Internals, Troubleshooting, and Best Practices for use of Scaleout Technologies in SQL Server 2005
2

[image: image1.png]Microsoft*

SQL Server 2005

Internals, Troubleshooting, and Best Practices for use of Scaleout Technologies in SQL Server 2005

SQL Server Technical Article

Writer: Bob Beauchemin
Technical Reviewers: Roger Wolter, Burzin Patel, Gopal Ashok
Published: February 2007
Applies To: SQL Server 2005 SP1
Summary: This white paper describes the internal details of SQL Server 2005 scaleout technologies, and suggests troubleshooting techniques for technical issues involved in scaleout. In addition, best practices are suggested for each technology.
Copyright

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

 2007 Microsoft Corporation. All rights reserved.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Table of Contents

5Introduction

6Service Broker Structure and Internals

8Metadata views for the main Service Broker objects

9The lifetime of a dialog conversation

11Messages and metadata

13Metadata views for conversations

13Best practices for Service Broker setup and conversations

14Service Broker built-in routing

15Structure and precedence in sys.routes

17Service Broker metadata for routing

17Service Broker networking information

17Service Broker trace events

20Troubleshooting

21Troubleshooting message delivery

22Best practices for Service Broker routing

22Service program activation

23Dynamic management views

23Perfmon counters

23Troubleshooting activation

24Performance issues

24Best practices for activation

25How Service Broker security works

27Dialog security

29Metadata for security

29Best practices for Service Broker security

29Data-Dependent Routing

29Routing scenarios supported directly

30Data-dependent routing using forwarding

32Data-dependent routing using redirection

33Best practices for data-dependent routing

34Query Notifications

35Query notification metadata

35Registering a query notification subscription with ADO.NET

38How query notifications work in SQL Server

40Troubleshooting query notifications

41Using a pre-configured service and queue

42Best practices for query notifications

42Peer-to-Peer Replication

43Bidirectional additions

44Other replication performance enhancements in peer-to-peer replication

45Replication metadata views used by peer-to-peer

45Monitoring and troubleshooting peer-to-peer replication

46Replication diagnostic stored procedures

47Diagnosing and resolving replication agent errors

48Best practices for peer-to-peer replication

49Distributed Partitioned Views, Queries, and Updates

52Troubleshooting distributed partitioned views

53Linked server catalog views

54Best practices for distributed partitioned views

54Conclusion

Introduction
This paper describes the inner workings of scaleout solutions in Microsoft® SQL Server™ 2005. This information is useful for capacity planning and determining the appropriate solution for your set of requirements. Knowing the internal operations of a system also assists in troubleshooting and using this information to troubleshoot problems is also covered.
The goal of a scalable application is to achieve linear scaling; if two identical servers configured for a scalable application can service 20,000 users, adding a third identical server should enable the application to service an additional 10,000 users. Because you design the application to scale by adding computers, this is known as a scaleout application. Scaling out may not achieve linear scaling, but this is the goal. You can also service additional users by upgrading to a bigger server. This is known as scaleup.
SQL Server 2005 makes scaling out accessible to all sizes of businesses by providing many features that support scaleout. The companion white paper Planning, Implementing, and Administering Scaleout Solutions with SQL Server 2005 enumerates the planning and administrative procedures to put these solutions in place; this paper discusses the internal operations of scaleout features. There are many options, as shown in the table; choose the option that matches your use-case and your hardware, support, administration, and programming staff. Although much of this information appears in some form in documentation and Knowledge Base articles, this paper provides a central feature-focused summarization. The technologies in the following table are mutually complementary rather than overlapping or mutually exclusive.
Scaleout solutions and data storage

	Technology
	Data Updatability
	Data Locality
	In Database

	Shared scalable database
	Read-only
	Local, multiple servers
	Yes

	Peer-to-peer replication
	Read-write your portion, read-only for other portions
	All data local
	Yes

	Cache sync with query notifications
	Read-mostly
	All data local
	Most reads from cache

	Partitioned views
	All data can be updatable
	Some local, some remote
	Yes

	SODA
	All data locally updatable
	Data local within a service
	Yes

We start with the Service Broker feature, because this feature is used as a substrate for building some of the other technologies. Query notifications use Service Broker; to appreciate the inner workings of query notifications, you need to know about Service Broker. Data-dependent routing (also called data-directed routing) can be implemented in several different ways with Service Broker; knowing how the Server Broker routing infrastructure works is important before looking into data-dependent routing (DDR) implementations. We'll cover the inner workings of peer-to-peer transactional replication in addition to how distributed partitioned views and distributed queries are optimized and processed by the SQL Server 2005 query engine. Each section includes best practices.
For each technology, we'll mention methods you can use to see static metadata and server state. These methods are:

· System metadata views. These are views of SQL Server metadata and are members of the sys schema. An example of a system metadata view is sys.databases.
· Replication metadata views. These are views of SQL Server replication metadata. They are members of the dbo schema and have names that begin with sys. An example is dbo.syspublications.

· Dynamic management views (DMVs). These are views of SQL Server internal data and members of the sys schema. The naming convention for these is to always begin with dm_, followed by the functionality group (broker_ or qn_ in our case). An example of a dynamic management view is sys.dm_broker_connections.
· System stored procedures, functions, and DML statements. Although most Service Broker and query notifications are implemented in the engine, there are also a few system functions, such as GET_TRANSMISSION_STATUS. Replication uses its own set of stored procedures extensively.
· Utilities. These are utilities that are provided as part of SQL Server, operating system utilities, and some shared source utilities
Service Broker Structure and Internals
Service Broker lives at the database level. Each database has exactly zero or one Service Broker. You can enable or disable Service Broker in the database by using the ALTER DATABASE DDL statement.

For each database that has a Service Broker, a uniqueidentifier (service_broker_guid) identifies the Service Broker. For message routing to work properly, you must guarantee that the Service Broker GUIDs are unique throughout your entire SQL Server topology. You can see the service_broker_guid and is_enabled flag on a per-database basis in the sys.databases catalog view. If Service Broker has never been enabled in a database, the service_broker_guid is an "all zero" GUID (00000000-0000-0000-0000-000000000000). Note that disabling Service Broker for a given database does not set its service_broker_guid to zero. To restore multiple copies of the same database in your organization, you must assign a new service_broker_guid for all but the first copy. To do this, use the NEW_BROKER option of CREATE DATABASE or RESTORE. You can also do this during testing, but be aware that ALTER DATABASE… SET NEW_BROKER clears the existing conversions in the database without producing end dialog messages.
A Service Broker implementation is comprised of services, queues, message types and contracts. Services, message types, and contracts live at a database scope; queues are tied to a specific schema within a database. Message types are used to validate the contents of the message. Contracts are used to ensure that each side receives only the messages that it expects to receive. If you send a message to a service that isn't specified in the contract, an error message is sent to each side of the conversation.

Each database comes with built-in Service Broker objects; these are distinguished by the is_ms_shipped column in the system metadata views. The built-in objects are used either by SQL Server features, such as query notifications and event notifications, or by the Service Broker infrastructure. Because each Service Broker message must have a message type and each dialog conversation must adhere to a specific contract, applications usually define their own message types and contracts. If you don't need your own message types and contracts, one message type and one contract are provided; both the built-in message type and the built-in contract are named DEFAULT. Because DEFAULT is a Transact-SQL keyword, when the default message type and contract are used in DML or DDL, they must be bracketed (for example, [DEFAULT]). So, the DDL for the simplest Service Broker test application would look like the following:
-- create queues and services

-- in target database

CREATE QUEUE TestTargetQueue

GO

CREATE SERVICE TestTarget
 ON QUEUE TestTargetQueue

 ([DEFAULT]) -- this service goes by the default contract
GO
-- create queues and services

-- in initiator database

CREATE QUEUE TestInitiatorQueue

GO

-- initiator doesn't need a contract

CREATE SERVICE TestInitiator

 ON QUEUE TestInitiatorQueue

GO

Service Broker programs communicate by using a dialog conversation between two services. The initiator is the service that begins the conversation and sends the first message. The target is the receiver of the first message. For example, you have an inventory service that accepts a message requesting inventory adjustments; the inventory service target handles the interaction with the database tables and the initiator requests the adjustment. It is not technically necessary for the initiator service to specify which service contracts it uses; only the target need declare that as part of its CREATE SERVICE DDL statement. The contract that the initiator uses is specified on a per-conversation basis as part of the BEGIN DIALOG CONVERSATION DML statement.
BEGIN DIALOG CONVERSATION @h

