Filename: Document2
3

[image: image1.png]Microsoft*

SQL Server 2005

Protect Sensitive Data Using Encryption in SQL Server 2005
SQL Server Technical Article

Writer: Don Kiely
Technical Reviewer: Rob Walters, Niraj Nagrani, Al Comeau
Published: December 2006
Applies To: SQL Server 2005 RTM and SP1
Summary: SQL Server 2005 is built up of layer upon layer of security, designed to provide defense in depth. SQL Server uses strong encryption to provide the best protection for data, a nearly inviolate barrier to exposure. This paper explores the encryption features in SQL Server 2005 that you can use to protect your data. Key management is the hardest part of encryption and keeping data protected. SQL Server can handle key management for you or you can do it yourself. SQL Server implements a key hierarchy that you can use to create three types of keys using a variety of encryption algorithms to secure your data.
Copyright

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

 2006 Microsoft Corporation. All rights reserved.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Table of Contents

1Introduction

1SQL Server 2005 Encryption

2Transact-SQL encryption support

3Encryption considerations

4Key management

4Encryption hierarchy

5Encryption Keys

5Built-in keys

5Service master key

6Database master key

8User keys

8Certificates

10Asymmetric keys

11Symmetric keys

15Pass phrase keys

15User key summary

16Encryption Catalog Views

17Conclusion

18Appendix A: Support for Encryption in Transact-SQL

21Appendix B: Transact-SQL Code to Calculate Encrypted Text Size

Introduction

One of the primary reasons to use an industrial-strength database engine like Microsoft® SQL Server™ is to protect your data. In earlier times, data protection meant things like referential integrity, corruption, and the ACID benefits of robust transaction management. But in today's environment of relentless attacks on online systems, it is necessary to prevent data exposure to unauthorized attackers. And data protection is no longer just an ethical mandate or wise business decision; it is increasingly mandated by law.

SQL Server 2005 provides an array of new features that protect the server from attackers at multiple levels, in accordance with the important security principle of defense in depth. Defense in depth means that an attacker must successfully attack layer after layer of defenses, each layer presenting a different and increasingly difficult challenge. Data encryption within the database provides a final layer of defense, protecting data even when an attacker successfully penetrates to that level.

The encryption features built into SQL Server 2005 support a variety of encryption algorithms and keys, and provide secure key management to keep secrets secure. Transact-SQL has a variety of new statements and functions to support encryption, so you can perform ad hoc encryption with data in memory as well as persisting encrypted data in a database. SQL Server implements a powerful encryption key hierarchy to protect the keys that it manages thereby offering the potential for maximum transparency to existing applications. In addition, SQL Server 2005 provides an option to put key management in the hands of the end user, making it possible to protect data using secrets that even the administrator does not know.

SQL Server 2005 uses encryption when needed to protect data both when it is stored in a database and when it is sent over a communication channel outside the server. In the core database engine, you can save encrypted data in the fields of a table, decrypting it only when accessed by an authorized user. In Analysis Services, a client can make an encrypted request and receive encrypted data in return, with various data protection levels to guide the interaction. Information in delivery channels and hosted event provider arguments used in Notification Services can contain sensitive information, and encryption can protect that data when saved. Reporting Services uses encryption to protect credentials and connection data. SQL Server Mobile allows encrypting entire databases to protect data when the device is lost or stolen.

This paper explores the encryption features in the core database engine of SQL Server 2005, showing how they can be used to protect data stored there as well as how to allow user interaction with protected data. It discusses the various keys used to protect both data and other keys within a database, and how to get information about encryption objects.

SQL Server 2005 Encryption

Encryption in SQL Server 2005 is flexible, with plenty of options. It supports three types of encryption, each using a different type of key and each with multiple encryption algorithms and key strengths available.

· Symmetric key encryption, in which the key used to encrypt and decrypt the data is the same. This requires that the entity encrypting the data have the same key as the entity decrypting the data. Normally it is hard to securely share a secret like that, but it can be secure if everything is kept within SQL Server. You can use the RC4 and RC2 algorithms as well as the DES and AES families of algorithms.

Note Not all encryption key algorithms are available in all versions of Microsoft Windows®. Microsoft recommends that you use AES for symmetric key encryption if it is installed on the server. If it isn’t, use Triple DES.
· Asymmetric key encryption, in which the keys used to encrypt and decrypt the data are different. This doesn't require a shared secret, but it still requires the owner of the keys to keep the private key a secret. SQL Server supports the RSA algorithm in 512-bit, 1,024-bit, and 2,048-bit keys.

· Certificates are another form of asymmetric key encryption. Certificates use a digital signature to associate public and private keys with their owner. SQL Server uses the Internet Engineering Task Force's X.509v3 specification, and can use internally generated certificates or those from external certificate authorities. Certificates also use RSA for the actual data encryption.

Transact-SQL encryption support
Encryption is deeply integrated throughout SQL Server 2005 and Microsoft has extended Transact-SQL to provide support for encrypting and decrypting data as well as key management and maintenance. Appendix A lists the most important encryption statements and functions that you'll use most often, as well as the permissions required for execution. As you see in that appendix, managing encryption requires a relatively high privilege level since you are working with data protection. An administrator or database owner should grant these permissions with the greatest of care.

This paper covers most of the items listed in the appendix, but there are a few common elements that require discussion, starting with permissions.

All CREATE statements contain an AUTHORIZATION clause that grants ownership of the object to the specified user. Managing ownerships is far more flexible in SQL Server 2005 than in earlier versions, but it takes some thought and management to give users the permissions they need while keeping the server secure. The AUTHORIZATION clause is important in encryption because a user must have ownership of the various keys required to use to encrypt or decrypt data. Alternatively, the user needs to have CONTROL permissions on the keys and certificates.

