image. The default value is 3.
display
A string that evaluates to a Boolean value of true or false, indicating whether the image is visible. This string is evaluated at run time, and so can be used to check for conditions such as the current language or menu.
hasTransition
A Boolean value specifying whether to use a fade transition when first displaying the image or to use in later interactive scenarios. The default is false.
Defined in: Code.htm

Creation Syntax

var image = new imageObject(
 string uri_src,
 int int_width,
 int int_height,
 int int_left,
 int int_top,
 int int_zIndex,
 bool bool_hasTransition,
 string string_displayCondition
);
Parameters

uri_src
Initializes src.
int_width

Initializes width.
int_height
Initializes height.
int_left
Initializes left.
int_top
Initializes top.
int_zIndex
Initializes zIndex.
bool_hasTransition
Initializes hasTransitions.
string_displayCondition

Initializes display.
Remarks

All image dimensions and placements are given in coordinates of 0–1280 units of width and 0–720 units of height, regardless of the image size in pixels.

Example Code

menuList[MENU_5DOT1].images[0] = new imageObject("surroundBG_16x9.bmp",1280,720,0,0,3);
audioclipObject

The audioclipObject represents an audio file attached to a menu. This audio file is typically used as a looping background audio for the menu, or for other menu-related sounds, such as mouseover or click sounds. It can also be used to link to bonus music files on the disc, although it displays no playback controls such as stop and play. To use this as a background sound, specify this object for the audioclipObject_backgroundAudio parameter of a menu's constructor.

Members
url

A relative URL for the source audio file.
maxLevel

Integer specifying the playback volume of the clip, from 0–100. Note that the name is misleading; this does not set the maximum volume of the clip.
loop

Boolean value specifying whether this sound should repeat indefinitely.

autostart

A Boolean value specifying whether the clip should begin playing as soon as it is loaded.
Defined in: Code.htm

Creation Syntax

var audioClip = new audioclipObject(
 string uri_url,
 int int_maxLevel,
 bool boolean_loop,
 bool boolean_autostart
);
Parameters

uri_url

Initializes url.
int_maxLevel

Initializes maxLevel.
boolean_loop

Initializes loop.
boolean_autostart

Initializes autostart. Although the embedded Player object used for audio clips has a default value of true for autostart, you should initialize this value explicitly so it can be retrieved properly by your code. For background audio, this is usually set to true. For all other clips you should set this to false unless you want playback to start as soon as the parent menu is loaded.
Example Code

The following code creates a new audio clip that is attached to the main menu, sets a playback volume of 50, and prevents autostart and looping.
menuList[MENU_MAIN].audioclips[0] = new audioclipObject(
 "start.wav", // Source URL.

 50, // Startup volume.

 false, // No looping.

 false); // No autostart.

mediaObject

The mediaObject object describes a video or audio file that can be played by the user. Video files are full-screen video, and audio files are bonus tracks that can be selected by a menu. An embedded preview clip should be represented by a windowedmediaObject, and background menu audio by an audioclipObject.

Members
url

A relative path to the media file on the disc.
nativeDisplayWidth

Integer width of the screen, in pixels.
nativeDisplayHeight

Integer height of the screen, in pixels.

pixelAspectRatio

A floating-point value describing the pixel aspect ratio. Typical values include 4/3 and 1.
controlMode

A controlMode_... enumeration value describing how to display the image. The default value is controlMode_NONE.
hasCaptions

A Boolean value specifying whether the file contains a caption stream. The default value is false.
isLicensed

A Boolean value specifying whether the file is DRM protected. The default value is false.
chapters
An array of chapterObject objects, pointing to locations within the file.

resolutions
An array of mediaObject objects pointing to the same content encoded at different resolutions. This can include the version pointed to by the url member, which is considered the default version. You should sort this list by descending resolution size, so the highest resolution version is item zero.

audioLanguages
An array of lang_... enumeration values specifying what languages are supported by this media file.
onfinish
A string specifying what object or function to call when the file finishes. Use the format required by the eventHandler function.

onmenu
A string specifying what object or function to call when the user clicks the Menu button on a remote control. Use the format required by the eventHandler function. If not specified, uses the onfinish event.

Defined in: Code.htm

Creation Syntax

var video = new mediaObject(
 string uri_url,
 int integer_nativeDisplayWidth,
 int integer_nativeDisplayHeight,
 double double_pixelAspectRatio,
 bool boolean_hasCaptions,
 bool boolean_isLicensed,
 array collection_chapters,
 string event_onfinish,
 string event_onmenu
);
Parameters

uri_url

Initializes url.
integer_nativeDisplayWidth

Initializes nativeDisplayWidth.
integer_nativeDisplayHeight

Initializes nativeDisplayHeight.
double_pixelAspectRatio

Initializes pixelAspectRatio.

boolean_hasCaptions

Initializes hasCaptions.

boolean_isLicensed

Initializes isLicensed.