 FROM SERVICE TestInitiator

 TO SERVICE 'TestTarget'

 ON CONTRACT [DEFAULT];

Note that ON CONTRACT [DEFAULT] is the default for a dialog; it is included here for clarity. Although services and queues are specific to one side of the conversation, usually both sides of the conversation create identical message types and contracts in their respective databases. Message types and contracts are used in Service Broker DML statements. The BEGIN CONVERSATION DML statement specifies a contract and the SEND DML statement specifies a message type. Attempting to use a non-existent or incorrect message type or contract from the initiator side causes a DML error. Validation of the message, however, happens only on the target side. If the message cannot be validated at the target, it is discarded and an error message is sent to both sides of the conversation.
Metadata views for the main Service Broker objects

· sys.service_message_types. One row per message type defined.
· sys.message_types_xml_schema_collection_usages. One row for each message type that refers to an XML schema collection. The XML schema collection is used for message validation.
· sys.service_contracts. One row per contract.
· sys.service_contract_message_usages. One row for each use of a message type by a contract. Message types are not contract-specific; for example, Contract 1 can use message types A, B, and C and Contract 2 in the same database can use message types A, B, D, and E.
· sys.service_queues. One row for each queue defined.
· sys.services. One row for each service defined in a database.
· sys.service_contract_usages. One row for each use of a contract by a service. Contracts are not service-specific; for example, Service 1 can use contracts A and B, and Service 2 can use only contract A.
Services, contracts, and message types are only metadata. Queues contain message bodies with the actual message payloads and occupy space in the database, like tables do. You can use the system stored procedure sp_spaceused to determine how much space is used by each queue.

A queue is a special kind of "view" over an internal table. You can see metadata that refers to the queue tables by looking in sys.internal_tables for internal tables with an internal_type of 201. The parent_id of the internal queue table in sys.internal_tables is the object id of the queue. You cannot access these internal tables directly.
A special table that holds messages (and takes up room in the database's default FILEGROUP) is sys.transmission_queue. The sys.transmission_queue table does not have a corresponding table in sys.internal_tables, so sp_spaceused doesn't recognize this table. Queues and service metadata are used when you start up a dialog conversation from one service to another.

The lifetime of a dialog conversation

Services communicate with each other by using a dialog conversation. The terms dialog, conversation, and dialog conversation are used almost interchangeably in Service Broker DML statements. You BEGIN DIALOG CONVERSATION but you END CONVERSATION in DML. This is because originally, Service Broker was meant to support MONOLOG CONVERSATIONs as well as DIALOG CONVERSATIONs. MONOLOG CONVERSATION was not implemented in SQL Server 2005, so the DML is seemingly ambiguous. The TwoConnect company has an add-in that implements MONOLOGs for SQL Server 2005, but they could not expose this through DML; the add-in exposes the MONOLOG as a service. The concepts exposed through monologs are normally used for implementing a publish-subscribe metaphor. A simple proof-of-concept publish-subscribe implementation using Service Broker is available on the Service Broker community Web site on GotDotNet (http://www.gotdotnet.com).
Using Service Broker does not involve inserting messages into queues by name; the INSERT, UPDATE, and DELETE statements are disabled on queues. Instead:
· A BEGIN DIALOG CONVERSATION statement is used to start a conversation from an initiator service to a target service. You must specify a contract on this statement. The statement returns a conversation handle.
· The initiator sends the first message by using a SEND ON CONVERSATION DML statement. Notice that messages are not sent to queues (or services, for that matter); the service is implicit in the conversation handle used in the SEND statement.
· The RECEIVE DDL statement references a QUEUE by name to RECEIVE a message. RECEIVE should always be part of a transaction. If your transaction succeeds, the message is removed from the QUEUE.

· After the first message, each side can SEND and RECEIVE as many messages as needed, until one service ends the conversation by using the END CONVERSATION DML statement.

END CONVERSATION ends the conversation on the side that executes that statement. An EndConversation built-in message is sent to the other side. Note that:

· The conversation does not actually end until both services issue END CONVERSATION.

· After one service in a conversation executes END CONVERSATION, neither service is allowed to SEND a message. The service that did not execute END CONVERSATION can RECEIVE messages until it executes END CONVERSATION.

Following is the code for this message flow. It will be referred to in the messages, troubleshooting, and routing sections:

-- step 1
-- this happens at the initiator database

-- begin the conversation and send the first message from initiator to target

DECLARE @h UNIQUEIDENTIFIER;

DECLARE @quantity INT;

BEGIN TRANSACTION;

-- 1a. Begin the conversation

BEGIN DIALOG CONVERSATION @h

 FROM SERVICE TestInitiator

 TO SERVICE 'TestTarget'

 WITH ENCRYPTION = OFF;

-- 1b. Send the first message

-- message consists of the integer value 1

SEND ON CONVERSATION @h (1);

COMMIT;

PRINT 'Message Sent'

GO

-- step 2: This happens in the target database
-- send return message to
DECLARE @h UNIQUEIDENTIFIER;

DECLARE @quantity INT;

BEGIN TRANSACTION;

-- 2a. receive message at target

WAITFOR (

RECEIVE TOP(1)

 @quantity = CAST(message_body AS int),

 @h = conversation_handle

 FROM TestTargetQueue), TIMEOUT 30000;

PRINT @quantity;

-- 2b. send return message to initiator

SEND ON CONVERSATION @h ('OK');

-- 2c. end the conversation at the target

END CONVERSATION @h

COMMIT;

GO

-- step 3. This takes place at the initator

DECLARE @h UNIQUEIDENTIFIER;

DECLARE @resp VARCHAR(10);

BEGIN TRANSACTION;

-- 3a. Receive the response message at the initiator

WAITFOR (

RECEIVE TOP(1)

 @resp = CAST(message_body AS VARCHAR(10)),

 @h = conversation_handle

 FROM TestInitiatorQueue), TIMEOUT 30000;

PRINT @resp;

-- 3b. end conversation at initiator

END CONVERSATION @h

COMMIT;

GO
Messages and metadata

Now, let's follow the messages and metadata tables through a simple conversation. This will help you learn how to troubleshoot messages by querying the data and metadata, analogous to the way you troubleshoot a locking problem by using the SQL Server Management Studio Activity Monitor. Be aware of the fact that SELECT is allowed on any queue, even though INSERT, UPDATE, and DELETE are not. SELECT does not remove the message from the queue like RECEIVE does. It can be used to look at messages (or check for their existence or see how many messages are on a queue) without disturbing the message passing process. I'll track sending a message from an initiator on Database A and Instance A to a target on Database B and Instance B. Some optimizations are possible when the services live in the same database and/or same instance, we'll cover these later as special cases.
1. Initiator: Begin Dialog

a. A row is added to the metadata view sys.conversation_endpoints and in the initiator database. No service name resolution is performed yet.

2. Initiator: First Send

b. The SEND DML succeeds unless an invalid message type is specified. No validation of the outgoing message is done.

c. Resolution of the target service occurs. If resolution succeeds, a row is added to the metadata view sys.conversation_endpoints in the target database. This row refers to the target side of the conversation. The two rows are correlated by a matching conversation_id. The conversation_handles are different on each side of a conversation.

d. If the destination queue can’t be reached directly, the message is placed in a special holding queue, sys.transmission_queue, until the Service Broker routing tables decide where to send it. Technically, SEND places the message (row) in sys.transmission_queue; COMMITing the transaction that includes the SEND statement commits the row to the transmission queue.

e. If the routing tables can't find a place to send the message or there is a transmission or security error, the message remains in sys.transmission_queue and the infrastructure continues to try to send it.
f. If the correct route exists in Database A/Instance A, the message is routed across the network via the routing tables in the msdb database on Instance B.
g. If the correct route exists in msdb on Instance B, the message is delivered to the correct database and queue.

h. An internal acknowledgement message is routed back from Database B to Service A. If the acknowledgement is received on Service A, the message is removed from sys.transmission_queue on Database A. Otherwise, the message transmission is retried.
3. The target receives the message. The target service processes the message, and then SENDs a return message back to the initiator.

i. This follows the same pattern as the original message. The status of the conversation does not change. Both sides' status is CONVERSING.