The new Encrypt and Decrypt Transact-SQL functions are where the actual encryption takes place. The symmetric key encryption functions all return varbinary data with a maximum size of 8,000 bytes. This means that you can't use SQL Server 2005 encryption to encrypt massive amounts of data, unless you break it up into chunks of clear text small enough to output less than 8,000 bytes of cipher text. Similarly, the Decrypt functions return up to 8,000 bytes of clear text varbinary data from encrypted cipher text, which also limits the amount of data you can encrypt without breaking it into chunks.

Since the Decrypt functions also return varbinary data, it is necessary to cast the decrypted data back to the original data type for use.

For Encrypt functions that use asymmetric keys or certificates, the length of plaintext data that can be encrypted with an RSA key is the length of the key modulus minus 11 bytes. You may use the following formula for that purpose:

(key size (bits))/8 – 11 = number of bytes of plaintext
Encryption considerations
When considering whether to use encryption in a database, you must think about performance and data bloat. Encryption is a highly processor-intensive operation. Generally, the more secure the algorithm and the larger the key size, the more processing cycles are required. You won't want to encrypt all of the data in any database of any serious size, because the encryption operations when storing and retrieving data are likely to strain even the beefiest server hardware and resources.

Another issue is that encryption by its nature bloats data. How much bloat depends on the algorithm, key size, and the clear text that is being encrypted. I wrote a simple Transact-SQL script that encrypts varchar strings of 10, 31, and 83 bytes using all of the encryption algorithms available natively in SQL Server. The results are listed in Table 1. The code encrypts the strings and records the length of the resulting cipher text using the Transact-SQL DATALENGTH() function. Each number in the table represents the increase in size of the encrypted data over the clear text. For example, the minimum increase using Triple DES resulted in a 45% increase in size of the cipher text over the clear text.

Table 1 Increased size of encrypted data over its clear text

	Algorithm
	Maximum
Increase
	Minimum
Increase
	Average
Increase

	Triple DES
	3.80
	0.45
	1.77

	AES 128
	5.40
	0.54
	2.51

	AES 192
	5.40
	0.54
	2.51

	AES 256
	5.40
	0.54
	2.51

	Certificate
	11.80
	0.54
	5.16

	DES
	3.80
	0.45
	1.77

	DESX
	3.80
	0.45
	1.77

	RC2
	3.80
	0.45
	1.77

	RC4
	3.60
	0.43
	1.73

	RSA 1024
	11.80
	0.54
	5.16

	RSA 2048
	24.60
	2.08
	11.31

	RSA 512
	5.40
	1.06
	3.23

As you can see in Table 1, there is a great deal of variation in how much encryption increases the size of data, ranging from a low of 43% to a whopping 2,460%. (The high percentage resulted when encrypting 10 bytes of data using RSA and a 2,048-bit key, which resulted in cipher text of 256 bytes. This is a byproduct of the fixed-block length of different algorithms.) Your results will vary, but this gives you an idea of how conservative you should be with the use of encryption.

Appendix B contains a sample stored procedure that can be used to calculate the length of the encryption text for a given clear text input.

Key management
By far the hardest thing about using encryption is key management. In an electronic world it is very difficult to keep secret things secret, and encryption keys are the key to having reliable and robust data protection. In the age of vast networks interconnected through the Internet, a broken secret can be disseminated far and wide very quickly. Although it is nice that SQL Server does the work of encrypting and decrypting data, the real benefit is that it can take care of managing, storing, and protecting encryption keys for you. With its rich hierarchy of encryption keys, where each level encrypts the keys below it, it implements the most secure key management system possible using current technologies. Later sections of this paper describe how those features work in some detail.

Some applications and users require that they manage the keys, and SQL Server supports that scenario as well. Most of the options for creating encryption keys allow the use of a password or phrase to secure the key. When used, it is the responsibility of the user or application to protect the key, both wherever it is stored and when it is used to legitimately encrypt or decrypt data. The sections of this paper that describe the creation of keys explore both key management options.

Encryption hierarchy
Nothing is more important in secure encryption than keeping keys protected and secret. With the exception of the public key in asymmetric encryption, it is critical to keep keys secret and protected from unauthorized use. Even the strongest, most unassailable algorithm is rendered useless by a key that gets into the wrong hands. SQL Server implements a strong system for protecting keys in the form of an encryption hierarchy of keys, each layer of which protects the keys below it, as shown in the following figure. Each arrow points from a key to the keys it protects; when multiple arrows point to a type of key, it means that there are multiple options for how that key can be protected.

[image: image2.png]Password

Password

Certificates

Asymmetric Keys

je— password

password

SQL Server 2005 encryption key hierarchy

At the root of the hierarchy, at the top of the figure, is the Windows Data Protection API, or DPAPI. DPAPI was introduced with Microsoft Windows® 2000 to provide support for the Crypto API as a secure location for storing keys deep within Windows. For SQL Server 2005 it protects the server's service master key, which is the root key for each instance of SQL Server installed on the computer. The service master key ultimately protects every key you use. Let SQL Server manage for you. It is a critical secret, well worth the protection DPAPI affords it.

The service master key in turn protects the database master key, which is required in each database in which you will encrypt data. This key plays a role similar to that of the service master key but for a database rather than for the entire SQL Server instance. The database master key in turn protects the user keys you create, the certificates, symmetric keys, and asymmetric keys.

As shown in the previous figure, the database master key can protect certificates and asymmetric keys. Each of those two keys can in turn protect symmetric keys, and symmetric keys can in turn be used to protect other keys of the same type. Alternatively, you can protect any of the database-level keys with a password and take on key management yourself. Keep this structured hierarchy in mind as you decide how to protect each key you create in SQL Server, particularly as you decide what type of key to use to protect new keys. You can make as simple or as convoluted a hierarchy of keys in each database as you wish.

