

Microsoft Windows XP Embedded Service Pack 2

Part 5.

Servicing Guide

Componentizing Windows XP Professional for embedded systems developers

Author/Editor: Mark Chamberlain

Published: April 2006

Applies To: Microsoft Windows XP Embedded (XPE) Service Pack 2 (SP2).

[image: image1.png]

Copyright

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This white paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

The example companies, organizations, products, people and events depicted herein are fictitious. No association with any real company, organization, product, person or event is intended or should be inferred.

© 2006 Microsoft Corporation. All rights reserved.

Microsoft, Active Directory, BizTalk, MSDN, Visual SourceSafe, Visual Basic, Visual C#, Visual Studio, Windows, Windows NT and Windows XP are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Disclaimers

This document contains information adapted from many sources, including MSDN®, and third-party developers. No functional guarantees are stipulated regarding suggestions offered in this document. There is no guarantee that a particular tip will function in every run-time scenario. Each Windows XP Embedded run-time image consists of a specific subset of Windows XP Professional components chosen by each developer to accommodate specific product requirements. The developer is ultimately responsible for creating and deploying the test plan that is appropriate to the product. The developer is strongly advised to fully test any tips used from this document. These tests should be based upon the developer’s unique product requirements and operational environment.

Microsoft provides third-party contact information to help you find technical support. This contact information may change without notice. Microsoft does not guarantee the accuracy of this third-party contact information.

The third-party products that this article discusses are manufactured by companies that are independent of Microsoft. Microsoft makes no warranty, implied or otherwise, regarding the performance or reliability of these products.

Table of Contents

1Introduction

2Servicing Methods

2Objective

2Image ownership considerations

4Device deployment and servicing options

6Flowchart

8Servicing strategy

81. Replace the entire runtime image

102. Incrementally update files or the registry (or both) automatically

113. Incrementally update files or the registry (or both) manually

114. Replace the runtime image on a Remote Boot server

13Delivery methods

14Deploying MIcrosoft security updates

15Back up your Component Database

15Procedure for backing up the SQL database

15Procedure for restoring the SQL database

15Procedure for removing an update package using Database Manager

16Obtaining, Installing and Managing Component Updates

16Where to find the updates

21Microsoft support policy

21Licensing considerations

22Deployment Techniques

22Device Update Agent (DUA)

22DUA Script generator powertool

22Using DUA to install Componentized XP Embedded updates

23Using DUA to deploy Windows XP Pro Updates

24Known issues

24Using custom batch files, scripts or programs

24Considerations when updating the image off-line

25Considerations when updating the image on-line

26Systems Management Server (SMS)

26Windows System Update Server Version 2.0 (WSUS)

27Remote Procedure Calls (RPC)

28Remote management

30Windows Preinstallation Environment deployment alternative

30Deploying images using Windows Preinstallation Environment

30Creating a derivative Windows Preinstallation Environment CD

30Method 1

31Method 2

36Security considerations

36Assessing your security risk

37Mitigating your security risks

37Building in Windows Security

38Securing the network

39Securing physical media by using Enhanced Write Filter

39Protection from computer viruses

40Servicing checklist

41COMMON questions

44Related Microsoft Corporation on-line resources

45Glossary

46Third party tools and resources

Introduction

Target Audience and Purpose

This document is intended for Windows XP Embedded Original Equipment Manufacturer (OEM) developers, who are responsible for developing and servicing Windows XP Embedded devices developed by the OEM and sold and/or licensed to end users.

In order to maintain the content integrity of your target device media, any changes made by the end user must be closely supervised and/or specifically approved by the OEM. This ensures that the OEM retains full control of the device media content.

Associated documents

This is the fifth document of a five (5) document set.

The purpose of this document set is to help guide the developer through the complete process of evaluating, choosing, designing, installing, developing, debugging, testing, shipping and servicing an effective, reliable and secure Windows XP Embedded device.

Operating System Version

Unless otherwise indicated, the term Windows XP Embedded, or XPE, refers to Microsoft Windows XP Embedded Service Pack 2 (SP2).

Servicing Methods

Objective

You, as the OEM, must maintain 100% “ownership” of your deployed Windows XP Embedded image. As stated in Microsoft’s OEM Client License Agreement (CLA), you are solely responsible for end user support. You should ensure that your image is serviceable after it has been deployed to the end user. This includes having in place a fully-tested process for updating the image or applying hotfixes.

The update mechanisms for Windows XP Embedded images are different than the mechanisms used to update Windows XP Professional.

A common method that is used to update Windows XP Professional is to connect to the Internet and browse to www.windowsupdate.com. From there, the user is prompted to pick and choose the desired updates. This mechanism does not work for Windows XP Embedded.

Windows XP Embedded images are directly managed and maintained by the OEM who created the image. There are two fundamental update approaches.

1. Componentized update.
Update the Windows XP Embedded Component Database with updated components, and then rebuild your image using the updated database and Target Designer.

2. Run-time update.
Directly update the image that is already deployed (do not update the Component Database and then create a new image).

Image ownership considerations

Every XPE image is a “sub-platform” of Windows XP Pro. As such, it has been custom tailored to fulfill exactly one target device scenario; as defined by you. In contrast, Windows XP Professional serves as an operating system platform designed to accommodate any third party application that adheres to MSDN XP Platform development guidelines.

Any attempt for an end user to add a third party application to a Windows XP Embedded device, such as something an end user might find on the web, has a good chance of failing, because some XP operating system component that the application requires might be missing.

It is critical (and required) that you, as the OEM, fully specify the anticipated usage by the end user, and fully test those scenarios. This is typically the main application for the device (the “limited runtime scenario”). You must test, in advance, any new applications that you (the OEM) deem that the end user is allowed to install, today or at a later time. This testing is required to ensure that their XPE O/S sub-platform fulfills all the requirements of the application.

Thus you are 100% responsible for defining the functional specification of the XPE device. Further, any modifications to the XPE image must be performed by you so you can follow up with complete functionality tests (regression testing) before releasing the updated image.

Consider the situation where an end user decides to add applications or security updates to the XPE device, and suppose this causes the functionality of the device to fail.

Now you have the situation where multiple “owners” have made changes to the image. Would you, being the OEM, feel obliged to debug this? Probably not. So the customer goes to Microsoft support. Microsoft doesn’t own the image, and Microsoft does not own the set of tests used by the OEM to ensure that the image meets the OEM spec. So there isn’t a whole lot Microsoft can do without becoming yet another “owner” of the image, blurring the issue even further.

In contrast, Microsoft is necessarily the “owner” of all Microsoft’s supported full desktop platforms, such as XP Home and XP Pro.

For Windows XP Embedded, you, being the OEM developer of the device, are the “owner”. All management of the image must go through the OEM. Microsoft is available to assist in supporting the XPE OEM. Microsoft is happy to assist the end user too, as long as the OEM works with Microsoft and retains true ownership of the XPE OS image. The OEM is responsible for deploying any subsequent updates and conducting the appropriate regression testing of that image.

Since the XP Embedded image is a sub-platform, sometimes security updates appear that are not applicable to that image (for example, because it may be an update for some component that is not present), and hence there is some risk that installing such an update will cause the image to fail.

Only the OEM has the unique XPE configuration file information required to make such decisions.

Device deployment and servicing options

The following chart lists the most common hardware scenarios and possible servicing methods.

The boot partition of an XP Embedded device may be serviced either online or offline. Online servicing refers to servicing the image while the device is currently running and using the partition as the live system volume. Offline servicing refers to a process that involves booting up to an alternate operating system partition, which allows you free access to the runtime boot partition volume, because it is offline. Offline servicing offers the ability to replace the entire partition image.

	Device scenario
	Update mechanism
	Offline servicing method
(minor modifications or complete replacement of image)
	Online servicing method (only minor modifications of image are possible)

	· Fixed disk boot device with one partition

· network connectivity
	Network via Remote Boot
	Boot to Ramdisk using Remote Boot. Then service the image located on the fixed disk.
	After booting to RamDisk, use scripts to update or replace the image on the fixed disk.

	· Fixed disk boot device with one partition

· network connectivity
	Network via Device Update Agent
	Not applicable
	Push DUA script file to the device via networking, or use DUA’s HTTP mechanism.

	· Fixed disk boot device with one partition

· removable storage device
	Inserting removable storage media as a secondary device (floppy, CDROM, USB storage device etc.)
	Not applicable
	Insert storage media and then launch the scripts contained within, to update the live image.

	· Fixed disk boot device(s) containing two or more bootable partitions.

· Network connectivity
	Network
	Via network, edit BOOT.INI to change boot partition. Reboot from the alternate partition, and then service the primary partition. Switch back when done.
	Use the offline method, or use DUA or command scripts deployed via removable storage media, that take into account the fact that the image being updated is live (reg.exe, inuse.exe etc.)

	· Fixed disk boot device(s) containing two or more bootable partitions.

· Removable storage device
	Inserting removable storage media (floppy, CDROM, USB storage device etc.)
	Via command files, data files etc. found in removable storage media, edit BOOT.INI to change boot partition. Reboot from the alternate partition, and then service the primary partition. Switch back when done.
	Use the offline method, or use DUA or command scripts deployed via removable storage media, that take into account the fact that the image being updated is live (reg.exe, inuse.exe etc.)

	· Fixed disk boot device(s) containing one partition

· CD-ROM device; used to boot an El Torito maintenance image
	Inserting El Torito CDROM boot device, then rebooting to the CDROM drive.
	Via command files, data files etc. found in an XP Embedded image on the CDROM that you designed for maintaining your image.
	Use the offline method, or use DUA or command scripts deployed via removable storage media, that take into account the fact that the image being updated is live (reg.exe, inuse.exe etc.)

