

Microsoft Dynamics
®

 AX 2012

Developing with Table

Inheritance

White Paper

Microsoft Dynamics AX 2012 introduces programming support

for table inheritance. This paper outlines the developer
experience of creating and programming a table inheritance

hierarchy and describes the run-time behavior of various
existing and new Microsoft Dynamics AX structures and
processes that are involved with table inheritance.

http://microsoft.com/dynamics/ax

Date: April, 2011

Author: Yanning Liu, Software Development Engineer in Test II

Send suggestions and comments about this document to
adocs@microsoft.com. Please include the title with your

feedback.

http://microsoft.com/dynamics/ax
mailto:adocs@microsoft.com?subject=Microsoft%20Dynamics%20AX%202012%20Whitepaper

2

DEVELOPING WITH TABLE INHERITANCE

Table of Contents

Introduction .. 4
Table inheritance implementation in Microsoft Dynamics AX 2012 ... 4
Performance considerations in table inheritance .. 4
Terminology ... 5

Implementing a table inheritance hierarchy in the AOT 5
Designing a table inheritance hierarchy ... 5
Constructing a table inheritance hierarchy ... 6
Configuring table inheritance hierarchies in the AOT .. 9

Abstract versus concrete tables .. 10
Hierarchy properties versus table properties .. 10
Table methods ... 11
Relations on the table inheritance hierarchy ... 12
Configuration keys on the table inheritance hierarchy .. 12
Enhanced dictionary reflection APIs and scope .. 13

Programming table inheritance ... 13
Inserting data into a table inheritance hierarchy ..14

GovermentOrganization table data .. 14
NonprofitOrganization table data .. 14
Organization table data ... 15
Party table data .. 15

Updating data on the table inheritance hierarchy ...15
GovermentOrganization table data .. 15
NonprofitOrganization table data .. 16
Organization table data ... 16
Party table data .. 16

Deleting data from the table inheritance hierarchy ...16
Invoking table methods and table buffer casting ..16
Querying data from a table inheritance hierarchy ...19

X++ select statement ... 19
Support from the query framework ... 20
Ad hoc query mode ... 22
Creating a view with the table inheritance hierarchy .. 26
Support for caching ... 27
System services ... 27

Set-based operations on a table inheritance hierarchy ..27

Developing forms with table inheritance ... 28
Creating a polymorphic form ...28
Polymorphic form at run time ..31
Displaying the instance type of the record ...32
Record templates on polymorphic forms ...33
Advanced filter support on the table inheritance hierarchy ..34
Using the ad hoc query mode to improve performance ...35

3

DEVELOPING WITH TABLE INHERITANCE

Developing Enterprise Portal for Microsoft Dynamics AX 2012 components
with table inheritance ... 36

Developing Reporting Services reports with table inheritance 38

Security and table inheritance .. 42
Securing concrete types..42
Accessing data in the table inheritance hierarchy as a non-administrator43

Data upgrade .. 47

4

DEVELOPING WITH TABLE INHERITANCE

Introduction

In Microsoft Dynamics® AX 2012, programming models have been enhanced to assist developers in
developing applications based on revised or new relational data models. Among these enhancements
is the introduction of programming support for the table inheritance data model.

Table inheritance is a concept—facilitated through data modeling—that recognizes and represents
generalized and specialized relationships between data entities. In Microsoft Dynamics AX 2012, tables

can inherit, or extend, from the tables that are situated above them in a hierarchy. A base table
contains fields that are common to all tables that derive from it. A derived table inherits these fields,
but also contains fields that are unique to its purpose. Each table contains the SupportInheritance
and Extends properties, which can be used to control table inheritance.

For example, the data model for the global address book (GAB) has been refactored to reduce data
redundancy and the number of synchronizations among the master data tables. An essential part of

the revised GAB data model is the ―party inheritance hierarchy,‖ which holds the master data for

business entities (parties). The DirPartyTable table stores the common properties of organizations and
people and serves as the root of the hierarchy. The DirOrganizationBase and DirPerson tables inherit
from the DirPartyTable table, but they also contain data columns that are specific to organizations and
persons, respectively.

Microsoft Dynamics AX 2012 enables developers to enjoy the same object oriented programming
support on table inheritance hierarchies as on classes. This support includes field inheritance, table
method inheritance, polymorphism, and casting between base and derived table buffers.

This paper outlines the developer experience of creating and programming with the table inheritance
data model. In addition, it describes the run-time behavior of various existing and new Microsoft
Dynamics AX constructs and processes when table inheritance is involved.

Table inheritance implementation in Microsoft Dynamics AX 2012

Microsoft Dynamics AX 2012 adopts the table -per - type storage pattern to support table inheritance

data models. In this pattern, each type in the table inheritance hierarchy is stored in a separate table
in the back-end database. This approach avoids creating wide master data tables, and thereby
reduces storage demand, which is crucial in boosting data upgrade performance. It also simplifies
relational modeling, because the Microsoft Dynamics AX 2012 data access stack recognizes the
relations defined across the table inheritance hierarchy and manages the stored data accordingly.

The Microsoft Dynamics AX 2012 implementation of table inheritance imposes the disjoint rule for the
disjointness constraint on the table inheritance data models that it supports. The disjoint rule requires
that an instance of the base type can only be one of the derived types. In addition, converting a table
inheritance record to a different type at run time is not allowed in Microsoft Dynamics AX 2012.

Data access on table inheritance hierarchies is completely managed by Microsoft Dynamics AX 2012 to
allow developers to perform the insert, update, and delete operations on the table inheritance
hierarchy in the same way that they do on tables that are not involved in inheritance hierarchies. A

query from an inheritance table is polymorphic and the returned data will include the records of the
derived types.

Performance considerations in table inheritance

The modeling and programming benefits of table inheritance come at a price: a certain degree of

performance degradation is incurred when data access is performed on table inheritance hierarchies.
This degradation is associated with the extra costs of navigating and persisting (or joining) data on
multiple tables in the hierarchy, as compared to working with a single table when no table inheritance
is involved. Developers are advised to evaluate the performance implications when implementing their
solutions by using table inheritance data models.

As a general guideline, the table inheritance data model should be avoided on transactional tables to
minimize the performance impact. In addition, developers are advised to avoid creating extensively

5

DEVELOPING WITH TABLE INHERITANCE

deep and wide table inheritance hierarchies when designing the physical data models; this will
sometimes require collapsing the hierarchy. When querying data from an inheritance hierarchy,
developers should design the query from the concrete table types (explained in the Abstract vs.
concrete tables section). In addition, to reduce the extra performance costs associated with

polymorphism, they should use polymorphic queries only when necessary.

Microsoft Dynamics AX 2012 has enhanced the ad hoc query mode to alleviate the back-end database
load that could result from the large number of table joins when querying data from table inheritance
hierarchies. Developers are encouraged to use the ad hoc query mode when only partial data is
needed.