Encryption Keys

SQL Server provides two types of encryption keys, built-in keys and user keys. Built-in keys provide internal encryption services, such as encrypting and protecting database keys and any user keys that you create in order to protect your data.

Built-in keys
There are two types of built-in keys in SQL Server, the service master key and a single database master key in each database. Although you generally can't explicitly use these keys for encryption, they are used in various ways to provide a strong infrastructure to manage keys and protect data.

Service master key
The service master key is the root key for all keys that SQL Server manages. Because it protects every managed key in the instance of SQL Server, it is a very important key. It is created automatically when you install a new instance of SQL Server and is likely to require very little maintenance or attention on your part, other than to back it up and store off the server in a secure location. There is only one service master key for each instance of SQL Server; you can neither create it nor destroy it.

The key itself is secured, managed, and protected by DPAPI within Windows. Like all keys managed by DPAPI, it is secured using the credentials of the logged in user. For SQL Server, this is the service account under which the SQL Server service runs. This means that anyone who has access to that account can access the service master key, another reason to consider carefully under which account SQL Server runs and who has access to that account.

The service master key directly protects various sensitive pieces of instance-wide data, including passwords for linked servers, database master keys, and mapped account credentials. You cannot directly access the service master key within the server—it is for SQL Server use only—but you can execute maintenance tasks on it. One of the first things you should do after installing SQL Server is to back up the key as in the following code:

BACKUP SERVICE MASTER KEY TO FILE = 'c:\key.dat'

ENCRYPTION BY PASSWORD = 'S3@fBZir2D^P$x5P&tNr^uR!@wGW'

The password you supply encrypts the data in the specified disk file. Make the password as strong as you can and remember it (an inherent difficulty when using stronger passwords such as those in these examples). If you ever need to restore the service master key, use the RESTORE SERVICE MASTER KEY statement:

RESTORE SERVICE MASTER KEY FROM FILE = 'c:\key.dat'

DECRYPTION BY PASSWORD = 'S3@fBZir2D^P$x5P&tNr^uR!@wGW'

You can also regenerate the service master key. This should only be necessary if the current service master key is compromised, making all your protected data accessible to an attacker. (In highly secure installations, you may also want to regenerate the keys when they get too old, where “too old” is determined by the level of protection required.) Be very careful with this though. Regenerating the key decrypts all keys protected by the old service master key and encrypts them with the new key. If you have many such protected keys, this can require a lot of processing cycles, so it's best to perform this action during server down time. The following code regenerates the service master key:
ALTER SERVICE MASTER KEY REGENERATE

There is a chance that the service master key regeneration could fail, usually if the current key can't be retrieved or if there is a problem decrypting keys protected by the old key. If that happens, you'll get an error message explaining the problem. You can force regeneration with the FORCE keyword, in which case any keys protected by the old service master key are lost forever along with the data encrypted by them. This option is worth entertaining when the service master key is compromised and you would rather be willing to lose the secret protected by it (because you can either reconfigure it or have a backup of it that you can restore) rather than risk losing all the other secrets protected by the compromised service master key.

ALTER SERVICE MASTER KEY FORCE REGENERATE
Note The data that cannot be re-encrypted by the REGENERATE command is not destroyed. It can be recovered if you have a backup of the original service master key and restore the backup using the FORCE option.

Because the service master key is an instance-wide resource, all of the Transact-SQL statements that maintain it can be executed in the context of any database.

Database master key
The next key down in the encryption hierarchy in SQL Server is the database master key. Like the service master key at the instance level, the database master key encrypts all keys that SQL Server manages within a specific database. The database master key is a symmetric key that is used directly by SQL Server and not by users or applications. There is only one database master key for each database; attempting to create another causes an error.

The database master key is not created automatically when you create a database, so you must manually create one before creating other encryption keys in any database:

Use MyDB

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'WeZ#6hv*XHq#akAEaqcr7%CUP3aQ'

It might be surprising that the CREATE MASTER KEY statement requires a password, since the database master key is encrypted using the service master key. This is because the database master key is actually encrypted and stored twice, as a convenience measure. One copy is encrypted by the service master key and stored in the master database. Another copy is encrypted using a Triple DES key derived from a password you supply, and stored within the database itself. It is visible using the database's sys.symmetric_keys catalog.

Why save the database master key twice? As you'll see in the section of this paper about symmetric keys, a symmetric key must always be opened before it can be used. Opening the key decrypts it and makes it available in memory for use. Having the database master key protected by the service master key makes it possible for SQL Server to automatically decrypt the database master key when required. This way, the end application or user does not need to open the master key explicitly using the password.

OPEN MASTER KEY DECRYPTION BY PASSWORD = 'WeZ#6hv*XHq#akAEaqcr7%CUP3aQ'

If you explicitly open the master key, you must remember to close it:

CLOSE MASTER KEY

Once the database master key exists, you can elect to drop its protection by the service master key by using the ALTER MASTER KEY statement. This statement removes the key from the master database:

ALTER MASTER KEY DROP ENCRYPTION BY SERVICE MASTER KEY

What this means however is that the database master key cannot be automatically opened by the service; it would need to be explicitly opened before use.

If you later decide to once again encrypt the database master key with the service master key, use this statement:

ALTER MASTER KEY ADD ENCRYPTION BY SERVICE MASTER KEY

Having a password-protected copy of the database master key is useful when you detach a database and move it to another server. When you detach a database, the database entry is removed from the master database along with the copy of the database master key that is protected by the service master key. When you reattach it to the different server, the service master key for the new server is different and the database master key protection by the new service master key is not automatically re-established.

In order to do that, you can first open the database master key by using the password that was used to protect it. Then use the ALTER MASTER KEY statement to protect the database master key with the service master key and store the database key in the master database. This is where the password-protected copy of the database master key comes in handy.