	· Boot media can be physically removed
	Physical replacement
	Physically swap out the media, to replace the old image with the new image.
	Not applicable

	· Remote Boot (diskless system)
	Remote Boot Server
	Update the SDI image found on the Remote Boot Server
	Not applicable

	· El Torito (diskless system)
	Physical replacement of CDROM media
	Physical replacement of CDROM media
	Not applicable

	· Fixed disk containing one partition

· SUS Client

	SUS client
	Not applicable
	SUS offers the ability to manage incremental image updates from a central server location.

	· Fixed disk containing one partition

· SMS Client

	SMS client
	Not applicable
	SMS offers the ability to manage incremental image updates from a central server location.

	· Booting to Ramdisk from a storage device (including USB storage)
	Update the SDI file via network or via transport of media.
	Update the SDI image found on the storage device
	Update the SDI image found on the storage device

If your boot device is Flash storage media and you are using EWF-RAM to protect the device from excessive writes and/or to ensure that the system is “stateless” across reboots, EWF must be disabled before servicing the image, and then re-enabled after servicing it.

Flowchart

The following flowchart outlines the major choices you need to make when deploying or updating your device image. The rest of this document explores your deployment options in more detail.

[image: image2.emf]Building a new image Updating an already deployed image

Upon availability:

· Upgrade database to latest Service Pack.

· Install latest Service Pack component updates from OEM Secure

web site.

Decide whether

 to replace the whole image or

perform selective file / reg

updates

(SP1) Is it a

Microsoft run-time update

 that is dated 5/15/2004

 or later?

· Include:

· (SP1 only) Desktop QFE Installer, in order to allow the image to

accept future run-time updates (Q824706 and Q842930).

· Consider including Device Update Agent (DUA).

· System Cloning Tool. Set its cmiResealPhase to 0 so you can

reseal using FBRESEAL.

· Customize (edit) configurable components.

· Run Dependency Checker.

· Build Runtime Image.

· Run First Boot Agent (FBA).

· Manually install non-componentized applications if needed.

· FBRESEAL -all.

· Clone the image once for each produced device.

· Deliver image to target devices.

· Implementation and test.

· QA the new or modified image..

· Test thoroughly.

(SP1 or earlier only) Fix up your image to accept

run-time updates:

· Manually install Q842930 registry key

· Manually install Q824706 Desktop QFE

· Obtain and install run-time updates from

OEM secure web site

· Manually analyze package content of

required run-time update.

· Manually re-package desired updates for

deployment using DUA, batch, scripting,

programmatic or other means.

UPDATE

WHOLE IMAGE

SELECTIVELY

UPDATE

FILES AND

REG KEYS

ONLY

YES

NO (SP2 or later)

Factors that affect this

decision include the

magnitude of the updates,

the update delivery

mechanism used, and

the storage media used in

your target device.

Finished

DRAWING1.VSD

Servicing strategy

Consider the four major servicing strategy categories:

1. Replace the entire runtime image

If you choose this strategy, you must replace the runtime image on a device with a new image that incorporates an update. For certain devices, such as those that start from a CD-ROM or a network-hosted image (Remote Boot), this is the only servicing strategy available. You deliver updates either by distributing a CD that contains the new image, or by refreshing the network image. You can implement updates by restarting the device.

You can replace a whole runtime image by replacing the physical boot media.

Alternatively, you can reformat existing boot media, and copy across a new image of the operating system.

In order to replace an entire image, it is necessary to set it into the “off-line” state, meaning you must boot the system up on an alternative boot volume, with a separate copy of an operating system (WinPE, DOS, Windows XPE etc.).

You can use the SDI feature of Windows XP Embedded to package your replacement disk volume image into a convenient file form, making it easier to package and deploy.

Here are some implementation scenarios.

1. “Ping-pong” hard disk image update method
Configure your hard disk with two partitions of identical size, both configured to be bootable. Configure the boot.ini file so that the system initially boots up on the first partition (containing your current embedded image). When a new image becomes available, your custom image update agent receives an SDI file, and deploys it into the second partition. Once the new image is successfully copied to the second partition, the boot.ini file is modified to indicate that the second partition is the boot partition, and the system is rebooted. When a future update arrives, you deploy it to the first partition, then modify boot.ini so it will subsequently boot from the first partition, and so on.

2. Dedicated servicing partition method
Use method (1) above, except dedicate one partition to contain an operating system dedicated to servicing the other. Boot into the servicing partition whenever you wish to update the normally live partition.

You can edit BOOT.INI regardless of whether it is located on an on-line or offline partition. Any changes to BOOT.INI will be observed by the boot loader the next time the system is restarted.

If you choose this strategy, you must replace the runtime image on a device with a new image that incorporates an update. For certain devices, such as those that start from a CD-ROM or a network-hosted image (Remote Boot), this is the only servicing strategy available. You deliver updates either by distributing a CD that contains the new image, or by refreshing the network image. You can implement updates by restarting the device.

Advantages and disadvantages to replacing the entire runtime image follow.

Advantages

Image is tested and managed in a 100% known state.

When you replace a whole runtime image you ensure that all dependencies have been satisfied and you can more effectively test and manage the completed image before deployment.

Simplified image management.

You update your Target Designer database with the latest Windows XP Embedded hotfixes, then rebuild your image using the new components (from Target Designer, choose Configuration->Upgrade Configuration, and then rebuild.) You do not need to do any additional work to rebuild the runtime image and deploy it to the device. The runtime image will contain the updated files and registry keys. No need to create and test an update package for every discrete update. All updates occur in the Target Designer database which is easier to maintain, secure and back up. You know exactly what is being deployed for each target device, compared to many incremental updates where there is a greater potential for error.

Useful when there are many image updates.

If you are adding a major application or an update rollup to the image, it frequently makes more sense to replace the entire image.

No need to deploy Device Update Agent.

This is a tool that is specifically designed to update individual files and registry entries.

Disadvantages

Might require significant network resources.

The large size of some runtime images might require a lot of network bandwidth.

Requires new or reformatted boot media.

Typically, you must replace or reformat the boot media. This requirement might create a problem for CompactFlash-based devices, which are approximately one third the size of a PC Card, or for devices with traditional hard disks.

Might require significant human resources.

Because the entire runtime image is replaced, a new runtime image must be generated. This might require significant development and test efforts.
Entire runtime image replacement is the only viable strategy for devices that start from read-only media, including:

· "El Torito" CD-ROMs. (El Torito is the standard for creating bootable CD-ROMs on the Intel platform). For more information about El Torito, see "El Torito" in the Microsoft Windows XP Embedded documentation, available online via this link:
Bootable CD-ROM

· Network-based images from Remote Boot servers.
For more information about the Remote Boot service, use this link:
Remote Boot Overview

2. Incrementally update files or the registry (or both) automatically

Typically, an update involves selective modification or addition of files and registry keys. A Microsoft update for Windows XP Embedded contains package file and registry key updates together with an installer application to form a servicing package. These servicing packages can be applied automatically or manually to a device or set of devices.

If you choose this strategy, you must run an agent on the embedded device that replaces files or registry keys, or both. Typically, you must have a server that can host the updates, and you must perform some tasks manually to create and serve the scripts. Proprietary servicing systems, including Device Update Agent (DUA) in Windows XP Embedded, fall into this category. You deliver updates by putting the appropriate scripts and files on a network server that a device can access. These scripts and files then implement the updates.

Advantages

Offers a single package format.

Offers centralized delivery through automatic servicing.

Offers small servicing packages.

All updates for a particular Microsoft technology work in the same way, regardless of their contents, which might be operating system updates, application patches, or new device drivers.

By enabling servicing clients on the device, a single central server can be used to provide a delivery mechanism for all Windows XP Embedded devices with a single update.

A typical servicing package consists of the files to update and a script containing registry key updates and instructions on where to copy the files. The payload can be compressed, reducing network load during delivery and time to service.

Disadvantages

Requires a server.

In order to properly service a device automatically, a server must be maintained to manage the delivery process.

Might require custom-made servicing packages.

In order to deliver an update, a servicing package must be created. Due to the variety of network architectures and device configurations, servicing packages sometimes must be custom crafted by you or your customer to suit a particular environment.

Might require different implementation methods for different technologies.

Updates to non-Microsoft or custom applications might be packaged by using Microsoft Windows® Installer or other technologies, while operating system updates are packaged using a special update installer. Device drivers might or might not use an installer. This variety challenges you to make sure that all the necessary implementation methods are supported by your devices.

3. Incrementally update files or the registry (or both) manually

If you choose this strategy, your service personnel must manually update devices one by one. While this strategy is the most labor-expensive of the three servicing strategies, it can allow you flexibility in delivering and implementing updates. In some cases you may need to manually implement updates.

Advantages

Most customizable option

Manually updating a device allows you to customize the update procedure for each specific device, taking in account the operating environment of the device, user and application data stored on the device, and any special requirements to update the device.

Disadvantages

Requires touching each device

In order to manually update a device, someone must visit each device individually and perform the procedures on each.
Manual updates are prone to user error
Performing the same steps over and over for a set of devices can lead to errors during the process, which can lead to device failure.
Very costly to implement
Depending on the location of the devices and the personnel involved, manually updating each device can be very costly in terms of man-hours, resources consumed, and device downtime. Any errors during updating may repairs up to replacement of the device, which adds to the total cost of servicing.
4. Replace the runtime image on a Remote Boot server

With Remote Boot, the image is maintained on a server and the remote client devices each copy the image from the server to the client into a RamDisk, and then boot themselves up. You deliver an update by simply replacing the image on the server with a new image.