4. After the first SEND, the target service issues END CONVERSATION.
j. The conversation ends at the target.

k. The sys.conversation_endpoints row remains and the status changes.

l. The Service Broker infrastructure sends an EndConversation message to the initiator.

m. To prevent replay attacks, the conversation remains in the CLOSED state in the sys.conversation_endpoints table for about half an hour.

5. The initiator receives the return message and commits the transaction. The initiator issues END CONVERSATION.

n. The conversation ends at the initiator.

o. The sys.conversation_endpoints row at the target changes its state to CLOSING and then the row is deleted from the view.

p. Unread messages for this conversation are removed from both queues.

q. The sys.conversation_endpoints row at the target changes its state to CLOSED, but is not deleted from the view for 30 minutes, in order to prevent replay attacks.
An important column in sys.conversation_endpoints is state and the corresponding state description. A dialog goes through a set of state transitions in its lifetime, and understanding the current state is critical to troubleshooting a seemingly broken or stalled conversation. I'll refer to the information in this section in the tracing and troubleshooting discussions, later in the paper.
Metadata views for conversations

· sys.conversation_endpoints. One row per conversation endpoint in the database where the service is located.
· sys.transmission_queue. One row per message "in transit."

· sys.conversation_groups. One row per conversation group.
Each conversation is a member of one and only one conversation group, but a conversation_group can contain more than one conversation. A conversation_group is a metadata construct that can be used to co-ordinate conversation-wide locking or locking across multiple conversations to your session's transaction lifetime. Service Broker always locks on a per-conversation basis for the duration of the RECEIVE statement.
If both services are in the same instance of SQL Server and service resolution succeeds and the queue is available (that is, STATE = ENABLED), sys.transmission_queue is not used. If the destination queue exists but the queue is disabled, messages stay in sys.transmission_queue until the queue is re-enabled.
Best practices for Service Broker setup and conversations

The description of setting up Service Broker and how Service Broker conversations work suggest the following practices:

· Keep a topology map that indicates which instances of Service Broker correspond to each database. This will be useful when determining how to handle Service Broker identity during database maintenance.

· Plan sufficient space for the build up of messages in sys.transmission_queue and in the destination queues during system down time. You can designate a filegroup for user queues, but not for sys.transmission_queue.

· If you specify RETENTION on a queue, plan for sufficient space for messages to be retained until the end of the conversation. This means you need to take conversation length into consideration. Also, since every sent message is written twice, it is significantly slower to send a message with retention turned on.
· Consider turning off XML message validation in production to speed processing.

· Always end a conversation when you are finished with it.
Service Broker built-in routing
This section covers how messages are routed from initiator to target and target to initiator. The main purpose of the routing provided by Service Broker is to decouple the target service specification from its location. When initiating a dialog, the target service is specified by using the service name and optionally the broker instance of the target broker (that is, the service_broker_guid). Routes are database objects that are used to determine where to deliver messages. A route maps a service name and optionally the broker instance to the address of a remote SQL Server instance endpoint. Thus, routes enable the user to move services from one database to another without requiring that the application be rewritten.

Transmitting messages from one SQL Server instance to another involves connecting to the instance. This requires an entry point into SQL Server and login credentials. SQL Server 2005 calls any entry point into SQL Server an endpoint and exposes them as ENDPOINT objects. SQL Server includes endpoints for TCP, Named Pipes, and Shared Memory. You can define endpoints for HTTP, Service Broker, and database mirroring.

Messages that are routed outside a service's "home" instance use a Service Broker ENDPOINT to gain entrance to the "foreign" instance. If no ENDPOINT exists, delivery of messages from outside initiators or targets is not possible. You are allowed only one Service Broker endpoint per instance of SQL Server. Service Broker endpoints use only TCP as a transport protocol. In ROUTE objects, you refer to foreign instances of SQL Server by using the Service Broker endpoint identifier. This consists of the computer NETBIOS name, DNS name, or IP address and a port number. You use a URL-like format that looks like this:
TCP://mycomputer:port - where the port number is the Service Broker endpoint port.

If there are multiple instances of SQL Server, each must have a Service Broker endpoint with a unique port number, as is the case with "vanilla" ports for the TCP/IP protocol when using the TCP/IP TDS endpoint. Port 4022 can be used by convention for the Service Broker endpoint, but this is just a convention (like using 1433 for TCP/IP is).
Each trip to the message classifier looks at sys.routes. If sys.routes changes while conversations are in progress, new messages will follow the new route, but they always communicate with the same conversation (same instance of the service) for the lifetime of the conversation.
Here's the same simple conversation example as used previously, but this focuses on what is going on in terms of routing.
6. Initiator: First Send

r. A part of the Service Broker infrastructure, the message classifier, consults the sys.routes routing table in the initiator's database. If there is no route available to the target, it marks the message DELAYED.

s. A route is chosen according to the built-in precedence rules. If there is a route to the target service and it is on the same instance, the classifier classifies it as LOCAL. Otherwise it is classified as REMOTE.
t. The message is sent to the instance endpoint that is specified in the route.

u. The sys.routes table in msdb is consulted and a route is chosen according to the built-in precedence rules. The msdb database may contain a forwarding route to another endpoint or a route to an endpoint in the same instance.

7. Acknowledgement of First Send

v. The classifier consults the sys.routes table in the target service's database to determine a route back to the initiator service. This is not necessarily the same route that the initiator took to get to the target.

w. If the route from target to initiator is REMOTE, the message is sent to the instance endpoint that is specified in the route and routed through in the msdb database in the remote instance.

x. The sys.routes in msdb is consulted and the message is forwarded until it reaches its final destination, the initiator.
y. When the acknowledgement reaches the initiator, the message is removed from sys.transmission queue.

Structure and precedence in sys.routes
Each entry in the sys.routes table contains a route name and three information items:
· Remote Service Name

· Broker Instance
· Address
These items are specified in the CREATE ROUTE DDL statement:

CREATE ROUTE myroute WITH

 SERVICE_NAME = InventoryService,

 BROKER_INSTANCE = 'C0588F48-C503-DA11-AC11-0003FFAA155A',

 ADDRESS = 'TCP://myserver:4082'

Each route entry also contains a lifetime that specifies when the route expires. In addition, if database mirroring is being used, the address of the mirror endpoint is specified in addition to the regular endpoint address. Remote Service Name can be empty, meaning that this route will match any remote service name. Broker Instance can be empty, meaning that this route will match any broker instance. Address can be an address in the URL-like format specified above, for example, TCP://myserver:4022. There are also two special addresses, LOCAL and TRANSPORT.
The route-matching rules are listed in the SQL Server Books Online and depend on whether the BEGIN CONVERSATION DML statement specifies a Service Broker identifier. BEGIN CONVERSATION must specify a TO SERVICE but can also specify an optional Service Broker GUID. There is an instance-wide list of Services; the routing code does not have to look in every database to see if it contains an instance of the Service in question.
If two routes match "equal" according to the precedence rules, Service Broker chooses one randomly for each new conversation, resulting in load balancing. Service Broker also supports message forwarding as part of the infrastructure. You can specify the message forwarding parameters as part of the ENDPOINT definition. In addition to the routes, you can specify an optional routing service for dynamic routing. If your custom routing service exists, it is invoked as part of the precedence rules.
Service Broker allows you to implement route decision as a Service Broker service. Calling this service is done by the Service Broker infrastructure and it has a fixed place in the routing decision tree. The service is expected to handle two types of messages—MissingRoute messages and MissingRemoteServiceBinding. We'll discuss remote service bindings as part of the security section. These messages are in XML format and look like this:

<MissingRoute xmlns="http://schemas.microsoft.com/SQL/ServiceBroker/BrokerConfigurationNotice/MissingRoute">

 <SERVICE_NAME>MyMissingService</SERVICE_NAME>

</MissingRoute>

<MissingRemoteServiceBinding xmlns="http://schemas.microsoft.com/SQL/ServiceBroker/BrokerConfigurationNotice/MissingRemoteServiceBinding">

 <SERVICE_NAME>MyMissingService</SERVICE_NAME>

</MissingRemoteServiceBinding>

If you can provide a route or remote service binding, your service simply needs to add the route (using Transact-SQL DDL) to the sys.routes table or sys.remote_service_bindings table, respectively, and end the conversation. If you can't provide the route, the conversation ends with an error.