If you want to remove the database master key entirely, use the DROP statement:

DROP MASTER KEY

You can back up and restore the database master key. This might be a good idea before you start adding other keys to the database, in the unlikely case that the database master key becomes corrupted. Start by opening the key, then execute this statement to back up the key to a file:

BACKUP MASTER KEY TO FILE = 'c:\DBKey.dat'

ENCRYPTION BY PASSWORD = 'LHusWwS7#jxxM*iA8$0TYHpK4'

The password supplied in the ENCRYPTION BY PASSWORD clause is used to protect the master key in the file.

Then you can restore the master key with the RESTORE MASTER KEY statement. The password specified in the DECRYPTION BY PASSWORD clause must be the same password that was used to protect the key in the file at the time of backup. The password specified in the ENCRYPTION BY PASSWORD clause is used to protect the key when it is saved to the database. The latter password can be the same as or different from the password used to initially create the key.

RESTORE MASTER KEY FROM FILE = 'c:\EncryptionDBMasterKey.dat'

DECRYPTION BY PASSWORD = 'LHusWwS7#jxxM*iA8$0TYHpK4'

ENCRYPTION BY PASSWORD = '^2L@wEt3#%Ume5%346j9*bC#W'
Once the database master key exists in the database, you can start creating user keys managed by SQL Server.

Note A database master key is only required for keys managed by SQL Server. If you use only user-managed keys in a database—for which you supply the passwords and manage them—you do not need a database master key.

User keys
The other type of key in SQL Server is user keys, those that you create and manipulate to protect data. There are four kinds of user keys: certificates, asymmetric keys, symmetric keys, and pass phrases.

Certificates

A certificate is a means of using asymmetric or public/private key encryption in SQL Server. The certificate itself is a digitally-signed security object that binds the public key to the principal who holds the private key. Think of the certificate as a wrapper for the public key. Most certificates originate from trusted third-party certificate authorities, such as Verisign or Thawte, or from an internal authority such as the Microsoft Certificate Server. Or, SQL Server can create certificates that can be used just within the database server. Certificates are based on the widely supported Internet Engineering Task Force's X.509v3 specification. Most often you'll use a certificate for encryption either to protect other types of keys within a database or when you need to validate the certificate against a certificate authority.

Note SQL Server 2005 doesn't validate against external certificate authorities and does not support certificate revocation.

The CREATE CERTIFICATE statement is used to create or load a certificate into a database where it becomes available to encrypt data. You can create a new certificate, load it from a certificate file, import it from an executable signed with the certificate, or import from a CLR assembly that is already loaded into the CLR hosted within SQL Server. The following statement creates a new certificate internal to SQL Server that is owned by dbo in the current database, if the current user is dbo:

CREATE CERTIFICATE dboCert

WITH subject = 'Certificate For dbo'

Because the above statement does not specify an ENCRYPTION BY option, it is protected in the database by the database master key. Alternatively, you can protect the private key by supplying a password:

CREATE CERTIFICATE User1Cert AUTHORIZATION User1

ENCRYPTION BY PASSWORD = 'WOhPorN5VIKZl$Eqcz4CR104O'

WITH subject = 'Certificate For User1'

These statements each cause SQL Server to create a self-signed, internal certificate. The WITH clause directs SQL Server to use the supplied text value for the subject (which is one of the metadata fields specified in the X.509 specification to identify a certificate). The subject is limited to 4,096 bytes. Other options in the WITH clause include specifying the state and expiration dates:

CREATE CERTIFICATE User2Cert AUTHORIZATION User2

ENCRYPTION BY PASSWORD = 'WOhPorN5VIKZl$Eqcz4CR104O'

WITH subject = 'Certificate For User2',

START_DATE = '7/1/2005',

EXPIRY_DATE = '7/30/2005'

If the start date is in the future, the above statement returns a warning message: "The certificate you created is not yet valid; its start date is in the future." Other options on the CREATE CERTIFICATE statement include providing a password with which to encrypt the private key, paths for importing certificates from files, and the path to a file that contains the private key. For example, these two statements load a certificate from a signed executable file and from a CLR assembly loaded into memory:

CREATE CERTIFICATE MyEXEcertificate

FROM EXECUTABLE FILE = 'Z:\SomeFile.exe'

CREATE CERTIFICATE MyNETcertificate FROM ASSEMBLY myLoadedAssembly

Like other encryption keys in SQL Server, you can back up the certificate to a file and, of course, restore it. You can optionally save the private key separately along with an optional password to protect the private key.

BACKUP CERTIFICATE User1Cert TO FILE = 'C:\myCert.dat',

WITH PRIVATE KEY(

ENCRYPTION BY PASSWORD = 'WOhPorN5VIKZl$Eqcz4CR104O',

FILE = 'c:\myCertPrivateKey.dat')
To restore a certificate, use the CREATE CERTIFICATE statement with the FROM FILE option, optionally retrieving a separate private key and specifying the password used to protect the saved password:

CREATE CERTIFICATE User1Cert FROM FILE = 'C:\myCert.dat'

WITH PRIVATE KEY (FILE = 'c:\myCertPrivateKey.dat'

DECRYPTION BY PASSWORD = 'WOhPorN5VIKZl$Eqcz4CR104O'

ENCRYPTION BY PASSWORD = 'WOhPorN5VIKZl$Eqcz4CR104O')

Removing a certificate requires executing the DROP CERTIFICATE statement:

DROP CERTIFICATE User1Cert

Once the certificate exists in the database, the private key is available for use by any user who owns it or has CONTROL permissions on it.

You can use the EncryptByCert and DecryptByCert functions in Transact-SQL to encrypt data directly using certificates.

EncryptByCert takes two arguments: the ID of the certificate to use and the clear text to encrypt. DecryptByCert takes three arguments: the ID of the certificate to use, the cipher text to decrypt, and the password used to create the certificate, if you provided one. The third parameter is only required if the private key is not encrypted by the database master key. You can use the Cert_ID function to retrieve the certificate ID from its name.