collection_chapters

Initializes chapters.

event_onfinish

Initializes onfinish. An empty string indicates no action.

event_onmenu

Initializes onmenu. An empty string indicates no action.
Example Code

The following code creates a media object representing the main video on a DVD. It specifies the default playback file, several different resolution versions of the same content, and a list of chapter points in the file.
mediaList[MEDIA_MAIN] = new mediaObject("video/stormchasers720.wmv",1280,720,1,controlMode_SHOW,true,true,null,"menu:MENU_MAIN");

// Add a list of different versions of the same content. The second

// is the default version assigned when the object was created.
// The resolutions collection is added in descending order of size.
mediaList[MEDIA_MAIN].resolutions[0] = new mediaObject("video/stormchasers1080.wmv",1440,1080,4/3);

mediaList[MEDIA_MAIN].resolutions[1] = new mediaObject("video/stormchasers720.wmv",1280,720,1);

mediaList[MEDIA_MAIN].audioLanguages[0] = lang_ENGLISH;

mediaList[MEDIA_MAIN].currentLanguage = lang_ENGLISH;

// Add chapter points.
mediaList[MEDIA_MAIN].chapters[0] = new chapterObject('Sail Plane','chapter description','00:00:0.0','chapter 1: Sail Plane');

mediaList[MEDIA_MAIN].chapters[1] = new chapterObject('Monsoons','chapter description','00:03:30.0','chapter 2: Monsoons');

mediaList[MEDIA_MAIN].chapters[2] = new chapterObject('Eye Of The Storm','chapter description','00:12:45.0','chapter 3: Eye of the Storm');

mediaList[MEDIA_MAIN].chapters[3] = new chapterObject('Hurricane Center','chapter description','00:14:37.0','chapter 4: Hurricane Center');

mediaList[MEDIA_MAIN].chapters[4] = new chapterObject('Storm Surfing','chapter description','00:15:32.0','chapter 5: Storm Surfing');

mediaList[MEDIA_MAIN].chapters[5] = new chapterObject('Emily Arrives','chapter description','00:17:23.0','chapter 6: Emily Arrives');

mediaList[MEDIA_MAIN].chapters[6] = new chapterObject('Tornado Chasing','chapter description','00:27:24.0','chapter 7: Tornado Chasing');

mediaList[MEDIA_MAIN].chapters[7] = new chapterObject('Tornado Finding','chapter description','00:33:10.0','chapter 8: Tornado Finding');

chapterObject

The chapterObject is used to provide a pointer to a start time inside a mediaObject. A Chapters menu would include a list of buttons, each pointing to a chapterObject. Chapters are defined by SMPTE start times.

Members
title
A string specifying a short title for the chapter. This is currently not used.

description
A string description of the clip. This is currently not used.

timecode

A string describing a SMPTE time code location in a media file. This is in the format "hh:mm:ss.ff" for hours, minutes, seconds, and frames.

longTitle

A string providing a longer title to display on the menu. This can include valid HTML code to modify the appearance of the string. This is displayed on the menu page holding a chapter object.
Creation Syntax

var chapter = new chapterObject(
 string string_title,
 string string_description,
 string string_timecode
 string string_longTitle
);
Parameters

string_title
Initializes title.

string_description
Initializes description.
string_timecode
Initializes timecode.
string_longTitle
Initializes longTitle.
Remarks

A chapterObject does not include an ending time; playback started at a chapter will continue until the end of the video. If you want to stop playback and return to a menu at a specific time, you must create short video clips.
Example Code

The following code creates a new mediaObject and adds eight chapters to it. Each chapter is given a title in custom HTML code that specifies how it is displayed on a menu.
// Create the mediaObject.

mediaList[MEDIA_MAIN] = new mediaObject("video/stormchasers720.wmv",1280,720,1,controlMode_SHOW,true,true,null,"menu:MENU_MAIN");
// Add the chapters.
mediaList[MEDIA_MAIN].chapters[0] = new chapterObject(
 'Sail Plane', // Short title.

 'chapter description', // Not currently used.

 '00:00:0.0', // Start at the beginning of the video.

 'chapter 1: Sail Plane' // Display name.

);

mediaList[MEDIA_MAIN].chapters[1] = new chapterObject('Monsoons','chapter description','00:03:30.0','chapter 2: Monsoons');

mediaList[MEDIA_MAIN].chapters[2] = new chapterObject('Eye Of The Storm','chapter description','00:12:45.0','chapter 3: Eye of the Storm');

mediaList[MEDIA_MAIN].chapters[3] = new chapterObject('Hurricane Center','chapter description','00:14:37.0','chapter 4: Hurricane Center');

mediaList[MEDIA_MAIN].chapters[4] = new chapterObject('Storm Surfing','chapter description','00:15:32.0','chapter 5: Storm Surfing');

mediaList[MEDIA_MAIN].chapters[5] = new chapterObject('Emily Arrives','chapter description','00:17:23.0','chapter 6: Emily Arrives');

mediaList[MEDIA_MAIN].chapters[6] = new chapterObject('Tornado Chasing','chapter description','00:27:24.0','chapter 7: Tornado Chasing');

mediaList[MEDIA_MAIN].chapters[7] = new chapterObject('Tornado Finding','chapter description','00:33:10.0','chapter 8: Tornado Finding');
windowedmediaObject

