

Installing and Servicing .NET Framework in Windows XP Embedded devices
Componentizing Windows XP Professional for embedded systems developers

Author/Editor: Mark Chamberlain

Published: June 2006

Applies To: Microsoft Windows XP Embedded (XPE) Service Pack 2 (SP2).

[image: image1.png]

Copyright

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This white paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

The example companies, organizations, products, people and events depicted herein are fictitious. No association with any real company, organization, product, person or event is intended or should be inferred.

© 2006 Microsoft Corporation. All rights reserved.

Microsoft, Active Directory, BizTalk, MSDN, Visual SourceSafe, Visual Basic, Visual C#, Visual Studio, Windows, Windows NT and Windows XP are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Disclaimers

This document contains information adapted from many sources, including MSDN®, and third-party developers. No functional guarantees are stipulated regarding suggestions offered in this document. There is no guarantee that a particular tip will function in every run-time scenario. Each Windows XP Embedded run-time image consists of a specific subset of Windows XP Professional components chosen by each developer to accommodate specific product requirements. The developer is ultimately responsible for creating and deploying the test plan that is appropriate to the product. The developer is strongly advised to fully test any tips used from this document. These tests should be based upon the developer’s unique product requirements and operational environment.

Microsoft provides third-party contact information to help you find technical support. This contact information may change without notice. Microsoft does not guarantee the accuracy of this third-party contact information.

The third-party products that this article discusses are manufactured by companies that are independent of Microsoft. Microsoft makes no warranty, implied or otherwise, regarding the performance or reliability of these products.

Table of Contents

1Overview

1Choosing the deployment technique

2Method 1. Using Microsoft Installer (MSI) based packages

2Pre-installation dependencies

2Components that .NET Framework 1.1 depend upon

2Components that .NET Framework 2.0 depend upon

3Benefits

3Drawbacks

3Servicing MSI-based .NET Framework

4Method 2. Using Optional Component Manager (OCM) based packages

4Benefits

4Drawbacks

4Servicing runtimes using XP Embedded component-based (OCM) .NET Framework

4Servicing OCM-Based .NET Framework 1.1

4Servicing Component-based .NET Framework 2.0

4.NET Framework upgrade / update considerations

4Addenda 1 – How to prepare a .NET Framework 2.0 (or ASP .NET 2.0) update package for an XP Embedded runtime

4Global Assembly Cache (GAC) Updates

4Native Image Updates

4.TLB, .INI and CLR.MOF Updates

4Refreshing System.Enterprise.Services

4Refreshing aspnet_regiis

4All other files

4Registry key updates

4Addenda 2 – How to extract MSP-baseD .NET Framework 2.0 or ASP.NET 2.0 packages.

4Download and Install the ORCA tool

4Information on ORCA:

4Obtain Orca from the Windows Installer SDK:

4Extracting the files from the .MSP

4Extracting the registry updates from the .MSP

4Method 1 – Use ORCA to highlight the differences

4Method 2 – Differencing the ORCA Registry.idt files

4Additional resources

Overview

The purpose of this document is to help you choose the most appropriate .NET Framework installation mechanism for your Windows XP Embedded (XPE) device and/or application.

If you have developed applications for your XPE device that use managed code, then you will need to include .NET Framework in your device. There are two distinct techniques for accomplishing this.

1. After FBA completes, install .NET Framework using the same mechanism that is used to add .NET Framework to XP Professional. This uses the Microsoft Installer (MSI) mechanism, and is preferred because the MSI mechanism allows you to directly apply Microsoft updates to the runtime.

…or…

2. Install the framework by selecting the .NET Framework component(s) from within Windows XP Embedded Target Designer. This will result in the framework being installed during First Boot Agent (FBA). For .NET Framework 1.0 or 1.1, the resulting installation conforms to the same Optional Component Manager (OCM) mechanism that is used in the Windows Server and Tablet PC platforms. For .NET Framework 2.0 or greater, the OEM will need to package their own runtime updates.

The MSI technique is the most convenient from the standpoint of servicing the device with future updates. The OCM technique results in the smallest image footprint, but more work is required when it becomes necessary to install .NET Framework updates.

It is strongly recommended that you use the MSI technique, i.e. install .NET Framework after FBA completes, in order to simplify the servicing process. The reasons for this are described later in this document.

Choosing the deployment technique

As indicated above, the .NET Framework is available in both the MSI and the OCM formats. The purpose of this section is to help you choose which format is most appropriate for your XP Embedded device.

