
[image: image1.jpg]Microsoft

Windows Server2003

Moving Windows NT 4 and Windows 2000 Applications to Windows Server 2003
Microsoft Corporation

Published: November 2002
Abstract

This white paper outlines considerations involved in migrating to Microsoft® Windows® Server 2003. It explains how to plan a migration strategy, and it describes how you can use various utilities and technical resources to deploy Windows Server 2003 as an application server and Web server, while minimizing disruption and additional investment.

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2002 Microsoft Corporation. All rights reserved.

Microsoft, Active Directory, SQL Server, Visual Basic, Visual Studio, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Contents

4Introduction

5Planning

5Languages, APIs, and Frameworks

6Active Directory

7Internet Information Services (IIS)

9COM+

10Microsoft Message Queuing (MSMQ)

11Database Access

12Server-Specific Issues

12Upgrading from Windows NT 4.0

12Upgrading from Windows 2000

14Implementation Examples

14Moving Web Applications

17Moving Windows Applications

19Conclusion

20Related Links

Introduction

It is important to understand how the Microsoft® Windows® Server 2003 family of products can save money in hardware and maintenance costs when migrating applications from the Windows NT® 4.0 and Windows 2000 server platforms. Understanding the advantages of the Windows Server 2003 family in performance, scalability, availability/reliability, security, and management will allow you to deploy Windows Server 2003 into your organization as an application server and Web server while minimizing disruption and additional investment.

You also need to ensure backward-compatibility for your organization’s applications, or be aware of possible incompatibilities and how to avoid them. This paper discusses moving web applications to Internet Information Services 6.0 (IIS 6.0) and moving Windows-based applications, such as those using Component Services (COM+), to Windows Server 2003.

There are many advantages to moving to Windows Server 2003. A key feature of Windows Server 2003 is IIS 6.0, a much more reliable, scalable, and secure version of IIS. IIS 6.0 is not a minor upgrade; instead it is a redesigned Web server that takes the lessons learned in IIS 1.0 through 5.0 and incorporates them in a rich and secure package. IIS 6.0 offers an IIS 5.0 compatibility mode, but the new worker-process isolation mode offers world-class capabilities not found in prior versions. Windows Server 2003 also offers the enhanced Active Directory® service , COM+ services, and Windows Management Instrumentation (WMI) services.

Planning

Before migrating applications to Windows Server 2003, you should plan out your migration path, which will save you a tremendous amount of time. Before moving applications to Windows Server 2003, you should identify each of the major features of the OS in use and be aware of the major issues for each when migrating. This paper focuses on getting existing applications to work under Windows Server 2003 when upgrading, rather than on new features available in the operating system.

Languages, APIs, and Frameworks

When upgrading from Windows NT 4.0 or Windows 2000 to Windows Server 2003, you may have applications written in Visual Basic (VB 6.0) or C++, or other languages that you wish to migrate to the new OS. You can either move these applications to Windows Server 2003 “as is,” or rewrite the applications using the new .NET Framework, as discussed in Migrating Win32 Applications to Windows Server 2003.
To run Visual Basic 6.0 applications on Windows Server 2003, you need to ensure that the VB Runtime is installed. Windows Server 2003 comes with the VB 6.0 Runtime pre-installed. Likewise, to run C++ applications that rely on the Microsoft Foundation Class (MFC) libraries, the correct MFC libraries are required. Windows Server 2003 includes MFC 4.2. If you are curious about a Microsoft DLL, you can most likely find out about it on the DLL Help Database. For instance, if you look up MSVBVM60.DLL (VB 6.0 virtual machine), you can find the following information about version 6.0.92.37:

[image: image2.wmf]

This DLL Help Database shows us that MSVBVM60.DLL is shipped with Windows XP (and Windows Server 2003). This tool is quite useful for tracking down questions about files like this.

As you migrate applications to Windows Server 2003 (and also client applications to Windows XP), you should write an application manifest, a “.man file,” for each application. The manifest is an XML format text file that lists the specific DLLs and their versions that the application should be executed with. Therefore, the manifest should list the DLL versions that the application was originally built and tested with. When Windows Server 2003 runs an EXE for which a manifest exists, it will load only the DLL versions specified in the manifest.

For more information, see the following topics:

· Deployment Changes in Visual Basic .NET
· Migrating Win32 Applications to Windows Server 2003
· VBRun60.exe Installs Visual Basic 6.0 Run-Time Files
· DLL Help Database
Active Directory

Windows Server 2003 includes many enhancements to Active Directory. It includes several utilities to upgrade installations from Windows NT 4.0 or Windows 2000. Furthermore, Windows Server 2003 enhances the administrator’s ability to efficiently configure and manage Active Directory even in very large enterprises with multiple forests, domains, and sites.