The special addresses LOCAL and TRANSPORT are usually used with wildcards and are therefore usually considered only as a last resort. LOCAL indicates that the message should be routed to a matching service anywhere in the local instance. There is one route, named AutoCreatedLocal, that's built into every new database. It's a wildcard route that contains:

· Remote Service Name - empty (match any service)

· Broker Instance - empty (match any instance)

· Address - LOCAL (local SQL Server instance)
It would be defined, if it were not already built in, as follows:

CREATE ROUTE AutoCreatedLocal WITH

 ADDRESS = 'LOCAL'

This route can be DROPped if you don't want the default routing behavior. TRANSPORT indicates that, if the name of the service you are trying to route to is in the routing URL format for a remote service name, you can use the Remote Service Name itself as a route. An example of this would be naming your service "TCP://myserver:4022/MyService". Using TRANSPORT means that you are hard-coding the name of the fallback route into the service itself. This is a little less flexible than you'd normally like; if you need to override this behavior, you can add an explicit route by service name. The TRANSPORT address is mostly used so that you don't have to code an explicit route back to every possible initiator from your target service. TRANSPORT routing can also be used as a way to simply test the routing infrastructure.
Service Broker uses two different network protocols. Dialog protocol is the end-to-end protocol and addresses high-level requirements such as exactly once delivery, in-order delivery, full duplexing, authentication, and encryption. One of the nice features of the dialog protocol is that it implements symmetric failure reporting. If an error occurs on either side of the conversation, an error message is sent to the queues of both services. In addition, there is a low-level, bits, bytes, and packets protocol, the Adjacent Broker Protocol. This is used to package and send messages from one node to the next. This protocol includes boxcarring (packaging multiple messages bound for the same node), message fragmentation and re-assembly (to ensure a single large message doesn't use all the bandwidth), and other message optimizations. These network protocols are also used by the database mirroring feature. You can monitor the amount of network traffic generated by your Service Broker-based topology by looking at the Performance Monitor counter SQL Server:Broker/DBM Transport.
Service Broker metadata for routing
· sys.routes. Used to route from target or from initiator.
· msdb.sys.routes. Used to route message that come in from remote instances.
· sys.service_broker_endpoints. Only Service Broker endpoint.
· sys.tcp_endpoints. Only endpoints that use the TCP protocol.
· sys.endpoints. All endpoints in the instance.
Service Broker networking information

· Performance Monitor counter: SQL Server: Broker/DBM Transport

· Dynamic management view: sys.dm_broker_forwarded_messages
Service Broker trace events

The easiest way to see the message flow of a Service Broker application is to use the broker-specific trace events in SQL Profiler. In this section, we trace the message flow (three messages) that corresponds to the simple code earlier in this paper, to have a baseline trace when things work correctly. Then we look into troubleshooting and discuss the trace events produced if things don't work correctly. Event notifications can also be triggered and caught based on trace events, such as the Service Broker trace events described here. Many Service Broker events have the following useful data fields:
· Event Class - what happened

· Event Subclass - detailed information about what happened

· TextData - often contains the conversation status

· TargetLoginName - sometimes name of the service contract

· TargetUserName - name of the target service
Following is a list of all of the Service Broker-specific events, broken down in subcatagories.

· Connection level

· Audit Broker Login
· Connection level security setup

· Broker:Connection
· Handshake protocol - I/O Errors

· Broker:Corrupted Message - Extremely rare unless intentionally corrupted
· Conversation

· Audit Broker Dialog

· Broker:Conversation Group

· Broker:Conversation

· Broker:Message Classify

· Broker:Message Undeliverable

· Broker:Remote Message Acknowledgement - In message or in separate message

· Broker:Transmission
· Other

· Broker:Activation - The configured activation program is starting

· Broker:Forwarded Message Sent - Successfully forwarded messages

· Broker:Forwarded Message Dropped - Messages that couldn't be forwarded within time or space limits

· Broker:Queue Disabled - Operator or automatic for poison message
Let's look at a short, single request-response conversation, and the trace events that are produced.

8. The initiator begins a conversation and sends the first message.
z. The Begin Conversation message creates a new conversation group and creates a conversation as the only member of this group. There is now a conversation_endpoint for the target service's half of the conversation in sys.conversation_endpoints. The status of the endpoint is STARTED_OUTBOUND.

aa. The first message sent using the SEND DML statement creates a conversation_endpoint at the target and sets the status to CONVERSING.

ab. The message classifier consults the sys.routes table and classifies this message as a remote message.

ac. The message is delivered to the msdb database in the remote instance. The Service Broker endpoint is used for delivery. This causes a login to the remote instance.
ad. The initiator side receives an acknowledgement message in the msdb database. The message classifier classifies this message as LOCAL and sends the acknowledgement to the initiator.

[image: image2.png]Even... | EventClass EventSubClass TewData Tagetlo... | TargetUserh]

sL:Batchstarting DECLARE @h UNIQU

180 eroker:Conversation Group 1 - Create

181 eroker:Conversation 11 - BEGIN DIALOG STARTED_DUTEOUND DEFAULT | Invnitic

182 eroker:Conversation 1 - senp message conversTnG DEFAULT | InvInitic

183 BrokersMessage Classify 2 - remote
sqL:Batchcomplered DECLARE eh UNTQU

185 BrokersMessage Classify 2 - remote

185 BrokersMessage Classify 2 - remote

187 eroker:Connection 2 - connected

188 Audit eroker Login 1 - Login success

189 Broker:Remote Message Ack... 1 - Message with Acknowle.

190 BrokersMessage Classify 1 - Local

191 Broker:Remote Message Ack... 4 - Acknowledgement Received

Audit Logout

Figure 1 SQL Profiler output from steps 1a-e
9. The first message is put into the target queue.
ae. The target side accepts the login. The message is delivered to the msdb database where it is classified as LOCAL. It is routed to the database where the target lives. This corresponds to the action referred to on the initiator in step 1d.
af. The appearance of the message causes the creation of a conversation group and conversation at the target. The status is set to STARTED_INBOUND.

ag. The message is placed on the queue (receive sequenced message). The status is set to CONVERSING.

ah. The target service sends an acknowledgement, which is classified as REMOTE (a message to a remote Service Broker) and sent to the initiator endpoint. This corresponds to the action referred to on the initiator in step 1e.
[image: image3.png]Even.. | EveniClass EventSubClass TextData TargetLogin... | TargetUseName
152 eroker:connection & - accept
153 Audit eroker Login 1 - Login success
154 BrokersMessage Classify 1 - Local
155 Broker:Conversation Group 1 - Create
156 Broker:Conversation 12 - pialog Created STARTED_INBOUND DEFAULT Invservice
157 Broker:Conversation 6 - Received Sequenced... CONVERSTNG DEFAULT Invservice
158 Broker:Remote Message Ack... 3 - Message with Ackno
159 BrokersMessage Classify 2 - remote
160 Broker:Remote Message Ack... 2 - Acknowledgement Sent

Figure 2 SQL Profiler output from steps 2a-d
10. The RECEIVE, SEND, and END CONVERSATION statements are issued at the target.
ai. There is a message SEND event, and the status is set to CONVERSING. The message is classified as REMOTE.

aj. There is an END CONVERSATION event, and the status is set to DISCONNECTED_OUTBOUND. An end conversation message is sent to the target.
ak. The conversation is dropped.
al. The message (from 3b) is classified as remote.

am. Two acknowledgements are sent to msdb—one for the SEND message and one for the END CONVERSATION. These are classified as LOCAL and sent to the target. The target conversation status is CLOSED.

[image: image4.png]Even.. | EveniClass EventSubClass TextData TargetLogin... | TargetUseName
sL:Batchstarting DECLARE eh UN.
175 Broker:Conversation 1 - senp message conversTnG DEFAULT Invservice
176 BrokersMessage Classify 2 - remote
177 Broker:Conversation 2 - END CONVERSATION DISCONNECTED_DU... DEFAULT Invservice
178 eroker:Conversation Group 2 - Orap
175 BrokersMessage Classify 2 - remote
sqL:Batchcomplered DECLARE @h UN.
181 Broker:Remote Message Ack... 1 - Message with Ackno
182 Broker:Remote Message Ack... 1 - Message with Ackno
183 BrokersMessage Classify 1 - Local
184 Broker:Conversation 10 - Received END CONV... CLOSED DEFAULT Invservice
185 Broker:Remote Message Ack... 4 - Acknowledgement Re.