If you are deploying Remote Boot, then any updates need to occur on the SDI run time image file located on the local server. In this case it usually makes sense to rebuild the entire image.

However it is possible to deploy updates only to the SDI image file. This allows you to patch/update the SDI incrementally locally without resending the entire image out.

Here is the overall process for updating an SDI file.

· Create an empty virtual drive
· Extract the partition data from the production SDI image and load it into the virtual drive
· Make the desired file changes on the image that is loaded on the virtual drive
· Write back the whole virtual drive, replacing the old partition data (blob) in the production SDI image

A detailed example follows.

· Use SDILoader to create a blank disk (H:) large enough to hold the partition to be extracted from your final disk image E:\SAMPLE.SDI
· Extract the partition from the final disk image partition using sdimgr /writepart:H: E:\SAMPLE.SDI /yes
· Make your required production image changes to H:
· Delete the partition in the final disk image using sdimgr /delete:PART E:\SAMPLE.SDI
· Write out the H: drive with all your changes using sdimgr /readpart:H: E:\SAMPLE.SDI /yes

Delivery methods

Delivery refers to how updates reach a device. Delivery strategies include pull methods, in which a device initiates the update process by requesting an update, and push methods, in which a server initiates the update process by delivering an update to a device. Regardless of the method you choose, you can use both Microsoft and non-Microsoft solutions to put it in place. Typically, you must build support for both delivery and implementation into your devices before you deploy them.

The following table lists the various update delivery methods available:

	Update Delivery method
	Summary

	Network – Device Update Agent (DUA) Push
	DUA is included with Microsoft Windows XP Embedded. You typically copy an update package (*.DUS) to the target device using a network share connection. DUA then senses the arrival of this file, and subsequently processes it then deletes it.

	Network – DUA Pull
	DUA looks for the presence of an update package on a server. When it appears, it processes it.

	Network – file share
	You develop software that uses a network share connection between a target device and your device update server, in order to update the target device.

	Network – other
	Other network-based mechanisms include Remote Procedure Calls (RPC), Telnet, SUS, SMS, Remote Registry, Remote systems management, etc.

	Removable storage media - Diskette
	If the update is small enough (<1.44 MB) you can use diskette media

	Removable storage media - CDROM
	This 650+ MB media can be used to deploy entire image updates, or incremental updates.

	Removable storage media – Compact Flash
	Compact Flash is commonly used in XP Embedded devices as the primary boot device (when used with EWF). The easiest way to update these devices is to simply replace the media with an update.

	Removable storage media – other
	This could include USB Disk on Key or similar convenient removable storage media

	Manual instructions (a documented procedure)
	This is perhaps the most expensive update option as it requires manual (human) updates.

Deploying MIcrosoft security updates

As an OEM developer, part of your device image servicing plan includes keeping your Windows XP Embedded target devices current with the latest software updates, obtainable from Microsoft, device manufacturers, your own company and third party companies.

Microsoft periodically issues minor releases. Each minor release after the original product release is called a Service Pack.

Software updates can occur in between Service Packs.

Typically, when Microsoft deploys a new Service Pack, all the updates that were released during the prior release are rolled up into the new release.

Here is a brief history of Windows XP Embedded releases:

· The original major release of Windows XP Embedded, released in November 2001, is also referred to as the “Gold” release.

· Windows XP Embedded Service Pack 1 (SP1) was released in the fall of 2002.

· Windows XP Embedded Service Pack 2 (SP2) was released in December 2004.

For the purposes of this document, each of the following is considered to be an “update":

a hotfix. A single cumulative package composed of one or more files used to address a problem in a product. Hotfixes address a specific customer situation and may not be distributed outside the customer organization. The terms QFE, patch, and update have been used in the past as synonyms for hotfix.

a security update (or security bulletin). A broadly released fix for a product-specific, security-related vulnerability. Security vulnerabilities are rated based on their severity, which is indicated in the Microsoft security bulletin as critical, important, moderate, or low.

an update rollup. A tested, cumulative set of hotfixes, security updates, critical updates, and updates packaged together for easy deployment. A rollup frequently targets a specific area, such as security, or component of a product, such as Microsoft Internet Information Services (IIS).

Two types of security vulnerabilities that are addressed by updates are bugs in your operating system and bugs in your applications. Bugs in the Windows XP Embedded operating system can potentially compromise the security of your devices and their data.

Microsoft recognizes different levels of security updates for its operating systems. For more information about these levels, see the "Microsoft Security Response Center Security Bulletin Severity Rating System" on the Microsoft TechNet Web site by clicking on this link:

Microsoft Security Response Center Security Bulletin Severity Rating System (Revised, November 2002)
Note that some operating system updates released by Microsoft might include new functionality that is required for your devices to work correctly, but have no security impact. You must also fix bugs in the applications that run on your embedded devices, for security reasons. Like operating system updates, application updates can range from those that address simple "fit and finish" bugs, to more serious functionality bugs, or critical security bugs that require your immediate attention. Application updates can also consist of upgrades that offer new features.

Regardless of where you get updates, installing them on your devices running Microsoft Windows XP Embedded in a uniform and scalable manner is becoming increasingly important to your success as an OEM. A solid servicing strategy is a kind of preventive medicine because it saves you a significant amount of time and money that you would otherwise spend to react to a security compromise. This document provides general guidelines on how to create a servicing strategy. Note that these concepts do not pertain to all devices.

Back up your Component Database

Before updating your Component Database, you should perform a backup, so you can revert to a previous version in the event that your device tests fail after applying updates.

Procedure for backing up the SQL database

1. Stop the SQL Server by right clicking on the SQL Server icon in the task bar, and choosing the Stop function.

2. Browse to the Windows Embedded Data folder.

3. Copy the following files to a backup folder: MantisSQLDB_Data.MDF, and MantisSQLDB_log.LDF.

4. Copy the Windows Embedded Data\Repositories folder to a backup folder.

5. Restart the SQL Server by right clicking on the SQL Server icon in the task bar, and choosing the Start function.

Procedure for restoring the SQL database

1. Stop the SQL Server by right clicking on the SQL Server icon in the task bar, and choosing the Stop function.

2. Copy the following files from your backup folder to the Windows Embedded Data folder. MantisSQLDB_Data.MDF, MantisSQLDB_log.LDF.

3. Copy the repository files from your backup repository folder to the Windows Embedded Data\Repositories folder.

4. Restart the SQL Server by right clicking on the SQL Server icon in the task bar, and choosing the Start function.

Another way to restore the SQL database is to remove an update package using Database Manager. However, if the database is corrupted, Database Manager may be unable to perform this function. This is why it is important to use the above file backup procedure as a safety measure.

Procedure for removing an update package using Database Manager

1. Run Component Database Manager found in Microsoft Windows Embedded Studio
2. Click on the Package tab.

3. Within the Available packages windows, click on a package that you wish to remove.

4. Click on the Delete Package button.

5. Repeat steps 3 and 4 until you have deleted all the packages of interest

Obtaining, Installing and Managing Component Updates

It is important to make sure that your Windows XP Embedded SP2 component database is kept completely up-to-date with the latest SP2 security update rollups. This chapter describes how to update your component database. After you update your component database, you must:

1. Open your XPE image configuration using Target Designer

2. Choose Configuration->Upgrade Configuration to force Target Designer to update your image to use the latest updates

3. Rebuild your image.

Where to find the updates

Updates are available at two different locations, depending on whether you are using the Evaluation version or the Full version of Windows XP Embedded.

Our central download information headquarters is here:

http://msdn.microsoft.com/embedded/downloads/xp/

When using the Evaluation version, you can obtain updates from the public web site.

1. Browse to http://www.microsoft.com/downloads

2. Click on Advanced Search.

3. Set Product/Technology to Windows XP Embedded

4. Set Sort Results by: Release Date

Once you have proceeded past the evaluation stage and have purchased one or more runtime licenses, you use the OEM secure web site.

In order to obtain access to the OEM secure web site, you must contact the distributor from whom you obtained your Windows XP Embedded license(s). The current URL to the OEM secure web site is:

https://microsoft.embeddedoem.com/content.asp

You may be wondering why it is necessary to use the OEM secure web site instead of simply using the updates that are available the public site. Here are the specific reasons for using the OEM secure web site:

1. The run-time updates offered on this site might be different than the public downloads in order to accommodate the particular needs of XP Embedded (an example of this is Q839645 which uses a different version of installer, update.exe, than XP Professional).

2. The secure site may offer other components and features that are not available on the public downloads site.

3. The Desktop QFE Installer tool (required for SP1 updates only) is offered only on this secure site. This is actually a component macro that ensures that all the components required to launch and install run-time updates are present. Note that this does not guarantee that a given run-time update will actually function correctly because your image might not contain all the components that are required to satisfy the needs of the specific update.

As a licensed OEM, you are required to use and abide to the terms indicated in this website, in particular when installing and using the Desktop QFE Installer tool.

The following SP2 Security Updates list is likely out of date, since it is only as fresh as this document. Use the preceding link to determine whether newer security updates are available.

Windows XP Embedded SP2 Updates

	Update
	Version
	Sec. Bulletin
	Date
	Description & Link

	WindowsXPESP2-December2005-x86-ENU.exe
	SP2
	MS05-053 MS05-054
	1/9/2006
	XP Embedded SP2 Security Update: Microsoft Security Bulletins

This rollup is cumulative, i.e. all prior rollups are also included in this package.