Method 1. Using Microsoft Installer (MSI) based packages

The MSI format is commonly used for packaging and distributing updates for Windows XP Professional. Your XP Embedded image can be configured to accept MSI packages.

You can use the following links to obtain and install .NET Framework MSI packages for Windows XP Professional. These same packages will generally install into a Windows XP Embedded runtime, if the device includes the minimum underlying components that Windows Installer and the Framework require in order to function.

Microsoft .NET Framework 1.1 Service Pack 1
Microsoft .NET Framework Version 1.1 Redistributable Package
Microsoft .NET Framework Version 2.0 Redistributable Package (x86)
Pre-installation dependencies

Before installing .NET Framework via MSI, you should ensure that your image satisfies the dependency requirements of the installer mechanism as well as the framework itself. For example you must include the Windows Installer Service and the Windows Logon component.

Components that .NET Framework 1.1 depend upon

For a list of prerequisite .NET Framework 1.1 components, please reference the following XP Embedded component:

Update for Windows XP Embedded with SP1 (831558)
Do not execute the download referenced in the above link. Instead:

1. Save the executable in a folder of your choosing

2. Open the executable using WinZip

3. Extract netfxv1.1.sld

4. Open netfxv1.1.sld using Component Designer

5. Obtain the list of dependencies via the Component or Group Dependency section of the .NET Framework 1.1 component. If you use ASP.NET 1.1, do the same for the ASP.NET 1.1 component.

Components that .NET Framework 2.0 depend upon

For a list of prerequisite .NET Framework 2.0 components, please reference the following blog to obtain a list of dependencies:

.NET Framework version 2.0 installer dependencies
Open the referenced dotNetV2Deps.sld file using Component Designer, and then inspect the component’s list of Component or Group Dependencies.

You can install the MSI .NET Framework package manually, after First Boot Agent (FBA) completes, or you can create a custom component that contains the MSI package. The custom component can automatically launch the MSI near the end of the FBA process. The above blog link offers a component that will accomplish this.

Benefits

· The MSI technique is the easiest way to install the package after the device has already been deployed.

· Updates supplied via the MSI package are supported by Microsoft Product Support Services.

· The MSI package can be installed either as an FBA step, or after FBA has completed (which can be after the image has been deployed to the end user).

· All future versions and updates for .NET Framework 2.0 and greater, for XP Professional, are supplied only in the MSI packaging format. You can directly apply future XP Professional style desktop security updates without having to dissect the security update and manually update binaries and registry entries (using DUA for example).

· The MSI mechanism offers the ability to uninstall the package later if desired.

Drawbacks

· The MSI technique requires more disk space than the OCM technique, due to the requirement that the Windows Installer Service must be included in the image, and the additional disk space required by MSI to keep track of installation history etc. However, if image footprint is not critical, the Windows Installer Service by itself is a very useful component to include in the image, as it facilitates future servicing of the image with MSI based features and updates.

Servicing MSI-based .NET Framework

In order to update an image with any MSI-based package, take the following steps:

1. Copy the MSI package to the target device (or configure a network share that provides access to the package)

2. Execute the MSI package, from within the live (i.e. on-line) XP Embedded image.

The XPe Device Update Agent (DUA) can accomplish this, or you can develop your own private update mechanism.

Method 2. Using Optional Component Manager (OCM) based packages

In Windows XP Professional, Optional Component Manager (OCM) is launched when you click on the Add/Remove Windows Components button, in the Add or Remove Programs control panel. The Optional Component Manager itself is not an available feature in Windows XP Embedded. However, various components that are optionally installable via the OCM mechanism, have been included, or are available, as components in XP Embedded. This includes .NET Framework 1.1 and .NET Framework 2.0.

You simply pick and choose the desired components in Target Designer. When you build your image, these OCM-based components are automatically built into your image.

If your image is based on XP Embedded Service Pack 2 (SP2) the Component Database includes the component for .NET Framework 1.1. If you are currently using XP Embedded SP1, you can obtain the .NET Framework 1.1 component here:

Update for Windows XP Embedded with SP1 (831558)
Benefits

· The OCM method requires less footprint than the MSI method. In comparison, MSI requires Windows Installer Service and WinLogon. MSI also keeps track of installation history which consumes disk space. OCM does not do this.

· .NET Framework versions 1.1 and 2.0 have been conveniently componentized, so no post-FBA steps are needed.

Drawbacks

· Windows XP Embedded component (OCM) based installations are more difficult to update. You cannot apply standard XP Pro security updates for .NET Framework, because the XP Pro update mechanisms are MSI based.