Terminology

Microsoft Dynamics AX 2012 terms:

Term Definition

Root table A table at the head of the table inheritance hierarchy.

Leaf table A table at the bottom of the table inheritance hierarchy; no other tables
inherit from this table.

Base table A table with characteristics that can be inherited by other tables. A table
that functions as a base table can also be a derived table if it inherits
some of its characteristics from tables further up in the hierarchy.

Derived table A table that inherits some of its characteristics from one or more base
tables.

Type A unique data entity in a data model, represented by a table. The fields of
a table can be joined with the fields from the base tables (if any) in a
table buffer to represent all the fields for the type.

Implementing a table inheritance hierarchy in the AOT

This section explains how to construct a table inheritance hierarchy in the Application Object Tree

(AOT) and how to configure the properties that govern the run-time behavior of the hierarchy.

Designing a table inheritance hierarchy

The table -per - type representation of the table inheritance data model in Microsoft Dynamics AX 2012
provides developers with the convenience of overloading the Tables node of the AOT to define the

table inheritance entities.

The process of creating the table inheritance hierarchy starts with creating the data tables that map to
the table inheritance entities in the AOT. It is important to note that Microsoft Dynamics AX 2012 does
not allow a table to join a table hierarchy if its fields have already been defined. This means that the
tables you create, which will represent the table inheritance entities, must not contain any fields
before the inheritance relationships among them have been defined in the AOT.

Developers should also be aware that, after the inheritance relationships have been defined, certain

table properties become disabled on the table inheritance tables, with the exception of the root table.
This behavior applies to properties that belong to the inheritance hierarchy rather than to the
individual table inheritance type.

However, a table inheritance hierarchy can only be defined on a normal table type. Microsoft
Dynamics AX 2012 does not support creating table inheritance on either InMemory or TempDB table
types.

A type discriminator field must be defined on any table inheritance hierarchy created in the AOT. The

field must be defined as an int64 type on the root table, with the name of the field set to

6

DEVELOPING WITH TABLE INHERITANCE

InstanceRelationType. Furthermore, the developer must select this field as the value for the
InstanceRelationType table property on the root table. If these requirements are not met, a
compilation error will occur when the table inheritance hierarchy is compiled.

The InstanceRelationType field of the root table is read-only and stores the TableIDs of record

instances; it is populated automatically by Microsoft Dynamics AX 2012.

Constructing a table inheritance hierarchy

For demonstration purposes, we will create a table inheritance hierarchy based on a mock party data
model represented by the Entity-Relationship (ER) diagram in Figure 1.

Figure 1: Mock party data model

To create the table inheritance hierarchy

1. Launch the Microsoft Dynamics AX 2012 client in the development workspace.

2. In the AOT, navigate to Data Dictionary > Tables, and right-click the Tables node.

3. Click New Table. In the table property window, set the Name property value to ―Party‖ and
set the SupportInheritance property to Yes. Do not create any field in the table. Save the
table.

Note: Table inheritance properties such as Extends become enabled only if the

SupportInheritance property has been set to Yes.

7

DEVELOPING WITH TABLE INHERITANCE

4. Repeat step 3 to create each of the other tables (Person, Organization, NonProfitOrganization,
and GovernmentOrganization) in the mock party data model, setting the Name property value
to the appropriate name each time.

5. Define the inheritance relationships on the tables as follows:

a. Select the Person table in the table property window, expand the drop-down list in the
Extends property and select Party. Save the table.

b. Select the Organization table in the table property window, expand the drop-down list in
the Extends property, and select Party. Save the table.

c. Select the NonProfitOrganization table in the table property window, expand the drop-
down list in the Extends property, and select Organization. Save the table.

d. Select the GovernmentOrganization table in the table property window, expand the drop-

down list in the Extends property, and select Organization. Save the table.

e. Leave the Extends property on the base table Party blank.

6. Create table fields according to the date model on the tables.

Note: Field names must be unique across the entire table inheritance hierarchy. This

requirement ensures that the field name uniquely identifies the field across the hierarchy when

appearing in system APIs that reference table fields. Developers will also notice that field IDs

are unique across the entire table inheritance hierarchy.

7. Configure the type discriminator as follows:

a. Select the base table Party.

b. Create an int64 field and name it InstanceRelationType.

c. In the table property window, expand the drop-down list of the InstanceRelationType
property, and select InstanceRelationType, as shown in the following illustration.

8

DEVELOPING WITH TABLE INHERITANCE

8. Optional: Complete this step only if you are displaying the instance type of the record on a
form, and a report is needed.

Create a partyType enumeration type and define the elements, as shown in the following
illustration.

Define an enumeration field of partyType on the Party base table. Name the field
DisplayRelationType. Override the insert table method on the Party table.

public void insert()

{

 DictEnum enumType = new DictEnum(enumnum(partytype));

 int enumValue;

 if (this.DisplayRelationType != partytype:: Unknown)

 {

 return;

 }

 enumValue = enumType..symbol2Value(this.getInstanceRelationType());

 if (enumValue == 255) // symbol2Value returns 255 if cannot convert

 {

9

DEVELOPING WITH TABLE INHERITANCE

 throw error(strfmt('No %1 enum element fou nd for EnumValue %2',

 enumstr(partytype),

 this.getInstanceRelationType()));

 }

 else

 {

 this.DisplayRelationType = enumValue;

 }

 super();

}

9. Save and compile the tables in the AOT. Make sure there is no compilation error.

Completing these steps effectively ―translates‖ the data model to the AOT. Developers can also

expand the hierarchy. This is accomplished by connecting additional tables to the hierarchy through

setting the proper value of the Extends property. (Correspondingly, setting the Extends table
property value to ―empty‖ on a derived table will disconnect the table from the hierarchy.) This must
be done with caution, however, because Microsoft Dynamics AX 2012 only allows tables with an empty
field list to join the inheritance hierarchy.

Developers can now use a new developer tool, the Type hierarchy browser (see Figure 2), to visualize
the table inheritance hierarchy in a more intuitive way. Developers can access the tool by right clicking

the AOT Tables node, and then clicking Add Ins > Type hierarchy browser.

Figure 2: Type hierarchy browser

Configuring table inheritance hierarchies in the AOT

After you have constructed the table inheritance hierarchy, you can begin to specify its characteristics,
based on the data model from which it originated. Several configuration elements influence the

development and definition of a table inheritance hierarchy in the AOT. Some key elements include:

10

DEVELOPING WITH TABLE INHERITANCE

¶ Abstract versus concrete tables

¶ Hierarchy versus table properties

¶ Table methods

¶ Relations on the table inheritance hierarchy

¶ Configuration keys on the table relation hierarchy

¶ Enhanced reflection APIs and scope

Abstract versus concrete tables

Tables in a table inheritance hierarchy can be defined as either abstract or concrete , depending on
whether the table property Abstract is set to Yes or No. Records can only be created for concrete
table types. Any attempt to create a record and insert it in an abstract table will result in a run-time

error. The position of the table in the inheritance hierarchy does not restrict its ability to be defined as
abstract.