MS05-053 and MS05-054

	WindowsXPESP2-October2005-x86-ENU.exe
	SP2
	MS05-009 MS05-041 MS05-042 MS05-044 MS05-045 MS05-046 MS05-047 MS05-048 MS05-049 MS05-050 MS05-051 MS05-052
	11/17/2005
	OBSOLETE XP Embedded SP2 Security Update: Microsoft Security Bulletins

This rollup is cumulative, i.e. all prior rollups are also included in this package.

MS05-009, MS05-041, MS05-042, MS05-044, MS05-045, MS05-046, MS05-047, MS05-048, MS05-049, MS05-050, MS05-051, and MS05-052.

	WindowsXPESP2-August2005-x86-ENU.exe

	SP2
	MS05-036 MS05-037 MS05-038 MS05-039 MS05-040 MS05-043
	2005/08/26
	OBSOLETE XP Embedded SP2 Security Update: Microsoft Security Bulletins.

This rollup is cumulative, i.e. all prior rollups are also included in this package.

MS05-036(901214), MS05-037(903235), MS05-038(896727), MS05-039(899588), MS05-040(893756), and MS05-043(896423)

	WindowsXPESP2-June2005-x86-ENU.exe
	SP2
	MS05-004 MS05-019 MS05-025 MS05-026 MS05-027
	2005/04/25
	OBSOLETE Security rollup with six new security bulletins. This rollup is cumulative, i.e. all prior rollups are also included in this package.

Includes MS05-004(887219,887998), MS05-025(883939), MS05-026(896358), and MS05-027(896422)

Additionally, this update replaces the following security updates: MS05-007(888302), MS05-008(890047), MS05-011(885250),MS05-012(873333), MS05-013(891781), MS05-014(867282), MS05-015(867282) MS05-016(893086), MS05-018(890859), MS05-019(893066), MS05-020(890923)

	893086
	SP2
	MS05-016 MS05-018 MS05-019 MS05-020
	2005/04/25
	OBSOLETE Security rollup with six new security bulletins. This rollup is cumulative, i.e. all prior rollups are also included in this package.

Includes MS05-016(893086), MS05-018(890859), MS05-019(893066), MS05-020(890923)

Additionally, this update replaces the following security updates: MS05-007(888302), MS05-008(890047), MS05-011(885250),MS05-012(873333), MS05-013(891781), MS05-014(867282), MS05-015(867282)

	(ewf.msi)
	SP2
	-
	2005/03/10
	OBSOLETE Windows XP Embedded SP2 Update: Enhanced Write Filter (EWF) API Replacement Library

This update addresses an issue with the file EWFAPI.LIB as shipped with Windows XP Embedded with Service Pack 2.

	873333
	SP2
	MS05-007

MS05-008 MS05-011 MS05-012 MS05-013 MS05-014 MS05-015
	2005/03/08
	OBSOLETE Security rollup

Includes MS05-007(888302), MS05-008(890047), MS05-011(885250),MS05-012(873333), MS05-013(891781), MS05-014(867282), MS05-015(867282)

Also includes 888113

	890175
	SP2
	MS05-001 MS05-003
	2005/01/28
	OBSOLETE Security rollup

MS05-001 (890175), MS05-003(871250)

Also includes 891711, 834707, 873339, 885835

	885836*
	SP2
	
	
	OBSOLETE Security rollup.

Includes MS04-038 (834707), MS04-041 (885836), MS04-042 (873339), MS04-044 (885835)

* (available only at the OEM Secure website)

Microsoft support policy

Microsoft Corporation’s support policy is such that we typically only support versions of products for 12 months after subsequent SP releases.

This means for example we officially stopped supporting XPE RTM in the Fall of 2003, 12 months after the availability of SP1.

This holds true whether the customer has paid for extended/custom support or not.

Therefore, you should plan to deploy upgrades as they arrive, and then deploy updates until the next upgrade arrives.

Licensing considerations

XPE can not be used on a PC as an XP Pro replacement. To be clearer, XP Embedded can only be licensed to run line-of-business applications on fixed function devices. We do however have it written in our licensing that you can have an unlimited number of applications running locally, if the line-of-business application requires them locally. For example, a device that has a retail management application may have a local spreadsheet for the store manager to create daily reports. Running Office is usually outside the scope of this definition, as most customers cannot technically justify running Office locally.
You can deliver and implement patches either automatically or manually.

Deployment Techniques

Device Update Agent (DUA)

Device Update Agent (DUA) in Windows XP Embedded. DUA is a lightweight solution for delivering scripts from a server to a client device running Windows XP Embedded.

General information about DUA is available here:

Device Update Agent
DUA scripts are compiled files that make it possible for you to copy, move, and delete files; update registry keys; and manage a device in other ways such as restarting it, copying files to it while it is in use, and running arbitrary files on it. For more information about the DUA scripting language, click on this link:

Device Update Script
Because DUA scripts can copy files and make changes to the registry, delivering a DUA script that contains file and registry changes can implement the updates automatically. Information about file and registry changes required to apply a Windows XP Embedded update is provided with each update that Microsoft publishes. You must obtain file and registry information for non-Microsoft updates from the appropriate company.

You can deliver DUA scripts to a device manually or automatically. If you choose to deliver the scripts automatically, you must use a server to host the script. The device can then pull the script from the server on a schedule that you set, or the server can push the script to the device when the script is ready. See this link for details:

Applying QFEs with Windows XP Embedded Device Update Agent
DUA Script generator powertool

Aaron Stebner and Mike Hall developed a tool to make the creation of DUA Script Files simpler. A preview version of this tool is available on the web:

Support for this version of the tool is handled through the web logs (blogs).
DUAScriptGen User’s Guide
The tool can be downloaded here:

Dua Script Generator program
Using DUA to install Componentized XP Embedded updates

This method is for updating images which have been deployed. It uses the Device Update Agent to apply the file and registry changes to an image which is running and which can download the update package.

1. Go to the embedded updates site

Windows XP Embedded Downloads and Updates
Download all of the componentized updates of interest to your development machine.

2. For each update from one of the embedded sites, locate the Additional Info file which is alongside the componentized update on the web site, or included in the componentized update executable. For the ones which are included, open the update executable with winzip (do not execute it).

3. Extract the Additional Info file and the other system files and put the system files in a directory (Q835732\RESULT in this example).

4. Open the Additional Info file and look over the files and registry entries. Note if there are any files which need to be executed in the update. If there are, then the process for generating the DUA script will be modified by adding the executable in the form of EXECUTEPROCESS in the script.

5. Generate a DUA script by executing the DUAScriptGen.exe program contained with these instructions. Configure the program by entering the options as follows:

· Poll Share Location: Checked

· Location to poll: C:\DUA\CmdFiles (Same as the setting in your DUA component in Target Designer).

· Local Dua Folder: C:\DUA\working

· Next Dua Script: C:\DUA\CmdFiles\CmdFile01.DUP (set this to 02, 03, or leave it at 01)

· Reboot at the end of script: Checked

6. Click on the "Convert QFE to DUA" button and complete the location of the Additional Info rtf file. The file references and registry entries will be loaded into the tool.

7. Click on "Generate Script" and complete the location of the DUS file to be generated. Name this file with the Update number (Q835732.DUS in this example).

8. Click on "Execute Compiler" and the program will generate a Q835732.DUP file in a directory 'DUA_Files".

9. Place the DUP file and all of the extracted files from the Update in a directory (Q835732\RESULT in this example). Download these files to the image to a directory referenced by the DUA component settings (C:\DUA\CmdFiles in this example). Rename the DUP file according to the configuration of DUA component on your image (CmdFile01.dup in this example).

10. When the DUA service polls the location it will see the script file and execute it. If the reboot is executed at the end it will reboot the image. When the DUA Agent finishes the script it will delete the script file so that it is not repeatedly executed on each poll.

Using DUA to deploy Windows XP Pro Updates

This solution applies to images which have been deployed and have the properly configured Device Update Agent, the Desktop QFE Support (QFE Installer Q824706) and the Client/server Runtime (Console) (Q842930) components included in their build.

This method uses the Device Update Agent to execute the downloaded Update with a short DUA script file, and then reboots the machine.

1. Obtain each Update from the Windows XP Professional Desktop Update site (NOT THE EMBEDDED SITE). This starts at http://www.microsoft.com/downloads - search Product/Technology for Windows XP. Sort results by date.

NOTE: Windows XP Professional Updates on this site which were released before May 10, 2004 will not install on the embedded image using this method.

3. Download the executable Update file of interest. Re-name this executable with the name which the DUA script file references (Q835732.exe for example).

4. Write a simple DUA script file which executes this Update file and then re-boots the machine.

5. Test this by applying the Update to an embedded image and verify the install by checking control panel/Add Remove Programs to see if the Update shows up.

6. This method is for testing only. The properly licensed update to obtain for re-distribution will eventually be available on the OEM Secure site for Updates.

Known issues

Some users have reported having problems setting the registry key with Device Update Agent.

Referring to the Device Update Agent documentation, the size parameter is optional, depending on the command that it applies to. The command reference should really be as follows:

11, [ErrorMode], hKey, [ExpandMode], Key, [ExpandMode], ValueName, Type, [Size,] Value

A size parameter is only needed for DAREG_NONE, DAREG_BINARY, DAREG_LINK, DAREG_RESOURCE_LIST, DAREG_MULTI_SZ. For value types that do not require a size - you should leave out the parameter entirely. DUA will look at the type and based on this information determine if the next parameter should be the size or the value. In the command you included DUA sees that the type is REGSZ and expects the next parameter to be the value. Since the next value is specified as a null string - DUA assumes this is the value you want to set and moves on (this is why the command shows as a success). It ignores anything beyond the last parameter. So you will find that this command sets an empty string:

REGSETVALUE,,HKEY_LOCAL_MACHINE,,SYSTEM\CurrentControlSet\SampleKey,,SampleValue,DAREG_SZ,,Hello World

Whereas this command actually sets the value:

REGSETVALUE,,HKEY_LOCAL_MACHINE,,SYSTEM\CurrentControlSet\SampleKey,,SampleValue,DAREG_SZ,Hello World

Using custom batch files, scripts or programs

Your solution is likely to require some degree of custom software development. At a minimum, you will likely develop custom .CMD or script files, to partially or fully automate the process.