The windowedMediaObject represents an embedded Windows Media Player in a menu. This is typically used to display short video clips, but can also be used to play audio bonus tracks. For full-screen video, use mediaObject instead.
Members
media

A relative URI to the video file to display.
width

Integer width of the image.
height

Integer height of the image.

left

Integer left position of the image on the parent menu, in pixels.
top

Integer top position of the image on the parent menu, in pixels, where the top of the menu is zero. See Remarks.
autostart

A Boolean value specifying whether the file should begin to play automatically.
onfinish

A string specifying what action to take when the file finishes. If you want the clip to loop, enter the string value "loop". Otherwise, this must be in the format handled by the eventHandler function.
onplaystatechange
A string specifying what action to take when the play state of the video changes, for example when the file finishes. If you want the clip to loop, enter the string value "loop". Otherwise, this must be in the format handled by the eventHandler function. Currently, the only states handled are playing, transitioning, and file ended.
onscriptcommand
A string specifying what action to take when the video file issues a script command. This must be in the format handled by the eventHandler function.
Defined in: Code.htm

Creation Syntax

var wmo = new windowedmediaObject(
 mediaObject mediaObject_media,
 int int_width,
 int int_height,
 int int_left,
 int int_top,
 bool boolean_autostart,
 string event_onfinish,
 string event_onplaystatechange,
 string event_onscriptcommand
);
Parameters

mediaObject_media
Initializes media.
int_width
Initializes width.
int_height
Initializes height.
int_left
Initializes left.
int_top
Initializes top.
boolean_autostart
Initializes autostart.
event_onfinish
Initializes onfinish. An empty string indicates no action; "loop" indicates that playback should loop.
event_onplaystatechange
Initializes onplaystatechange. An empty string indicates no action.
event_onscriptcommand
Initializes onscriptcommand. An empty string indicates no action.
Example Code

The following code creates an embedded Player on a menu. The sound does not start automatically, but loops playback after it is started.

menuList[MENU_5DOT1].windowedMedia = new windowedmediaObject(
 mediaList[MEDIA_5DOT1], // Source file; here, from the mediaList array.

 862,485,28,112, // Size and location variables.

 false, // Do not autostart.

 "loop"); // Loop playback.
animationObject

The animationObject is used to host an animation in a window. Any animation that can be played in Windows Media Player 6.4 can be displayed in the window. To begin an animation, you must explicitly call its start member function.
Members
url

A relative URL for the source audio file.

width

Integer width of the animation window.

height

Integer height of the animation window.

left

Integer left position of the animation window.

top

Integer top position of the animation window.

autostart

A Boolean value specifying whether the clip should begin playing as soon as it is loaded.

onfinish

A string specifying an action to take when the animation ends. This can be either a string with the format required by the eventHandler function, or "loop" to cause the animation to loop playback.

display
A Boolean value indicating whether the object is visible.

Member Functions

start

A member function that starts the animation.

stop

A member function that stops the animation.
Defined in: Code.htm

Creation Syntax

var animation = new animationObject(
 string uri_url,
 int int_width,
 int int_height,
 int int_left,
 int int_top,
 bool boolean_autostart,
 string variant_event_onfinish
);
Parameters

uri_url

Initializes url.
int_width
Initializes width.
int_height
Initializes height.

int_left

Initializes left.

int_top

Initializes top.
boolean_autostart

Initializes autostart. Although the embedded Player object uses a default value of true, you should initialize this explicitly so this value can be retrieved properly by your code. For background audio, this is usually set to true. For all other clips, you should set this to false unless you want playback to start as soon as the parent menu is loaded.

variant_event_onfinish

Initializes onfinish.
Remarks

The animationObject uses an older display container (Windows Media Player 6.4) because this control does not enforce the playback aspect ratio. Under certain scaling environments, the newer Windows Media Player control can show a row of black pixels along the bottom or right video borders.
Example Code

The following code adds five animations to the Chapters menu and then defines a function to begin playing all of them.

// Add the animations to the menu's animations list.

menuList[MENU_CHAPTERS].animations[0] = new animationObject(
 "chapter1B.wmv", // Name of the animation file.

 426,319,822,141, // Size and location coordinates.

 false, // Do not start the file automatically.