· NET Framework 2.0 sets an indicator in the registry to indicate that it is OCM based, although there will be no updates available via OCM; it is not really an OCM based installation. This can make updating considerably more difficult. The XP Embedded developer (OEM) must manually analyze the contents of the MSI based version, extract the files and registry entries contained within them, repackage them and perform other .NET registration tasks, for each update to be applied to a deployed runtime image. Details are provided later in this document.

· Updates created by the XPE developer, as described in the prior bullet point, are not formally supported by Microsoft Product Support Services (PSS).

· OCM based installations do not offer an uninstall capability in XP Embedded.

Servicing runtimes using XP Embedded component-based (OCM) .NET Framework

As indicated earlier, servicing OCM based components in deployed runtimes requires more execution steps when compared with servicing MSI based components.

In the case of .NET Framework 1.x, you must obtain updates from the updates designed for Tablet PC or Windows Server 2003.

In the case of OCM .NET Framework 2.0 and greater, OCM updates are no longer available, although the framework indicates that it is OCM based. The OEM must manually dissect MSI packages and then deploy the extracted file and registry updates using a mechanism of their choosing (such as DUA).

Servicing OCM-Based .NET Framework 1.1

Windows XP Embedded .NET Framework components use the OCM based model. Therefore any updates you apply will need to be based on OCM as well.
 "Tablet PC / Media Center" or Windows Server 2003 use OCM, up to, but not beyond, version 1.1 of the .NET Framework.

Use the following workaround to enable installation of "Tablet PC / Media Center" or Windows Server 2003 .NET framework security updates onto XPe runtimes:

1. Figure out the exact version of the .NET Framework you have (major and minor version plus service pack). If you are using the .NET 1.0 component we shipped, it will be 1.0 SP2. If you are using the .NET 1.1 component we shipped, it will be 1.1. If you are using the .NET 1.1 component in the value-add folder of XPE SP2, it will be 1.1 SP1

 2. Click on this search result to obtain a list of security patches:
http://www.microsoft.com/downloads/results.aspx?freetext=security_patch&productID=C9C8FCFB-BFF3-40CA-B59D-216F6850000A&DisplayLang=en
and locate the hotfix that matches the version of the .NET Framework you have. You will need to choose the version that is specifically marked for "Tablet PC / Media Center" (for 1.0 hotfixes) or "Windows Server 2003" (for 1.1 hotfixes)

3. Download the exe for the hotfix from the download center

4. Extract the exe to a local folder by running <name of exe> /x:<folder>

5. If you have a service pack of 1.0 or 1.1 installed you will need to add an additional registry value that the update package is checking for as a prerequisite (so if you only have the 1.1 component we shipped you can skip this). You need to add HKLM\Software\Microsoft\Updates\.NETFramework\1.1\SP1, DWORD Installed=1. Note that this key name should be changed as needed to 1.0 or to a different service pack level if there is a higher .NET Framework SP installed.

6. Go to the folder that you extracted the .NET Framework hotfix to in step 4 above and open each of the update*.inf files in the update folder. There is a [Version] section at the top that you will need to update the following values for:

NtBuildToUpdate=2600

NtMinorVersionToUpdate=1

MinNtServicePackVersion=###

MaxNtServicePackVersion=###

ThisServicePackVersion=###

The values of Min, Max and This for service pack should match the CSDVersion value in your registry at HKLM\System\CurrentControlSet\Control\Windows. For XP Embedded SP2 this value should be 512 for example.

7. Now you can run update.exe from the update folder on your embedded device (assuming your embedded device has desktop QFE installer support (or includes the dependencies update.exe needs to run correctly)

Servicing Component-based .NET Framework 2.0

The Windows XP Embedded .NET Framework 2.0 component is not configured to accommodate .MSI based servicing mechanisms. In fact, it adds to the registry an indicator that makes .NET Framework believe that it is OCM based.

Unfortunately, OCM based updates are not supported for.NET Framework 2.0 and greater, and are not supplied by Microsoft. Instead, you must open, analyze and reformat the contents of update packages obtained from the following sources:

1. Windows XP Embedded .NET Framework security updates for components

These updates are normally packages that are executed on your computer that contains your Component Database, in order to update your Component Database with the latest security updates. You can reformat these packages in order to update deployed runtime images. Instead of executing the package, unzip the executable using WinZip in order to obtain access to the files and registry entry references within.

After obtaining a list of files and registry entry entries, you can prepare your own update package. Addenda 1 provides an example using command files.

2. Windows XP Professional .NET Framework updates (MSI or MSP -based packages)

These updates are intended for servicing deployed Windows XP Professional systems. Since they use Windows Installer (MSI) technology, they are not compatible with the OCM mechanism. However, it is possible to inspect the contents of these updates and manually extract binaries and registry updates.