Considerations when updating the image off-line

If the files that need to be updated are in use by the operating system that the device is running, you may need to take the device offline and then copy files to it. In this case, you can update registry keys by directly loading and modifying the files which contain the registry (the hive files) while the device image is not on-line; see the following link for more details:

Registry Hives
You can view and edit the pre-FBA registry hives in your Windows XP Embedded image off-line, using your development computer. The registry hive files are located in the \WINDOWS\system32\config folder in your XP Embedded image.

Files with the .SAV extension are pre-FBA. Once FBA completes, the files are saved without the .SAV extension:

DEFAULT.SAV
SOFTWARE.SAV
SYSTEM.SAV
DEFAULT
SAM
SECURITY
SYSTEM
Procedure:

1. Build your image but do not run FBA yet. Perform an off-line registry hive edit (in windows\system32\config\system.sav) using regedit. The following steps show how to edit the system.sav branch of the registry (which corresponds to HKEY_LOCAL_MACHINE/SYSTEM).

2. Run Regedit

3. Click on HKEY_LOCAL_MACHINE

4. Choose File->Load Hive

5. Select this file found in your XP Embedded image: windows\system32\config\system.sav

6. Choose an arbitrary name for the temporary hive path. For our example we will use SAMPLE.

7. Make any desired changes to the hive branches, using RegEdit

8. Click on the SAMPLE key, then use File->Unload Hive in order to unload the registry hive from Regedit

9. Let your modified XPE image boot, in order to run through FBA on the modified image.
Considerations when updating the image on-line

You can develop a command or batch file to deploy updates to an on-line image.

1. The REG.EXE tool, found in the Misc. Command Line Tools component, is a command-line interface to the operating system registry, which allows the user to read from and write to the system registry on remote systems as well as on the target system.

2. Use the INUSE.exe tool when you wish to update binaries that are currently in use by the operating system. INUSE works by setting parameters in the registry that get launched at an early time in the subsequent boot, before the operating system has a chance to use the binary. Click on the following link for details.

Inuse.exe: File-In-Use Replace Utility
3. This tool may be useful when installing runtime updates:

How to chain multiple hotfixes to allow a single reboot (Q296861)
Systems Management Server (SMS)

SMS can be used for all kind of updates deployment, security updates, updates for applications and drivers, deploying software and even OS deployment (OSD). However, OSD is not currently supported on XPe.

Features:

· Microsoft Systems Management Server (SMS). SMS is a complete network management solution for enterprises. A component of Windows XP Embedded makes it possible for SMS to manage devices. For more information about SMS Server use this link:

SMS 2003 Product Information: Overview
· SMS Scripting. SMS provides a method of packaging custom updates for the devices that are managed by SMS.

The SMS team has provided the Advanced Client in the form of an Embedded component. This component plugs into XP Embedded Component database and Target designer for building images with it.

Systems Management Server 2003 Advanced Client for Windows XP Embedded

 HYPERLINK "http://www.microsoft.com/smserver/downloads/2003/adclient.asp"

SMS 2003 SP1 Advanced Client for Windows XP Embedded

For more information about how SMS packages updates, try these links:

Systems Management Server 2003 Product Documentation
Currently only software update is supported with this (meaning you can push patches/updates to clients). Patch management (meaning figure out what XPE clients have what patches installed and install missing patches) in XPE using SMS is currently not supported; consider System Update Server (SUS) instead, described later in this document.

This article contains more information about SMS, comparing it with other deployment methods.

Supporting Windows XP Embedded-based Devices

Windows System Update Server Version 2.0 (WSUS)

WSUS can be used to push all the security updates that Microsoft publishes via Microsoft Updates which include security updates for Windows, Office, SQL and other Microsoft products.

These are the components needed in your XPE image to consume updates from a WSUS (SUS 2.0) server:

· Windows Update Agent

· Windows Update for Device Drivers

See this link for information about SUS:

Using SUS with Windows XP Embedded Service Pack 2
An online training video that includes a SUS tutorial is available at the following online web site:

Windows XP Embedded Tutorials
Within the above page, locate this section, and play the corresponding video:

Windows XP Embedded with SP2 Security Enhancement Features

SUS uses Windows Update technology, which works well for security updates.

NOTE: The WSUS client components in the XPE SP2 database can connect to either a SUS 1.0 server or a WSUS 2.0 server.

The Windows Update Agent for SUS 1.0 Servers component can be used if the Enterprise is still using SUS 1.0 servers and have not upgraded to WSUS 2.0.

Remote Procedure Calls (RPC)

If you have applications that utilize Remote Procedure Calls (RPC), you might need to include multiple RPC components in your configuration. If an RPC function is called, but the RPC component exposing that function is not installed, the function call fails.

The following table shows the available RPC components.

	Component
	Description

	RPC Local Support
	Facilitates local RPC using the ncalrpc and ncacn_np protocol sequences, and provides support for dynamic endpoint resolution.

RPCs using the ncalrp protocol can enhance security for remote procedure calls without the need for additional RPC components.

	RPC Remote
	Facilitates local and remote RPC calls using the ncacn_ip_tcp, ncacn_http, and ncadg_ip_udp protocol sequences. This component provides the following client and server RPC functionality:

ncacn_ip_tcp

ncadg_ip_udp

ncacn_http, which requires an RPC proxy computer

Secure RPCs are not facilitated by the RPC Remote component. At least one RPC Secure component is required to make secure RPCs, such as Secure RPC over Kerberos, Secure RPC over Negotiate, Secure RPC over NTLM, or Secure RPC over SSL.

The RPC Remote component includes the functionality provided in the RPC Local Support component. Therefore, if you include RPC Remote in a configuration you do not need to include the RPC Local Support component.

	RPC Authorization Support
	Exposes the RpcGetAuthorizationContextForClient and RpcFreeAuthorizationContext functions. The RPC Authorization Support component provides no other RPC functionality, and is necessary only to obtain the RPC capabilities exposed by the specified functions.

	RPC HTTP CIS Server
	Provides the RPC proxy necessary to make RPC HTTP calls, and is also required by CIS. To successfully complete an RPC over HTTP RPC, the following components must be installed: the RPC Remote component must be installed on the client, the RPC HTTP CIS Server component must be installed on the proxy machine, and the RPC Remote component must be installed on the server.

	RPC Named Service
	Provides RPC named service functionality, such as the RPC Locator. The RPC Named Service component exposes all RpcNsxxx RPC functions.

The RPC Named Service component includes RPC Locator service functionality, which runs on the local machine and on the domain controller. The RPC Named Service component is typically used by applications using the auto_handle attribute.

	RPC Remote over Named Pipes
	Facilitates remote procedure calls using the ncacn_np protocol sequence. RPC over Named Pipes to a server on the same computer requires the RPC Local Support component.

	RPC Remote over SPX
	Facilitates RPCs over SPX to servers residing on the local computer or a remote computer The RPC Remote over SPX component includes both client and server support, and includes support for SPX name resolution.

	Secure RPC over Kerberos
	Facilitates RPCs using the Kerberos Security Support Provider Interface (SSPI) for authentication and privacy protection.

	Secure RPC over Negotiate
	Facilitates RPCs using the Negotiate Provider Interface SSPI for authentication and privacy protection. This component is not required to make non-secured RPCs. Other Secure RPC components provide different SSPI capabilities for RPC; developers generally include one or more Secure RPC components to secure RPCs.

	Secure RPC over NTLM
	Facilitates RPCs using the Windows NT Challenge/Response (NTLM) SSPI for authentication and privacy protection.

	Secure RPC over SSL
	Facilitates making remote procedure calls using the SChannel SSPI for authentication and privacy protection. This component is not required to make non-secured RPCs. Other Secure RPC components provide different SSPI capabilities for RPC; developers generally include one or more Secure RPC components to secure RPCs.

Remote management

In some cases, you cannot gain physical access to your device once it has been deployed. Windows XP Embedded provides a comprehensive set of component features to help you to connect via networking to a remote target device, and then remotely administer the device.

	Component name
	Description

	TCP/IP Networking with File Sharing and Client for MS Networks
	Enables network functionality. You also must configure your Administrator Account component and machine name, to enable remote administration tools to work. The machine name is found in your PC component (which is named Standard PC, ACPI Multiprocessor PC, or similar)

	Terminal Services
	Remote Desktop. Use your local workstation to take control of the console of a remote device (run MSTSC.EXE on your workstation)

	Remote Registry Service
	Allows your local workstation to locally use RegEdit to edit the registry of your remote device.

	Telnet Server
	Allows your local workstation to connect to the remote device using Telnet. This gives you a remote command prompt so you can deploy updates on the remote device.

	Microsoft Management Console (MMC)
	You can use MMC on your local workstation to manage a remote device.

	Net.exe Utility
	This is a command line tool that controls users, groups, services and network connections.

	IIS FTP Server
	File Transfer Protocol (FTP) server, you can use to copy files to or from the remote device.

	WMI …
	WMI Windows Management Instrumentation enables you to collect and manage information about the embedded device.