 "loop") // Loop playback.
menuList[MENU_CHAPTERS].animations[1] = new animationObject("chapter2B.wmv",426,319,822,141,false,"loop")

menuList[MENU_CHAPTERS].animations[2] = new animationObject("chapter3B.wmv",426,319,822,141,false,"loop")

menuList[MENU_CHAPTERS].animations[3] = new animationObject("chapter4B.wmv",426,319,822,141,false,"loop")

menuList[MENU_CHAPTERS].animations[4] = new animationObject("chapter5B.wmv",426,319,822,141,false,"loop")

menuList[MENU_CHAPTERS].animations[5] = new animationObject("chapter6B.wmv",426,319,822,141,false,"loop")

// Function to begin showing all animations in the current menu.

function doAnimation(whichAnimation){

 // First, hide and end all existing animations.

 for (var i = 0; i < disc.currentMenu.animations.length; i++) {

 disc.currentMenu.animations[i].domObject.style.display="none";

 disc.currentMenu.animations[i].stop();

 }

 try {

 // Now start all animations in the current menu.

 disc.currentMenu.animations[whichAnimation].start();

 } catch(e){}

}

dialogObject
The dialogObject is used to simulate a modal Windows dialog box. You can specify display text and buttons with associated actions. Because this dialog box is modal, you must close it (or wait for it to time out) before you can click any screen elements.

Code.htm creates a global dialogObject instance that you should use, if a dialog box is needed, because this object is set up to support multiple languages. This is the global dialog member. To use this member, call the show object function, as described below.

The button text on the global object currently includes button text for only English, Italian, and German. All other languages use the English language text. If you want to include additional support for other languages in the dialog box, you must create and include graphics for the text on the Yes, No, OK, Cancel, and Visit buttons, and update the dialogObject function to instantiate these buttons.
Members
dialogTitleFontSize
An integer specifying the font size of the title text for the dialog box. This is based on the cascading style sheet property of font-size. The default value is 48.
dialogFontSize

An integer specifying the font size of the text in the body text. This is based on the cascading style sheet property of font-size. The default value is 26.
dialogFontFamily
A string specifying the font family used for the text in the title and body. This is based on the cascading style sheet property of font-family. The default value is "Tahoma,Arial".

dialogFontColor
A string specifying the font color used in the dialog box. This is either a hexadecimal value or a predefined name. The default value is "#FFFFFF".
dialogFontWeight
A string specifying the font weight used in the dialog box. This is based on the cascading style sheet property of font-weight. The default value is "bold".
dialogDropShadow

A Boolean value specifying whether the text has a drop-shadow effect. The default value is true.
dialogRight

An integer specifying the location of the right edge of the dialog box. The default value is 1073.
dialogTop

An integer specifying the location of the top of the dialog box. The default value is 500.
languages
An array of button arrays describing the standard Yes/No/Cancel/OK/Visit buttons you can use on the dialog box. This member includes a different array for English, German, and Italian. You should modify this array only if you provide additional graphics, as described in Remarks.

returnValue
A btn_... enumeration value that specifies which button the user has clicked. Use -1 or false to indicate no value. The default value is -1.

Defined in: Code.htm

Creation Syntax

The dialogObject creation function takes no parameters. However, to display the object, you must call the dialogObject.show function, described here:
dialogObject.show = function(
 string string_text,
 string string_caption,
 int integer_buttons,
 int integer_timeoutTime,
 string event_onclose
)

Parameters

string_text
A string to display as the body text of the dialog box.

string_caption

A string to display as the caption of the dialog box.

integer_buttons

One or more btn_... enumeration values specifying buttons to include on the dialog box. These values should be combined with a '+' sign, as shown here:
"btn_OK+btn_CANCEL"
integer_timeoutTime

An integer specifying how many milliseconds to wait before performing the action specified by event_onclose. For an infinite limit, specify zero. The default value is 15000.

event_onclose

A string value specifying what event to call when the dialog box closes after a button click. This action is not called if the dialog box times out and closes by itself. Use the format required by the eventHandler function.
Remarks

To handle a button click the dialog box, do not depend on the button click actions of the individual buttons. Rather, specify an event handler in event_onclose, and in this function, check of the returnValue member to see what button was clicked, as shown in Example Code.
The default background of the dialog box is the image file Dialogbg.png, which is provided with the sample code. This is a 925 x 384 pixel image. The title and dialog text are overlaid on this background image, but you do not need to specify the location of the title and text.

The text of the buttons on the dialog box is represented by image files. The global dialog variable has button text appropriate for standard Yes/No/OK/Cancel/Visit buttons in English, German, and Italian. If you want to add appropriate text in other languages, modify the code for the dialogObject.languages array to point to your own custom graphics. These graphics must be placed in the menu\images\ folder on the disc. You should not include a button-click handler in your new buttons; rather, you should specify an event handler in event_onclose that checks for specific values of returnValue. See how the English buttons are created to learn the proper way to add other button languages.

Example Code

The following code displays a dialog box asking the user if he wants to open a new browser Window and navigate to the Microsoft Web site (using the custom dialog_launchURL function). The code for dialog_launchURL, the handler function that closes the dialog box, is also shown.

dialog.show(
 "Would you like to browse to the Microsoft Web site?", // Text.