Windows Server includes a new version of Active Directory which adds new features but does not break compatibility with existing applications, and which should run fine under the new version.

Administrators can also use the improved Active Directory Migration Tool (ADMT), to copy passwords from a Windows NT 4.0 or Windows 2000 environment, or between forests in a Windows 2000 environment.

You can turn off compression of the replication traffic between domain controllers residing in different sites, reducing CPU utilization on the domain controllers; therefore increasing domain controller availability. IT administrators with multiple sites connected over high-speed networks can elect to reduce CPU utilization at a cost of not compressing the replication traffic between domain controllers that belong to different sites.

Active Directory also now limits users from logging on remotely using local accounts with blank passwords. This security feature prevents the use of an account with a blank password except for user logon at the physical computer console. Users can still have blank passwords on local accounts. However, for enterprise deployments, blank passwords cannot be used to gain remote access to the local administrator account. Therefore, IT professionals performing remote administration should log on to the local physical computer console and change their password to something non-blank.

For more information, see the following topics:

· Top 10 Benefits of Windows Server 2003
· What’s New in Active Directory
Internet Information Services (IIS)

Windows Server 2003 includes IIS 6.0, which delivers substantial changes and enhancements not available for earlier Windows operating systems versions such as Windows 2000.

For example, downloading IIS hot fixes will no longer cause service interruptions because the advanced process management features of IIS 6.0 allow fixes to be installed while IIS is running. If a hot fix might cause a service interruption, the administrator can schedule a convenient time to install it after download.

IIS 6.0 isolates FTP users into their own directory, preventing users from viewing or overwriting other users’ Web content. The user’s top-level directory appears on the root of the FTP service and restricts access by disallowing further navigation up the directory tree. This allows administrators to host multiple FTP sites on a single box without fear of intrusion. Within a specific site, the user can create, modify, or delete files and folders.

IIS 6.0’s new worker-process isolation mode offers increased isolation, reliability, availability, and performance, but it may be incompatible with some older applications. IIS 6.0’s backward-compatibility mode (called IIS 5.0 Isolation Mode) ensures that IIS 5.0 ISAPI applications that run on Windows 2000 can run unmodified on Windows Server 2003. IIS 5.0 Isolation Mode is fully compatible with IIS 5.0 but it takes advantage of the kernel cache and kernel-mode request queuing offered by HTTP.SYS in IIS 6.0. IIS 5.0 Isolation Mode is most commonly needed when an application isn’t multi-instance aware or when the application uses ISAPI filters that perform raw data reads.

ASP applications that do not use ISAPI filters should move to Windows Server 2003 without any changes or problems. During our testing, we successfully moved ASP code that had the following features to Windows Server 2003:

· Output HTML and used Session variables

· Output HTML from calls to SQL Server through ADO

· Used system ODBC data sources

We ran the application first in IIS 5.0 Isolation Mode, then switched to IIS 6.0 mode. Then we created an application pool and placed the application in it. The application worked fine in each mode. We did this both on the 32-bit Edition for x86 and on the 64-bit Edition for Itanium. ASP applications that are written in script code only (e.g., VBScript or ECMAScript) and that do not depend on 32-bit COM components not provided with Windows Server 2003, run without change on Windows Server 2003 64-bit Edition for Itanium

If installing IIS 6.0 from scratch, it defaults to worker-process isolation mode. If upgrading an IIS 5.0 installation, IIS 6.0 defaults to IIS isolation mode. In either case, the mode can be set by a configuration flag, Iis5IsolationModeEnabled, although IIS must be restarted when switching modes. You can change this setting in Internet Service Manager on the properties on the Service page as shown below:

[image: image3.wmf]

If you want to run both modes simultaneously, one for backward compatibility and one for the new feature benefits, you’ll need IIS 6.0 running on two separate systems.

The following table illustrates the default application isolation mode under different installation conditions:

	Existing Installation
	Default Application Isolation Mode

	New installation of IIS 6.0
	Worker process isolation mode

	Upgrade from previous version of IIS 6.0
	Remains the same as previous installation

	Upgrade from IIS 5.0
	IIS 5.0 isolation mode

	Upgrade from IIS 4.0
	IIS 5.0 isolation mode

In IIS 4.0 and IIS 5.0, the MetaBase configuration data— inheritance, data typing, change notification, security, etc.—was stored in a proprietary binary file. Upgrading to IIS 6.0 replaces the proprietary binary file, called Metabase.bin, with plain text XML-formatted files. The new MetaBase, named MetaBase.xml, is located in the %windir%\System32\inetsrv folder.

