
[image: image1.png]Microsoft*

SQL Server 2005

SQL Writer in SQL Server 2005: A Guide for SQL Server Backup Application Vendors

SQL Server Technical Article

Authors: Srini Acharya, Kangrong Yan, Mark Wistrom, Steve Schmidt, and Kevin Farlee

Published: September 2005

Applies To: Microsoft® SQL Server™ 2005

Summary: Microsoft® SQL Server™ 2005 provides support for Volume Shadow Copy Service (VSS) by providing a writer, the SQL writer, so that a third-party backup application can use the VSS framework to back up database files. This paper describes the SQL writer component and also its role in the VSS snapshot creation and the restore process for SQL Server databases. It also captures details about how to configure and use the SQL writer to work with backup applications in the VSS framework.

Copyright

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

 2005 Microsoft Corporation. All rights reserved.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Table of Contents

1Introduction

1Definition of Terms

1About VSS

2VSS Components

3About SQL Writer

3Configuring the SQL Writer

4About the MSDE Writer

4Configuring the MSDE Writer to Ignore SQL Server 2005 Instances

4Configuring the SQL Writer Service Account

5Starting SQL Writer

5Backup/Restore Operations and Supported Versions

5Version Support

5Supported Backup/Restore Operations

6Noncomponent-based Backup Operations

6Component-based Backup Operations

6Snapshot Options Supported by SQL Writer

8What is Not Supported

9Snapshot Creation Process

9Snapshot Creation Workflow

11Backup Initialization

12Backup Discovery

13Prebackup Tasks

14Actual Backup of Files

14Backup Termination

14Restore Process

14Restore Operation Workflow

15Restore Initialization

16Prepare for Restore

16Restore Files

16Cleanup and Termination

16Backup and Restore Option Details

16Requestor Creates a Volume Shadow Copy

17Full Backup/Restore

17Noncomponent-based Backup and Restore

17Backup

17Restore

17Component-based Backup and Restore

17Backup

18Full Restore without Roll-forward

18Full Restore with Additional Roll-forwards

18Full-text Support

19Differential Backup/Restore

19Backup

19Partial File Information Format

20Backing Up Files

20Interesting Cases During Backup

21Restore

21Pre-Restore Phase

21Restore Files

22Post-Restore

22Differential Backup/Restore for Full-text Catalogs

22OnIdentify

23Setting the Base timestamp

23Differential Backup

23Backup Application’s Responsibility During Differential Backup

23Backup Application’s Responsibilities During a Differential Restore

24Copy-Only Backup

24Restore with Move

24Database Rename

25Auto-Recovered Snapshots

26Multi-Database Transactions

26Security Implications for Auto-Recovered Snapshots

26Special Cases

26Autoclose Databases

26File List

27Stopped Instances

27System and User Databases

27System Databases

27Simple Recovery Model User Databases

28Rolling Forward User Databases

29Conclusion

30Appendix

30Writer Metadata Document: An Example

Introduction

Microsoft® SQL Server™ 2005 provides support for creating snapshots from SQL Server data by using Volume Shadow Copy Service (VSS). This is accomplished by providing a VSS compliant writer, the SQL writer, so that a third-party backup application can use the VSS framework to back up database files. This paper describes the SQL writer component and also its role in the VSS snapshot creation and the restore process for SQL Server databases. It also captures details about how to configure and use the SQL writer to work with backup applications in the context of the VSS framework.

Definition of Terms

Virtual Device Interface

SQL Server provides an application programming interface called Virtual Device Interface (VDI) that helps independent software vendors to integrate SQL Server into their products by providing support for backup and restore operations. These APIs are engineered to provide maximum reliability and performance, and they support the full range of SQL Server backup and restore functionality, including the full range of hot and snapshot backup capabilities.

For more information, see SQL Server 2005 Virtual Backup Device Interface Specification!href(http://www.microsoft.com/downloads/details.aspx?FamilyID=416f8a51-65a3-4e8e-a4c8-adfe15e850fc&DisplayLang=en) on the Microsoft Web site.

MSDE Writer

The default VSS writer shipped with the VSS framework in Microsoft® Windows® XP and Windows 2003. This writer coordinates with SQL Server 2000 and earlier versions to help in backup operations. In SQL Server 2005 installations, the SQL writer is the preferred writer. However, the MSDE writer will continue to work and will be the default writer if the SQL writer is not enabled.

Requestor

This is a process (either automated or GUI) that requests that one or more snapshot sets be taken of one or more original volumes. In this paper, a requestor is also used to imply a backup application that is creating a snapshot of SQL Server databases.

About VSS

VSS provides the system infrastructure for running VSS applications on Windows systems. Although largely transparent to both user and developer, VSS does the following:

· Coordinates activities of providers, writers, and requestors in the creation and use of shadow copies.

· Furnishes the default system provider.

· Implements the low-level driver functionality necessary for any provider to work.

The VSS service starts on demand. Therefore, for VSS operations to be successful, this service must be enabled.

VSS Components

VSS coordinates the activities of the following cooperating components:

· Providers own the shadow copy data and instantiate the shadow copies.
· Writers are applications that change data and participate in the shadow copy synchronization process.

· Requestors initiate the creation and destruction of shadow copies. Our design is focused on the scenario where the requestor is a backup application.

VSS provides coordination between these parties.

[image: image2.png]Requestor

Backup App

Snapshot
Interface

'Writers|

Providers

£ s

Figure 1

Figure 1 shows all the components participating in a typical VSS snapshot activity. In such a scenario, SQL Server (including the SQL writer) is acting as a writer in one of the writer boxes. Other such writers might be Exchange Server and so forth.

In the rest of this document, it is assumed that the reader is familiar with the terms of the VSS framework. For more information, see the documentation on Volume Shadow Copy Service!href(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vss/base/vss_portal.asp).

About SQL Writer

The SQL writer is a VSS writer provided by the SQL Server application. It handles the VSS interaction with SQL Server. The SQL writer ships with SQL Server 2005 as a stand-alone service and is installed as part of the SQL Server installation. By default, the SQL writer is not enabled. It needs to be explicitly enabled to run on the server machine.

Figure 2 shows the role of the SQL writer in a VSS snapshot backup operation.

[image: image3.png]

Figure 2

Configuring the SQL Writer

The SQL writer service is installed in the system as part of the SQL Server 2005 installation, but is not set to start by default. In order to start and use the SQL writer, the following must be done:

· Disable the MSDE writer from enumerating SQL Server 2005 databases.