	Simple Network Management Protocol (SNMI)
	The SNMP agent monitors network traffic, and retrieves and updates local management information based on the requests from the SNMP manager.

	RPC
	Refer to the section in this document titled “Remote Procedure Calls”

	Message Box Interception
	This is not a component, rather it is an Embedded Enabling Feature (EEF) that addresses how you can force the system to automatically reply to each system-generated MessageBox. This can be useful when remotely managing a device. See also:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xpehelp/html/xesammessageinterception.asp

Windows Preinstallation Environment deployment alternative

More information about Windows Preinstallation Environment is available in the Windows XP Professional OEM Preinstallation Kit (OPK).

Deploying images using Windows Preinstallation Environment

A copy of Windows Preinstallation Environment (WinPe) is included on disk 1 of Windows XP Embedded Service Pack 1 to help in your deployment. On that disc there is a partitioning program called Diskpart.exe that you can use to partition a drive instead of booting up an MS-DOS disk and running fdisk. Diskpart.exe can create NTFS bootable drives directly, which removes the need for the bootprep process. The following procedure is a simple walk-through that demonstrates how to make a 600-MB FAT partition that is suitable for El Torito or other image deployment. For this example, one primary partition is created on the first hard disk drive.

Important We recommend that you use MS-DOS or your manufacturer's utilities to format flash because Windows may report the wrong drive geometry to Fdisk for flash drives.

1. Set the BIOS to boot to the CD-ROM before the hard disk drive.

2. Boot off of the first Windows XP Embedded disk (WinPE).

3. Run Diskpart.exe, and then issue the following commands:

select disk 0

create primary partition size=600

select partition 1

active

quit

4. Reboot the embedded device, and then boot Windows Preinstallation Environment again.

5. Format the drive. This example requires FAT, so the command is:

format c:/FS:FAT

6. Deploy your runtime.

WinPE contains network drivers so you can easily map a network share if your device has a network interface

Creating a derivative Windows Preinstallation Environment CD

This section contains two methods for creating a derivative Windows Preinstallation Environment CD.

Method 1

Note The Windows XP Professional OEM Preinstall Kit (OPK) contains the OSCDIMG utility referenced below.

To make a Windows Preinstallation Environment boot CD:

1. Make a temporary folder, X:\Winpe, where X: is the drive you want to use for the temporary folder.

2. From the Windows XP Embedded Service Pack 1 (SP1) CD, disk 1, copy the following files and folders to the X:\Winpe folder:

The entire I386 folder

The entire Xpe folder

The Winbom.ini, Win51, and Win51ip files

3. If you need custom network driver files:

a. Copy the custom .inf file to the X:\Winpe\I386\Inf folder.

b. Copy the custom .sys file to the X:\Winpe\I386\System32\Drivers folder.

4. If you need network support, append the following section to the X:\Winpe\Winbom.ini file:

[WinPE.Net]

IPConfig = DHCP

StartNet = Yes

5. Delete the X:\Winpe\I386\Bootfix.bin file if you always want to boot from the CD and do not want to receive the prompt: "Hit any key to boot from CD."

6. Create an ISO file from the temporary X:\Winpe folder:

oscdimg -bx:\etfsboot.com x:\winpe x:\image.iso

Note Copy the Etfsboot.com file from the Winpe folder of the Windows Preinstallation Environment 1.1 OEM (OPK) CD to drive X.

7. Create the CD from the ISO file.

This CD should now boot and connect to the network.

Method 2

Based on information from the newsgroup and using readily available tools, here are the steps to create a Windows Preinstallation Environment boot CD using (mostly) the Windows Preinstallation Environment folder on the Windows XP Embedded Service Pack 1 (SP1) CD, disk 1. The CD ISO image is created and burned onto the CD-ROM by using the following programs found in the NU2.NU Build CD-ROM (BCD) package: mkisofs and cdrecord.

Requirements

· Windows XP Embedded SP1 CD, disk 1

· Windows XP Professional installation CD

· Download http://www.nu2.nu/nu2files/bcd111.zip or the latest version of BCD from http://www.nu2.nu/bcd.

· Download http://www.nu2.nu/nu2files/bbie10.zip or the latest version of Bart's Boot Image Extractor (BBIE) from http://www.nu2.nu/bbie.

Procedure

1. Make a temporary folder, C:\BuildWinPE, where C can be any drive and BuildWinPE can be any folder name.

2. Extract the Bcd111.zip file with folders to C:\BuildWinPE. A Bin folder will be created in the process.

3. Extract the file in the Bbie10.zip file into the Bin folder that was created in step 2.

4. Copy the Wnaspi32.dll file to the C:\BuildWinPe\Bin folder.

5. Insert the Windows XP installation CD into drive Z: (where Z is your CD drive.

6. At a command prompt, type the following commands. Note that "winpebootsect.bin" is case sensitive in a later step.

CD C:\BuildWinPE

MK cds

MK cds\WinPE

MK cds\WinPE\Files

CD cds\WinPE\Files

..\..\..\Bin\bbie z:

rename image1.bin winpebootsect.bin

7. Remove the Windows XP installation disk.

8. Insert the Windows XP Embedded Service Pack (SP1) CD, disk 1.

9. At a command prompt, type the following commands:

copy z:\Win51*

Xcopy Z:\I386 I386 /S

Xcopy Z:\Xpe Xpe

cd ..

10. If you need custom network driver files, use the following commands:

copy custom inf file to C:\BuildWinPE\cds\WinPE\files\i386\inf

copy custom sys file to C:\BuildWinPE\cds\WinPE\files\i386\system32\drivers

11. If you need network support, append the following section to the C:\BuildWinPE\Cds\WinPE\Files\I386\Winbom.ini file:

12. [WinPE.Net]

13. IPConfig = DHCP

14. StartNet = Yes

15. Delete the C:\BuildWinPE\Cds\WinPE\Files\I386\Bootfix.bin file if you always want to boot from a CD and do not want to receive the prompt: "Hit any key to boot from CD."

16. Create and copy the following lines into the Bcd.cfg file in the C:\BuildWinPe\Cds\WinPe folder.

17. mkisofsargs -N -l -no-iso-translate -relaxed-filenames

18. #case must match that on the file when copied in previous steps !

19. bootfile Winpebootsect.bin

20. system WinPE

21. application embeddedXP

22. At a command prompt, type bcd –b winpe to create the ISO in the "%temp%\BCD.iso" file or type bcd WinPE to create and burn a Windows Preinstallation Environment CD.

The CD should boot Windows Preinstallation Environment, and connect to the network.

Configuring Windows Server 2003 with Remote Install Services to boot WinPE Images.

In theory, you can use a derivative of the following technique to deploy images.

This document assumes that a Windows 2003 Server has not been preconfigured for RIS, and does not have any existing images installed. If RIS is configured and additional images are being added, skip to step 6.

1. Ensure that Remote Install Services is installed on the Server

2. How To Use Remote Installation Service to Install Windows Server 2003 on Remote Computers
(see Install Windows Server 2003 RIS).

3. Apply all current critical hotfixes to server (e.g. www.windowsupdate.com).

4. Stop the BINL service:

NET STOP BINLSVC

5. Apply hotfix Q823658 to the server.

6. The operating system image you selected does not contain the necessary drivers for your network adapter" error message during the text-mode part of Setup when you deploy an operating system image by using RIS
At the time of this document the version will be 5.2.3790.111. This version or better is required.

7. Start the BINL service:

NET START BINLSVC

8. Add a Windows XP Pro SP1a image to the RIS share:
How To Use Remote Installation Service to Install Windows Server 2003 on Remote Computers
See the Set Up RIS section.

9. Navigate to the RIS install share where you installed the image in step#6 using Explorer. For example: D:\RemoteInstall\Setup\English\Images\<image_folder>

10. Overwrite the i386 directory in the <image_folder> with the i386 directory from the WinPE CD that you want to use to boot client machines. Note: the version of WinPE you’re adding into this directory must match the version of the OS that you installed via RIS (e.g. SP1 Pro OS and SP1 WinPE).

11. Obtain hotfix Q811419:
You Cannot Use the Same WinPE Image for Both Uniprocessor and Multiprocessor-Based Computers
This hotfix allows a single WinPE image to boot on single or multi-processor machines (including HyperThreaded-enabled).

Extract the contents of this hotfix package to a temp folder…do not install the hotfix on the server as that will do no good. The hotfix can be extracted using the /X switch.

12. Copy the files from the hotfix temp folder as follows:

EXTRA.INF (<image_folder>\i386 directory
KB814199.CAT (<image_folder>\i386 directory
SETUPLDR.BIN (<image_folder>\i386 directory
SETUPLDR.EXE (<image_folder>\i386 directory
SETUPLDR.EXE (<image_folder>\i386\Templates
IP\LAYOUT.INF (<image_folder>\i386 directory

13. Very Important: Delete the <image_folder>\i386\Templates\NTLDR file and then rename the <image_folder>\i386\Templates\SETUPLDR.EXE to NTLDR.

If you don’t do this, then the client will fail to boot correctly.