 "Visit Web Site", // Title.

 btn_OK + btn_CANCEL, // Show OK and Cancel buttons.

 0, // Don't close unless the user clicks a button.

 "dialog_launchURL('http://www.microsoft.com')"
); // Custom function to call when user clicks any button.

// Function called when user clicks OK or Cancel button.

function dialog_launchURL(URL){

 if (dialog.returnValue == btn_OK) {

 window.open(URL);

 }

}

systemObject
The systemObject describes global settings for the viewing session. You should use the global system variable rather than creating your own.
Members
doTransitions
A Boolean value specifying whether menus perform a fade transition when navigating from one to the next. If this value is false, the transition will be a cut instead of a fade. The default value is true.
transitionTime = .5;
The length of a menu fade transition, in seconds. If doTransitions is false, this will be ignored. The default value is 0.5.
aspectRatio
An ASPECT_... enumeration value specifying the screen aspect ratio. The default value is ASPECT_4x3.
languages
An array of lang_... enumeration values describing the languages available on the disc. The list provided is larger than the number of languages fully implemented.

languages.defaultLanguage

The language from the languages array to use as the default.

Creation Syntax

Not created by programmer; created in the Code.htm host code.

Defined in: Code.htm

discObject

The discObject is a global object that describes basic settings on the disc, such as the main menu, the audio and captioning languages, and disc title. You should use the global disc variable rather than creating your own.
Members
discMainMenu
A MENU_... enumeration value specifying which menu should be the main menu on the disc.
discTitle
A title string that is applied to the JScript® document.title and top.document.title elements. The default value is "WMV HD DVD".
videoResolutions
A sorted array of integers representing the various video clip heights, in pixels. This is used to enable the user to choose different video sources, and to resize the Player appropriately. These should be stored in order of decreasing value, where videoResolutions[0] is the largest value. There are no default values for this array.
videoFrameRate
An integer representing the display frame rate. The default value is 24.
videoInterlaced
A Boolean value indicating whether the recorded video is interlaced. The default value is false.
videoHasDRM
A Boolean value indicating whether any audio or video content is DRM protected. This enables the application to correctly request a license for the content; if this value is not set correctly, the protected content will not be played. The default value is true.
captioningLanguage
A string indicating what language should be used for captioning (if videoShowCaptions is true), or "false" (if no captioning is available). The language string must be in the Synchronized Accessible Media Interchange (SAMI) format. There is no default value for this member. Documentation on SAMI can be found on the MSDN Library (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnacc/html/atg_samiarticle.asp).
videoShowCaptions
A Boolean value specifying whether to show captions in the language specified by captioningLanguage.
audioLanguage
A lang_... enumeration value specifying what audio language track should be used for all media objects that support multiple languages). There is no default value for this member.
onstart
Specifies the startup item (function, menu, or other item) for the page. The format for this is the syntax for the eventHandler function. There is no default value for this member.
discAnimationDirectory
A string containing the folder path where all animations are stored on the disc. The default value is "menu\\images\\". (Path slash marks must be doubled, to avoid the escape syntax.)
discAudioDirectory
A string containing the folder path where all audio is stored on the disc. The default value is "menu\\animations\\". (Path slash marks must be doubled, to avoid the escape syntax.)
text
A JScript text object that describes the text display of message boxes. Elements include font size, font color, font face, and so on. Default values are font size 48, font face Arial, drop shadow, and bold.
captionHeight
An integer specifying the height of video captions, if they are displayed. Values range from 0–720, where the height of the screen is 720 units.
distributesMediaPlayer
A Boolean value specifying whether the disc includes code to install the latest version of Windows Media Player. The default value is false.
urls
An array of URLs that the application will display in response to various errors. You should not modify this list unless you add special error-handling code to the Code.htm file, and maintain or verify the accuracy of URLs in the list. The default values are listed in Code.htm.
allowTrickModes
A Boolean value specifying whether the user is allowed to play videos in fast forward or fast reverse. The default value is false.
allowHIDActions
A Boolean value specifying whether to display the mouse and whether to process input actions, such as navigation or click, by using the mouse, the keyboard, or the remote control. This is generally set to false during splash screens, and then set to true when interactive menus are displayed. This should be true during feature playback as well, so the user can navigate back to the main menu.

layoutCoordinateWidth
The width of the relative display surface. The default value is 1280; modifying this value could cause conflicts with the provided code.
layoutCoordinateHeight
The height of the relative display surface. The default value is 720; modifying this value could cause conflicts with the provided code.
Defined in: Code.htm

Creation Syntax

Not created by the programmer; created in the Code.htm host code.

Remarks

This object is created for you in Code.htm. You only need to modify or set member variables.