· Configure the SQL writer service account.

· Start the SQL writer service.

Note In certain cases where an instance of SQL Server Express 2005 is installed and an application is using the User Instances feature, the SQL writer may be started automatically by SQL Server. This is done to facilitate the enumeration of these User Instances during a VSS backup operation. For more information about User Instances, see the SQL Server 2005!href(http://www.microsoft.com/sql/2005/default.asp) documentation.

About the MSDE Writer

The VSS framework that ships in Windows XP and Windows 2003 has a default writer, the MSDE writer, that works with SQL Server instances. This writer provides basic backup capabilities with installed SQL Server databases, but lacks the additional capabilities for doing differential backups and other advanced options that are enabled by the SQL writer on SQL Server 2005 instances.

The SQL writer is the preferred writer for backing up databases in SQL Server 2005 instances because of its additional options described in Supported Backup Operations!href(#_Supported_Backup_Operations) in this paper. However, the MSDE writer also works with SQL Server 2005 and will act as the default writer if it is not explicitly disabled. This is described in the next section.

Configuring the MSDE Writer to Ignore SQL Server 2005 Instances

By default, SQL writer is not enabled and SQL Server 2005 is installed. In this configuration, the MSDE writer acts as the default writer for all SQL Server instances on the system, including SQL Server 2005 instances. Before enabling the SQL writer, the MSDE writer has to be configured so that it ignores SQL Server 2005 instances. This is done by setting the following registry key:

Key: HKLM\SYSTEM\CurrentControlSet\Services\VSS\Settings

Value: “MSDEVersionChecking” DWORD

When this registry value is set to a non-zero value (by default this registry value does not exist, which is the equivalent of being 0), the MSDE writer will automatically ignore all SQL Server 2005 instances during the writer metadata enumeration phase. This does not disable the MSDE writer. It will continue to enumerate and work with all older versions of SQL Server instances, if any, on that system.

This registry key is added automatically, if it is not already present, when the SQL Writer is started.

If you disable the SQL writer and want to use the MSDE writer with SQL Server 2005, this registry value must either be deleted or set to 0. This is the default setting when SQL Server 2005 is installed.

Note This change does not require a restart of the MSDE writer.
Configuring the SQL Writer Service Account

During installation, the SQL writer account will be installed to use the Local System account. Because the SQL writer needs to talk to SQL Server using exclusive VDI APIs, the SQL writer account must have sufficient access rights for both SQL Server and VSS. Configuring the service as a Local System account provides sufficient rights for the service to run correctly.

Note To have the SQL writer service work correctly, it is important to make sure that the Local System account is not removed from the SQL Server instance’s ‘sa’ role.

Starting SQL Writer

In order to be functional, the SQL writer service must be running at the time that the VSS application requests a backup or restore. To start the SQL writer service, open the Control panel and then Administrative Tools. Next, display the Services dialog box and start the SQL VSS Writer service explicitly. Or, it can be started from the command line by using the net start SQLwriter command.

Microsoft recommends that the service be automatically started when the server starts.

SQL writer service can also be enabled by marking this service as Automatic. To open the services through the Control panel, click Start and then click the Control panel. Next, double-click Administrative Tools and then double-click Services. In the Services pane, double-click SQL writer service and then modify the Startup Type property to Automatic.

You can also start the service by clicking the Start button under the Service Status property in the Service Property screen that was previously mentioned.

For convenience, the SQL writer service will make this change automatically the first time that it is started.

Note In installations where instances of SQL Server Express Edition 2005 are installed and have applications that launch SQL Server Express User Instances, the SQL writer service is necessary for VSS snapshot to work. That is, the MSDE writer does not work with such instances. In these cases, SQL Server will automatically start the SQL writer service upon the launch of the first SQL Server Express User instance. From that point on, the SQL writer service will be used automatically by the VSS framework.

Backup/Restore Operations and Supported Versions

Version Support

The SQL writer is shipped as part of SQL Server 2005 and supports only SQL Server 2005 instances. For earlier versions of SQL Server instances, the MSDE writer (shipped along with the VSS framework) will be used.

The SQL writer is only installed and supported on the Windows 2003 platform and Windows XP.

SQL Express

The SQL writer will also enumerate the SQL Server Express 2005 instances. User instances launched by SQL Server Express will also be enumerated by the SQL writer.

Supported Backup/Restore Operations

SQL Server 2005 (using the SQL writer) will support the following modes of VSS-based backup operations:

· Noncomponent-based

· Component-based

Noncomponent-based Backup Operations

Noncomponent-based backups implicitly select databases by using the list of volumes in the snapshot set. The SQL writer checks for torn databases and raises an error if found. A torn database is one in which a subset of files is selected by the list of volumes.

In the noncomponent-based model, only databases with the Simple Recovery model are supported. Roll-forward after a restore is not supported.

Component-based Backup Operations

Component-based backups are preferred and recommended with the SQL writer, because the application (VSS backup application) will explicitly select the databases from the metadata that is returned from the SQL writer. The snapshot set should include all the volumes necessary to back up those databases. The VSS infrastructure does not automatically add the volumes that are required for the selected set of databases. All backing volumes should be included in the volume snapshot set. It is the responsibility of the backup application to make sure that all backing volumes are included in the snapshot set. The SQL writer will detect torn databases with backing volumes outside the snapshot set and fail the backup.

The rest of this document assumes that component-based backups are used as part of the VSS snapshot creation process.

Snapshot Options Supported by SQL Writer

Among other improvements over the MSDE writer, additional features supported by the SQL writer include:

Full-text support – The SQL writer reports full-text catalog containers with recursive file specifications under the database components in the writer’s metadata document. They are automatically included in the backup when the database component is selected.

Differential Backup/Restore – The SQL writer supports differential Backup/Restore through two VSS differential mechanisms: Partial File and Differenced File by Last Modify Time.

· Partial File – The SQL writer uses the VSS Partial File mechanism for reporting changed byte ranges within its database files.

· Differenced File by Last Modify Time – The SQL writer uses the VSS Differenced File by Last Modify Time mechanism for reporting changed files in full-text catalogs.
Restore with Move – The SQL writer supports VSS’s New Target specification during a restore. VSS’s New Target specification allows for a database/log file or a full-text catalog container to be relocated as part of the Restore operation.