DECLARE @cipherText varbinary(1000)

SET @cipherText = EncryptByCert(Cert_ID('dboCert'), 'a very secret secret')

SELECT @cipherText, datalength(@cipherText)

SELECT CONVERT(varchar, DecryptByCert(Cert_ID('dboCert'), @cipherText))

Note If the certificate specified in the previous code does not exist in the database or the current user is not authorized to use it, the EncryptByCert and DecryptByCert functions return NULL and no error message is returned.

If the certificate is protected by using a user-supplied password rather than the database master key, the password must be supplied to the DecryptByCert function as a Unicode string:

DECLARE @cipherText varbinary(1000)

SET @cipherText = EncryptByCert(Cert_ID('User1Cert'), 'a very secret secret')

SELECT @cipherText, datalength(@cipherText)

SELECT CONVERT(varchar, DecryptByCert(Cert_ID('User1Cert'), @cipherText, N'WOhPorN5VIKZl$Eqcz4CR104O'))

Asymmetric keys
If you don't need the full feature set of certificates but still need to protect data with public key encryption, you can use asymmetric keys. While certificates provide a convenient way and format to migrate public keys from one server to another, if you do not need to migrate these keys, keeping encryption and decryption within the database, asymmetric keys will suffice. The encryption algorithms are just as processor-intensive as those for certificates, so you'll want to use asymmetric keys sparingly.

The CREATE ASYMMETRIC KEY statement has correspondingly fewer options than does creating a certificate. Like certificates, asymmetric keys can be protected either with the database master key or a user-supplied password. Here is just about the simplest way to create an asymmetric key pair, which is owned by dbo and protected with the database master key, using RSA with a 2,048-bit key:

CREATE ASYMMETRIC KEY dboAsymKey AUTHORIZATION dbo

WITH ALGORITHM = RSA_2048

As with other keys, you can specify ownership when you create asymmetric keys. The key created by the following code gives ownership to User1 and protects the key with a user-supplied password:

CREATE ASYMMETRIC KEY User1AsymKey

AUTHORIZATION User1

WITH ALGORITHM = RSA_2048

ENCRYPTION BY PASSWORD = 'WOhPorN5VIKZl$Eqcz4CR104O'

Encrypt data using asymmetric keys by using EncryptByAsymKey, passing in the ID of the key and the clear text to encrypt. You can use the AsymKey_ID function to get the key ID from the name of the key. Then use the DecryptByAsymKey function to decrypt the data, passing in the key ID and the cipher text to decrypt. The following code uses the asymmetric key owned by the dbo and protected with the database master key.

DECLARE @cipherText varbinary(1000)

SET @cipherText = EncryptByAsymKey(AsymKey_ID('dboAsymKey'), 'a very secret secret')

SELECT @cipherText, datalength(@cipherText)

SELECT CONVERT(varchar, DecryptByAsymKey(AsymKey_ID('dboAsymKey'), @cipherText))

If you use an asymmetric key protected by a user-supplied password, you'll need to pass the password to the DecryptByAsymKey function:

DECLARE @cipherText varbinary(1000)

SET @cipherText = EncryptByAsymKey(AsymKey_ID('User1AsymKey'), 'a very secret secret')

SELECT @cipherText, datalength(@cipherText)

SELECT CONVERT(varchar, DecryptByAsymKey(AsymKey_ID('User1AsymKey'), @cipherText, N'WOhPorN5VIKZl$Eqcz4CR104O'))

Symmetric keys
Using asymmetric keys with and without a certificate can make encryption feasible in situations where data needs to be encrypted by an external entity, a different user, or an application other than the one that needs to decrypt the data. But the cost is dear: the algorithms for asymmetric key encryption are significantly more processor intensive than those for symmetric key encryption. Because most database servers need to provide every ounce of performance possible, avoid using asymmetric keys to protect data directly, whenever possible. Instead, use symmetric keys. One benefit of symmetric keys is that the amount of data that they can protect is significantly greater than with asymmetric keys, as discussed earlier.

In many environments that call for data exchange, symmetric keys can make it virtually impossible to keep encryption secure. Because the same key is used to both encrypt and decrypt data on both ends, the key needs to be a shared secret between the entities encrypting and decrypting the data. Sharing secrets securely is a challenge, one that is typically addressed by using asymmetric keys to wrap the symmetric keys to solve the problem of key exchange.

But symmetric key encryption is ideally suited for a server application like SQL Server, where data is stored as encrypted cipher text. Because the symmetric key never needs to be transmitted outside of SQL Server or communicated to third parties, this type of key can provide extremely secure data protection. Best of all, the algorithms for symmetric key encryption are significantly faster than asymmetric key algorithms. However, they are not fast, so use encryption only when necessary.

Referring back to the figure, you can protect symmetric keys in the database by using a certificate, an asymmetric key, an existing symmetric key, or a password. You cannot directly protect a symmetric key by using the database master key. It is the only key type that can be protected by a key of the same type. With these protection options, the choice of algorithms, and other options, the CREATE SYMMETRIC KEY statement is both flexible and complex. Here at just a few of the options.

To encrypt the new symmetric key using an existing certificate, use the ENCRYPTION BY CERTIFICATE clause and include the name of the certificate. This code creates a Triple DES key owned by User1:

CREATE SYMMETRIC KEY User1SymKeyCert

AUTHORIZATION User1

WITH ALGORITHM = TRIPLE_DES

ENCRYPTION BY CERTIFICATE dboCert

The following statement creates a new symmetric key that is protected by a user-supplied password:

CREATE SYMMETRIC KEY User2SymKeyPwd

AUTHORIZATION User2

WITH ALGORITHM = TRIPLE_DES

ENCRYPTION BY PASSWORD = 'WOhPorN5VIKZl$Eqcz4CR104O'

Note The password is used to derive a Triple DES key that is then used to protect the symmetric key. This may imply that the actual key algorithm may be different but it is protected by using a Triple DES key.