Instructions for extracting the contents of MSI and MSP packages, are provided in Addenda 2 of this document.

After obtaining a list of files and registry entry entries, you can prepare your own update package. Addenda 1 provides an example using command files.

.NET Framework upgrade / update considerations

With Windows XP Embedded, several caveats should be noted:

· Side by Side installations of multiple versions of .NET Framework (or ASP .NET) are not supported in XP Embedded, even though it is supported in XP Home or Professional. Side by Side operation of .NET Framework has not been formally tested by Microsoft.

For example you cannot have both .NET Framework 1.1 and 2.0 installed on the same embedded device. You should test your managed code based applications to ensure they do not depend on assemblies in both 1.1 and 2.0.

· .Net Framework 2.0 is not supported with XP Embedded SP1 or earlier versions.

· OCM and MSI .NET Framework packages are mutually incompatible. You cannot install an XP Embedded Component-based (type OCM) .NET Framework package, and then update or upgrade using an MSI-based package. Nor can you install an MSI-based .NET Framework package and then update or upgrade using an OCM-based package.

The following table will help you identify upgrade procedures for .NET Framework in Windows XP Embedded.

	.NET Framework runtime update type

	Update procedure

	1.1 MSI to 1.1 MSP
	Update using Windows XP Professional updates

	2.0 MSI to 2.0 MSP
	Update using Windows XP Professional updates

	1.1 Component (OCM) to 1.1 Component (OCM)
	Update using Tablet PC or Windows Server update packages, which are OCM-based.

	2.0 Component (OCM) to 2.0 Component (OCM)
	Extract the contents of a corresponding 2.0 MSI update in order to construct your own update package. You custom tailor your own package based on your chosen image servicing mechanism.

Addenda 1 – How to prepare a .NET Framework 2.0 (or ASP .NET 2.0) update package for an XP Embedded runtime

After you have created a listing of all the files and registry entries associated with the package or update, you need to create an update package of your own.

For our example, we will create a package that is deployed using conventional command (batch) file techniques.

Several custom actions are required, depending on the files that are being updated. These custom actions have been broken into several phases below.

Sample binaries from a .NET 2.0 update have been included in the Scripts\Rep folder. In addition, some sample scripts are provided as examples to illustrate the actions listed below.

It is necessary that certain update actions must occur in the order shown:

1. Global Assembly Cache (GAC) updates

2. Native Image Updates

3. .TLB, .INI and CLR.MOF Updates
4. Refreshing System.Enterprise.Services

5. Refreshing aspnet_regiis
Global Assembly Cache (GAC) Updates
If any of the following assembly files are included in the update, then you must run the gacutil tool, from a command prompt, in order to re-install the corresponding assembly into the GAC:

	Path

	%SystemRoot%\Microsoft.NET\Framework\v2.0.50727\

	Binary Name

	Accessibility.dll

	cscompmgd.dll

	CustomMarshalers.dll

	IEExecRemote.dll

	IEHost.dll

	IIEHost.dll

	ISymWrapper.dll

	Microsoft.Build.Engine.dll

	Microsoft.Build.Framework.dll

	Microsoft.Build.Tasks.dll

	Microsoft.Build.Utilities.dll

	Microsoft.JScript.dll

	Microsoft.VisualBasic.Compatibility.Data.dll

	Microsoft.VisualBasic.Compatibility.dll

	Microsoft.VisualBasic.dll

	Microsoft.VisualBasic.Vsa.dll

	Microsoft.VisualC.Dll

	Microsoft.Vsa.dll

	Microsoft.Vsa.Vb.CodeDOMProcessor.dll

	Microsoft_VsaVb.dll

	mscorlib.dll

	sysglobl.dll

	System.configuration.dll

	System.Configuration.Install.dll

	System.Data.dll

	System.Data.OracleClient.dll

	System.Data.SqlXml.dll

	System.Deployment.dll

	System.Design.dll

	System.DirectoryServices.dll

	System.DirectoryServices.Protocols.dll

	System.dll

	System.Drawing.Design.dll

	System.Drawing.dll

	System.EnterpriseServices.dll

	System.Management.dll

	System.Messaging.dll

	System.Runtime.Remoting.dll

	System.Runtime.Serialization.Formatters.Soap.dll

	System.Security.dll

	System.ServiceProcess.dll

	System.Transactions.dll

	System.Web.dll

	System.Web.Mobile.dll

	System.Web.RegularExpressions.dll

	System.Web.Services.dll

	System.Windows.Forms.dll

	System.XML.dll

	AspNetMMCExt.dll

Here is the general format when using the gacutil command:

%SystemRoot%\Microsoft.NET\Framework\v2.0.50727\gacutil.exe /f /i [Path]\[BinaryName]

It is important that you specify full paths in order to ensure that the intended file versions are referenced.
Also, if you want to reduce the output that normally would appear in the command window, use is format:

%SystemRoot%\Microsoft.NET\Framework\v2.0.50727\gacutil.exe /nologo /silent /f /I [Path]\[BinaryName]

Sample command file:
	@Echo off

Echo *********Starting GAC installation**********

Echo Adding mscorlib.dll into the GAC

%systemroot%\Microsoft.NET\Framework\v2.0.50727\gacutil.exe /f /i %systemroot%\Microsoft.NET\Framework\v2.0.50727\mscorlib.dll

if NOT ERRORLEVEL 0 echo Adding mscorlib.dll into the GAC failed! The errorlevel is %errorlevel%

Echo Adding System.Data.dll to the GAC

%systemroot%\Microsoft.NET\Framework\v2.0.50727\gacutil.exe /f /i %systemroot%\Microsoft.NET\Framework\v2.0.50727\System.Data.dll

if NOT ERRORLEVEL 0 echo Adding System.Data.dll into the GAC failed! The errorlevel is %errorlevel%

Echo Adding System.Web.dll to the GAC

%systemroot%\Microsoft.NET\Framework\v2.0.50727\gacutil.exe /f /i %systemroot%\Microsoft.NET\Framework\v2.0.50727\System.Web.dll

if NOT ERRORLEVEL 0 echo Adding System.Web.dll into the GAC failed! The errorlevel is %errorlevel%

Echo *********Completed GAC installation*********

Native Image Updates
The following list represents the list of Native Image (NI) files. If an update includes any of the following file binaries, you must uninstall and re-install the ENTIRE list of NIs.
Note: The order of execution in this list is important.
	Path

	%SystemRoot%\Microsoft.NET\Framework\v2.0.50727\

	Binary Name

	mscorlib.dll

	System.Drawing.Design.dll

	System.Windows.Forms.dll

	System.XML.dll

	System.Data.dll

	System.Design.dll

	System.dll

	System.Drawing.dll

	System.Deployment.dll

	dfsvc.exe

	Microsoft.Build.Engine.dll

	Microsoft.Build.Framework.dll

	Microsoft.Build.Tasks.dll

	Microsoft.Build.Utilities.dll

	Accessibility.dll

	System.EnterpriseServices.dll

	System.Security.dll

	CustomMarshalers.dll

	System.DirectoryServices.dll

	System.DirectoryServices.Protocols.dll

	System.Web.dll

	System.Web.RegularExpressions.dll

	System.Web.Services.dll

	System.configuration.dll

	System.Transactions.dll

	System.Web.Mobile.dll

	Microsoft.VisualBasic.dll

	AspNetMMCExt.dll

To re-install the NIs the whole list must be re-processed. The NIs must first be uninstalled in the reverse order (bottom to top) then, after all uninstallation completes, re-install them in order (top to bottom). It is important to specify full paths as there have been observed oddities when relative paths were used.
To uninstall NIs, open a CMD window and run the following command:
%SystemRoot%\Microsoft.NET\Framework\v2.0.50727\ngen.exe uninstall [Path]\[BinaryName]

To install NIs, run the following command:

%SystemRoot%\Microsoft.NET\Framework\v2.0.50727\ngen.exe [Path]\[BinaryName]

Note: AsNetMMCExt.dll only applies to runtimes with ASP.Net installed. If you do not have that file on your system, simply skip it.
Sample of a partial command file, deploying the uninstall phase. Your file will likely contain a different list:

	@Echo off

Echo *********Starting Native Images uninstallation**********

%systemroot%\Microsoft.NET\Framework\v2.0.50727\ngen.exe uninstall /nologo /silent %systemroot%\Microsoft.NET\Framework\v2.0.50727\System.Windows.Forms.dll

%systemroot%\Microsoft.NET\Framework\v2.0.50727\ngen.exe uninstall /nologo /silent %systemroot%\Microsoft.NET\Framework\v2.0.50727\System.Drawing.Design.dll

%systemroot%\Microsoft.NET\Framework\v2.0.50727\ngen.exe uninstall /nologo /silent %systemroot%\Microsoft.NET\Framework\v2.0.50727\mscorlib.dll