Database Rename – A requestor may need to restore an SQL database with a new name, especially if the database is to be restored, side-by-side, with the original database. The SQL writer supports renaming a database during the restore operation, as long as the database remains within the original SQL instance.

Copy-Only Backup – It is sometimes necessary to take a backup that is intended for a special purpose such as when you need to make a copy of a database for testing purposes. This backup should not impact the overall backup and restore procedures for the database. Using the COPY_ONLY option specifies that the backup is done out-of-band and should not affect the normal sequence of backups. The SQL writer supports the copy-only backup type with SQL Server 2005 instances.

Auto-Recovery of Database Snapshot – Typically, a snapshot of a SQL Server database obtained by using the VSS framework is in a non-recovered state. Data in the snapshot cannot be safely accessed prior to it going through the recovery phase to roll back in-flight transactions and place the database in a consistent state. With SQL Server 2005 and the VSS framework running on Windows 2003 SP1, it is possible for a VSS backup application to request auto-recovery of the snapshots, as part of the snapshot creation process.

These new features and their usage are described in more detail in Backup and Restore Option Details!href(#_Backup_and_Restore_Options Support) in this white paper.

What is Not Supported

· Log backups are not supported by the SQL writer.

· File/filegroup backup is not supported.

· Page restore is not supported.

The following table lists the kinds of snapshot backups that are supported by the SQL writer/SQL Server 2005 working with the VSS framework for all editions of SQL Server 2005.

	Backup/Restore Operation
	Component-based
(Windows 2003)
	Noncomponent- based
(Windows 2003)
	SQL Writer on Windows XP
	MSDE Writer

	Full Data Backup (Including full-text catalog)
	Yes
	Yes
	Yes
	Yes (No full-text catalog support)

	Full Restore
	Yes
	Yes
	No
	No

	Full Restore (No recovery)
	Yes
	No
	No
	No

	Differential Backup
	Yes
	No
	No
	No

	Differential Restore
	Yes
	No
	No
	No

	Restore With Move
	Yes
	No
	No
	No

	Database Rename
	Yes
	No
	No
	No

	Copy Only Backup
	Yes
	No
	No
	No

	Auto-recovered Snapshots
	Yes

(needs Windows 2003 Service Pack 1)
	No
	No
	No

	Log Backup
	No
	No
	No
	No

Snapshot Creation Process

The VSS framework coordinates the activities of a requestor (a backup application) and the SQL writer during the creation of SQL Server snapshots. To enable this coordination, the VSS framework defines requestor and writer interfaces. These interfaces should be implemented by the participating requestor applications and writers. The SQL writer implements the necessary writer interfaces. As part of the snapshot creation process, the SQL writer’s interfaces are called by the VSS framework. The SQL writer interacts with SQL Server instances on the system to facilitate snapshot creation.

The VSS framework defines a set of APIs for usage by a requestor/backup application. A backup application developer needs to follow these API calling patterns to work with the VSS framework snapshot creation process. The following sections describe the snapshot creation process from the SQL writer point of view. They also detail some of the internal interactions between the requestor, VSS framework, SQL writer, and SQL Server instances. For more information about these steps and for details about the VSS framework interfaces, see the documentation about Volume Shadow Copy Service!href(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vss/base/vss_portal.asp).

Note It is assumed that the reader is familiar with the VSS framework and backup creation process in general. These sections are provided as supplemental information about how the SQL writer participates in the VSS backup creation process.

Snapshot Creation Workflow

Figure 3 shows the data flow diagram during a component-based snapshot creation/backup operation. To more fully understand the basic tasks involved in performing a backup, it is useful to break down this overview into the following phases:

· Backup initialization

· Backup discovery phase

· Prebackup tasks

· Actual backup of files

· Backup termination

[image: image4.png]Requestor vss SQL Writer SQL Server

CreateVssBackupComponeris.

ey Wi Meladsta
Query Query Metadata.

t
‘Send Wrier Metadata

StartSnapsholSet

Backup Database Wih Snapshol

Backup Metadata
Please take snapshot

Perfle nfornaton, including dflerental

Backup sialement complele

(optonaAuto-recove database
Backup metadata, pe-le normation Shinklog fles

PostSnapsnot

Backup metadataldferental info

DoSrapshotComplete

BackupCompiste

(Optional) Comnit cferentl base|

Figure 3

Backup Initialization

During this phase of the backup, the requestor (backup application) binds to the snapshot interface IvssBackupComponents and initializes it in preparation for the backup. It also calls the VSS API IVssGatherWriterMetadata to tell the VSS framework to gather metadata from all the writers.

The VSS framework will call each of the registered writers, including the SQL writer for the writer metadata, by using the OnIdentify event. The SQL writer will query the SQL Server instances to get the backup metadata information for each database and create the Writer Metadata Document. This phase is also referred to as Metadata Enumeration.

The Writer Metadata Document is a document that contains information that is passed from the writer to the requestor (backup application). The Writer Metadata Document contains the following information:

· The application ID and friendly name.

· Where files and components exist.

· The files that need to be included and excluded in a backup.

· What options should be used at restore time. This passed back to the requestor through the VSS framework.

SQL Writer Metadata Document

The SQL Writer Metadata Document is an XML document created by a writer (the SQL writer in this case) by using the IVssCreateWriterMetadata interface. It contains information about the writer's state and components. The structural details of a Writer Metadata Document are described in the VSS API documentation. Following are some of the details of the SQL Writer Metadata Document:

· Writer Identification Information

· Writer name – L"SQLWriter"

· Writer class ID : 0xa65faa63, 0x5ea8, 0x4ebc, 0x9d, 0xbd, 0xa0, 0xc4, 0xdb, 0x26, 0x91, 0x2a

· Writer instance – L"SQL Server 2005:SQLWriter”

· VSSUsageType – VSS_UT_USERDATA

· VSSSourceType – VSS_ST_TRANSACTEDDB

· Writer Level Information – VSS_APP_BACK_END

· Restore Method Specification – VSS_RME_RESTORE_IF_CAN_REPLACE.