14. Copy the following files in the <image_folder>\i386 directory as follows:

<image_folder>\i386\NTOSKRNL.EXE (<image_folder>\i386\System32
<image_folder>\i386\NTKRNLMP.EXE (<image_folder>\i386\System32

15. Stop the BINL service (net stop binlsvc).

16. Copy any 3rd-party netcard drivers that exist in your WinPE image which will be used to boot the client computers as follows:

<image_folder>\i386\INF\<inf_file> (<image_folder>\i386
<image_folder>\i386\System32\Drivers\<driver_file> (<image_folder>\i386

In addition you may also have to copy any .DLL, .EXEs or other support files related to the driver into the <image_folder>\i386 directory otherwise the client may not boot. Look at the driver’s .INF file and search for the [SourceDisksFiles] section. This section will list all the files that the INF expects to be able to find. Copy all files listed to the <image_folder>\i386 folder to be safe.
17. Very Important: Delete all the .PNF (precompiled INF files) from the <image_folder>\i386 directory:

DEL <image_folder>\i386*.PNF

If the .PNF files are not deleted before restarting the BINL service, RIS won’t acknowledge any changes to existing INFs that may exist (say for example, if you overwrote an existing driver INF with a newer one).

18. Restart the BINL service (net start binlsvc)

The server is now ready to accept WinPE boot clients.

Security considerations

Please be sure to review the following on-line content:

Windows XP Embedded Security Strategy
Security Considerations for Windows XP Embedded Developers
Updating your devices frequently can be expensive; however, servicing can prevent even more expensive security compromises. This section provides general guidelines on how to reduce the risk of a security compromise.

Assessing your security risk

Some factors to consider when you assess your potential security risk are as follows:

· Network environment. Devices that are connected to a network might be vulnerable to network-based attacks, especially if these devices have unrestricted access to the Internet. You help to mitigate this risk by connecting your devices to a corporate network, or—even better—by restricting both incoming and outgoing Internet traffic. For more information about technologies that can help you to mitigate the risk of exposure to network-based attacks, see "Building in Windows Security" and "Securing the Network" later in this document.

· Physical environment. Any kind of direct physical access to your devices by a malicious user—a user who intentionally accesses a system with the intent to cause harm to the system or to use it in an unauthorized manner—presents an obvious risk. For more information about technologies that can help you to reduce this risk, see "Securing physical media" later in this document.

· Data storage. Because embedded systems run operating systems that have a small footprint, it is best not to store critical data on them. Instead, store critical data on a different computer, a server that is connected to the network, or on embedded devices whose operating systems have a larger footprint. Limit the amount of data that you store on a device running Windows XP Embedded so that the device works normally and achieves your performance goals.

A number of security-related factors are taken into account during the design of an embedded operating system, including:

· Footprint. The larger the footprint of the embedded operating system, the more surface area that is vulnerable to attack. It is recommended that you choose an operating system that has the smallest footprint possible and can still meet your needs. Devices running operating systems that have small footprints also tend to perform faster due to the small size of the media that they use, and the small number of files that they must process, load, and catalog.

· Services and features. The more services and features that you enable on a device, the more surface area that is vulnerable to attack. Again, the minimum set of features and functionality that meets your needs is recommended.

· Built-in security features. You can use Windows Firewall (formerly called Internet Connection Sharing and Firewall), Winlogon, Group Policy, and Access Control Lists (ACLs) to secure computers running Windows XP and also devices running Windows XP Embedded. In Windows-based systems, an ACL is a list of access control entries that apply to an entire object, a set of the object's properties, or an individual property of an object, and that define the access granted to one or more security principals.

Mitigating your security risks

Ways that you can help mitigate security risks to your devices include the following:

· Building small images. Devices with small footprints have less surface area exposed to attack. For more information about building these devices, click on this MSDN link: Finding and Eradicating Big Footprint
· Managing non-essential services. Services are processes that run in the background on Windows XP Embedded. Some services are unnecessary on certain devices and should not be built into the operating system, or should be turned off or disabled. You can also configure services to start either automatically or manually. You can configure a service to start manually, or to be managed by the device itself, if the service must be installed on the device but poses potential security vulnerability. For more information about managing base services in Windows XP Embedded, click on this link: Services .

· Using Windows Firewall (formerly Internet Connection Sharing and Firewall). Windows XP Embedded includes Windows Firewall, a feature that can help protect your devices from network-based attacks. For more information about this technology, click on this link: Windows Firewall .

Building in Windows Security

Security features in Windows XP Embedded can help reduce potential data loss or compromise by either communicating directly with a device, or by communicating with a device over the network. Windows XP Embedded offers two distinct logon base components, with distinct security models:

· The Minlogon component, which is unique to Windows XP Embedded, provides faster boot times and a smaller operating system footprint at the expense of built-in security features. There are no users on a device that use the Minlogon component: Programs run in the Local System context, which provides all users with complete control over the operating system. Security features such as Group Policy settings (for more information on Group Policy, see the Group Policy bullet point below), logon rights, and ACLs are not necessary in this context, because there are no users. For more information about this technology, click on this link:
Introduction to Minlogon

· The Windows Logon (Standard) component, also referred to as the Winlogon, component embodies the same standard logon mechanism as used in Windows XP Professional. Devices that use Winlogon are somewhat larger and slower to boot than devices that use Minlogon; however, Winlogon uses the full spectrum of Windows security features. Security features such as Group Policy settings, user logon rights, and ACLs are implemented in this context. For more information about Winlogon, click on this link:
Responsibilities of Winlogon

Here are additional security considerations:
"

·
Microsoft Active Directory® directory service. Active Directory provides a centralized, distributed computing infrastructure with built-in security. Devices running Windows XP Embedded can participate in an Active Directory infrastructure by including the appropriate Active Directory components. For more information about this technology:
Using Active Directory
Active Directory Security

· Group Policy. If your devices run the Winlogon service, you can manage users and security groups by configuring Group Policy settings in Windows XP and Windows XP Embedded. For more information about Group Policy:
About Group Policy
· Credential management APIs (Application Programming Interfaces). Windows XP and Windows XP Embedded provide the APIs that you need to implement custom credentials management applications. You can use these applications to manage user credentials instead of relying on users to type their user names and passwords. For more information about managing APIs:
Credential Manager.

· Smart cards. Windows XP Embedded supports smart cards, including integrated Smart Card security management and Smart Card reader device support. For more information about this technology:
The Smart Card Cryptographic Service Provider Cookbook.

Securing the network

You can use the following technologies in Windows XP and Windows XP Embedded to help protect your devices from network-based attacks.

· Windows Firewall (formerly Internet Connection Sharing and Firewall). The Windows Firewall is a port-based firewall service that blocks incoming traffic to your device on specific ports. Windows XP Embedded contains a Windows Firewall component that implements this functionality. For more information about this technology:
Windows Firewall
· Internet Protocol security (IPSec). The IP Security Tools and User Interface component provides IPSec policy management and diagnostic capabilities. The Microsoft Management Console (MMC) snap-in for the IP Security Policies allows you to configure and view both locally based and Active Directory-based IPSec policies. The MMC snap-in for IP Security Monitor displays the details about the active IPSec policy and security state. The ipseccmd commands for IPSec provide an alternative to the console-based management and diagnostic capabilities provided by the IP Security Policies and IP Security Monitor snap-ins. Ipseccmd is a scripting utility that you can use to configure IPSec policies and to display details about the state of the active IPSec policy through the command line. For more information about this technology:
How To Use IPSec for Filtering Ports and Authentication

· Kerberos. The Kerberos protocol defines how client computers communicate with a network authentication service. Client computers get tickets from the Kerberos Key Distribution Center (KDC), and then present these tickets to servers to establish connections with them. Kerberos tickets are the network credentials of client computers. For more information about this technology:
Microsoft Kerberos.

Securing physical media by using Enhanced Write Filter

Protecting the physical storage media of your devices is critical to avoiding data corruption from outside sources and computer viruses. Windows XP Embedded provides the Enhanced Write Filter (EWF) component to help protect your physical storage media.

EWF helps to protect the contents of a volume on the physical media by redirecting all writes to a different storage location, called an overlay. Used in this context, an overlay is similar to a transparency overlay on an overhead projector. Any change made to the overlay affects the picture as seen in the aggregate, but if the overlay is removed, the underlying picture remains unchanged. EWF can protect one or more bootable and non-bootable disk volumes, including but not limited to hard drives, flash ROMs, and CDs formatted in the El Torito format.

EWF presents a servicing challenge, however. To service the underlying operating system or application that EWF helps to protect, you must first disable EWF. This challenge is reduced by the availability of the EWF API, which provides programmatic control of EWF from inside your own applications. For more information about EWF:
Enhanced Write Filter
EWF API Functions

Protection from computer viruses

Third party antivirus sources are available at this link: Windows XP Embedded Security
Servicing checklist

The following tips can help you to successfully complete servicing tasks, and can help make these tasks less time consuming and costly.

Planning Ahead

Think about servicing when you design your devices. Servicing should not be an afterthought. Will your devices be able to connect to the Internet and communicate with a server? Will your devices use modem access? How many servers do you need to handle the load of servicing?

Servicing Experience

Invest the time required to design a clear and consistent user experience for servicing. For example, a set top box periodically downloads a program guide. It can also download updates, which simplifies its design and makes the user experience clear and consistent.

Testing Your Servicing Solution

Test your servicing solution thoroughly so that you are sure that it works correctly. By the time you have deployed your devices in the field, it is too late to fix major bugs. If you thoroughly plan your testing and then test against your plan, you can potentially save time and money. Include scalability testing (tests that ensure that servicing scenarios work the same way, regardless of the number of devices) and corner cases (tests that introduce small deviations in sets of devices).

Have a Back-Up Plan

Make sure that you create a back-up plan in case your primary servicing solution fails. If you typically service devices by using a broadband connection, you might want to be able to dial up by using a modem, also. You might want to be able to service devices through a CD-ROM or a universal serial bus (USB) storage device, and plan to replace media and devices in case of failures.

Include components that facilitate Servicing

· Consider including Device Update Agent (DUA) in your configuration, and edit its parameters. Even if you plan to update the entire image in bulk, you may find requirements in the future to make small changes.