This statement creates a new key using the RC2 algorithm that is protected using the existing User2AsymKey asymmetric key:

CREATE SYMMETRIC KEY dboSymKeyAsym

WITH ALGORITHM = RC2

ENCRYPTION BY ASYMMETRIC KEY User2AsymKey

Before you can use an existing symmetric key to encrypt data or protect another new key, you must open it. Opening a key decrypts it and makes it available as clear text in protected memory within SQL Server. This is accomplished with the OPEN SYMMETRIC KEY statement, in which the DECRYPTION BY clause specifies the key used to protect the symmetric key being opened, whether it be a certificate, symmetric key, or a password. The following statement opens the User1SymKeyCert, specifying the certificate that was used to originally protect it at creation time:

OPEN SYMMETRIC KEY User1SymKeyCert

DECRYPTION BY CERTIFICATE dboCert

Once the key is open, you can create a new symmetric key with the open key. This statement creates a new symmetric key, dboSymKeySym, that is owned by dbo, uses the DESX algorithm, and is protected by the now-open User1SymKeyCert symmetric key:

CREATE SYMMETRIC KEY dboSymKeySym

WITH ALGORITHM = DESX

ENCRYPTION BY SYMMETRIC KEY User1SymKeyCert

What you open you must close. The CLOSE SYMMETRIC KEY statement removes the key from memory, making it unavailable for use until it is again opened. (Alternatively, the keys will automatically close when you close the connection). One option is to close a specific key:

CLOSE SYMMETRIC KEY User1SymKeyCert

Alternatively, you can close all open symmetric keys with this single statement:

CLOSE ALL SYMMETRIC KEYS

Note Closing all symmetric keys this way closes the database master key if you explicitly opened it. Like all symmetric keys, this makes the database master key unavailable for use. If it is not encrypted by the service master key, any attempt to open keys protected by the database master will fail.

Encrypting and decrypting data is similar to that of the other keys considered so far. You still need to explicitly open and close the symmetric key before using it for encryption or decryption. For encryption you use the EncryptByKey function, which takes in the clear text to be encrypted as well as the GUID of the key to use for encryption. For decryption you use the DecryptByKey built-in function. However, the DecryptByKey function does not require that you pass in the GUID of the key that was used to encrypt the data. SQL Server automatically looks at the collection of open symmetric keys—you can have multiple open keys at any time—and uses the correct one to decrypt the encrypted text. SQL Server is able to do this because as part of the encrypted text, the key GUID of the symmetric key used to encrypt the data is stored as well. SQL Server can look up the relevant key amongst the set of open keys in the session, based on the key GUID, and use that for decryption.

OPEN SYMMETRIC KEY User1SymKeyCert

DECRYPTION BY CERTIFICATE dboCert

DECLARE @cipherText varbinary(1000)

SET @cipherText = EncryptByKey(Key_GUID('User1SymKeyCert'), 'a very secret secret')

SELECT @cipherText, datalength(@cipherText)

SELECT CONVERT(varchar, DecryptByKey(@cipherText))

CLOSE SYMMETRIC KEY User1SymKeyCert

Note If the proper symmetric key is not open when you try to decrypt the data, a NULL value is returned.

Here are a couple more examples, using symmetric keys protected by a password and an asymmetric key:

-- Using password-based symmetric key

OPEN SYMMETRIC KEY User2SymKeyPwd

DECRYPTION BY PASSWORD = 'WOhPorN5VIKZl$Eqcz4CR104O'

DECLARE @cipherText varbinary(1000)

SET @cipherText = EncryptByKey(Key_GUID('User2SymKeyPwd'), 'a very secret secret')

SELECT @cipherText, datalength(@cipherText)

SELECT CONVERT(varchar, DecryptByKey(@cipherText))

CLOSE SYMMETRIC KEY User2SymKeyPwd

-- Using asymmetric key-based symmetric key

OPEN SYMMETRIC KEY dboSymKeyAsym

DECRYPTION BY ASYMMETRIC KEY User2AsymKey

DECLARE @cipherText varbinary(1000)

SET @cipherText = EncryptByKey(Key_GUID('dboSymKeyAsym'), 'a very secret secret')

SELECT @cipherText, datalength(@cipherText)

SELECT CONVERT(varchar, DecryptByKey(@cipherText))

CLOSE SYMMETRIC KEY dboSymKeyAsym

Things get a bit trickier when using symmetric keys that are protected with symmetric keys. You have to open the keys in order, from higher in the encryption hierarchy to lower, one level at a time. This is because each key must be opened and decrypted in turn, which requires that the keys used to protect it must be open. If you have a complex hierarchy with many levels of symmetric keys, this can be tedious and fragile, so design the hierarchy of keys in the database carefully.
The following code opens two symmetric keys before encrypting the data. Because dboSymKeySym is protected by the symmetric key, User1SymKeyCert, which itself is protected by a certificate, you first have to open User1SymKeyCert and then open the key you actually want to use, dboSymKeySym. The order in which you close the keys, however, does not matter.