· Supported Backup Schema – (IVssCreateWriterMetadata::SetBackupSchema API)

· VSS_BS_DIFFERENTIAL – Differential backup

· VSS_BS_TIMESTAMPED – Timestamp-based, for full-text catalog files

· VSS_BS_LAST_MODIFY – Differential backup based on last modify time

· VSS_BS_WRITER_SUPPORTS_NEW_TARGET – Supports new target location option

· VSS_BS_WRITER_SUPPORTS_RESTORE_WITH_MOVE – Supports restore “with move”

· VSS_BS_COPY – Supports “copy-only” backup option

· Component Level Information

This contains component-level-specific information provided by the SQL writer.

· Type – VSS_CT_FILEGROUP

· Name – Name of the component (database name)

· Logical path – Of the server instance. This will be in the form of “server\instance-name” for named instances and “server” for default instance.

· Component Flags

VSS_CF_APP_ROLLBACK_RECOVERY – Indicates that SQL Server snapshots always require a “recovery” phase to make the files consistent and useable for non-backup (app-rollback) scenarios.

· Selectable – True

· Selectable for Restore – True

· Restore methods supported – VSS_RME_RESTORE_IF_CAN_REPLACE

The only extension of the component set structure in SQL Server 2005 is the introduction of full-text catalogs. Full-text catalogs are container directories that cannot be expressed as the VSS database or log files, because the VSS database and log files do not have recursive specification. Therefore, the SQL writer will use a VSS filegroup component (VSS_CT_FILEGROUP) to represent the database level component and filegroup files to represent the database, log, and full-text catalog files.

An example Writer Metadata Document!href(#_Writer_Metada_Document:_ An Example) is provided at the end of this document.

Backup Discovery

In this phase, a requestor examines the Writer Metadata Document and creates and fills a Backup Component Document with each component that needs to be backed up. It also specifies the needed backup options and parameters as part of this document. For the SQL writer, each database instance that needs to be backed up is a separate component.

Backup Components Document

The Backup Components Document is an XML document created by a requestor (by using the IVssBackupComponents interface) in the course of setting up a restore or backup operation. The Backup Components Document contains a list of those explicitly included components, from one or more writers, participating in a backup or restore operation. It does not contain implicitly included component information. In contrast, a Writer Metadata Document contains only writer components that may participate in a backup. Structural details of a backup component document are described in the VSS API documentation.

Prebackup Tasks

Prebackup tasks under VSS are focused on creating a shadow copy of the volumes containing data for backup. The backup application will save data from the shadow copy, not the actual volume.

Requestors typically wait on writers during preparation for backup and while the shadow copy is being created. If the SQL writer is participating in the backup operation, it needs to configure its files and also itself to be ready for backup and shadow copy.

Prepare for Backup

The requestor will need to set the type of backup operation that needs to be performed (IVssBackupComponents::SetBackupState) and then notify writers through VSS to prepare for a backup operation by using IVssBackupComponents::PrepareForBackup.
The SQL writer is given access to the Backup Component Document, which details what databases need to be backed up. All backing volumes should be included in the volume snapshot set. The SQL writer will detect torn databases (with backing volumes outside the snapshot set) and fail the backup during the PostSnapshot event.
Initiate Snapshot

Requestor will initiate the snapshot process by calling the VSS framework interface DoSnapshotSet.
Create Snapshot

This phase involves a series of interactions between the VSS framework and the SQL writer. In fact, all writers are involved in this phase, one writer for each application.
1. Prepare for snapshot

The SQL writer will call SQL Server to prepare for snapshot creation.

2. Freeze

The SQL writer will call SQL Server to freeze all the database I/O’s for each of the databases being backed up in the snapshot. After the freeze event returns to the VSS framework, VSS will create the snapshot.

3. Thaw

On this event, the SQL writer will call the SQL Server instances to thaw or resume normal I/O operations.

Note The snapshot creation phase is very fast, less than 60 seconds, to prevent the blocking of all writes to the database.

Post-Snapshot

If auto-recovery is needed for the snapshot, the SQL writer will do the auto-recovery for each database in the snapshot. For a detailed explanation, see Auto-Recovered Snapshots!href(#_Auto-recovered_Snapshots).

Actual Backup of Files

In this phase, the requestor can move the data to a backup media, if needed. Interactions in this stage are between the requestor and the VSS framework. The SQL writer is not involved.

4. Get writer status

Returns the status of writers. The requestor may need to handle any failures here.

5. Do backup

The requestor can move the data to backup media if needed at this time.

Backup Complete

This event will indicate that the backup was completed successfully.

This is also the time at which the SQL writer can commit the backup as a differential base, if the current backup is a full backup of the database and not a copy-only backup.

Note The requestor should send this event (Backup Complete event) explicitly to allow the SQL writer to commit differential base backups. If this event is not received, the backup that is created will not be an eligible “differential base” backup.

Save Writer Metadata

The requestor should save the Backup Component Document and each writer metadata along with the snapshot. This writer metadata is needed by the SQL writer/SQL Server for restore operations.

Backup Termination

The requestor terminates the shadow copy by releasing the IVssBackupComponents interface or by calling IVssBackupComponents::DeleteSnapshots.

Restore Process

This section describes the restore operation workflow and various steps involved.

Restore Operation Workflow

The following figure shows the data flow diagram during a VSS restore operation. To more fully understand the basic tasks involved in performing a restore, it is useful to break down this overview into the following topics:

· Restore Initialization

· Preparing for Restore

· Actual File Restoration

· Restore Cleanup and Termination

[image: image5.png]Requestor Vss

CreateVssBackupComponents

Query Witer

Meladala

SQL Writer SQL Server

PreRestore, along Wil backup metacata

o

Requesto copes cata ifo appropriate pla

ces

PosiRestore

o

Query Metadata

Reslore database phase |

Restore dalabase phese

Figure 4

In all VSS component-based restore scenarios, database restore is handled by the SQL writer in two distinct phases:

· Pre-Restore – The SQL writer handles the validation, closing of file handles, and so forth.

· Post-Restore – The SQL writer attaches the database and does crash recovery if needed.

Between these two phases, the backup application is responsible for moving the relevant data around SQL.

Restore Initialization

During the initialization phase of a restore, the requestor needs to have access to the stored Backup Components Documents.

The Backup Component Document that is generated during the backup operation is stored as part of the backup data. The backup application needs to pass this data back to the VSS framework. The SQL writer obtains access to this data at the beginning of the restore process.

Prepare for Restore

In preparing for a restore, a requestor uses the stored Backup Components Document to determine what is to be restored and how. The requestor will select the components to be restored and sets appropriate restore options as needed.