Figure 3: SQL Profiler output from steps 3a-e
11. The initiator issues a RECEIVE, followed by an END CONVERSATION for its side.
an. The conversation ends. The initiator conversation status is set to CLOSED.
ao. The conversation group is dropped.

[image: image5.png]Even... | EventClass EventSubClass TextData Targetlogi.. | TargetUserhar
379 BrokeriMessage Classify 1 - Local
380 Broker:Conversation 7 - Received END CONV... DISCONNECTED_INBOUND DEFAULT InvInitiat
381 Broker:Remote Message Ack... 3 - Message with Ackn.
382 BrokersMessage Classify 2 - remote
383 Broker:Remote Message Ack... 2 - Acknowledgement sent
Audit Login network protocol
squ:satchstarting SELECT svsTem_user
sqL:Batchcomplered SELECT SvSTEM_USER
squ:satchstarting SET ROWCOUNT 0 SET T.
sqL:Batchcomplered SET ROWCOUNT 0 SET T.
squ:satchstarting select eespid select...
sqL:Batchcomplered select eespid select...
squ:satchstarting Use sodape1
sqL:Batchcomplered USE Sodanel
squ:satchstarting DECLARE @h UNIQUEL...
398 Broker:Conversation 2 - END CONVERSATION cLosen DEFAULT ImvImitiat
355 Broker:Comversation Group 2 - Orap

Figure 4 SQL Profiler output from steps 4a-b
Troubleshooting
Now that we have information about the internals and a baseline trace, let's take a look at what could go wrong in a Service Broker application and how to find and fix the problem.

Service Broker returns very few Transact-SQL errors because it makes a number of assumptions; for example, it assumes that missing routes can be (and will be) fixed eventually. One thing that will cause a "synchronous error" is a metadata error, the equivalent of a "table not found" error in an ordinary stored procedure. Another error that can be received synchronously is "CONVERSATION is not in a state for SEND." This means that you have received an error or end conversation message on a conversation and future sends are prohibited. In this case, you can read the error message from your queue and do any processing for good messages by RECEIVEing them, but you need to start a new conversation to do any more SENDing. You must log any errors you receive in your own queue in an application-specific log, as these errors are not written to the SQL Server log.
Almost all application errors appear as messages in the "from" QUEUE of the dialog. Be sure that you have an activation procedure for your initiator, at least to catch errors. The initiator activation procedure should at least handle errors and EndConversation messages. Application errors can include permission issues, including the lack of a proper user in a remote service binding. This produces an error message in the FROM queue, rather than a synchronous error at SEND time.
Troubleshooting message delivery
The vast bulk of non-application errors are message delivery issues. Service Broker continues to retry delivery and resorts to dialog errors only when there is no hope of continuing. The majority of these errors are routing problems and security problems. Because background threads handle messages, the best way to monitor delivery is to use a combination of monitoring queues and running SQL Profiler.
To troubleshoot message delivery issues, you must first figure out where the messages are. The first place to look is sys.transmission_queue on the sender side. If there are any messages in sys.transmission_queue for more than a few seconds, this usually indicates a delivery problem or a disabled queue downstream. You can get the last error for a given conversation (transmission_queue) by using the function GET_TRANSMISSION_ERROR(@handle). This is a convenience function to see the transmission_status column in sys.transmission_queue. Some of the problems you might see in sys.transmission_queue are:
· Transport not enabled

· Route missing or incorrect

· Network problems
· Connection issues

· Destination not active
· Security or permissions issues at destination
· Connection issues (at target)

If the messages are not in sys.transmission_queue, follow them to where the outgoing route points. This can either be a forwarding server or a destination server. If this is a forwarding server, look at the sys.forwarded_messages DMV in the forwarding server. Since forwarded messages are kept in memory in the forwarding server, look for them in sys.forwarded_messages instead of sys.transmission_queue.

On the target server (that is, the server where the target is located), the messages can be in either msdb (sys.transmission_queue) or in the target service queue. Messages that languish in msdb indicate a problem with msdb.sys.routes or a problem with the routing table that sent the messages. If the messages are in msdb and the service that they are being routed to does not exist, temporarily add a route to msdb.sys.routes to move them to where you want them. Messages that stay in the target queue usually indicate bad logic in the receive code, security issues (wrong permissions on the receive queue), or activation issues. Or, the queue may have been disabled, although if that occurred, you would be notified by the QueueDisabled event. This event catches only queues that are disabled because of the default poison message handling logic in Service Broker. Thus, if the queue is disabled because someone issues an ALTER QUEUE DDL statement, it won't be caught.
Best practices for Service Broker routing

· Always fill in the Broker Instance fields for routes. When Service Broker uses a route, either in msdb or in sys.routes, without a broker instance, it looks in an instance-wide list of services. If the same service name is defined in multiple databases, routing treats this as a load-balancing opportunity.
· Always configure routes in msdb for received dialogs. The default behavior is to use the auto-created local route, which doesn't include a Broker Instance field.
· For the reasons mentioned previously, don't rely on the auto-created local route.

· Don't forget to configure a "reverse route" for Service Broker's acknowledgement messages. Acknowledgements are routed by using sys.routes in the receiving database, just as messages are.
· Don't enable forwarding unless it's required.
Service program activation

In the simple example code earlier in this paper, humans invoked the code at each end of the conversation in SSMS after waiting the appropriate amount of time for the message to arrive. Although you can write an application that polls both the target and initiator queue to look for arriving messages, it's better to write a stored procedure that automatically runs inside the server when a message appears in the queue. This program is called an internal activation program. Or, you can run an external program (say, a Microsoft Windows® service) and, instead of polling every queue to look for messages, the program can wait for a QueueActivated event. The mechanism to subscribe to this event is Service Broker-based, called event notifications. When an external program is notified that a message has arrived on a queue by subscribing to the QueueActivated event, this is known as external activation.

Internal activation starts a copy of the activation stored procedure. This procedure should read the queue and process messages until it has no more to process. This is known as a queue reader procedure. If a single queue reader cannot "keep up" (that is, the number of messages arriving is greater than the number of messages being processed), additional copies of the stored procedure are started by the application infrastructure, up to the number specified as max_queue_readers in the ACTIVATION clause of the CREATE/ALTER QUEUE DDL statements. You can alter max_queue_readers to adjust the resources consumed by Service Broker activation programs during peak hours or expand the number of queue readers during slow hours.

Because activation procedures run asynchronously, two things make them unique. The first is security context; the procedure must have an identity. This is accomplished by using EXECUTE AS in the QUEUE definition. You do not need to catalog your procedure to be used as an activation procedure with the EXECUTE AS clause. The default execution context is EXECUTE AS SELF, which means that the procedure executes as the owner of the service. Bear in mind that you are using an impersonated context, which has no access outside of the database it runs in. You can enable additional privileges for the activation procedure by code-signing the procedure. For more information on code-signing procedures, see the ADD SIGNATURE DDL statement in SQL Server 2005 Books Online.

The second unique feature is that there is no user connection to the activation procedure. If an error is raised at procedure execution time in an activation procedure, a message is written to the SQL Server error log. You must monitor the log to diagnose problems. Since the Transact-SQL PRINT statement is simply an informational error, these can be put into the code to troubleshoot activation procedures. Note that producing an error does not necessarily cause the activation procedure to halt execution. If an activation procedure fails because of an error, the activation infrastructure simply starts another copy if there are more messages to process.

If the transaction that reads a message from the queue rolls back, the message is returned to the queue. The queued message is immediately processed again and, unless the situation that cause the transaction rollback has changed, this dequeue-rollback sequence can continue forever. This is a called a poison message. The default poison message handling strategy for Service Broker disables the queue (and therefore messages can pile up) after five rollbacks of the same message. Programmers can write their own poison message handling code, but you must be prepared to subscribe to the QueueDisabled event (through an EVENT NOTIFICATION or a WMI-based alert) because this indicates that the queue, and therefore, the application is stopped.