Echo *********Completed Native Images uninstallation**********

Sample of a partial command file, deploying the install phase. Your file will likely contain a different list:

	@Echo off

Echo *********Starting Native Images installation**********

%systemroot%\Microsoft.NET\Framework\v2.0.50727\ngen.exe /nologo /silent %systemroot%\Microsoft.NET\Framework\v2.0.50727\mscorlib.dll

%systemroot%\Microsoft.NET\Framework\v2.0.50727\ngen.exe /nologo /silent %systemroot%\Microsoft.NET\Framework\v2.0.50727\System.Drawing.Design.dll

%systemroot%\Microsoft.NET\Framework\v2.0.50727\ngen.exe /nologo /silent %systemroot%\Microsoft.NET\Framework\v2.0.50727\System.Windows.Forms.dll

Echo *********Completed Native Images installation**********

The remaining items include the TLBs, PerfCounters, the installation of CLR.MOF with mofcomp, running “RegSvcs.exe /bootstrapi” to install the System Enterprise Services, and aspnet_regiis to install ASP.NET into IIS. You will need to do the above updates ONLY when their relevant file binaries are updated in an update . If no file binaries were updated then move on.

.TLB, .INI and CLR.MOF Updates

For TLBs the files are given the extension .TLB.

To install a TLB file, run the following command:

%systemroot%\Microsoft.NET\Framework\v2.0.50727\regtlibv12.exe %systemroot%\Microsoft.NET\Framework\v2.0.50727\(FileName).tlb

For the PerfCounters the files have the extension .INI. Only re-run & install those which were updated. The command is:

%systemroot%\System32\lodctr.exe %systemroot%\Microsoft.NET\Framework\v2.0.50727\(FileName).ini

To re-install CLR.MOF run command:

%systemroot%\System32\wbem\mofcomp.exe %Systemroot%\Microsoft.NET\Framework\v2.0.50727\CLR.mof

Refreshing System.Enterprise.Services

There is no clear cut definition as to whether the System.Enterprise.Services is installed or not. When patching a XP Pro system this command is always run so for servicing the following command should ALWAYS BE RUN:

%systemroot%\Microsoft.NET\Framework\v2.0.50727\RegSvcs.exe /bootstrapi

Refreshing aspnet_regiis

For aspnet_regiis – this update only applies when ASP.NET is included in a runtime. So if “aspnet_regiis.exe” is not on your runtimes, there is no need to do this update. The update command is:

%systemroot%\Microsoft.NET\Framework\v2.0.50727\aspnet_regiis.exe –iru

Sample command file

	@Echo off

Echo *****Starting installation of Performance Counters******

Echo Installing the Performance Counters for corperfmonsymbols.ini

%systemroot%\System32\lodctr.exe %systemroot%\Microsoft.NET\Framework\v2.0.50727\corperfmonsymbols.ini || Echo The installation of the Performance counters for corperfmonsymbols.ini has failed!

Echo Installing the Performance Counters for _dataperfcounters_shared12_neutral.ini

%systemroot%\System32\lodctr.exe %systemroot%\Microsoft.NET\Framework\v2.0.50727_dataperfcounters_shared12_neutral.ini || Echo The installation of the Performance counters for _dataperfcounters_shared12_neutral.ini has failed!

Echo Installing the Performance Counters for _DataPerfCounters.ini

%systemroot%\System32\lodctr.exe %systemroot%\Microsoft.NET\Framework\v2.0.50727_DataPerfCounters.ini || Echo The installation of the Performance counters for _DataPerfCounters.ini has failed!

Echo Installing the Performance Counters for _Networkingperfcounters.ini

%systemroot%\System32\lodctr.exe %systemroot%\Microsoft.NET\Framework\v2.0.50727_Networkingperfcounters.ini || Echo The installation of the Performance counters for _Networkingperfcounters.ini has failed!

Echo Installing the Performance Counters for _DataOracleClientPerfCounters_shared12_neutral.ini

%systemroot%\System32\lodctr.exe %systemroot%\Microsoft.NET\Framework\v2.0.50727_DataOracleClientPerfCounters_shared12_neutral.ini || Echo The installation of the Performance counters for _DataOracleClientPerfCounters_shared12_neutral.ini has failed!