Previous servers were configured for maximum accessibility and ease of administration; all features were enabled after a vanilla installation. IIS 6.0 takes a dramatically different approach to security than its predecessors. Administrators should be aware that Windows Server 2003 and services such as IIS are installed in a locked down state. The IIS Security Lockdown wizard allows server functionality to be enabled or disabled as needed. For example, Active Server Pages (ASP), SharePoint®, or ASP.NET, may need to be unlocked before the Web server works as expected. When upgrading the operating system, however, it honors functionality previously enabled on the server.

You can access the IIS Security Lockdown wizard by starting the IIS snap-in, then right-clicking the computer icon representing the IIS server you wish to work with, then selecting Security. This starts the wizard, which walks you through the changes. You have a lot of control over what the wizard does. For instance, the next figure shows a few of the options you can select. Selecting an item, then clicking Details will also show you the location of the file or files that will be used to support that feature.

[image: image4.wmf]

For more information, see the following topics

· New Features Improve Your Web Server's Performance, Reliability, and Scalability
· IIS 6.0 Overview

COM+

Although legacy COM+ applications should run unmodified, you’ll often want to integrate them with new .NET Framework applications. One way to do this is to expose the interfaces of a COM+ object as XML Web Services to allow them to be called easily from managed-code, .NET Framework applications (or any other application that communicates via SOAP).

In IIS 4.0 and 5.0, ASP applications are able to use COM+ services by way of configuring the application’s WAM object in the COM+ configuration store to use a set of services. This was due to the fact that COM+ services were developed to be used in conjunction with COM components. In IIS 6.0, the COM+ services have been separated from components and allow ASP applications to use a set of COM+ services. In addition to those services available in COM+ on Windows 2000, a few new services have been added and are supported in ASP, as shown in the following table:

	Feature
	Description

	Fusion support
	Fusion allows an ASP application developer to specify exact versions of system run-time libraries and COM components that work with their application. This prevents problems if a newer version is installed and has changed functionality in some way.

	Partition support
	COM+ partitions allow an administrator to define a different configuration of a single COM+ application for different users. This configuration includes security and versioning information.

	Tracker support
	When enabled, the COM+ tracker allows administrators to monitor what code is running within the ASP session and when; this is extremely helpful for debugging ASP applications.

	Apartment model selection
	ASP, through COM+, allows developers to determine whether to use Single-Threaded Apartment mode (the default) or Multi-Threaded Apartment mode (available for applications using poolable objects).

For more information, see the following topics

· IIS 6.0 Overview

· COM+ Documentation

Microsoft Message Queuing (MSMQ)

Like other system features, Microsoft Message Queuing (MSMQ) has been enhanced in Windows Server 2003. MSMQ allows processes to send and receive messages efficiently. The functionality is built into BizTalk Server and other server products. MSMQ functionality can be accessed from any language that uses the .NET Framework, such as VB.NET and C#, via the System.Messaging object, which provides classes that send and receive messages from network queues. The loosely-coupled architecture now supports larger queues and the ability to send SOAP as a native format, enabling MSMQ to interoperate with any application that uses SOAP as its wire format.

Several existing features are being removed in MSMQ 3.0, which ships with Windows Server 2003. In particular, you may need to modify applications that rely on features that are no longer relevant, useful, or have been superseded by other features. You should verify your existing applications work with MSMQ 3.0 if they are subject to any of the following caveats:

· The MSMQ Exchange connector is no longer supported in Windows XP and Windows Server 2003. It continues to be available for previous versions of Windows (Windows NT 4.0 and Windows 2000).

· The IPX protocol is no longer supported by MSMQ 3.0.

· The MSMQ service is not available in the Windows XP Personal version. You can run DCOM-based applications on Windows XP Personal in order to access MSMQ.

· The MSMQ 3.0 dependent client supports only MSMQ 2.0 level functionality. This means that new MSMQ 3.0 features like distribution lists are not available to MSMQ 3.0 dependent clients. The alternative is to deploy DCOM-based solutions instead.

For more information, see the following topics
· Microsoft Message Queuing
· System.Messaging

Database Access

As with many tasks in Windows Server 2003, you’ll find that the new server offers increased performance and flexibility, and data access is no exception. You’ll find that the improvements often allow you to serve more data over more simultaneous connections than before. Furthermore, should an application exceed the server’s capacity, it is much easier to scale up or scale out.

ADO is still supported on Windows Server 2003. The .NET Framework does not require applications to support ADO.NET. Instead, applications using ADO and ADO.NET can coexist happily on Windows Server 2003. In fact, applications can even use both at the same time.