Hierarchy properties versus table properties

Certain properties and run-time behaviors can only be defined on the root table of the table
inheritance hierarchy. These properties are considered hierarchy properties and their values govern

the behaviors of the inheritance tables across the entire hierarchy. Figure 3 captures the table
properties of the Party base table and one of its derived tables, NonProfitOrganization, in the mock
party data model. Some of the hierarchy properties (which are unavailable in the

NonProfitOrganization property list) include:

¶ SaveDataPerCompany

¶ CacheLookup

¶ ModifiedDateTime

¶ ModifiedBy

¶ ModifiedTransactionId

¶ CreatedDateTime

¶ CreatedBy

¶ CreatedTransactionId

¶ OccEnabled

¶ EntityRelationshipType

¶ InstanceRelationType

¶ ValidTimeStateFieldType

11

DEVELOPING WITH TABLE INHERITANCE

Figure 3: Hierarchy and table properties

Table properties not listed above are regular table properties that are not overloaded for defining
hierarchy behaviors. The properties TitleField1 and TitleField2, however, will inherit the values from
the base table if not defined on the current table. This inheritance principle also applies to the Field
Group definitions (such as AutoIdentification, AutoLookup, AutoReport and so on) under a table
node on table inheritance hierarchies.

Table methods

Microsoft Dynamics AX 2012 provides the same support for table method inheritance and
polymorphism on the table inheritance hierarchy that developers encounter with classes.
Developers can access the base table method on a derived table buffer. In addition, a derived table
method can override a base table method and call super() to invoke the same method on the base
table buffer. Upcasting and downcasting among base table and derived tables instances is also

supported. The actual methods invoked depend on the instance type at run time.

Certain limitations apply, as follows:

12

DEVELOPING WITH TABLE INHERITANCE

¶ There is no support for tables to implement interfaces.

¶ There is no support for specifying that a table is final (and therefore not subject to being
overridden).

¶ If an incompatible method signature consisting of both the parameter types and the return

type is specified on an overridden method (where the method name remains the same), the
compiler will issue an error.

Relations on the table inheritance hierarchy

Microsoft Dynamics AX 2012 automatically creates relations between the base table and its derived
tables. Naming these relations follows the convention PK_Base table_ Derived table , which is the data
storage pattern that Microsoft Dynamics AX 2012 has adopted for table inheritance hierarchies (see

Figure 4).

Figure 4: Automatically created relations between the base and derived tables

Developers can define extra relations on tables involved in the table inheritance hierarchy that are in
keeping with the data model. These relations must be named uniquely across the entire hierarchy
because they will be visible to the base and derived tables when the hierarchy is involved in designing
queries or forms.

Configuration keys on the table inheritance hierarchy

Configuration keys are often arranged in hierarchies of functionality, mirroring the hierarchies of

functionality in the application. Developers can assign a configuration key at any level in the table
inheritance hierarchy. However, they must make sure that when a configuration key is assigned to a
given table in the inheritance hierarchy, all of its derived tables are assigned either the same
configuration key or one of its children keys in the configuration key hierarchy. Not assigning a

configuration key will result in the default configuration key behavior in the system, which makes that
table available during a basic installation.

A compatible configuration key setting on the table inheritance hierarchy warrants that when a table is
disabled (by disabling its assigned configuration key); the entire derived branch of the table is
disabled. Any data access activity on a table disabled by configuration key will render no action from
the system.

13

DEVELOPING WITH TABLE INHERITANCE

A configuration key compatibility check is enforced at compilation; failing the compatibility check will
result in compilation errors.

Enhanced dictionary reflection APIs and scope

In Microsoft Dynamics AX 2012, the dictionary reflection APIs have been enhanced to accommodate
the need to discover and traverse the hierarchy to find the needed properties to reflect. A system
enumeration type, TableScope, which is composed of three values—CurrentTableOnly,
IncludeBaseTables and IncludeDerivedTables—has been introduced to define the scope of the
search. An optional parameter of enumeration type TableScope is added to the relevant dictionary
reflection APIs to specify the scope of reflection discovery. The following is a list of relevant APIs to
reflect the table inheritance hierarchy:

¶ DictTable.extends

¶ DictTable.extendedBy

¶ DictTable.fieldCnt

¶ DictTable.fieldCnt2Id

¶ DictTable.fieldNext

¶ DictTable.fieldGroupCnt

¶ DictTable.fieldGroup

¶ DictTable.relation

¶ DictTable.relationCnt

¶ DictTable.objectMethodCnt

¶ DictTable.objectMethod

¶ DictTable.objectMethodObject

¶ DictTable.titleField1

¶ DictTable.titleField2

¶ DictRelation.loadTableRelation

¶ DictRelation.loadFieldRelation

Implicit enhancements to a range of reflection APIs were also made to supply these reflection APIs or
intrinsic functions with fields or relations defined uniquely on the inheritance hierarchy. In other
words, you do not need to specify a table scope for these reflection APIs. Examples are as follows:

¶ DictTable.fieldName

¶ DictTable.fieldObject

¶ DictTable.fieldName2Id

¶ DictTable.fieldNum

Programming table inheritance

A new set of programming artifacts has been introduced in Microsoft Dynamics AX 2012. These
artifacts provide transparent, end-to-end support for programming with table inheritance data models
and run-time support for accessing data on table inheritance hierarchies.

¶ Field inheritance – The table buffer of a derived table in an inheritance hierarchy can directly

access the fields defined on the base tables.

14

DEVELOPING WITH TABLE INHERITANCE

¶ Table buffer casting – Direct upcasting is allowed between base and derived table record
instances, and downcasting is allowed with the help of is and as operators.

¶ Table method inheritance – The table buffer of a derived table is able to directly call
methods defined on the base tables.

¶ Table method polymorphism – The table method invoked on a table buffer is determined
by the instance type of the record in the buffer at run time.

Inserting data into a table inheritance hierarchy

The following code example demonstrates how to insert records into a concrete type table—in this

case, the GovernmentOrganization table in the mock party data model.

static void Job_InsertGovOrg(Args _args)

{

 GovernmentOrganization tstGov;

 NonProfitOrganization tstNpo;

 tstNpo.Name = " Jaguar Concert Hall " ;

 tstNpo.Email = "email@Jaguar Concert .Org" ;

 tstNpo.State = "I L" ;

 tstNpo.City = " Urbana" ;

 tstNpo.DunsNumber = " JagCont001" ;

 tstNpo.NumberOfEmployees = 10;

 tstNpo.AnnualContribution = 12345.67 ;

 tstNPO.insert();

 tstGov.Name = " Illinois State Tax Authority " ;

 TstGov.Email = "Tax @il .gov" ;

 tstGov.State = "IL " ;

 tstG ov.City = " Springfield " ;

 tstGov.DunsNumber = "ILTAX001 " ;

 tstGov.NumberOfEmployees = 200;

 tstGov.AgencyDescription = " Illinois State Tax Authority " ;

 tstGov.insert();

 info(tstGov.getInstanceRelationType()); //GovermentOrganization

}

Microsoft Dynamics AX 2012 manages committing the data in a transaction across the relevant tables
in the inheritance hierarchy at run time when an insert operation is issued on a concrete type table
buffer. The inheritance relationship is reflected in the data by the propagating surrogate keys. The
data persisted in the database tables will look as follows.