Example Code

disc.discMainMenu = MENU_MAIN;

disc.discTitle = "Stormchasers"

disc.videoResolutions[0] = 1080;

disc.videoResolutions[1] = 720;

disc.videoFrameRate = 24;

disc.videoInterlaced = false;

disc.videoHasDRM = true;

disc.captioningLanguage = lang_ENGLISH;

disc.audioLanguage = lang_ENGLISH;

disc.onstart = "script:main()" // Call the main() function in Disc.js.

 // This duplicates the setting in

 // disc.discMainMenu.

textboxObject

The textboxObject can display a block of text on a menu or other object. Typically, you would embed the text in a graphic and include different copies of the graphic (for instance, for multiple languages). But if, for some reason, you must change text dynamically, you can use this object.

This object is used to display error or information text boxes on the current menu. It is created by default on a menu inside Code.htm. You should create these sparingly, if at all.

Text boxes have no visible border or background image.

Members
htmlString
The text to display in the text box. This can be simple text, or text embedded inside a valid HTML expression.
width
Integer width of the text box.
height
Integer height of the text box.
left
Integer left position of the text box.
top
Integer top position of the text box.
zIndex
Integer z-index of the text box.
fontSize
Integer font size of the text. This is based on the cascading style sheet font-size property. The default value is 48.
fontFamily
A string specifying the font family of the text. This is based on the cascading style sheet font-family property. The default value is "Tahoma,Arial".

fontColor
A string specifying the color of the text. This is either a hexadecimal value or a predefined name. The default value is "#FFFFFF".
fontWeight
A string specifying the font weight of the text. This is based on the cascading style sheet font-weight property. The default value is "bold".
dropShadow

A Boolean value specifying whether the text has a drop-shadow effect. The default value is true.

cssInfo
A string specifying the cssText property of the textbox's style object.
display
A Boolean value specifying whether to display the text box. The default value is true.

Defined in: Code.htm

Creation Syntax

var mytext = new textboxObject(
 string string_htmlString,
 int int_width,
 int int_height,
 int int_left,
 int int_top,
 int int_zIndex,
 string string_fontSize,
 string string_fontFamily,
 string variant_fontColor,
 string string_fontWeight,
 bool bool_dropShadow,
 string string_cssInfo,
 string evalstring_dataSource
):
Parameters

string_htmlString
Initializes htmlString.
int_width
Initializes htmlString.
int_height

Initializes height.
int_left

Initializes left.
int_top

Initializes top.
int_zIndex

Initializes zIndex.
string_fontSize

Initializes fontSize. The default value is disc.text.fontSize.
string_fontFamily

Initializes fontFamily. The default value is disc.text.fontFace.
variant_fontColor

Initializes fontColor. The default value is disc.text.fontColor.
string_fontWeight

Initializes fontWeight. The default value is disc.text.fontWeight.
bool_dropShadow
Initializes dropShadow. The default value is disc.text.dropShadow.
string_cssInfo
Initializes cssInfo.
Enumerations
The Code.htm and Disc.js files use several enumerations to describe menus, buttons, and settings. These enumerations are described in this section. Because these are JScript®, they are not true enumerations, but rather defined constants. This document groups them by their common prefix, followed by an ellipsis "...".

	Enumeration
	Description

	ASPECT_...
	Describes the aspect ratio of a menu or disc.

	AUDIO_...
	References audioclipObjects in the global audioList array. You should modify these values.

	btn_...
	Describes what kinds of buttons to include on a dialogObject.

	controlMode_...
	Describes how mediaObjects are displayed.

	lang_...
	Specifies a language for various object members.

	MEDIA_...
	References mediaObjects stored in the global mediaList array. You should modify these values.

	MENU_...
	References menuObjects in the global menuList array. You should modify these values.

	NAV_...
	Used by the "setnav" action in the eventHandler function to change a button's navigation events.

	url_...
	References a list of custom URLs in the disc.urls array.

ASPECT_... Enumeration

The ASPECT_... enumeration describes the aspect ratio of a menu or disc.

Values

var ASPECT_4x3 = 0;

var ASPECT_16x9 = 1;

Description

ASPECT_4x3

A 4 x 3 aspect ratio.

ASPECT_16x9

A 16 x 9 aspect ratio.
Defined in: Code.htm

AUDIO_... Enumeration

The AUDIO_... enumeration references audioclipObjects in the global audioList array. You should customize this list to reflect your own list of audioclipObjects. You will later pass these enumeration values into object events to specify actions that an object should take on these media files (typically to begin playback).

Values

var AUDIO_MMBG = 0;

var AUDIO_SFBG = 1;

Defined in: Disc.js

btn_... Enumeration

The btn_... enumeration describes what kinds of buttons to include on a dialogObject.

Values

var btn_OK = 1;

var btn_CANCEL = 2;

var btn_YES = 4;

var btn_NO = 8;

var btn_VISIT = 16;
Remarks

The dialogboxObject.Show function accepts one or more of these values to describe what buttons to display on a dialog box.
Defined in: Code.htm

controlMode_... Enumeration

The controlMode_... enumeration describes how mediaObjects are displayed.