Dynamic management views

· sys.dm_broker_queue_monitors. One row for each queue with an activation procedure.
· sys.dm_broker_activated_tasks. One row for each queue reader task.
· sys.dm_broker_connections. One row for each Service Broker network connection.
Perfmon counters

· SQL Server:Broker Activation. Reports information on stored procedure activation.
· SQL Server:Broker Statistics. Reports information on Service Broker objects, such as enqueued messages.
· Events

· Queue Activated. Fires when a broker activation event occurs or, if activation is not enabled, would have occurred. This event can be used for external activation.
· Queue Disabled. Fires when a queue is disabled by an excessive number of poison message retries.
Troubleshooting activation

Activation issues are mostly due to the max_queue_readers parameter on the QUEUE and manifest themselves as offline errors. If max_queue_readers is set too low, the queue grows and response times for the activation program's downstream components may become excessive. If max_queue_readers is set too high, this queue may get more resources than it deserves and slow down other processing on the instance.
The most common errors with activation are caused by permissions. The user the procedure is running as doesn’t have permissions on the queue or doesn’t have permission to access a SQL Server or external securable.
The best places to look if you suspect activation problems are:
· The SQL Server error log

· The Broker:Activation event class for excessive activated task aborts

· The Service Broker:Activation::Task Limit Reached counter in Performance Monitor
· Activation-related dynamic management views
The only way to remove a message from the queue for later use is to have a program that reads from the queue. This could be provided as a database administrator utility. Because you cannot directly RECEIVE from sys.transmission_queue, add a temporary route to your error queue, receive the message from there, and drop the route. If you just want to delete all of the messages for a specific conversation that is in a "broken but not closed on both sides” state, you can retrieve the conversation handle of one or both sides of the conversation and issue the command:

END CONVERSATION @handle WITH CLEANUP

Performance issues
Most performance issues in Service Broker applications relate to the application design rather than the infrastructure. These can include:
· Conversation group design issues

· Unrelated dialogs in a conversion group, producing too much ordering
· Number of queue readers

Retries that occur because there is no return route can consume resources. Queue retention settings can result in excessive database file growth. Adjacent Broker authentication and excessive encryption can slow things down. We'll discuss how this works next.
Best practices for activation
· Use explicit transactions in all of your calling procedures and activation programs to coordinate sending and receiving on queues to the database activity in your application.
· Consider how many messages are processed in a single transaction. Processing more messages per transaction performs better than processing fewer messages in a transaction. This is because the transaction log write rate is the limiting factor. However, if the transactions are holding locks on other resources, longer transactions that process more messages in a single transaction may decrease performance.
· If you use conversation groups, you normally receive all messages in a single conversation group at once.

· If you use internal activation, receiving one message at a time is acceptable. When using external activation, this would cause excessive network traffic and you should read multiple messages in a single database call.
· Make sure that you use a WAITFOR when RECEIVEing from a QUEUE in activation programs. Configure the length of the WAITFOR based on expected system load, to avoid excessive activation program stops and restarts.

· Make sure that your activation program handles all MESSAGE TYPES. This includes message types expected by the contract as well as Service Broker-produced messages such as error messages and END CONVERSATION. Distinguish between messages by using the message type name column in the message.

· Configure an event notification to handle QUEUE DISABLED messages and an administrative procedure to respond when this event fires. This is a good idea even if you handle poison messages because the queue might be disabled due to an unanticipated error.
How Service Broker security works
Because a Service Broker application can send messages between databases and between instances, and the security context of the message sender is not put into the message, the application must have a different mechanism to implement security. Two protocols are used with Service Broker communication. Each protocol has its own security. These are endpoint security (used with adjacent broker protocol) and dialog security (used with dialog protocol). Endpoint security is not needed if your services are in the same instance of SQL Server, even if the services are in different databases in the same instance. However, talking between services in the same instance is very rarely used, so we'll consider endpoint security as though it were mandatory. Dialog security is mandatory by default, regardless of the placement of services.
Security for Service Broker has three facets:

· Authentication. When one service connects to another service or connects to an endpoint, what user identity is doing the connecting?

· Authorization. Now that we've identified the user, does that user have the ability to use the endpoint or use the service?

· Encryption. Messages can be encrypted at a transport level (endpoint encryption) or on a per-dialog level. The default is to encrypt messages at both the endpoint and dialog levels.
To enable receiving messages, an instance must have a Service Broker ENDPOINT defined and enabled. Each instance can only have one Service Broker endpoint; but you can choose more than one authentication mechanism for the endpoint. The authorization mechanism can either be Windows authentication or certificate-based authentication. If someone might want to connect to your Service Broker endpoint from outside your domain, specify certification-based authentication.

If you choose Windows authentication, each instance authenticates to your Service Broker endpoint by using its service account. Once the foreign Service Broker has authenticated by means of its service account:

· A login for the remote service account must exist in the server. This is a Windows-based login. The login does not need access to any databases.
· The CONNECT to the Service Broker ENDPOINT privilege must be granted to the account.
If you choose certificate-based authentication, you need to have a certificate that will be associated with the endpoint cataloged to the MASTER database. That certificate is usually owned by the DBO of the master database. Deploy the public-key portion of the certificate to every server that needs to connect to your endpoint. You also catalog a (public-key only) certificate for each foreign SQL Server instance that will connect to your instance. This represents the security context in each instance that connects to your server.
For example, if Server A wishes to connect to Server B, Server A sends its endpoint connection certificate as part of the authentication packet to Server B. Now, Server B knows who is trying to connect. There must be a login associated with the certificate for authorization purposes.

To associate a security principal with a certificate for the purposes of authorization
12. Create a login in the instance.

13. Create a user in the master database associated with the login.

14. Catalog the public-key only portion of the connecting instance's certificate to the master database by using CREATE CERTIFICATE. The certificate owner must be the user you created in step 2.

15. Grant CONNECT privileges on the endpoint to the login created in step 1.
This means that if you have N instances connecting to the endpoint on your instance you need additional database objects. Which objects you need depends on your endpoint authorization choice.
· If you are using Windows authorization on the endpoint:
· You have N Windows logins for broker, one for each instance that wishes to connect.
· Each login has connect privilege.
· If you are using certificate authorization on the endpoint:
· You have a certificate (public and private key) in the master database, owned by DBO. You use this certificate in CREATE ENDPOINT.
· You have N logins and N users in the master database for Service Broker messages sent by remote instances, one for each instance that wishes to connect.
· Each user in master for Service Broker has CONNECT privilege on the endpoint.
· You have N certificates in master, each owned by a specific user associated with that certificate.
In endpoint security, it makes no difference whether an instance is a target or an initiator.

To deploy a new instance of a target or initiator to an existing instance that already has an endpoint

16. Add login, user, and certificate from each side to the other.

17. Grant CONNECT permission to the user. To prevent having N users with CONNECT, you can also grant CONNECT to public. You still must perform step 1 in this case.
You can declare, in CREATE ENDPOINT parameters, to support Windows authentication, certificate authentication, or both. For Windows authentication, you can choose to support only Kerberos-based authentication, only NTLM-based authentication, or negotiate the authentication at connection time. You can specify encryption on an endpoint as DISABLED, REQUIRED, or SUPPORTED. Select the RC4 or AES encryption algorithm, and the CREATE ENDPOINT definition determines whether one or both algorithms are supported and which is preferred, if both are supported.
Dialog security

Dialog security authorization, and encryption are optional. Dialog encryption is ON by default, but can be turned off by using the CREATE DIALOG DML statement. Two styles of dialog security are supported; identity-based dialog security (I'll refer to this as named dialog security) or anonymous dialog security. Which type of dialog security is used is determined by the REMOTE SERVICE BINDING specified on the initiator side, only. Services that are targets do not need REMOTE SERVICE BINDINGs.
If authentication is used, one or both services (initiator and target) must have a certificate associated with it. This means that either:
· The owner of the service is the owner of the certificate. DBO as certificate owner is a reasonable choice.