GovermentOrganization table data

AgencyDescription RecId

Illinois State Tax
Authority

5637145080

NonprofitOrganization table data

Annual Contribution RecId

12345.67 5637145079

15

DEVELOPING WITH TABLE INHERITANCE

Organization table data

Number of
Employees

DUNS Number RecId

10 JagCont001 5637145079

200 ILTAX001 5637145080

Party table data

Name State City InstanceRelationType Email RecId

Jaguar
Concert

Hall

IL Urbana 100433 email@JaguarConcert.
Org

5637145079

Illinois
State
Tax

Authori

ty

IL Springfield 100434 Tax@il.gov 5637145080

The InstanceRelationType field defined on the Party base table is populated by Microsoft Dynamics AX
2012 and stores the TableIDs of the concrete types. However, when the type of a record instance is

needed, the developer should use the common.getInstanceRelationType API instead of directly
accessing the InstanceRelationType field.

Updating data on the table inheritance hierarchy

The following code example demonstrates how to update records in the table inheritance hierarchy.

Note that the update can be issued from either the concrete (derived) type table buffer or the base
type table buffer.

static void UpdateOrg(Args _args)

{

 Organizati on tstOrg;

 NonProfitOrganization tstNpo;

 ttsBegin ;

 while select forupdate * from tstOrg

 {

 tstOrg.State = " IL " ;

 tstOrg.NumberOfEmployees = tstOrg.NumberOfEmployees+ 10 ;

 tstOrg.update();

 }

 select forUpdate * from tstNpo;

 tstNpo.AnnualContribution = 76543.21 ;

 tstNpo.update();

 ttsCommit ;

 }

Running the UpdateOrg code will produce the following data in the tables.

GovermentOrganization table data

AgencyDescription RecId

Illinois State Tax
Authority

5637145080

16

DEVELOPING WITH TABLE INHERITANCE

NonprofitOrganization table data

Annual Contribution RecId

76543.21 5637145079

Organization table data

Number of
Employees

DUNS Number RecId

20 JagCont001 5637145079

210 ILTAX001 5637145080

Party table data

Name State City InstanceRelationType Email RecId

Jaguar

Concert
Hall

IL Urbana 100433 email@JaguarConcert.

Org

5637145079

Illinois
State
Tax

Authori
ty

IL Springfield 100434 Tax@il.gov 5637145080

It is important to note that optimistic concurrency control (OCC) is applied to the concrete type buffer.
Therefore, the application runtime will detect the update conflict if multiple processes attempt to
update the same concrete type record, even if the updates occur on different back-end database

tables.

Deleting data from the table inheritance hierarchy

As with the update method, calling the delete method on a table inheritance table buffer deletes the

data from the back-end database tables in which the records to be deleted are stored.

Note: When a delete is issued from a base type table buffer, it will also delete the records of the

derived types of the base type. The following code example demonstrates this action. After running
the DeleteOrg code, the Organization, NonProfitOrganization, and GovernmentOrganization tables
will all be empty. The Party table does not contain any records of Organization and its derived types,
and therefore is not affected.

static void DeleteOrg(Args _args)

{

 Organization tstOrg;

 ttsBegin ;

 while select forupdate * from tstOrg

 {

 tstOrg.delete();

 }

 ttsCommit ;

 }

Invoking table methods and table buffer casting

The following code examples demonstrate table method inheritance and polymorphism. It is assumed
that the developer has defined the table method JustSayHello on the Party, Organization, and the
GovernmentOrganization tables.

17

DEVELOPING WITH TABLE INHERITANCE

Code example: Defining the JustSayHello method on multiple tables

public void JustSayHello () //GovernmentOrganization

{

 info("Hello GovernmentOrganization");

 super();

}

public void JustSayHello () //Organization

{

 info("Hello Organization");

 super();

}

public void JustSayHello () // Party

{

 info("Hello Party");

}

The super() keyword instructs the runtime to invoke the overridden method on the nearest base
table. It is important to include the call to super() in case the table trigger methods (insert, update,
and delete) are to be overridden. This is because calls to super() inside the trigger methods on the
root table would invoke the kernel implementation of data manipulation operations.

Code example: Table method inheritance

The TableMethodInheritance code example demonstrates table method inheritance. You can invoke
methods derived from a base table directly from the derived table buffer.

static void TableMethodInheritance(Args _args)

{

NonProfitOrganization tstNpo;

select firstOnly tstNpo;

info(tstNpo.Name);

tstNpo. JustSayHello ();

}

Running the TableMethodInheritance code will produce the results shown in Figure 5. Because we do
not override the JustSayHello method on the NonProfitOrganization table but only on the
Organization and Party, calling JustSayHello on the NonProfitOrganization table buffer invokes the
JustSayHello method defined on Organization and Party sequentially, as chained upwards by the
super() calls.

18

DEVELOPING WITH TABLE INHERITANCE

Figure 5: Results of running TableMethodInheritance code

Code example: Table method polymorphism

The PolymorphismAndDownCast code demonstrates polymorphism when table methods are invoked
from the Party table.

static void PolymorphismAndDownCast (Args _args)

{

 Party tstParty;

 GovernmentOrganization tstGov;

 while select tstParty

 {

 info(tstParty.name);

 tstParty. JustSayHello (); //polymorphism

 if (tstParty is GovernmentOrganization) //downCast

 {

 tstGov = tstParty as GovernmentOrganization;

 info(tstGov.Agen cyDescription);

 }

 info(" ");

 }

}

19

DEVELOPING WITH TABLE INHERITANCE

The results of running the code are displayed in Figure 6. It shows that the NonProfitOrganization
JustSayHello method and GovernmentOrganization JustSayHello method are invoked from the
while select loop, as is demonstrated by the type of record instances retrieved.

Downcasting is necessary when you need to access the fields defined on derived types. The code

sample also demonstrates the preferred way of downcasting from a base type table buffer to the
derived type table buffer using the is and as operators.

Figure 6: Results of running PolymorphismAndDownCast code

Querying data from a table inheritance hierarchy

X++ select statement

Field inheritance enables the developer to use any fields from concrete and base tables when
composing X++ select statements. The entire set of fields is accessed from the table buffer that is

returned from the query.