OPEN SYMMETRIC KEY User1SymKeyCert

DECRYPTION BY CERTIFICATE dboCert

OPEN SYMMETRIC KEY dboSymKeySym

DECRYPTION BY SYMMETRIC KEY User1SymKeyCert

DECLARE @cipherText varbinary(1000)

SET @cipherText = EncryptByKey(Key_GUID('dboSymKeySym'), 'a very secret secret')

SELECT @cipherText, datalength(@cipherText)

SELECT CONVERT(varchar, DecryptByKey(@cipherText))

CLOSE SYMMETRIC KEY User1SymKeyCert

CLOSE SYMMETRIC KEY dboSymKeySym

Pass phrase keys
It is not necessary to create and use a key persisted in the database for encryption. If you are willing to manage the key yourself—and take responsibility for keeping the secret secret—use the EncryptByPassPhrase and DecryptByPassPhrase functions. These functions require only a pass phrase as the first parameter and either clear text or ciphertext as the second, and they do not let you select the algorithm used:

DECLARE @cipherText varbinary(1000)

SET @cipherText = EncryptByPassphrase('WOhPorN5VIKZl$Eqcz4CR104O', 'a very secret secret')

SELECT @cipherText, datalength(@cipherText)

SELECT CAST(DecryptByPassphrase('WOhPorN5VIKZl$Eqcz4CR104O', @cipherText) AS varchar)

Make sure that you use a strong password. SQL Server does not do any kind of password checking, even if you are using the password validation features available for SQL logins.

Note The encryption algorithm used by EncryptByPassPhrase is undocumented.

User key summary
As you've seen, there are plenty of options for using encryption in SQL Server and the types of keys or algorithms that you use. But how do you decide when to use which type of key? The major considerations are performance, whether an external entity will need to either encrypt or decrypt the data, and, if you are storing the cipher text, the increase in the size of the data. Use these guidelines to help make your decision, applying them in the following order:

· Don't use encryption if you don't really need it for defense in depth, thereby avoiding the performance hit and bloated data storage. If you do need it, protect only the data that warrants protection because of its value to you or because you are responsible for protecting it.

· If your application requires encrypted data, you will take full responsibility for key management, and you do not otherwise have a reason to save a key on the database, use a password or pass phrase as a part of the encryption key management story. Be sure to save the passwords securely, which can be extremely difficult.

· If the data will only be encrypted when it is stored in the database, and can be saved and retrieved as clear text, use symmetric keys. Avoid using symmetric keys protected by passwords unless you are confident that you can securely manage the keys and passwords, and avoid transmitting them between users and applications.

· If the encrypted data will be shared between applications that all access the same SQL Server database, one option is to use asymmetric keys. You can expose the public key for use by applications and protect the private key for the user or application that is the primary owner or user of the data.

· If you need to use asymmetric key encryption and further need to associate the private key with a user or group, use certificates. This is particularly useful when either the encryption or decryption entity is external to your organization, since digital certificates can be validated so that you have a high assurance that you know who encrypted the data.

· Always create a backup of your service master key and database master keys. Store the backups in a secure place.
Remember that while SQL Server provides a secure environment for protecting keys, an attacker who compromises the server and takes over the address space has access to many of the keys stored there. So protect your keys and your server, back up the critical keys, and have a plan in place to recover from security breaches.

Encryption Catalog Views

SQL Server 2005 includes several catalog views with information about keys and other cryptographic properties. Like all system catalogs, the results returned depend on the user's permissions. As long as the security context in which the query is executed has at least minimal permissions on the objects, you'll get results back.

Table 2 lists the more interesting system catalogs related to encryption.

	sys.certificates
	Contains information about all of the certificates installed in the current database. It includes the name you give it when creating the key, its ID, the ID of the principal that owns the certificate, the type of protection, and its start and expiration date. The thumbprint field contains an SHA-1 hash of the certificate.

	sys.asymmetric_keys
	Contains information about all asymmetric keys defined in the current database. The information includes the user-defined name, ID of the principal, how it is protected, an ID value and short description for the algorithm it uses, the bit length of the key, and the public key. Access this information when you need to get the public key and descriptive information.

	sys.symmetric_keys
	Contains information about all symmetric keys defined in the current database. The information provided is similar to that in sys.asymmetric_keys, except that it also includes a GUID that uniquely identifies the symmetric key.

	sys.database_principals
	Contains information about each of the principals in the current database. Join to this catalog when accessing information in the catalogs that contain information about keys to find out who owns the key.

	sys.key_encryptions
	Contains a row for each instance of the ENCRYPTION BY clause in a CREATE SYMMETRIC KEY statement. Most symmetric keys will have only a single entry here, but most database master keys will have two, since they can be encrypted both by the service master key and by a password.

Table 2 System catalog views related to encryption

Conclusion

This paper explores the encryption features of SQL Server 2005 and how to put them to use to protect data as a final later of data protection. SQL Server has all the tools to encrypt and decrypt data without requiring users to worry about the minute details of encryption algorithms. Probably the main benefit of encryption in SQL Server is that the server manages keys for you, if you choose. This makes it easier to keep critical secrets secret, reducing the chances of sensitive data being violated by a leaked key.

SQL Server provides encryption based on certificates, asymmetric keys, symmetric keys, and pass phrases. Which type of key you use depends on application requirements as well as performance and data bloat. Encryption is a processor-intensive activity, so use it only when it serves a real need, and restrict the amount of data encrypted. You can encrypt data on the fly or persist the encrypted data in a database, and use system catalogs to get access to encryption keys within a database.

Appendix A: Support for Encryption in Transact-SQL
	Transact-SQL Statement
	Description
	Required Permissions

	

	ALTER SERVICE MASTER KEY
	Changes characteristics of the service master key, such as to regenerate and recover the key.
	CONTROL SERVER

	BACKUP/RESTORE SERVICE MASTER KEY
	Allows you to save and restore this critical key.
	CONTROL SERVER

	CREATE MASTER KEY
	Creates a database master key. New databases do not have a master key until you create one.
	CONTROL on database

	OPEN/CLOSE MASTER KEY
	Explicitly opens a database master key, a symmetric key, for use. Only required if the key is not saved in sys.databases in the master database.
	CONTROL on database

	BACKUP/RESTORE MASTER KEY
	Allows you to save and restore the database master key.
	CONTROL on database

	DROP MASTER KEY
	Removes the database master key. Only succeeds if no keys are encrypted using it.
	CONTROL on database