Note If a backup application intends to apply differentials or log backups during the restore operation for this backup, such as when a “Restore with no recovery” is needed, the following option should be set as part of component creation for each database that is being restored.

IVssBackupComponents::SetAdditionalRestores(true)

After all the needed details are set in the Backup Component Document, the requestor makes the IVssBackupComponents::PreRestore call to generate a Pre-Restore event through VSS that will be handled by the writers.

The SQL writer will examine the supplied Backup Component Document to identify the appropriate databases, deleting any additional files created since the backup time. It also checks disk spaces and closes any opened database file handles so that the requestor can copy the needed data during the Restore phase. This phase allows any early error conditions to be detected before the requestor does the actual file copying. SQL Server will also put the database in restoring state. From this point on, the database cannot be started until a successful restore.

Restore Files

This is purely a requestor-specific action. It is the responsibility of the requestor (backup application) to copy the needed database files, or copy relevant ranges of data for differential restores, to the appropriate places. The SQL writer is not involved in this operation.

Cleanup and Termination

After all the data is restored to the right places, a call from a requestor notifying that the restore operation has been completed (IvssBackupComponents::PostRestore) will let the SQL writer know that Post-Restore actions can be started. The SQL writer at this point will do the Redo phase of crash recovery. If recovery is not requested (that is, SetAdditionalRestores(true) is not specified by the requestor), the recovery step is also carried out during this phase.

Backup and Restore Option Details

This section describes in detail all backup and restore options supported by SQL Writer.

Requestor Creates a Volume Shadow Copy

The SQL writer could be involved in the volume shadow copy creation process (outside the context of backup/restore), because the db files’ backing volumes have been added into the volume snapshot set. In this case, the SQL writer only participates in the metadata enumeration, freeze, thaw, PrepareForSnapshot, and PostSnapshot coordination. For more information, see the data flow diagram.

Full Backup/Restore

The SQL writer supports full backup/restore operations in both noncomponent-based mode as well as component-based mode.

Noncomponent-based Backup and Restore

In a noncomponent-based backup, the requestor specifies a volume or a folder tree to be backed up or restored. All the data in the specified volume/folder is backed up or restored.

Backup

In a noncomponent-based backup, the SQL writer implicitly selects databases by using the list of volumes in the snapshot set. The writer checks for torn databases and raises an error if found. A torn database is one in which a subset of files is selected by the list of volumes. Roll-forward (differential or log restores) after a restore is not supported through the SQL writer.

Restore

The requestor restores databases that have been backed up in noncomponent-based mode. Note that such restores cannot be followed up by a roll-forward restore, such as log restore or differential restore.

For noncomponent-based restore operations, the restore must be performed with the SQL Server instance offline or the target databases are dropped/detached to ensure that the files are offline. The files are copied in place and then the databases attached. All this happens outside the scope of the SQL writer.

Component-based Backup and Restore

In a component-based backup, the requestor explicitly selects database components, from the metadata that the SQL writer returns to the client, to be backed up or restored.

Backup

In a component-based backup, all backing volumes should be included in the volume snapshot set. Otherwise, the SQL writer will detect torn databases with backing volumes outside the snapshot set and fail the backup. A full backup backs up database data and all the log files necessary to bring the database up to a transactionally consistent state at restore time.

Full Restore without Roll-forward

A full restore of the database backup is sometimes accomplished without doing any additional roll-forwards. This may be due to the fact that there is no metadata to facilitate the roll-forward or, in some cases, roll-forwards are not needed. This section covers these two situations briefly.

No metadata/no roll-forward

If no writer metadata (component-based backup metadata) is saved during the backup operation, the restore must be performed with the SQL Server instance offline or the target databases are dropped/detached to ensure that the files are offline. The files are copied in place and then the databases attached. All this happens outside the scope of the SQL writer.

Metadata exist but no additional roll-forward is needed

The requestor restores databases that have been backed up in component-based mode, but no roll-forwards are requested.

Full Restore with Additional Roll-forwards

The requestor can issue a restore specifying the SetAdditionalRestores(true) option. This option indicates that the requestor is going to follow up with more roll-forward restores such as log restore, differential restore, and incremental restore. This instructs SQL Server not to perform the recovery step at the end of the restore operation.

This is only possible if the writer metadata was saved during the backup and is available to the SQL writer at the time of the restore. The SQL Server service must be running before the requestor directs VSS to perform the restore activity.

The SQL writer expects the following sequence:

6. Preparation to restore each database. This activity involves closing all the file handles in order to allow database files to be copied/mounted by the requestor application.

7. Files are copied/mounted by the requestor application.

8. Finalize the restore (with NORECOVERY). The databases are brought online, but into a “Restoring” state.

Conventional SQL backups, differential or logs, can then be used to roll forward the database through the VDI, or by applying the differential restore using the VSS framework.

Full-text Support

The SQL writer reports full-text catalog containers with recursive file specifications under the database components in the Writer Metadata Document. They are automatically included in the backup when the database component is selected.

Differential Backup/Restore

A differential backup operation backs up only the data that has changed since the last differential backup. A differential backup contains only those parts of the database files that have changed. In order to do such a backup, the backup application or requestor would need information about the location of the changes in the database files so that appropriate sections of the files can be backed up. During a differential backup operation, the SQL writer provides this information in the format as specified by “VSS partial file information.” This information can be used to back up only the changed portion of the database files.

Backup

The requestor can issue a differential backup by setting the DIFFERENTIAL option (VSS_BT_DIFFERENTIAL) in the Backup Component Document (IVssBackupComponents::SetBackupState) when initiating a backup operation with VSS. The SQL writer will pass the partial file information (returned to it by SQL Server) to VSS. The requestor can obtain this file information by calling VSS APIs (IVssComponent::GetPartialFile). This partial file information allows the requestor to choose only changed byte-ranges to back up for the database files.

· During the Pre-Backup Tasks phase, the SQL writer will make sure that a single differential base for each selected database exists.

· During the PostSnapshot event, the SQL writer will obtain the partial file information from SQL Server and add it to Backup Component Document using IVssComponent::AddPartialFile call.

Note SQL writer supports only a single differential baseline for differential backups. Multi-baselines are not supported.