Values

var controlMode_NONE = 0;

var controlMode_SHOW = 1;

var controlMode_NOSHOW_ALLOW = 2;

var controlMode_HIDEATSTART_SHOW = 3;

Description

controlMode_NONE

The media object cannot be skipped.
controlMode_SHOW

The media object is visible.

controlMode_NOSHOW_ALLOW

Not currently used.
controlMode_HIDEATSTART_SHOW

The control or media object should be hidden until the mouse is moved.
Defined in: Code.htm

lang_... Enumeration

The lang_... enumeration specifies a language for various object members.

Values

var lang_NOTIMPLEMENTED = -1

var lang_NONE = -1

var lang_ENGLISH = 0

var lang_CHINESE_SIMPLIFIED = 1

var lang_CHINESE_TRADITIONAL = 2

var lang_DANISH = 3

var lang_GERMAN = 4

var lang_SPANISH = 5

var lang_FRENCH = 6

var lang_ITALIAN = 7

var lang_JAPANESE = 8

var lang_DUTCH = 9

var lang_NORWEGIAN = 10

var lang_POLISH = 11

var lang_PORTUGUESE_BRAZIL = 12

var lang_PORTUGUESE_PORTUGAL = 13

var lang_RUSSIAN = 14

var lang_SWEDISH = 15

var lang_FINNISH = 16

Defined in: Code.htm

MEDIA_... Enumeration

The MEDIA_... enumeration references mediaObjects in the global mediaList array. Although this list is defined in the sample code, you should rename the items to reflect the media files on your own disc. You will later pass these enumeration values into object events to specify actions that an object should take on these media files (typically to begin playback).

Values

var MEDIA_MAIN = 0;

var MEDIA_SPLASH = 1;

var MEDIA_PREVIEW1 = 2;

var MEDIA_PREVIEW2 = 3;

var MEDIA_PREVIEW3 = 4;

var MEDIA_PREVIEW4 = 5;

var MEDIA_PREVIEW5 = 6;

var MEDIA_PREVIEW6 = 7;

var MEDIA_PREVIEW7 = 8;

var MEDIA_PREVIEW8 = 9;

var MEDIA_PREVIEW9 = 10;

var MEDIA_PREVIEW10 = 11;

var MEDIA_5DOT1 = 12;

var MEDIA_PROVIDER = 13;

Defined in: Disc.js

MENU_... Enumeration

The MENU_... enumeration references menuObjects in the global menuList array. You should customize this list to include one enumeration value for each menuObject you create. There are no required values. You will later pass these enumeration values into object events to specify actions that an object should take on these media files (typically to navigate to a new menu).

Values

var MENU_MAIN = 0;

var MENU_SPECIAL_FEATURES = 1;

var MENU_CHAPTERS = 2;

var MENU_CHAPTERS2 = 3;

var MENU_PREVIEWS = 4;

var MENU_FBI = 5;

var MENU_DISC_OPTIONS = 6;

var MENU_LANGUAGES = 7;

var MENU_5DOT1 = 8;

var MENU_RESOLUTIONS = 9;
Defined in: Disc.js

NAV_... Enumeration

The NAV_... enumeration is used by the "setnav" action in the eventHandler function to change a button's navigation events.

Values

var NAV_LEFT = 0;

var NAV_RIGHT = 1;

var NAV_UP = 2;

var NAV_DOWN =3;

Defined in: Code.htm

url_... Enumeration

The url_... enumeration indexes an array of URLS to navigate to. You should retain the values defined in Code.htm, and add additional URLs, if required.

Values

var url_PERFORMANCE_FAILURE = 0

var url_MEDIAPLAYER_DOWNLOAD = 1

var url_MOREINFO_SPYBOT = 2

var url_AX_FAILURE =3

Remarks

If you add your own URL, be sure that the URL is valid, and will not expire.
Defined in: Code.htm

Functions

The Code.htm file includes many functions, but only one that you must understand to create objects: eventHandler. This function is called to process the string that you assign to the event handler members of all the objects you create.
eventHandler

The eventHandler function processes actions that are assigned to various events of various objects, such as the click of a buttonObject or the end of playback of a mediaObject. The eventHandler receives a string parameter that it parses to discover how to handle the event. The following code shows the syntax of the function.
Syntax

eventHandler(
 string action1:data1[@@action2:data2...]
);
action
The type of item being called or created, such as a script, a button, or an audio clip. For a list of supported values, see Remarks.

data
Data specific to the object type passed in.
Remarks

The submitted string contains one or more commands to perform. If multiple commands are sent, they must be divided by "@@" marks, and they are processed in order, from left to right.