	CREATE/ALTER CERTIFICATE
	Creates or modifies a certificate in a database. Lets you load a certificate from various files and objects.
	CREATE CERTIFICATE in database or ALTER on certificate

	DROP CERTIFICATE
	Removes the certificate from the database, but only succeeds if no keys are protected with it.
	CONTROL on certificate

	BACKUP CERTIFICATE
	Saves the certificate to a file, optionally saving the private key separately. To restore the certificate, use CREATE CERTIFICATE with FROM FILE option.
	VIEW DEFINITION on database, CONTROL on certificate

	CREATE/ALTER ASYMMETRIC KEY
	Creates or modifies an asymmetric key with options for algorithm and how it is protected.
	CREATE ASYMMETRIC KEY on database/CONTROL on the key

	DROP ASYMMETRIC KEY
	Removes the key from the database, but only succeeds if no data or other keys are protected with it.
	CONTROL on key

	CREATE/ALTER SYMMETRIC KEY
	Creates or modifies a symmetric key in a database, with options for algorithm and how it is protected.
	ALTER ANY SYMMETRIC KEY on database/ ALTER on the key

	OPEN/CLOSE SYMMETRIC KEY
	Decrypts and loads the key into memory or removes it from memory. In most cases, required before using any symmetric key, other than the database master key.
	VIEW DEFINITION on key/none required for closing

	DROP SYMMETRIC KEY
	Removes the key from the database, but only succeeds if no data or other keys are protected with it.
	CONTROL on key

	Transact-SQL Function
	Description
	Required Permissions

	EncryptByCert/DecryptByCert
	Encrypts/decrypts data using a certificate.
	VIEW DEFINITION on the certificate. Lack of this permission causes the function to return NULL.

	EncryptByAsymKey/DecryptByAsymKey
	Encrypts/decrypts data using an asymmetric key.
	VIEW DEFINITION on the asymmetric key. Lack of this permission causes the function to return NULL.

	EncryptByKey/DecryptByKey
	Encrypts/decrypts data using a symmetric key.
	No permission is needed to execute these functions. But a symmetric key must be open, otherwise the function returns NULL.

	EncryptByPassphrase/DecryptByPassphrase
	Encrypts/decrypts using a key derived from a user-supplied pass phrase.
	None

	Cert_ID
	When passed the name of a certificate, returns the ID.
	VIEW DEFINITION on the certificate.

	AsymKey_ID
	When passed the name of an asymmetric key, returns the ID.
	VIEW DEFINITION on the asymmetric key.

	Key_GUID
	When passed the name of a symmetric key, returns the GUID of the key.
	VIEW DEFINITION on the symmetric key.

	Key_ID
	When passed the name of a symmetric key, returns an int representing the ID of the key
	VIEW DEFINITION on the symmetric key.

Appendix B: Transact-SQL Code to Calculate Encrypted Text Size
/* This user defined function (udf) can be used to calculate the expected output length for encrypted data (using EncryptByKey) based on the key, plaintext length and if a hashed data/column is being used (optional parameter).

 If you are using the results of the formula/udf to calculate the size of the column for a table,

 I strongly suggest adding 1 or 2 blocks (i.e. 16 bytes) to the expected size to account for possible future changes to algorithms of choice or the stored format.

*

* (c) 2005 Microsoft Corporation. All rights reserved.

*

***/

-- @KeyName

:= name of the symmetric key.

-- @PTLen

:= length in bytes of the plain text

-- @UsesHash
:= if the optional MAC option of EncryptByKey is being using this value must be 1, 0 otherwise

-- returns the expected length in bytes of the ciphertext returned by EncryptByKey using @KeyName symnmetric key

-- and a plaintext of @PTLen bytes in length, either using the optional @MAC parameter or not.

CREATE FUNCTION dbo.CalculateCipherLen(@KeyName sysname, @PTLen int, @UsesHash
int = 0)

RETURNS int

as

BEGIN

declare @KeyType
nvarchar(2)

declare @RetVal

int

declare @BLOCK

int

declare @IS_BLOCK
int

declare @HASHLEN
int

-- Hash length that

SET @HASHLEN
= 20

SET @RetVal
= NULL

-- Look for the symmetric key in the catalog

SELECT @KeyType
= key_algorithm FROM sys.symmetric_keys WHERE name = @KeyName

-- If parameters are valid

if(@KeyType is not null AND @PTLen > 0)

BEGIN

-- If hash is being used. NOTE: as we use this value to calculate the length, we only use 0 or 1

if(@UsesHash <> 0)

SET @UsesHash = 1

-- 64 bit block ciphers

if(@KeyType = N'R2' OR @KeyType = N'D' OR @KeyType = N'D3' OR @KeyType = N'DX')

BEGIN

SET @BLOCK = 8

SET @IS_BLOCK = 1

END

-- 128 bit block ciphers

else if(@KeyType = N'A1' OR @KeyType = N'A2' OR @KeyType = N'A3')

BEGIN

SET @BLOCK = 16

SET @IS_BLOCK = 1

END

-- Stream ciphers, today only RC4 is supported as a stream cipher

else

BEGIN

SET @IS_BLOCK = 0

END

-- Calclulate the expected length. Notice that the formula is different for block ciphres & stream ciphers

if(@IS_BLOCK = 1)

BEGIN

SET @RetVal = (FLOOR((8 + @PTLen + (@UsesHash * @HASHLEN))/@BLOCK)+1) * @BLOCK + 16 + @BLOCK + 4

END

else

BEGIN

SET @RetVal = @PTLen + (@UsesHash * @HASHLEN) + 36 + 4

END

END

return @RetVal

END

go

For more information:

http://www.microsoft.com/technet/prodtechnol/sql/2005/library/security.mspx
Did this paper help you? Please give us your feedback. On a scale of 1 (poor) to 5 (excellent), how would you rate this paper? Protect Sensitive Data Using Encryption in SQL Server 2005)