Partial File Information Format

For each database being backed up during a differential backup, the SQL writer will store the partial file information for each database file. This information is used by the requestor or the backup application to copy only relevant portions of the file to the backup medium during the actual backup of the files. For more information about the format for this partial file information, see the documentation for Volume Shadow Copy Service!href(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vss/base/vss_portal.asp).

A requestor can determine these files by calling IVssComponent::GetPartialFileCount and IVssComponent::GetPartialFile. IVssComponent::GetPartialFile will return a path and a file name pointing to the file and also a ranges string indicating what needs to be backed up in the file.

For more details about the partial file information retrieval, see the VSS documentation.

Backing Up Files

During this phase, the backup application should look at the writer metadata stored in the Backup Component Document and back up only the relevant portions of the files. For full-text catalog files, this backup should be done based on the file timestamps. This is described later in this document.

· A differential backup will always be with respect to the latest base backup that exists for the database. At restore time, SQL Server will detect mismatched base and differential backups. So, it is responsibility of the backup application or system administrator to be sure that the differential is relative to the expected full backup. If some out-of-band procedure has made another full backup, the backup application may not be able to restore the differential, because it does not "own" the base backup.

· Currently, if the byte-range information (partial file information) is too large (exceeding 64-K bytes in buffer size), SQL Server will throw an error instructing the user to perform a full backup.

Interesting Cases During Backup

File add/drop/shrink/growth/logical-rename/physical-rename make interesting cases in backup.

Files newly added after the base was taken
These files are included in the partial specification because every header of the SQL database file needs to be in the partial specification. Besides the header page, all the allocated pages need to be included in the partial specification.

Files dropped after base was taken

After the base was taken, data files could be dropped. Such files are not included in the Writer Metadata Document during differential backup. Furthermore, there will not be partial information associated with the dropped file.

Files shrunk after the base was taken

The partial information is not collected from the files until file shrinks have been disabled in the server. This ensures that any partial information that corresponds to the shrunk region of a data file will never be included.

Files grown after the base was taken

If growth took place before the partial information is collected, the partial information should have included the allocated pages in the grown region. If the growth took place after the partial information is collected, then the partial information does not include changes in the grown region. In the following sections, these changes will be restored by the log roll-forward.

File logically renamed after the base was taken

A logical rename of the file does not affect the backup or restore, because the file’s logical name is not referenced anywhere in the Writer Metadata Document or in the Backup Component Document. For more information, see the Writer Metadata Document: An Example!href(#_Writer_Metadata_Document:_ An Examp).

File physically renamed after the base was taken

A physical database file rename does not take effect until the database restarts. Therefore, the database configuration information or the file path information in the partial information buffer is still based on the old physical paths, which are the only valid paths to those database files on the snapshot.

Restore

During a differential restore, the backup metadata that the requestor gives back to the SQL writer has the backup type information. Therefore, no special treatment from the SQL writer is needed. SQL Server will figure out that it is a differential restore by itself. SQL Server handles such a differential restore in the same way as against a native differential restore that is not performed through VSS.

Pre-Restore Phase

During this phase, SQL Server will resize all files to the appropriate size, based on the differential backup’s file metadata. If the file is grown, SQL Server zeros out the grown portion. If a new file has to be created (it was created after the base was taken), SQL Server zeros out the new file. It also closes all the file handles so that the backup application can overwrite the files with the restored data from the backup media.

Restore Files

The client should restore the files based on the partial file specification. The data should be restored to the same offset/range of the database file as specified in the partial file specification stored in the writer metadata.

Database file add/drop/growth/shrink/logical-rename/physical-rename again makes interesting cases at restore time.

If a database file had been added after the full base was taken

Such files must have been pre-created by SQL Server during the restore preparation phase. They should have been extended to the right size and zeroed out. The client only needs to lay down the data as per partial specification. The partial specification includes all allocated extents.

If a database file had been dropped after the full base was taken

The partial information that SQL Server has provided does not include any tracking information for such file drops. SQL Server is responsible for detecting the files to be deleted by comparing the restored file’s metadata against the existing containers and actually deleting them. This is done prior to the restore as a preparation step.

If a database file had grown since the full base was taken

Such files must have been extended to the right size by SQL Server during the restore preparation phase. The extended region must also have been zeroed out by SQL Server. Therefore, the client can safely lay down the data even in the grown region as per partial specification. If the file was grown after the partial information was taken, the changes in the grown region will be restored, by replaying the log that was backed up, along with the differential backup.

If a database file had shrunk since the full base was taken

SQL Server is responsible for truncating the file to the required size as per metadata. This is done prior to the restore as a preparation step.

If a database file had been logically renamed since the full base was taken

This would not affect the restore because the logical name does not appear in the Writer Metadata Document or the Backup Component Document. The logical name change will be restored when the client applies the change to the primary database file, which contains the system catalog information.

If a database file had been physically renamed since the full base was taken

If by the time of differential backup the rename had not taken effect, the client still restores data to the old location. A database restart post-restore will cause the physical rename to take effect. If by the time of differential backup the physical file rename had already taken effect, the partial data, if any, was backed up from the new physical path.

Post-Restore

During the post-restore events, the SQL writer will perform the normal redo operation and recovery (if SetAdditionalRestores() is set to False) of the database.

Differential Backup/Restore for Full-text Catalogs

SQL Server 2005 full-text catalogs are part of the database resources that need to be backed up or restored together with the rest of the database files. A differential backup is timestamp-based for full-text catalog. The SQL Server 2005 VSS differential backup/restore has a single base backup. In other words, there will not be different bases for different containers. For VSS full-text catalog backup, this means for all full-text catalog containers the differential backup will be single-timestamp based, unlike the case of native SQL differential backup in which there is one timestamp base per full-text catalog container.

In VSS, this timestamp is expressed as a component-wide property that is set during the full backup and used during a subsequent differential backup.

OnIdentify

In OnIdentify, the SQL writer calls IVssCreateWriterMetadata::SetBackupSchema() to set the value VSS_BS_TIMESTAMPED. This indicates to the backup application that the SQL writer owns the management of the differential base.

Setting the Base timestamp

The base timestamp is set during a full backup. In OnPostSnapshot(), the writer invokes IVssComponent::SetBackupStamp() to store the timestamp with the component in the backup document.

Differential Backup

The backup application will retrieve this timestamp from the base full backup and make the timestamp available for the writer through IVssComponent::GetPreviousBackupStamp(). In OnPostSnapshot(), this timestamp will be set to each full-text catalog using IVssComponent::AddDifferencedFilesByLastModifyTime().