20

DEVELOPING WITH TABLE INHERITANCE

The following code example demonstrates querying customers that are of type NonProfitOrganization
in the mock party model by using the X++ select statement.

static void SelectCustomer(Args _args)

{

 NonProfitOrganization npo;

 Customer cust;

 while select firstonly * from npo join cust

 order by npo.Name

 where

 Cust.party == npo.recid

 && npo.NumberOfEmployees> 100

 && npo.state == ' IL '

 {

 info(cust.AccountNumber);

 info(npo.Name);

 }

}

The Customer table schema has a foreign key relationship to the Party table, as shown in Figure 7.

Figure 7: Example of a foreign key relationship

Support from the query framework

The query framework in Microsoft Dynamics AX 2012 has been enhanced to support constructing
query objects from inheritance tables. Developers can construct data source field lists, query ranges,
relations, ―Group By‖ and ―Order By‖ conditions, and the newly introduced ―Having‖ condition with

inherited fields and fields defined on derived types, when the data sources for the query are
inheritance tables.

21

DEVELOPING WITH TABLE INHERITANCE

This support is demonstrated by creating an AOT query object that queries the Organization and
Customer records as specified by the following select statement:

select * from Organization join cust omer

 order by Organization .Name,

organization(nonProfitOrganization.AnnualContribution)

 where

 Customer .party == Organization .recid

 && Organization .state == ' IL '

To create the query

1. In the AOT, right-click Queries, and then click New Query.

2. Right-click the Data Sources node and then click New Data Source. Specify the

Organization table as the data source table.

3. Right-click Data Sources under the Organization Data Sources node, and then click New
Data Source. Specify the Customer table as the data source table.

4. Set the relation between the Organization and Customer data sources as follows:

a. Right-click the Relations node under the Customer data source, and then click New
Relation.

b. In the property window, select RecId for the Field property and Party for the
RelatedField property.

5. Create a query ―Range‖ condition on the inherited field as follows:

a. Right-click the Ranges node under the Organization Data Sources node, then click New

Range.

b. In the property window, select the inherited State field for the Field property and enter

IL for the Value property.

6. Create an ―Order By‖ condition on the inherited Name field as follows:

a. Right-click the Order By node and then click New Field.

b. In the property window, select the inherited Name field for the Field property.

7. Create an ―Order By‖ condition on the AnnualContribution field defined on the
NonProfitOrganization table (derived from of the Organization table) as follows:

a. Right-click the Order By node, and then click New Field.

b. In the property window, select NonProfitOrganization for the TableSelector property.
Select AnnualContribution for the Field property.

22

DEVELOPING WITH TABLE INHERITANCE

8. Save the query.

Ad hoc query mode

When querying data from the table inheritance hierarchy, Microsoft Dynamics AX 2012 navigates the
hierarchy and constructs appropriate SQL queries that join the necessary tables across the hierarchy
to retrieve the data. This process can become very expensive if the number of tables in the
inheritance hierarchy is large. Developers are encouraged to adopt the ad hoc query mode when
designing their queries; in other words, they should restrict the field list to only those fields required
for the business logic.

When querying the table inheritance hierarchy by using the X++ select statement, use select field

list instead of select * to improve performance. The following code example demonstrates this
difference.

23

DEVELOPING WITH TABLE INHERITANCE

The first X++ select statement in the SelectCustomer_adhoc code example specifies including all
fields in the returned record. This results in Microsoft Dynamics AX 2012 sending a SQL query, shown
after the code example, to the back-end database to join the Party, Organization,
NonProfitOrganization, and GovernmentOrganization tables.

static void SelectCus tomer_adhoc(Args _args)

{

 Organization Org;

 customer cust;

 boolean checkFieldSelect= true ;

 //P arty, O rganization, GovernmentOrganization

 // and NonPro fitOrganization tables will be joined in the SQL query .

 select * from Org join cust

 where

 Cust.party == Org.recid

 && Org.NumberOfEmployees> 100 ;

 //O nly Party and Organization tables will be joined in the SQL query .

 select name from Org join cust

 where

 Cust.party == Org.recid

 && Org.NumberOfEmployees> 100 ;

 info(Org.name);

 if (checkFieldSelect && !Org.isFieldDataRetrieved("dunsnumber"))

 {

 inf o("DunsNumber not selected ");

 }

 else

 {

 //Run - time error thrown when accessing field Dunsnumber because it is not selected .

 info(Org.Dunsnumber);

 }

}

24

DEVELOPING WITH TABLE INHERITANCE

SQL query

SELECT t1 . name,

 t1 . streetaddress ,

 t1 . postalcode ,

 t1 . state ,

 t1 . country ,

 t1 . city ,

 t1 . instancerelationtype ,

 t1 . phone ,

 t1 . email ,

 t1 . modifieddatetime ,

 t1 . recversion ,

 t1 . relationtype ,

 t1 . recid ,

 t2 . numberofemployees ,

 t2 . dunsnumber ,

 t2 . recversion ,

 t2 . relationtype ,

 t2 . recid ,

 t3 . governmentorglevel ,

 t3 . agencydescription ,

 t3 . recversion ,

 t3 . relationtype ,

 t3 . recid ,

 t4 . taxexempt ,

 t4 . purpose ,

 t4 . annualcontribution ,

 t4 . recversion ,

 t4 . relationtype ,

 t4 . recid ,

 t5 . accountnumber ,

 t5 . recid

FROM party t1

 CROSS JOIN organization t2

 LEFT OUTER JOIN government organization t3

 ON (t2 . recid = t3 . recid)

 LEFT OUTER JOIN nonprofitorganization t4

 ON (t2 . recid = t4 . recid)

 CROSS JOIN customer t5

WHERE (t2 . recid = t1 . recid)

 AND ((t5 . dataareaid = @P1)

 AND ((t5 . party = t2 . recid)

 AND (t2 . numberofemployees > @P2)))

Limiting the field list to include only name will render the SQL query with only the Party and
Organization tables being joined and a much shorter select field list, both of which will improve the
performance of the data query.

SELECT t1 . name,

 t1 . recid ,

 t1 . instancerelationtype ,

 t2 . recid ,

 t3 . accountnumber ,

 t3 . recid

FROM party t1

 CROSS JOIN organization t2

 CROSS JOIN customer t3

WHERE (t2 . recid = t1 . recid)

 AND ((t3 . dataareaid = @P1)

 AND ((t3 . party = t2 . recid)

 AND (t2 . numberofemployees > @P2)))

Note Accessing fields that are not in the select field list from an inheritance table buffer will result in
a run-time error, such as the following, stating that the field accessed has not been explicitly selected:

Field 'DunsNumber' in table 'Rel_Organization' has not been explicitly selected.

However, the default behavior when accessing an unselected field from a non-inheritance table buffer
is to return the default value of the field data type. To enable the invalid field access check for both

25

DEVELOPING WITH TABLE INHERITANCE

inheritance and non-inheritance tables, you need to set the CheckInvalidFieldAccess field in the
SysGlobalConfiguration table.

Developers can determine whether a particular field on a table buffer contains data retrieved from the
database by calling the common.IsFieldSelected(str fieldname) method on the table buffer. This

is useful when the table buffer to be accessed is not instantiated within the current function scope.