· For targets only, the owner of the certificate must have CONTROL permission on the service. Again, having DBO own both the certificate and the service is a good choice. This also prevents the proliferation of users that exist just to own certificates.
The difference between named and anonymous dialog security comes when you deploy the public key only portion of the certificate from one Service to the database on the other side of the Service.
To deploy the certificate public key when using named dialog security

18. On the initiator:
ap. Create a proxy user to represent the target. This user should not have a login.

aq. Catalog the public key portion of the initiator's certificate. This certificate must be owned by the user you created in step a.

ar. Create a Remote Service Binding to the target service, naming the user that you created in step a.

19. On the target database:
as. Create a proxy user to represent to initiator. This user should not have a login.

at. Catalog the public key portion of the initiator's certificate. This certificate must be owned by the user you created in step a.

au. GRANT the user cataloged in step a SEND permission on the Service.
To deploy the certificate public key when using anonymous dialog security

20. On the initiator:
av. Create a proxy user to represent to target. This user should not have a login.

aw. Catalog the public key portion of the initiator's certificate. This certificate must be owned by the user you created in step a.

ax. Create a Remote Service Binding to the target service, naming the user that you created in step a. Add the keyword ANONYMOUS = ON.
21. On the target database:
ay. GRANT SEND on the service to PUBLIC. There is no need for users or certificates.

Note that with anonymous dialog security, any conversation that has permission to access the endpoint and has a copy of the target service's public key can access the service. You are relying on endpoint security to keep out intruders. This is an acceptable practice on a firewalled internal network, but not on a public network. When using anonymous dialog security, the target is not forced to keep a user/certificate combination for each new user. This means fewer certificates to manage when your partner's (initiator) certificates expire. With named dialog security, not only must the initiator have a certificate with the target's public key, but the target must also have a copy of every initiator's public key certificate and grant the proxy user for each initiator SEND privilege. If you grant SEND to each initiator, you can DENY access to a given user without shutting off the entire endpoint.

To turn off authentication and encryption for a specific dialog
22. Specify ENCRYPTION = OFF in the BEGIN DIALOG statement.
23. Ensure that no REMOTE SERVICE BINDING exists for the target service in the initiator's database.
24. GRANT SEND on the target service to public.
When adding a new instance and replicating services, endpoint security differs from dialog security. To implement endpoint security on a new instance, you simply add a new instance with a new or different certificate for endpoint security. If this instance hosts three services, Service1, Service2, and Service3, you deploy the instance's certificate to all initiators that might send to 1, 2, or 3.

When you replicate a (target) service to a new server (for example, you install a second copy of Service1) remember that the remote service binding references the exact certificate from the original target service. You need an exact copy of the certificate on the new service because you can only have ONE remote service binding per service on a given initiator. This consideration applies whether you're using named or anonymous authentication. If you are using named authentication, the target service must also import copies of initiator certificates, users, and GRANTs from every initiator allowed to connect. If you use an additional service instance to scale/partition to the initiators, you must split up the certificates, users, and GRANTs and notify the initiators so that they can fix their routing table. See the exercise that accompanies this white paper for examples of using named dialog security, anonymous dialog security, and no dialog security.
One more item must be considered when looking at security setup. That is, if there is more than one certificate owned by a particular user, the security infrastructure always uses the newest one that has the setting VALID_FOR_BEGIN_DIALOG = true.
Metadata for security

· sys.remote_service_bindings. One row for each remote service binding in a database.
· sys.certificates. One row for each certificate in a database (certificates are used by Service Broker proxy principals).
· master.sys.certificates. Certificates in the master database (certificates are used for Service Broker endpoint authentication).
· sys.database_principals. One row for each user in a database.
· master.sys.sql_logins. One row for each SQL login (these are used with Service Broker endpoint logins).
Best practices for Service Broker security

· Use certificate-based authentication for connections.
· Create users with no logins specifically for activation.
· Recall that both endpoint encryption and dialog encryption are turned on by default. Choose your encryption method based on your Service Broker application topology. If you have a secure network (for example, encrypted communications using VPN), you may not need either type of encryption.
· Make sure that you have the appropriate encryption keys, such as the database master key defined for dialog use.

· Balance the administrative overhead of having a specific certificate per-initiator in the target database with the need to identify and distinguish between service users.

· Replace your Service Broker certificates before they expire. For dialog security, you can use the VALID_FOR_BEGIN_DIALOG property to ensure a smooth transition.
Data-Dependent Routing
While Service Broker provides a mechanism for scaling out when the data is replicated, it is also possible to build highly scalable applications that use partitioned data using Service Broker. The key to achieving this lies in data-dependent routing.

Many data-dependent routing implementations consist of routing logic into the data layer of the application and using a table to hold the routing data. When the data layer sends a message, it looks up where the message should go and sends it on the appropriate dialog. When used with Service Broker messaging, the data layer opens a dialog to each destination and keeps them open to speed up the process. For maximum flexibility, you could use the same tables to hold routing data and security data. That way you can expand the number of destinations by adding services. You could also use Service Broker's built in routing capability to implement data-dependent routing.

Routing scenarios supported directly
Service Broker provides an infrastructure for routing that can be used for data-dependent routing and scaleout—implement the "decision router" in a separate instance or instances of SQL Server 2005. You can even use SQL Server Express Edition for this purpose. The way to use the built-in functionality is to make the data-dependent routing program call out to different instances of the same service, based on data that's input. These services do not need to have same service name or be located in the same database or instance.

Service Broker routing intrinsically supports:
· Load balancing. Two equal routes cause load balancing. This is not data-dependent. Load balancing is on a per-conversation basis rather than on a per-message basis. This is good because this behavior is needed to assist in state management. If you need per-message load balancing, make each conversation a single message. This policy can help you to replicate services and distribute the load across them.
· Forwarding. Forwarding is built into the protocol and forwarding servers keep in-transit messages in memory rather than on disk. This is possible because messages are sequenced; if a message is dropped at the intermediate forwarder, the message is re-sent. You configure routing in sys.routes at the Service Broker database by providing a route to the forwarding server. Routes must be provided in the forwarding service(s) in msdb for the ultimate destination.
· Gateway. A gateway is just a special case of forwarding and load-balancing. Because SQL Server 2005 implements HTTP endpoints, SQL Server itself can be a gateway for HTTP messages. This makes it possible to switch from an unreliable protocol (HTTP) to a reliable one. It also makes it possible to capture the messages, either for auditing purposes or as service interaction data. For example, purchase orders in their original form (replicas) are valuable data themselves.
Data-dependent routing using forwarding

When the data (and hence the services providing an interface to it) are not replicated but partitioned, the routing infrastructure will not help. In this case, you want your message to be routed based on what is inside of the message. For example, if you have a table of sales transactions partitioned by region across several databases with a service in each database used for querying the sales information, a request for sales info by region should be routed to the service that is servicing that region. Data-dependent routing can be easily implemented as a service that either forwards an incoming conversation or redirects the initiating service to the right destination. In this example, we look at the design and implementation of a forwarding type data-dependent routing service. You can obtain the code from the SQL Server Service Broker CodeGallery at GotDotNet.
[image: image6.png]Classifier: message_body — service_name

(@) [[moeuns Towooma

s3 02 o1 s4

Data-Dependent Routing with Forwarding Service

Figure 5 Data-dependent forwarding service
Figure 5 illustrates how the routing service routes and forwards messages. For example, Service S3 begins a dialog with the routing service and sends it a message (1). When the routing service receives the message, it checks if a mapping exists for this conversation (Conversation D3) in its mapping table. If no mapping exists, it invokes the classifier function with the message body to obtain the target service name (2) and then begins a dialog (Dialog D4) with that service (3). It then creates mappings both for the inbound as well as the outbound conversations (4) and finally it forwards the received message on conversation D4 (5).

If target Service S4 sends back a reply on the same conversation (Conversation D4), the routing service finds a mapping for D4 to D3 and forwards the reply message on D3 without classifying it.

If the routing service receives an end dialog message, it checks if an outbound conversation exists for this conversation and ends it. In either case, it ends the inbound conversation. If the routing service receives an error message, it checks if an outbound conversation exists for this conversation and ends it with an error that wraps the incoming error message. It also ends the inbound conversation.