Backup Application’s Responsibility During Differential Backup

During a differential backup, the backup application is responsible for the following:

· Backing up any file (the entire file) whose last modified timestamp is greater than the timestamp specified by the “last modify time” for the file set in the component.

· Tracking and detecting deleted files.

Backup Application’s Responsibilities During a Differential Restore

During a differential restore, the backup application is responsible for the following:

· Restoring all files that have been backed up, either by creating a new file if it does not already exist, or by overwriting an existing file if it already exists.

· Growing the file before laying down the content if the restored file is larger than the existing file.

· Truncating the file to the same size as that of the restored file if the restored file is smaller than the existing file.

· Deleting all files that should be deleted. That is, those files that should not exist as of the point in time of the differential backup.

Copy-Only Backup

It is sometimes necessary to take a backup that is intended for a special purpose. For example, you might need to make a copy of a database for testing purposes. This backup should not impact the overall backup and restore procedures for the database. Using the COPY_ONLY option specifies that the backup is done out-of-band and should not affect the normal sequence of backups. The SQL writer supports the copy-only backup type with SQL Server 2005 instances.

During the backup discovery phase, the SQL writer will indicate its capability to do a copy-only backup by setting the supported backup schema option VSS_BS_COPY using the IVssCreateWriterMetadata::SetBackupSchema call. The requestor can set the backup type as a copy-only backup by setting the VSS_BACKUP_TYPE option as VSS_BT_COPY with the call IVssBackupComponents::SetBackupState.

When a copy-only backup is selected, it is assumed that files on disk will be copied to a backup medium (by the requestor), regardless of the state of each file's backup history. SQL Server will not update the backup history. This type of backup will not constitute as a base backup for further differential backup operations and also it does not disturb the history of the previous differential backups.

Restore with Move

VSS allows the backup application (requestor) to specify a new restore target using the IVssComponent::SetNewTarget call. In both PreRestore() and PostRestore(), the SQL writer checks if there is at least one new target specified. It is the backup application’s responsibility to physically copy the files to the new location during the actual file restore/copy time.

The backup application is only allowed to specify new targets for the physical path, but not the file specification. For example, for a database file located at c:\data\test.mdf, the actual file name, test.mdf, cannot be changed. Only the path c:\data can be changed. For a full-text catalog container located at c:\ftdata\foo, because the file specification in VSS is “*” and the path specification in VSS is c:\ftdata\foo, the entire path can be changed.

Database Rename

A requestor may need to restore a SQL database with a new name, especially if the database is to be restored side-by-side with the original database. This option can be specified by the requestor during the restore operation by setting a custom restore option as “New Component Name” = <”New Name”> using the VSS call IVssBackupComponents::SetRestoreOptions() (in the wszRestoreOptions parameter).

The SQL writer will take the entire content of the New Component Name’s value and use it as the new name for the restored database. If no option is specified, SQL will restore the database with its original name (component name).

Note The SQL writer currently does not support “Rename across Instances” to move a database to a new instance.

Auto-Recovered Snapshots

Typically, a snapshot of SQL Server database obtained by using VSS framework is in a non-recovered state. Data in the snapshot cannot be safely accessed prior to going through the recovery phase to rollback in-flight transactions and placing the database in a consistent state. Because the snapshot is in a read-only state, it cannot be recovered though the normal process of attaching the database.

With SQL Server 2005 and the VSS framework running on Windows 2003 SP1, it is possible to auto-recover the snapshots as part of the snapshot creation process. As part of the Writer Metadata Document, the SQL writer will specify the component flag “VSS_CF_APP_ROLLBACK_RECOVERY” to indicate that recovery needs to be done for the database backup that was done for non-backup purposes. When specifying the snapshot set, the requestor can indicate that the snapshot should be an app-rollback snapshot. That is, all database files in a snapshot are meant to be in a consistent state for application usage. Or, it should be a backup snapshot. That is, a snapshot used for backing up data to be restored later in case of a system failure.
The requestor should set VSS_VOLSNAP_ATTR_ROLLBACK_RECOVERY to indicate that this component is being backed up for a non-backup purpose. VSS will then correlate the VSS_CF_APP_ROLLBACK_RECOVERY that the SQL writer specified on the selected component with VSS_VOLSNAP_ATTR_ROLLBACK_RECOVERY, and determine that auto recovery is happening. VSS will make the snapshot writeable and automatically add the VSS_VOLSNAP_ATTR_AUTORECOVERY bit.
In case of SQL Server, the auto recovery should be applied only to app-rollback snapshots, but not for backup snapshots. For app-rollback snapshots, an auto-recovery process is initiated by the SQL writer during the PostSnapShot event. This process will do the following for each explicitly selected (by the requestor) SQL Server database in the snapshot set:

· Attach the snapshot database to the original SQL Server instance. That is, the instance that the original database is attached to.
· Recover the database. This happens as part of the attach operation.
· Shrink log files.
This reduces the amount of unnecessary copy-on-write that needs to be done by the VSS framework. Shrinking the log files is the default behavior. This is disabled by setting the value to the following registry key to 1:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SQLWriter
\Settings\DisableLogShrink

This may be useful in scenarios where the snapshot may be used to export data from a specific page, at a specific point in time, from the log to fix a problem in the online database.

· Detach the database.
Now, you have a consistent, recovered snapshot that can be attached for querying.

Note Auto-recovered snapshots are enabled only through the VSS framework running on the Windows 2003 SP1 release. Earlier releases of Windows 2003 do not have this support.

Multi-Database Transactions

In some cases, the snapshot databases may contain some in-flight multi-database transactions. During recovery operation, the SQL writer will attach the database on the snapshots with the Presumed Abort option. This would roll back any multi-database transaction that is not yet committed, including any transactions that are in a Prepared to Commit state. This may lead to some inconsistencies between databases in the snapshot set. As an example, consider two databases, A and B. There is a distributed transaction between these two databases. This transaction is in the Committed state in database A and in the Prepared to Commit state in database B. As part of the auto-recovery process, this transaction will be committed in database A and rolled back in database B. This may lead to some inconsistencies in the snapshot set.

The Microsoft Distributed Transaction Coordinator (MS DTC) component to be released in the Longhorn timeframe by the VSS framework will fix this inconsistency problem for transactions spanning databases across SQL Server instances. The next version of SQL Server will fix these inconsistencies for transactions spanning databases within a SQL Server instance.