To enable the ad hoc query mode when designing AOT queries, set the Data Sources > Fields >
Dynamic property to No, and select only the required fields in the field list (see Figure 8).

Note When a query data source is created (by dragging a table from AOT > Data Dictionary >
Tables onto the Data Sources node), the default value of the Dynamic property is set to unselect.
The developer must change the default value to either Yes or No. Otherwise, Microsoft Dynamics AX
2012 will issue a compilation error when the query that has been created is compiled.

Figure 8: Setting the Dynamic property

The QueryPartyCustomer_adhoc query demonstrates an AOT query that queries the Person and

Organization customers in a particular state and returns the customer’s accountnumber, name, email,
and gender (if the customer is a person). Note that the developer is able to select the field gender
from a table Person derived from the data source Party.

26

DEVELOPING WITH TABLE INHERITANCE

The rendered SQL query appears as follows and involves only the required tables in the joins.

SELECT t1 . email ,

 t1 . name,

 t1 . recid ,

 t1 . instancerelationtype ,

 t2 . gender ,

 t2 . recid ,

 t3 . accountnumber ,

 t3 . recid

FROM party t1

 LEFT OUTER JOIN person t2

 ON (t1 . recid = t2 . recid)

 CROSS JOIN customer t3

WHERE (t1 . state = @P1)

 AND ((t3 . dataareaid = @P2)

 AND (t3 . party = t1 . recid))

ORDER BY t1 . name

Creating a view with the table inheritance hierarchy

Tables that are included in an inheritance hierarchy can be used to create AOT views. The developer
should note, however, that Microsoft Dynamics AX 2012 does not navigate to and retrieve data from
the hierarchy other than from the table that is selected as the view data source. For example, the
view shown in Figure 9 would persist an SQL view without joining the base and derived table of
Organization in the hierarchy.

Figure 9: AOT view of Organization table

CREATE VIEW "DBO". viewoforganizations

AS

 SELECT t1 . dunsnumber AS dunsnumber ,

 t1 . recid AS recid

 FROM organization t1

27

DEVELOPING WITH TABLE INHERITANCE

Support for caching

Microsoft Dynamics AX 2012 does not support entire table caching on the table inheritance hierarchy
when record-level caching is supported. Record-level caching for a table inheritance hierarchy is

enabled by setting the CacheLookup table property value on the root table of the hierarchy. Its value
governs the caching mode for all tables in the table inheritance hierarchy.

Microsoft Dynamics AX 2012 places a record in the cache when a data query is prescribed a range
condition that specifies equal conditions on a set of fields that match the unique key defined on the
table. In the case of table inheritance, the unique index and fields in the range condition can come
from either the base tables or the derived tables.

System services

In Microsoft Dynamics AX 2012, the services programming model provides support for developing
service-based applications that integrate business logic and data with Microsoft Dynamics AX. The

table inheritance artifacts are fully exposed and ready to be consumed through the system services. In
particular, developers can create and execute queries against the table inheritance hierarchy through
the query metadata and query services, and can expect to see the same run-time behavior and

programming artifacts that are exposed to X++ developers.

Set-based operations on a table inheritance hierarchy

Microsoft Dynamics AX 2012 does not support using the RecordInsertList and RecordSortedList
classes for bulk inserts into table inheritance hierarchies. Instead, developers can use
insert_recordset set operation to insert multiple rows of data into a table inheritance hierarchy and

save trips to the back-end database.

Tables in the table inheritance hierarchy can serve as either source or destination tables in
insert_recordset operations. Field inheritance will be honored in the field lists. The developer should
refer to http://msdn.microsoft.com/en-us/library/aa635694.aspx for more detail about the use of
insert_recordset.

Microsoft Dynamics AX 2012 also supports the use of the operations update_recordset and

delete_From to update and delete data stored in the table inheritance hierarchy. However, using
update_recordset is not allowed for updating a field with an expression that includes fields from
another table in the inheritance hierarchy. A compilation error will occur because of this violation.

static void AcrossTableUpdate(Args _args)

{

 Rel_Person person;

 //compile error: Field assignment statement cannot involve fields across table

inheritance hierarchy.

 update_records et person

 setting email = person.email+ person.Prefix

 where person.City = "Seattle" ;

}

Set-based operations will revert to record-by-record operations under certain conditions. These

conditions are listed in the following table of supported actions on table inheritance hierarchies.

http://msdn.microsoft.com/en-us/library/aa635694.aspx

28

DEVELOPING WITH TABLE INHERITANCE

Note In cases where the target table is in a table inheritance hierarchy, enabling record-by-record
fallback conditions on the target table or on any of its base tables will downgrade the set-based
operations to record-by-record operations. On the other hand, the skipxxxx methods only need to be
called on the target table buffer to override any of the fallback conditions set along the inheritance

hierarchy.

Condition delete_From update_records et insert_recordset Use...to override

Delete actions Yes No No skipDeleteActions

Database log

enabled

Yes Yes Yes skipDatabaseLog

Overloaded

method

Yes Yes Yes skipDataMethods

Alerts set up for

table

Yes Yes Yes skipEvents

Developing forms with table inheritance

With the introduction of table inheritance, developers need to be able to create a form that can display
records stored in inheritance tables, with their type varying from record to record. This type of form is

called a polymorphic form .

Creating a polymorphic form

At design time, when an inheritance table is used as a data source to create a polymorphic form,
Microsoft Dynamics AX 2012 expands the inheritance hierarchy and creates the derived data sources

recursively under the original form data source. Consequently, the fields from the derived data

sources can bind to user controls in the form. This feature is demonstrated in the following procedure,
which creates a polymorphic form that displays the Organization records from the mock party model
(created earlier in this white paper).

To create a polymorphic form

1. Create a new form in the AOT by right clicking Forms, and then clicking New Form. Name
the newly created form OrganizationForm.

2. Create a new data source, Organization, in the OrganizationForm by dragging the
Organization table onto the Forms > OrganizationForm > Data Sources node.

Note Inherited fields from the Party base table are automatically populated under the Fields
node of the created data source.

3. Expand the Derived Data Sources node under the Organization data source.

Note The two data sources under the Derived Data Sources node,

organization_N onProfitOrganization and organization_GovernmentOrganization, are

automatically created by Microsoft Dynamics AX 2012 for the tables NonProfitOrganization and
GovernmentOrganization, which are derived from the Organization table. The Fields node
under each data source in the Derived Data Sources node contains only the fields defined on
the derived table.

29

DEVELOPING WITH TABLE INHERITANCE

4. Under the Designs > Design node, create controls binding to the fields from the data source

Organization and the derived data sources.

5. Set the Form Title data source as follows:

a. Right-click the Design node and then click Properties.

b. In the property window, enter Organization as the value of the TitleDatasource
property. Be sure that the TitleField1 property is set to Name and the TitleField2
property is set to City on the Party table, and that both properties are set to empty on the
Organization table.