Echo *****Completed installation of Performance Counters*****

Echo *******Starting installation of CLR.MOF into WMI********

%systemroot%\System32\wbem\mofcomp.exe %systemroot%\Microsoft.NET\Framework\v2.0.50727\CLR.mof

Echo *****Completed installation of CLR.MOF into WMI*********

Echo ****Starting installation of the Enterprise Services****

%systemroot%\Microsoft.NET\Framework\v2.0.50727\RegSvcs.exe /bootstrapi

Echo ****Completed installation of the Enterprise Services***

Echo *******Starting installation of ASP.NET into IIS********

%systemroot%\Microsoft.NET\Framework\v2.0.50727\aspnet_regiis.exe -iru

Echo *******Completed installation of ASP.NET into IIS*******

All other files

Any other files, not listed can be treated as a normal file copy, unless the file is currently in use by the system.

Sample command file

	@Echo off

Echo **********Starting Binary Installation******************

Echo Copying the file aspnet_wp.exe

copy .\REP\aspnet_wp.exe %systemroot%\Microsoft.NET\Framework\v2.0.50727\aspnet_wp.exe /v /Y /Z

if NOT ERRORLEVEL 0 Echo The installation for the binary aspnet_wp.exe has failed!

Echo Copying the file mscordacwks.dl

copy .\REP\mscordacwks.dll %systemroot%\Microsoft.NET\Framework\v2.0.50727\mscordacwks.dll /v /Y /Z

if NOT ERRORLEVEL 0 Echo The installation for the binary mscordacwks.dll has failed!

Echo Copying the file mscorlib.dll

copy .\REP\mscorlib.dll %systemroot%\Microsoft.NET\Framework\v2.0.50727\mscorlib.dll /v /Y /Z

if NOT ERRORLEVEL 0 Echo The installation for the binary mscorlib.dll has failed!

Echo **********Completed Binary Installation*****************

If a file is in use by the operating system or an application, your command file cannot delete or replace the file. There are two approaches to replacing a file that is in use:

1. Use the INUSE.EXE utility. This tool sets up a deferred file replacement that occurs automatically the next time the system is booted. Click on this link for details:

How to replace currently locked files with Inuse.exe

2. Rename the in-use file, then copy across its replacement. On the next system boot you can delete the file that was renamed.

Registry key updates

Registry keys can be directly added or edited in the command file.

Sample command file

	@Echo off

Echo *********Starting Registry Key Installation*************

Echo Importing the .REG file "RegKeys.reg"

REG IMPORT .\Scripts\RegKeys.reg || Echo Importing the registry keys from "RegKeys.reg" has failed!

Echo *********Completed Registry Key Installation************

Addenda 2 – How to extract MSP-baseD .NET Framework 2.0 or ASP.NET 2.0 packages.

The procedures described here are needed only if you used the componentized version of .NET Framework 2.0 (which is OCM based). If you used the MSI version, you do not need to follow these procedures because you can update your deployed device by simply executing the MSI or MSP package in your device after the completion of FBA.

For our exercise we will use Microsoft tools such as ORCA. Note however that third party tools are also available; see the Appendix for more information.

Download and Install the ORCA tool

Orca provides direct access to the raw database tables and data streams that collectively define the installation logic for an MSI application.

The Orca database editor is a table-editing tool available in the Windows Installer SDK and it can be used to edit your .msi files.

Information on ORCA:

Windows Installer: ORCA.EXE

Obtain Orca from the Windows Installer SDK:

Windows® Server 2003 SP1 Platform SDK Web Install
Download and install ORCA on your development system. You will be able to use it in order to discover files and registry entries updated by an MSP (windows installer patch) file.

Extracting the files from the .MSP

These steps assume you are using Windows XP Professional in your development system.

Note that in order to analyze the contents of an .MSP package (and the effects that the .MSP patch has on .NET 2.0), this procedure requires that you also must download the .MSI package for .NET FRAMEWORK 2.0 and then create an “administrative share” which you use to post the MSP patch against. Here is the procedure.

1. Open the .NET FRAMEWORK 2.0 (MSI) update package (such as dotnetfx.exe) using WinZip, and expanding the files to a folder of choosing. For this exercise, this folder name will be C:\DOT_NET_EXPANDED.

2. The package will contain a file named netfx.msi. This is the installer package of interest.

3. Open a command prompt.

4. Browse to the C:\DOT_NET_EXPANDED folder.

5. Create a new folder named BASE_FLAT_DIR, where the files from netfx.msi will be placed.

6. Enter the following command which will extract the files in the MSI to your BASE_FLAT_DIR:

Start /wait msiexec /a netfx.msi TARGETDIR=C:\DOT_NET_EXPANDED\BASE_FLAT_DIR /qn
7. Note that the TARGETDIR must be an absolute path, such as the one shown, and not a relative path. Further, do not include spaces in the full path as this seems to confuse the msiexec’s command line argument parser.