· Include useful maintenance tools in your image such as Registry Editor, Administration Support Tools, Misc. Command Line Tools, Net.exe Utility, etc. (See the Development Guide for a complete list)

Perform a Security audit

Review the Security section in this document.

COMMON questions

Can you run a single XPE target image on multiple hardware devices?

Yes, this is possible and is a common question by OEMs when they want to support multiple HW configs for their customers yet have the same features and functionality across all the devices they market.
The caveat to this is that all the devices must use the same HAL. If the devices require different HALs then all bets are off. Otherwise, you can import multiple PMQs into the same config within TD when creating the runtime.
Also, since there is no driver.cab in XPE, all devices you expect to be attached to the device need to be added to the configuration before deploying the runtime, unless they want the ability to "Add New Hardware" from the desktop. If you want the driver.cab functionality, include the Generic Device Driver Support component, then pick and choose which device classes you need within this component.
What is the relationship between XP Pro Security Update releases and XP Embedded Security Update releases?

All applicable XP Pro security bulletins are made available for XPE in two forms – an update to the XPE database, and a version that will install on a properly prepared runtime. Note that there is a time delay between the release of the XP Pro update and the XPE version – this is due to the extra engineering we have to do to get the XPE version ready for release. This delay is usually one business week.

One thing to keep in mind when comparing XP Pro to XPE is that there are cases where a security update available for XPE is not applicable to a given device. For example, devices that do not include Internet Explorer would not be affected by the IE update (or the vulnerability it fixed) that was released earlier this week. In this case, the XPE device is more secure that a similar XP Pro device, simply because the reduced footprint means less surface area for attack.

Can I use Windows XP desktop Updates (hot fixes) in a deployed XP Embedded runtime?

For testing purposes, you may be able to apply hot fix packages intended for Windows XP Professional, executing them directly in a running Windows XP Embedded system. For production deployment, use the corresponding XP Embedded Update fixes which update your component database. Then rebuild and deploy your updated runtime using the updated database.

Warning: When deploying hot fixes in this way, you must ensure that the intended target component(s) of each hot fix are also completely included in the runtime image. Since an XP Embedded image contains a subset of the components that constitute the Windows XP desktop operating system, it is possible that a Windows XP Desktop Update may contain file updates for files that are not already present in your XPE runtime image. In this case, you might not get the updated version because some updates will only copy files that pre-exist on the target.

1. Use Target Designer to create your runtime image.

2. Deploy your image on your embedded system target. Let FBA complete.

3. On your embedded system target, run the tool services.msc in order to confirm that the Cryptographic Services is installed and is started. Cryptographics Services is required in order to deploy some XP Professional hot fixes.

4. Finally, install and run each of the desired XP Professional hot fixes on the embedded runtime.

5. After installing the hot fixes in this way, a good validation is to compare between an XPE computer and a desktop XP Pro computer using the same update package to make sure you are getting everything.

Caveats

The installer may fail when it attempts to update a binary that it expects to exist on the image but is not there.

The copied binaries may not correctly implement the update because of dependencies they have on components that may be missing in the image.

Regarding the overwriting of system files, when you configure a DUA script you can specify the need to copy the file after the subsequent reboot. This is something you need to set up yourself.
You can also write a batch file, using the inuse.exe tool available on MSDN, or programmatically via movefileex(). These mechanisms perform the copy on the subsequent reboot.
How can I identify that a runtime is the XPE platform?

The preferred, programmatic method to discover the operating system version is described here:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/osversioninfoex_str.asp
You can find it as VER_SUITE_EMBEDDEDNT.

However, another method is to directly inspect the registry:

HKLM\system\ccs\control\ProductOptions\ProductSuite

as value type = Reg_Multi_SZ value contents = "EmbeddedNT"

How do I identify the version of your runtime build?

The version of the runtime build can be discovered here:

HKLM\SYSTEM\CurrentControlSet\Control\Windows\CSDVersion

If XP SP2 is installed, this field contains 200 hexadecimal.

If you use the SP1 version of the XP Embedded database, your runtime will not automatically report that Service Pack 1 is installed. Your runtime will report Service Pack 1 as being installed only if you add the following registry value to your runtime build:

HKLM\SYSTEM\CurrentControlSet\Control\Windows\CSDVersion

as value type REG_DWORD and value 100 (Hexadecimal).

Once you add the registry entry, then reboot your runtime, WINVER or MSINFO32 will report that the build includes Service Pack 1.

How do I identify the hot fixes installed in my runtime?

If you run any recent desktop update with the -l switch (that's a lower-case "L"), you will list all the hot fixes (updates) installed.

See also the following registry key where sub keys identify each hot fix in your runtime image: HKLM\Software\Microsoft\Windows NT\CurrentVersion\Hotfix

How do I obtain and configure Licensing PIDs

You obtain your PIDs from a licensed distributor, one per deployed XP Embedded device.

One runtime PID should be used for all the target devices no matter how many of these devices they’re deploying as long as (1) enough licenses (i.e. Certificate of Authenticity (COA) stickers) are obtained and (2) all these devices belong to the same category (e.g. POS, Thin client, etc). An OEM can pick a PID number on any of the COA stickers and use it as the runtime PID for his XPE image. If he hasn’t got any stickers yet, then he needs to contact the distributor for licensing issues.
More info at:

Licensing a Run-time Image
Related Microsoft Corporation on-line resources

Windows XP Embedded Team Blog site
Supporting Windows XP Embedded-based Devices
Servicing Windows XP Embedded SP2
Deploy a Run-Time Image
Manage and service a run-time image
Building Serviceable Devices
Using SUS with Windows XP Embedded Service Pack 2
Bootable CD-ROM
Microsoft Security Site
Microsoft Support Lifecycle
SMS 2003 SP1 Advanced Client for Windows XP Embedded
Deploying a Windows XP Embedded Runtime
Glossary

	Componentized update
	An update that is applied to the Windows XP Embedded component database. In order to use newly installed componentized updates, you must use Target Designer to rebuild your run-time image.

	Desktop update
	An update that was designed for deployment into a Windows platform operating system.

	DUA
	Device Update Agent

	EWF
	Enhanced Write Filter

	Hotfix
	A single cumulative package composed of one or more files used to address a problem in a product. Hotfixes address a specific customer situation and may not be distributed outside the customer organization.

	OEM
	Original Equipment Manufacturer

	Patch
	See Update.

	Run-time update
	As contrasted against a Componentized update, which is an update to the Windows XP Embedded component database used by Target Designer, a run-time update is directly applied to a specific already-deployed XP Embedded runtime image. This mechanism is closely related to Windows XP Professional updates.

	Security Update
	A broadly released fix for a product-specific, security-related vulnerability. Security vulnerabilities are rated based on their severity, which is indicated in the Microsoft security bulletin as critical, important, moderate, or low.

	Update
	This term is used to refer to any system update (Hotfix, QFE or Patch).

	Update rollup
	A tested, cumulative set of hotfixes, security updates, critical updates, and updates packaged together for easy deployment. A rollup generally targets a specific area, such as security, or component of a product, such as Microsoft Internet Information Services (IIS).

Third party tools and resources

Sean Liming’s XPE Center
The XPE Files
WindowsForDevices.com

� Before running FBA, you must physically connect the disk device corresponding to the alternate boot device, to your embedded device. Otherwise the image deployed to Ramdisk will not see the disk drive. A workaround is to delete the disk driver entry in the critical device database (HKEY_LOCAL_MACHINE\RemoteBoot\ControlSetxxx\Control\CriticalDeviceDatabase\gendisk)

� Click on this link for more information: � HYPERLINK "http://msdn.microsoft.com/library/en-us/dnxpesp2/html/SUSXPESP2UsingSUSWithWindowsXPEmbeddedServicePack2.asp" ��Using SUS with Windows XP Embedded Service Pack 2�

� Click on this link for more information: � HYPERLINK "http://www.microsoft.com/smserver/downloads/2003/adclient.mspx" ��SMS 2003 SP1 Advanced Client for Windows XP Embedded�

_1201416643.vsd
Building a new image

Updating an already deployed image

Upon availability:
Upgrade database to latest Service Pack.
Install latest Service Pack component updates from OEM Secure web site.

Decide whether
 to replace the whole image or perform selective file / reg
updates

(SP1) Is it a
Microsoft run-time update
 that is dated 5/15/2004
 or later?

Include:
(SP1 only) Desktop QFE Installer, in order to allow the image to accept future run-time updates (Q824706 and Q842930).
Consider including Device Update Agent (DUA).
System Cloning Tool. Set its cmiResealPhase to 0 so you can reseal using FBRESEAL.

Customize (edit) configurable components.
Run Dependency Checker.
Build Runtime Image.
Run First Boot Agent (FBA).
Manually install non-componentized applications if needed.
FBRESEAL -all.
Clone the image once for each produced device.

Deliver image to target devices.
Implementation and test.

QA the new or modified image..
Test thoroughly.

(SP1 or earlier only) Fix up your image to accept run-time updates:
Manually install Q842930 registry key
Manually install Q824706 Desktop QFE
Obtain and install run-time updates from OEM secure web site

Manually analyze package content of required run-time update.
Manually re-package desired updates for deployment using DUA, batch, scripting, programmatic or other means.

UPDATE
WHOLE IMAGE

SELECTIVELY
UPDATE
FILES AND
REG KEYS
ONLY

YES

NO (SP2 or later)

Factors that affect this decision include the magnitude of the updates, the update delivery mechanism used, and the storage media used in your target device.

Finished

DRAWING1.VSD