6. Save the OrganizationForm form.

30

DEVELOPING WITH TABLE INHERITANCE

31

DEVELOPING WITH TABLE INHERITANCE

Polymorphic form at run time

When the user attempts to create a new record in the polymorphic form, the Microsoft Dynamics AX
2012 runtime prompts the user to select the type of the record to be created by showing a type picker
dialog, as shown in Figure 10. The types are the concrete derived table types that derive from the
table serving as the data source for the form.

Figure 10: Type picker dialog

Often, you do not want the system default type picker dialog to be displayed when creating new

records because of certain constraints imposed by the application requirements. If this is the case, you
need to override the FormRun.CreateRecord method to replace the default system type picker
dialog. In particular, the FormDatasource.CreateTypes method can be invoked in the overridden
FormRun.CreateRecord method to create a new record of the concrete type specified. The
developer can reference the SYS layer of the dirPartyTable form for the detailed design pattern.

Because the types of records displayed in a polymorphic form vary, Microsoft Dynamics AX 2012

displays visual cues on form controls bound to data fields that are not available. Figure 11 shows that
the NonProfitOrganization field-bound edit boxes are disabled when a GovernmentOrganization record
―Illinois State Tax Authority‖ is created.

32

DEVELOPING WITH TABLE INHERITANCE

Note The title fields, Name and City, displayed in the title bar are defined on the Party table, which
is the base type for the Organization data source. The Microsoft Dynamics AX 2012 runtime searches
up the inheritance hierarchy, if TitleField1 and TitleField2 are not defined on the data source table,
to determine the values for these properties.

Figure 11: Visual cues on form controls bound to data fields that are not available

Displaying the instance type of the record

It is often necessary to display the instance type of the records in the form. We recommend that
developers create an enumeration field on the base table to serve as a type discriminator of records.
You must override the insert data method on the base table to populate the values of this type
discriminator when new records are created. This pattern enables localized resources to be displayed

when the form is used for a different locale, and allows a form user to sort and filter on the localized
type strings.

33

DEVELOPING WITH TABLE INHERITANCE

In the Organization form, the Organization Type column in the grid is bound to the
DisplayRelationType field defined on the Party table and displays the organization type of the
associated record (see Figure 12).

Figure 12: Organization form with Organization Type column bound to DisplayRelationType field on
Party table

Record templates on polymorphic forms

Users can create and apply record templates on polymorphic forms. Record templates are created per
concrete type and only apply when new records of the concrete type are created.

34

DEVELOPING WITH TABLE INHERITANCE

Advanced filter support on the table inheritance hierarchy

In Microsoft Dynamics AX 2012, the advanced filter is enhanced to work with table inheritance. Users
can directly select inherited fields from the base tables to define range filters and sorting conditions
(see Figure 13).

Figure 13: Advanced filtering

35

DEVELOPING WITH TABLE INHERITANCE

In addition, users can define range filters and sorting conditions on fields defined on the derived
tables. To do so, the user must first select the derived table from the Prefix combo box and then pick
the field defined on the derived table (see Figure 14).

Figure 14: Advanced filtering (continued)

Using the ad hoc query mode to improve performance

When the ad hoc query mode is applicable and used, the performance of data queries on forms
benefits from reduced SQL joins. The ad hoc query mode on the form can be enabled by setting the
value of the OnlyFetchActive property on the form data source to Yes. An OnlyFetchActive form
data source queries the back-end database for only those fields that are bound to form controls, which

improves performance by reducing the SQL joins to the extra tables. These SQL joins can pose a
significant burden when the inheritance hierarchy contains large number of tables.

Note When a form is created through a modeled query approach, that is, by dragging an AOT query
onto the form to create form data sources, the ad hoc query mode is only enabled when the property
OnlyFetchActive is set to Yes and the query data source field list Dynamics property is set to No.
Both properties must be set.

Developers should use the OnlyFetchActive form data source with caution. In general, the ad hoc

query mode should only be used on read-only forms. In addition, the business logic code behind the
form might access fields that are not bound to controls. Accessing these fields on form data sources
that are from inheritance tables will result in the ―invalid field‖ access run-time error. However,
accessing an unselected field when the data source is not an inheritance table will only return the
default value of the field data type.

To enable checking for invalid field access on all tables, the CheckInvalidFieldAccess field on the

SysGlobalConfiguration table needs to be set.

36

DEVELOPING WITH TABLE INHERITANCE

A developer can explicitly add additional non-control–bound fields by overriding the
formdatasource.init method and inserting the needed fields into the field list as follows.

public void init()

{

 super();

 this.query().dataSourceTable(tableNum(organization)).fields().addField(

fieldNum(Organization , Dunsnumber));

}

Developing Enterprise Portal for Microsoft Dynamics AX
2012 components with table inheritance

In Microsoft Dynamics AX 2012, Enterprise Portal developers can use table inheritance to develop
Enterprise Portal components. We demonstrate this capability by creating a web control that displays
the entities in the mock party model. Enterprise Portal developers will note that the experience is
similar that of form developers.

The data access logic of web controls is defined in the AOT element Dataset , which integrates data
sources and programming models. When an inheritance table is defined as a data source in a dataset,
Microsoft Dynamics AX expands its derived tables recursively and creates derived data sources.

37

DEVELOPING WITH TABLE INHERITANCE

The dataset data source also contains a property, onlyFetchActive, which acts the same way as in a
form data source to require the Microsoft Dynamics AX 2012 runtime to employ ad hoc query mode
when retrieving the data (see Figure 15).

Figure 15: Automatic expansion of the base table data source and derived table data sources

38

DEVELOPING WITH TABLE INHERITANCE

Subsequently, the fields of the derived data sources are listed in the designer when the field bindings
on the user controls are defined in Microsoft Visual Studio® (see Figure 16).

Figure 16: Fields of the derived data sources listed in the designer

Developing Reporting Services reports with table
inheritance

Developers use the Visual Studio integrated development environment (IDE) to create a Microsoft SQL
Server Reporting Services report in Microsoft Dynamics AX. These reports can connect to a variety of
different types of data sources including Microsoft Dynamics AX and Microsoft Dynamics AX online

analytical processing (OLAP). This section demonstrates how to connect to Microsoft Dynamics AX
2012 as the data source and use a query as the data source type to create a report showing the
organization entities in the mock party model.

39

DEVELOPING WITH TABLE INHERITANCE

The QueryOrg query shown in Figure 17 defines the data access logic on which the Organization
report will be based.

Figure 17: QueryOrg query

To create a report with table inheritance

1. Open Visual Studio and create a new project by using the Microsoft Dynamics AX Report Model
template.

2. Create a report and add a dataset as follows:

a. Right click the Project node in the Solution Explorer and click Add > Report.
b. Right click the Datasets node under the created report and click Add Dataset.
c. In the properties window of the created dataset, choose Microsoft Dynamics AX as the

data source, and Query as the data source type.