Each individual command is composed of two elements, action and data, separated by a ':' character. The following string includes two actions, both "setNav", with a data string assigned to each action:

setNav:6,0,NAV_UP@@setNav:7,0,NAV_UP

The following table shows possible values for action, the corresponding data value for each action, and what each action does. You should not modify the case statement if you want to handle additional actions. If you want to add functionality to this function you should use the "script" action, and pass in a custom script string.
If the data value is specified as "Ignored," you should specify zero or null as the data value.
	action Value
	data Value
	Description

	script
	The name of a function defined in Disc.js or Code.htm, or attached to any of the hosted ActiveX objects; or a string script.
	Runs the script named in data.

Example:

script:action_playAudioClip(0);action_swapImage(2,'ch2_big.png',true)

	button
	Integer.
	Navigates to the button indexed by data on the current menu.

Example:

button:2

	menu
	A MENU_... enumeration value.
	Navigates to the menu indexed by data.

Example:

menu:MENU_MAIN

	menubutton
	Two items, separated by a comma. The first evaluates to an index representing a menu; the second evaluates to a button index on that menu.
	Navigates to a specific button on a different menu.

	audioclip
	An integer.
	Plays an audio clip indexed by data in the current menu's audioclips collection.
Example:

audioclip:2

	setnav
	A comma-delimited list of three items:
· The index of the button that is being modified on the current menu.

· The index of the new target button.

· NAV_... enumeration value specifying which navigation direction to assign the new target to.
	Changes the currently selected button's navLeft, navRight, navUp, or navDown member to point to a new button on the menu.
Example (sets currentMenu.buttons[6].navUp to "button:0"):

setNav:6,0,NAV_UP

	closewindow
	Ignored.
	Calls the JScript function top.close to close the topmost window.
Example:

closeWindow:0

	action Value
	data Value
	Description

	video
	One or two values, comma-delimited:
· The first value evaluates to an integer specifying a mediaObject in the global mediaList variable.
· An optional second value can be a SMPTE time string, as described in chapterObject.timecode.
	Starts playback of a video file, with an optional chapter pointer into the file.
Example:

video:MEDIA_SPLASH, 00:12:45.0

	volumeup
	Ignored.
	Increases the volume of the main Windows Media Player object by 15 (up to a maximum of 100).

	volumedown
	Ignored.
	Decreases the volume of the main Windows Media Player object by 15 (down to a maximum of zero).

	showvideocontrols
	Nothing.
	Opens a video control panel.

	showaudiocontrols
	Nothing.
	Calls a custom function to display the Windows audio control settings panel.

	launchurl
	A URL.
	Opens a new Web browser and navigates to the URL specified by data.
Example:

launchURL:http://www.wmvhd.com

	chapter
	Two elements, comma delimited:
· A value that evaluates to an index specifying a mediaObject in the mediaList array.

· The index of a chapterObject in the current menu's menuObject.chapters array.
	Enables you to jump to a specific chapter in a specific video.

Example

chapter:MEDIA_MAIN,1

	subtitle
	A string specifying what SAMI subtitling language to use, or false, for no subtitling.
	Displays captions in the specified language, or turns off captioning if data is false. It does this by setting the disc.captioningLanguage member to the specified language, and setting disc.videoShowCaptions to true. (Or, if false is sent, videoShowCaptions is set to false.)
Example:

subtitle:German

	action Value
	data Value
	Description

	audiolanguage
	A lang_... enumeration value specifying the audio language to use.
	Sets the audio language to use in the video file. It does this by setting disc.audioLanguage to the specified enumeration value.

Example:

audiolanguage:lang_GERMAN

	setAvailable
	Nothing.
	Enables user input, displays the cursor, and enables licensing errors to be displayed. Typically, the main menu should include this in the event_onload parameter. If not, you must set disc.licenseSuppressErrors to false and disc. allowHIDActions to true manually.

Example Code

The following code creates a new button, and assigns actions to the onclick, mouseover, and losefocus events. When the button is clicked, it navigates to the menuList[MENU_DISC_OPTIONS] menu. When the cursor hovers over the button, a sound is played from the currentmenu.audioClips array. When the button loses focus, the navigation pointers are changed to reflect the current situation.
menuList[MENU_MAIN].buttons[4] = new buttonObject(
"mm_btn4.png",
"mm_btn4_hi.png",
277,56,922,650,6,
-1, // No button to move to when user specifies navLeft.

"button:5", // On navRight, go to currentmenu.buttons[5].
"button:3", // On navUp, go to currentmenu.buttons[3].
-1, // No button to navigate to on navDown.

"menu:MENU_DISC_OPTIONS", // Go to menuList[MENU_DISC_OPTIONS] menu

 // when button is clicked.

"audioclip:4", // When button is moused over, play

 // currentmenu.audioClips[4].

"setNav:5,4,NAV_LEFT"); // When button loses focus,
 // change its navLeft target.

For More Information

· For general information about Windows Media technologies, see the Windows Media Web page (http://www.microsoft.com/windows/windowsmedia/).

· Reference documentation on Microsoft® JScript® can be found in the MSDN Library (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/html/js56jsoriJScript.asp?frame=true).
[image: image1.png]l’.. Wind owe Med e