Likewise, ODBC technologies are still supported, so applications using this technology will work fine, as long as the correct versions of drivers and supporting files are present on the server.

Server-Specific Issues

In addition to the items cited above, IT Professionals need to consider other items that affect server upgrades.

If performing a clean install of Windows Server 2003, there are some significant configuration changes from previous versions. Also, if you are upgrading the OS on an existing box, does it contain third-party or Microsoft applications not included with Windows Server 2003?

You must ascertain which existing applications can remain in place even through an OS upgrade, and which applications need to be reinstalled. For example, many Win 32 applications depend on registry keys, which specify items such as the default application directory. For specific guidance on whether reinstallation is necessary, consult the vendor documentation; third-party software vendors may also provide migration utilities for their applications that you run either before or after upgrading to Windows Server 2003.

After the upgrade to Windows Server 2003 is complete, administrators can use the Auto Update feature to automatically download critical operating system updates, such as security fixes or security patches. Auto Update allows administrators to schedule the installation of operating system updates to minimize disruption. The new Local Update server also allows you to control updates that go out to your production servers. This will be a critical feature for many organizations as you can now control the flow of auto updates.

Upgrading from Windows NT 4.0

Some NT 4.0 administrators will choose to migrate directly to Windows Server 2003, whereas others will prefer to migrate first to Windows 2000 as an interim step. For our purposes, we’ll assume that Windows NT 4.0 systems have IIS 4.0 installed.

Migrating directly from Windows NT 4.0 to Windows Server 2003 is also supported. During the upgrade, the upgrade process will:

· Upgrade the IIS 4.0 metabase to use the new IIS 6.0 format;

· Inherit the security settings from IIS 4.0;

· Set the application isolation mode to IIS 5.0 isolation mode; and

· Run all applications in a single application pool, by default.

Once IIS has been upgraded, you can update other services such as Active Directory as described earlier.

Upgrading from Windows 2000

Migrating directly from Windows 2000 to Windows Server 2003 is relatively straightforward.

For our purposes, we’ll assume that Windows 2000 systems have IIS 5.0 installed. The upgrade process will upgrade the IIS metabase and security settings as described earlier for IIS 4.0.

Windows Server 2003 also includes a Key Management System (KMS) database migration tool for Microsoft Exchange Server 2000 to migrate an existing KMS database to a Windows Server 2003 certificate authority. This includes the ability for down-level clients, such as Windows Millennium Edition (Windows Me), Windows 2000, and Windows XP to use a Windows Server 2003 certificate authority for key archival and recovery.

Implementation Examples

To really understand how the process works, you should walk through a few examples of moving applications. As you can see from these examples, once you move a Web application to Windows Server 2003, you life should be easier. This is because you can set up application pools for the applications, and make sure the pools restart problem applications with some frequency.

Moving Web Applications

You’ll want to ensure that applications that ran under IIS 5.0 on Windows 2000 continue to run on IIS 6.0 under Windows Server 2003. IIS 6.0 has two distinct isolation modes, each with different configuration requirements: worker-process isolation mode takes full advantage of IIS 6.0’s features, whereas IIS 5.0 isolation mode offers backward compatibility.

In Worker-Process Isolation Mode, you can isolate applications using application pools. You can either place applications into their own application pool or group multiple applications into a single pool.

In IIS 5.0 Isolation Mode you can isolate an application using the AppIsolated property setting; the options are in-process, pooled, or high isolation, similar to the settings supported in IIS 5.0. In IIS 6.0, when using IIS 5.0 isolation mode in either the pooled or highly isolated configuration, there is a performance hit due to data marshaling, as was seen in IIS 5.0.

When IIS 6.0 is running in worker-process isolation mode, there is no performance penalty due to data marshaling when it is moved into its own unique application pool. However, for every application pool there will be at least one instance of w3wp.exe running, and the impact of multiple processes running on a server concurrently should be considered when designing the Web server for scalability.

When an IIS 6.0 server is upgraded from IIS 4.0 or 5.0 to IIS 6.0, it will configure itself in IIS 5.0 isolation mode (i.e., the previous application isolation setting is preserved). You should use Worker Process mode whenever possible for increased performance and reliability due to isolation. When switching to Worker Process mode, all applications will be placed in a single Default Application Pool, created automatically by the IIS 6.0 installation.

When applications move into the default application pool, it produces a different isolation configuration than what existed previously, as the applications will no longer be running in their own instance. If isolation is required, a manual process is then required to move the applications back into their isolated state.