40

DEVELOPING WITH TABLE INHERITANCE

d. Click the button in the Query property to launch the Select a Microsoft Dynamics AX
Query dialog.

e. Select QueryOrg from the query list in the Select a Microsoft Dynamics AX Query
dialog and click Next.

f. Select the fields Name and NumberOfEmployees.

41

DEVELOPING WITH TABLE INHERITANCE

g. Click OK.

3. To add the report to the AOT, create an Autodesign by right clicking the Designs node,
clicking Add > AutoDesign, and specifying ―Organizations‖ as the name.

4. Add a Table node to the design.

5. Drag the NumberOfEmployees and Name fields from the Organizations node in DataSets
onto the Data node of the table.

42

DEVELOPING WITH TABLE INHERITANCE

The developer of a Reporting Services report does not need to explicitly turn on the ad hoc query
mode to have access to the data sources for the report. The Microsoft Dynamics AX 2012 runtime

always retrieves data from the table inheritance hierarchy in the ad hoc query mode.

The following SQL query demonstrates the ad hoc mode query sent to the database when the
Organizations report is rendered.

SELECT t1 . name,

 t1 . recid ,

 t1 . instancerelationtype ,

 t2 . numberofemployees ,

 t2 . recid

FROM party t1

 CROSS JOIN organization t2

WHERE (t2 . recid = t1 . recid)

ORDER BY t1 . name

Security and table inheritance

In Microsoft Dynamics AX 2012, the security-key–based security model has been replaced with a role-
based security model. It is assumed that the readers of this paper already understand the role-based
security model.

Securing concrete types

It is important to understand that the role-based security model in Microsoft Dynamics AX 2012 grants
permissions to only concrete type tables in the table inheritance hierarchy. Permissions that are
granted to a concrete type table pertain to the particular type only and do not propagate to its base
and derived types.

43

DEVELOPING WITH TABLE INHERITANCE

Values for the AOSAuthorization property on the tables in an inheritance hierarchy can be
configured differently across the hierarchy and apply to the concrete type represented by the table.
The Microsoft Dynamics AX 2012 role-based security model enforces specified data access permission
checks on only those concrete table types that have the table permission check enabled (in other

words, their AOSAuthorization property is set to a value other than “none”).

Note When data is accessed by means of a form, the table permission check is always enabled.

Microsoft Dynamics AX 2012 automatically constructs the permission sets needed to access the set of
securables when developers create user interface elements (forms, reports, and so on). Developers
should note that when the data source is an inheritance table, the automatically created permission
sets will contain permissions to access the table and all of its derived tables. This action is
demonstrated in Figure 18, where the polymorphic form OrganizationForm has a data source

created on the base table Organization of the mock party model hierarchy. Expanding the permission
sets generated by the AutoInference feature reveals the permissions for accessing the concrete types
in the mock party model.

Figure 18: Automatically created permission sets

Accessing data in the table inheritance hierarchy as a non-
administrator

When querying data from an inheritance base table, a user in a non-administrator role will receive
only those records from the base type and its derived types that the user has permission to access.
This principle can be demonstrated by using the form, OrganizationForm, which displays the
Organization, NonProfitOrganization and GovernmentOrganization concrete type records stored in the
mock party model.

44

DEVELOPING WITH TABLE INHERITANCE

A PartyTestPriv privilege grants access to the OrganizationForm form, with the read permission
set generated by the AutoInference feature. This permits a read to be performed on the Organization,
NonProfitOrganization and GovernmentOrganization concrete types in the mock party model. A non-
administrator is associated with the permission set defined in the PartyTestPriv1 privilege through

the PartytestRole role (see Figure 19).

Figure 19: Granting read permissions to a non-administrator

45

DEVELOPING WITH TABLE INHERITANCE

When opened by a non-administrator, the OrganizationForm displays read-only records of the
concrete type tables: GovernmentOrganization, NonProfitOrganization, and Organization (see Figure
20).

Figure 20: OrganizationForm form with read-only records of all concrete type tables

Permission sets generated by the AutoInference feature can be modified, in place, or overridden. You
can override them in either the PartyTestPriv privilege or the PartytestRole role to change the
effective permissions on the concrete types.

46

DEVELOPING WITH TABLE INHERITANCE

Suppose an organization decides that a non-administrator cannot have access to
GovernmentOrganization records or to the Email data column of the NonProfitOrganization records, as
shown in Figure 21. Denying access is accomplished by overriding the permissions in the
PartytestRole role.

Figure 21: Denying a non-administrator access to GovernmentOrganization records

47

DEVELOPING WITH TABLE INHERITANCE

When opened by a non-administrator with the updated permission set, GovernmentOrganization
records will be completely excluded from the records displayed on the OrganizationForm.
Furthermore, the Email data column of the Non-profit Organization record type will be protected
(see Figure 22).

Figure 22: Non-administrator with no access to Email column of Non-profit Organization

Data upgrade

Microsoft Dynamics AX 2012 manages data access operations on a live system to ensure that the

inheritance relationship is correctly set on the data stored in the hierarchy. However, when performing
a data upgrade from a previous version of Microsoft Dynamics AX, the developer is responsible for
setting the correct inheritance relationships of the data in the target tables if the data schema of the
upgrading solution is being converted to a table inheritance model. These responsibilities include:

¶ Linking the data stored in the base table and a derived table by setting the
baseTable.RecId=derivedTable.RecId relationship in the upgrade script.

¶ Populating the InstanceRelationShip field on the base table with the correct value (the

corresponding TableID of the concrete type of the record instance).

¶ Populating the RelationType fields on each table with the derived TableID that the record
spans across. The value is set to zero on the table corresponding to the concrete type.

Developers can refer to the upgrade scripts that migrate the global address book data from earlier
versions of Microsoft Dynamics AX to Microsoft Dynamics AX 2012 for detailed programming patterns.

48

DEVELOPING WITH TABLE INHERITANCE

This document is provided ―as-is.‖ Information and views expressed in this document, including URL and other
Internet Web site references, may change without notice. You bear the risk of using it.
Some examples depicted herein are provided for illustration only and are fictitious. No real association or
connection is intended or should be inferred.

This document does not provide you with any legal rights to any intellectual property in any Microsoft product. You
may copy and use this document for your internal, reference purposes. You may modify this document for your
internal, reference purposes.

© 2011 Microsoft Corporation. All rights reserved.

Microsoft, Microsoft Dynamics, and the Microsoft Dynamics logo are trademarks of the Microsoft group of
companies.

All other trademarks are property of their respective owners.

Microsoft Dynamics is a line of integrated, adaptable business management solutions that enables you and your
people to make business decisions with greater confidence. Microsoft Dynamics works like and with familiar
Microsoft software, automating and streamlining financial, customer relationship and supply chain processes in a
way that helps you drive business success.

U.S. and Canada Toll Free 1-888-477-7989

Worldwide +1-701-281-6500

www.microsoft.com/dynamics

http://www.microsoft.com/dynamics