8. If you have difficulty with the above command, try removing the /qn option to see the nature of the error. For still more information, include /lx <logname> to generate a debug log.

9. Make a copy of the contents of the BASE_FLAT_DIR to another folder, we will use BASE_FLAT_DIR_PATCHED. This will become the path that will receive the patches from the .MSP package.

10. Download the desired Update, and then use Winzip to open the patch. Find the .MSP file. This may require several Winzip iterations.

11. Copy the .MSP file to BASE_FLAT_DIR_PATCHED.

12. Set your command prompt path to BASE_FLAT_DIR_PATCHED.

13. Run the following command:

Start /wait msiexec /p (patchname).msp /a netfx.msi /qn
14. When msiexec completes, the BASE_FLAT_DIR_PATCHED folder will be updated with the patch.

15. Difference the two directories using your favorite file folder differencing tool. Here are two choices:

Beyond Compare, available here: Beyond Compare
Windiff, available here: Windows XP Service Pack 2 Support Tools

Set the differencing tool so that it compares in binary mode. Also if the tool offers it, turn off date/time stamp comparison so that only the binary data itself is compared.

16. Create your list of updated files and their target folder locations. Copy off the updated files to a new directory of your choosing.

Another method that you can use to obtain an updated file list is to follow this procedure:

1. Use ORCA to open the un-patched .NET Framework 2.0 MSI (netfx.msi).

2. Drag and drop your .MSP on top of the ORCA application.

3. Orca will provide a read-only view of the package. It highlights the MSP updates with Green lines and boxes. Click on the File Table on the left side and then scroll through the list looking for any green boxes. If you locate any then look in the “FileName” column for the file name.
Extracting the registry updates from the .MSP

Here are two techniques for extracting registry updates.

Method 1 – Use ORCA to highlight the differences

1. Use ORCA to open the un-patched .NET Framework 2.0 MSI (netfx.msi).

2. Drag and drop your .MSP on top of the ORCA application.

3. Orca will provide a read-only view of the package. It highlights the MSP updates with Green lines and boxes.
4. Click on the Registry table, located in the left hand pane. Any items on the right hand pane that are highlighted with a green box are patch additions. Record these additions.
5. Click on the Remove Registry table, located in the left hand pane. Any items on the right hand pane that are highlighted with a green box are registry entries that are deleted by the patch. Record these deletions.
Method 2 – Differencing the ORCA Registry.idt files

1. Use ORCA to open the un-patched .NET Framework 2.0 MSI (netfx.msi).

2. Right click on the Registry table. Choose Export Tables. Checkmark the Registry check box, choose an Output Directory, and save the resultant Registry.idt.

3. Rename the above file to registry_prepatch.idt

4. Drag and drop your .MSP on top of the ORCA application.

5. Export the registry again using the same technique in step 2 above. This time, registry.idt will include the patched registry entries.

6. Run your favorite differencing tool to compare registry_prepatch.idt against registry.idt.

Additional resources

The following links provide more information and utilities for inspecting MSI files.

· The third-party LessMSI utility, a tool for inspecting MSI files:
New Version of MSI File Extraction & Viewer Utility
· Rob Mensching’s blog providing background info about .MSI files
Inside the MSI file format
· Aaron Stebner’s blog article on how to reverse engineer setup from an MSI:
Reverse engineering a setup - lesson 1 - .NET Framework 1.1
· Programmatically access MSI file internals:
Export File List to Excel From MSI Using VBScript

� If you attempt to install the Desktop run-time (non-componentized) MSI version of .NET framework update, MS05-004 (887219) that you obtain from the Embedded OEM secure site (which is typically exactly the same as the XP Pro updates except that the OEM license includes redistribution stipulations) on an XPe runtime, the installation will fail with ERROR_PATCH_TARGET_NOT_FOUND. This error indicates that the patch is inapplicable to the product. This problem is applicable to all versions and service packs of the .NET framework.

This occurs because the .NET Framework component is installed on XPe as an optional component using the Optional Component Manager (OCM). This is equivalent to the one installed by default on Windows Server 2003 for .NET 1.1 framework and "Tablet PC / Media Center" for .NET 1.0 framework.

However the version of .NET framework updates that you install onto XP Pro (and which Microsoft posts on the OEM secure site for XPe customers) is the MSI version and that expects the .NET framework to have been installed as an MSI package (as is the case for .NET framework on XP Pro) and not as an optional component.

� OCM (Optional Component Manager) refers to the XPE componentized version, while MSI (Microsoft Installer) refers to the version that enables you to install the package to an XP Professional image, or a post-FBA XPE image.