For example, upgrading an IIS 5.0 server containing applications running in high isolation and converting to worker-process isolation mode requires a procedure such as this:

1. Upgrade the server to IIS 6.0

2. Test the application(s) while running in IIS 5.0 isolation mode

3. Switch the IIS application isolation mode to IIS 6.0
4. Create unique application pools for each of the Web applications

5. Associate the applications with the new application pools

Performing these last two steps is quite simple. To create the application pool, start Internet Information Services (IIS) and select the Application Pools folder. Right-click this folder, select New, and then select Application Pool. This will display the dialog shown in the figure below where you can name the new pool. Click OK when you are finished and the new pool will be created.

[image: image5.wmf]

Once you click OK, the new pool will show up under Application Pools.

Next, you can associate your application with the new pool. To accomplish this, open the Properties for the application and switch to the Virtual Directory or Home Directory page. Next, select the new pool under the Application Pool list at the bottom of the page as shown in the figure below, and then apply the change or click OK.

[image: image6.wmf]

Once you have the application in the new pool, run it again. You can see the applications that are actually running by looking at the Application Pools display as shown in the figure below.

[image: image7.wmf]

How about simply moving an ASP application to IIS 6.0? The steps are almost the same as for upgrading a server, but of course the actions are much simpler.

1. Copy the application to the new server and set its properties

2. Install any components that may be used and, if necessary, install them in COM+ in the appropriate applications

3. Test the application(s) while running in IIS 5.0 isolation mode or if you have already moved the server to IIS 6.0 mode, test in that mode

4. Switch the IIS application isolation mode to IIS 6.0 worker process mode, if you did not do this before step 2

5. Create unique application pools for each of the Web applications

6. Associate the applications with the new application pools

If backward compatibility is an issue, use IIS 5.0 isolation mode. In IIS 5.0 isolation mode, however, IIS 6.0’s application pools, recycling, and health detection features are not available. Therefore, you’ll have to be much more stringent in testing for memory leaks and other problems that can consume server resources and cause processes to hang.

IIS 5.0 isolation mode is required when using:

· ISAPI filters that read raw data filters (i.e., registers SF_READ_RAW_DATA or SF_SEND_RAW_DATA)

· Session state is persisted in a process (using ASP session state works fine in Worker Process mode and does not require IIS 5.0 isolation mode)

· COM objects, or any application, that are not multi-instance aware.

· Microsoft Exchange

If the application uses ISAPI filters, it is best to eventually rewrite them as ISAPI extensions. The latter are multi-instance aware and can therefore take advantage of IIS 6.0’s worker process mode and it’s monitoring and recycling features. ISAPI extensions also run asynchronously, unlike ISAPI filters which are synchronous.

For more information, see the following topics

· Windows Scalability Flexibility

· Implementing a Scalable Architecture

Moving Windows Applications

You should be able to run most Win32 applications, such as those built with Visual Basic 6.0 or Delphi, on Windows Server 2003 with no changes. As mentioned earlier, it is important to move any DLLs and other services the applications depend on to Windows Server 2003. Once this is done, the applications should run fine. In fact, moving Win32 applications to Windows Server 2003 requires the same process as installing them on Windows 2000 or Windows NT.

Windows applications must be physically moved or installed, including setting any necessary registry entries. These applications still require installation where COM DLLs are registered with RegSvr32 or another technique to register them properly. They also require some type of install into COM+ if the application uses COM+.

Once moved to Windows Server 2003, be sure to test thoroughly in the new environment to uncover any problems.

Conclusion

The Windows Server family offers IT Professionals substantial improvements over and lower total cost of ownership (TCO) than Windows NT 4.0 and Windows 2000. An understanding of the .NET architecture, coupled with prudent planning, allows IT Professionals to plot the appropriate migration strategy.

Windows Server 2003 offers a wide variety of powerful enhancements to improve the security, reliability, manageability, scalability, and performance of server applications. The sooner you take advantage of the improved functionality of Windows Server 2003, the sooner you can benefit from its lower total cost of ownership. IIS 6.0, with numerous improvements over IIS 5.0, is available exclusively on Windows Server 2003.

The Windows Server 2003 family offers a range of choices appropriate for each business’s needs. Windows Server 2003 offers a clear future upgrade path from both Windows 2000 and Windows NT 4.0, including utilities and technical resources to help with upgrading.

Related Links

· What's New in Application Services
· Application Server Technologies
· Securing the Platform
· Windows Server Scalability and Flexibility
· Application Reliability
·

 HYPERLINK "http://www.microsoft.com/windows.netserver/techinfo/overview/iis.mspx"

IIS 6.0 Overview