Security Implications for Auto-Recovered Snapshots

For VSS snapshots, after the auto recovery, the files will be secured using Access Control Lists (ACLs) to allow access only to the original SQL Server account and to the Built-in/Administrators accounts. The client requesting an attach of the database files on a snapshot either has to be a member of Built-in/Administrators or the SQL Server account.
Special Cases

This section describes some of the special cases encountered during SQL writer-based backup and restore operations.

Autoclose Databases

For noncomponent-based backups, autoclosing of databases is done when checking for torn conditions, but they are not explicitly frozen during backup operations.

The expected scenario here is that many closed databases may exist and we want to minimize the cost of the snapshot. Closed databases are typically used in low-end configurations where resources are scarce.

File List

The list of files for each database is determined during an enumeration step prior to the Prepare for Backup event. If the list of database files changes between enumeration and freeze, the database could be torn unless the application rechecks the list of files. This should not be an issue, but it is something that vendors need to be aware of.

Stopped Instances

If an instance of SQL Server is not running at the time the enumeration step occurs, none of the databases for those instances will participate in the call and are ignored.

If an instance stops in the interval between enumeration and the Prepare for Backup event, any databases in the stopped instance are ignored.

System and User Databases

System databases in SQL Server include the master, model, and msdb databases that are shipped and installed as part of SQL Server. This section describes how these databases are handled in a VSS snapshot backup process.

System Databases

The master database can only be restored by stopping the instance, replacing the database files (done by the backup application), and restarting the instance. No roll forward is possible.

The SQL writer supports restore of both model and msdb databases online, without shutting down the instance. This is an additional improvement over MSDE writer behavior.

For more information about recovering system databases, see the VDI snapshot documentation.

Simple Recovery Model User Databases

If system databases are restored together with user databases that are using the Simple Recovery model, the user databases can be restored with the same technique as the system databases: with the instance shut down, just copy or mount the volumes. When the SQL instance is started, everything recovers.

Rolling Forward User Databases

If user databases are to be recovered and rolled forward together with master database recovery, the instance must not start up and recover the master and user databases together.

The procedure is as follows:

9. Ensure that the SQL Server instance is stopped.

10. Perform the restore in two phases.

a. Restore the system databases and user databases that should be recovered at the same time (that is, Simple Recovery mode user databases) through file copy /volume-mount through VSS.

i.
If the user databases to be rolled forward are not on the same volume as the system databases, that volume should not be brought back at this time. This scenario requires planning prior to back up.

ii.
If the user databases are on the same volume as the system databases, the user databases need to be hidden from SQL Server.

iii.
Start the SQL Server instance using the -f parameter. Note that when using the -f startup option, only the master can be restored.

iv.
Issue an ALTER DATABASE <x> SET OFFLINE for each database to be rolled forward. Detach database is an alternative.

v. Stop the SQL Server instance.

vi. Start the SQL Server instance. The files for the user databases to roll forward are not visible to SQL Server.

b. Use VSS to restore the user databases WITH NORECOVERY, as described in the section, Full Restore with Additional Roll-forward.

Conclusion

Documentation on Volume Shadow Copy Service!href(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vss/base/vss_portal.asp).

For more information:

http://www.microsoft.com/technet/prodtechnol/sql/default.mspx
Appendix

Writer Metadata Document: An Example

Given an example database named DB1, which belongs to SQL Server instance Instance1 on machine Server1, and which contains the following database/log files:

· Database file named “primary” stored at c:\db\DB1.mdf

· Database file named “secondary” stored at c:\db\DB1.ndf

· Database log file named “log” stored at c:\db\DB1.ldf

· Full-text catalog named “foo” stored under the directory c:\db\ftdata\foo

· Full-text catalog named “bar” stored under the directory c:\db\ftdata\bar.

Following is the database’s writer metadata:

Database level filegroup component

· ComponentType: VSS_CT_FILEGROUP

· LogicalPath: “Server1\Instance1”

· ComponentName: “DB1”

· Caption: NULL

· pbIcon: NULL

· cbIcon: 0

· bRestoreMetadata: FALSE

· NotifyOnBackupComplete: TRUE

· Selectable: TRUE

· SelectableForRestore: TRUE

· ComponentFlags: VSS_CF_APP_ROLLBACK_RECOVERY

Filegroup file

· LogicalPath: “Server1\Instance1”

· GroupName: “DB1”

· Path: “c:\db”

· FileSpec: “DB1.mdf”

· Recurisve: FALSE

· AlternatePath: NULL

· BackupTypeMask: VSS_FSBT_ALL_BACKUP_REQUIRED | VSS_FSBT_ALL_SNAPSHOT_REQUIRED

Filegroup file

· LogicalPath: “Server1\Instance1”

· GroupName: “DB1”

· Path: “c:\db”

· FileSpec: “DB1.ndf”

· Recursive: FALSE

· AlternatePath: NULL

· BackupTypeMask: VSS_FSBT_ALL_BACKUP_REQUIRED | VSS_FSBT_ALL_SNAPSHOT_REQUIRED

Filegroup file

LogicalPath: “Server1\Instance1”

· GroupName: “DB1”

· Path: “c:\db”

· FileSpec: “DB1.ldf”

· Recursive: FALSE

· AlternatePath: NULL

· BackupTypeMask: VSS_FSBT_ALL_BACKUP_REQUIRED | VSS_FSBT_ALL_SNAPSHOT_REQUIRED

Filegroup file:

· LogicalPath: “Server1\Instance1”

· GroupName: “DB1”

· Path: “c:\db\ftdata\foo”

· FileSpec: “*”

· Recursive: TRUE

· AlternatePath: NULL

· BackupTypeMask: VSS_FSBT_ALL_BACKUP_REQUIRED | VSS_FSBT_ALL_SNAPSHOT_REQUIRED

Filegroup file:

· LogicalPath: “Server1\Instance1”

· GroupName: “DB1”

· Path: “c:\db\ftdata\bar”

· FileSpec: “*”

· Recursive: TRUE

· AlternatePath: NULL

· BackupTypeMask: VSS_FSBT_ALL_BACKUP_REQUIRED | VSS_FSBT_ALL_SNAPSHOT_REQUIRED

Note that if the server instance is the default instance on the machine, the logical path becomes one part – “Server1”.