Implementation

The data-dependent routing facility is implemented as a service called [urn:rushi.desai.name/RoutingService]. It uses a table [resolved_conversations] to store the mapping of inbound to outbound conversations. The service is internally activated to execute the [route_messages] stored procedure. The stored procedure implements the logic presented above when it receives an end dialog message or error message. When it receives any other type of message, it invokes a configured stored procedure for performing the classification. This stored procedure name is stored in the [routing_service_config] table. You can implement your custom logic in this stored procedure, which must have the following signature:

CREATE PROCEDURE your_custom_classifier (

 @message_body VARBINARY(MAX),

 @to_service_name NVARCHAR(256) OUTPUT)

That is, the classifier stored procedure takes in the message body as input and gives the service name as output. You can write the stored procedure in plain Transact-SQL as well as any CLR language by using SQLCLR hosting and the in-procedure managed provider.

The sample classifier provided with the router code is called [sample_classifier]; the sample classifier assumes that you are using XML in the message body and looks up the target service in the message by running an XQuery query on /message/toServiceName/.

Assumptions

· The routing service must support the union of all the contracts supported by the target services. The routing broker must also contain all the associated message types.

· The routing broker (that is, the database) must contain Service Broker routes for all possible target services. So, dialog-level routing must be set up.

Limitations

The first limitation is the security model. In this example, you are delegating the routing service to talk to the final target on your behalf. Hence, you cannot take advantage of end-to-end security. The target service cannot authenticate and authorize the initiator. If authentication is a requirement, it might be simpler to use a redirection approach, rather than a forwarding approach. That is, instead of the routing service forwarding messages on your behalf, it classifies the message and replies to the initiator with the service name. The initiator can then begin a new dialog with the resolved target service. A more elaborate approach that maintains end-to-end security but also provides forwarding involves using proxy identities.

The routing service can become a bottleneck. Solutions include preferring redirection over forwarding (discussed in the next section) as well as replicating the routing service in multiple instances and then relying on the round-robin route picking policy to balance the load across the routing services (that is,, ‘m’ initiators talk to ‘n’ replicated routers that talk to ‘l’ partitioned targets).
Data-dependent routing using redirection

Redirection is another mechanism to talk to partitioned services with data-dependent routing. Redirection solves the two major drawbacks of the forwarding model:

· You need to delegate trust to the routing service. The target cannot authenticate the initiators directly and so you cannot take advantage of the built-in security model.

· The routing service can become a bottleneck. If the system is under sufficient load, the routing service could become a bottleneck since all conversations are routed through it and each message in the system must pass through this service.

[image: image7.png]Data-Dependent Routing with Forwarding Service

Figure 6 Data-dependent redirection service
Figure 6 illustrates how the redirecting routing service works. Initiator S1 begins a dialog and sends a message to the routing service. The routing service receives the message (1) and applies the classifier function to obtain the service name and broker instance of the service where this conversation must be redirected to (2). It replies on the same conversation (Conversation D1) with a redirect message containing the service name and broker instance found (3) and ends the dialog on its end. When Initiator S1 receives the reply, it ends the dialog and begins a new dialog (Dialog D2) targeting the service name and the broker instance specified by the redirect message (4). Finally, it resends the original message to the final destination, S2.

Since S1 is directly talking to S2, S2 can authenticate S1 and apply the right level of access control. Once the conversation has been bound to its final destination, all subsequent messages are sent directly, thus freeing the routing service from processing them.

The limitation of this approach is that the initiators must have routes to the targets and vice versa. Also, the contracts need to be extended to include the special Redirect message type and the services should be able to handle them appropriately.
Best practices for data-dependent routing
· Ensure that the server that contains the data-dependent routing code is as close as possible to the message source.
· Consider using multiple SQL Server instances to run routing code, in order to balance the load. These instance can be deployed on any edition of SQL Server 2005, including SQL Server 2005 Express Edition.
· Beware of routing strategies that re-transmit each message as these can become bottlenecks.

· If you need to combine data-dependent routing with user identification, consider making the identity part of the message rather than using dialog security for user identification.

· Leverage Service Broker's built-in routing (for example, routes with expiration times or the user-built routing service) in conjunction with data-dependent routing.
Query Notifications
The feature in the SQL Server 2005 engine that delivers notifications on subscriptions for data changes is called query notifications. Clients can submit a batch or stored procedure containing a SQL SELECT statement, requesting to be notified when data is modified in a manner that would change the query result. The server sends a notification when this change occurs. These requests are called query notification subscriptions. Along with the query submitted for the notification, the client submits a service name and a broker instance. Each notification subscription begins a Service Broker dialog with this provided service and broker instance. When data is changed and the change would affect the result of the submitted query result, a message is sent on this dialog. By sending this message, the client is considered notified and the notification subscription is removed. If the client desires to be notified on further changes, it must subscribe again.

The notification is not delivered back to the client, but a Service Broker message is instead sent to the service the client provided in the subscription request. All normal rules for delivery, routing, and dialog security apply to the dialog used to send this message. This means that the notification message can be sent to a service hosted in the same database, in a different database or even on a remote computer. Also, there is no need for the client to be connected to receive the notification. It is perfectly acceptable for a client to submit a query for a notification subscription then disconnect and shut down.

The client consumes the notification message just like any other Service Broker message: by RECEIVEing it from the service’s queue. The notification message is of type [http://schemas.microsoft.com/SQL/Notifications/QueryNotification], an XML message type. This message is part of the [http://schemas.microsoft.com/SQL/Notifications/PostQueryNotification] contract, which means that the service that receives the notification messages must be bound to this contract. After the client receives the message, the client is supposed to end the conversation on which the message was received, using END CONVERSATION.

Not all SQL queries can accommodate query notifications. The restrictions that apply to queries submitted for notifications are explained in Creating a Query for Notification in SQL Server Books Online. Although the query can be a stored procedure, it must not contain any flow control statements (for example, IF, WHILE, BEGIN TRY) or any statement that changes session settings, such as SET NOCOUNT ON. If the query is a stored procedure that returns more than one SELECT statement, a separate query notification subscription is registered for each SELECT statement.
Clients can submit a notification subscription request by programming directly against the SQL Native Client OLE DB provider, SQL Native Client ODBC driver, by using the HTTP SOAP access to SQL Server or, most commonly, by using the ADO.NET 2.0 client components. Query notification subscription requests cannot be submitted using Transact-SQL. Currently, the Microsoft JDBC driver for SQL Server 2005 does not support submitting these requests.
Query notification metadata

· sys.dm_qn.subscriptions. One row for each query notification subscription.
· sys.internal_tables. Internal metadata for query notification storage and parameters.
Registering a query notification subscription with ADO.NET
Because ADO.NET has the most flexible support for query notification processing, we'll cover the two ways that you can register query notification subscriptions with ADO.NET. These use the SqlNotificationRequest or SqlDepedency classes. The SQL Native Client OLE DB provider and ODBC driver and HTTP clients work similarly to SqlNotificationRequest, the lower-level ADO.NET class of the two. SqlDependency is a convenience class that combines SqlNotificationRequest with a listener infrastructure that listens in on the queue and dispatches the notification back to the client. With SqlDependency, the application developer gets a CLR callback whenever data has changed.
SqlNotificationRequest is the simplest ADO.NET component for subscribing to query notifications. This class is used directly to create a query notification subscription.
To create a query notification subscription using SqlNotificationRequest

25. Create a new SqlNotificationRequest object, passing in the appropriate Service Broker service name and broker instance.
26. Assign the newly created SqlNotificationRequest to the Notification property of an SqlCommand.
27. Execute the SqlCommand.

Using SqlNotificationRequest leaves the task of handling the notification message to the client application. While this is the most flexible way of leveraging query notification functionality, it requires knowledge and understanding of the way Service Broker delivers messages and how to write a Service Broker application to process notification messages.
If you use the SqlDependency class, the ADO.NET library creates a listener infrastructure so that you need not process the message using custom Transact-SQL code. Instead, the client application is automatically notified through a callback method that your program registers on the SqlDepedency instance.
You must start the listener by using a static Start method of the SqlDependency class. Specify a connection string and an optional Service Broker QUEUE. The listener opens a connection to the instance of SQL Server you specify. If you do not specify a QUEUE, the listener creates a SERVICE and a QUEUE for you. The SERVICE name is SqlQueryNotificationService-[GUID]. Then, the listener begins a dialog to listen on that SERVICE by using a WAIT FOR... RECEIVE statement. The SQL code executed by SqlDependency.Start using a default QUEUE, looks like the following:

-- guids are always different and are assigned at runtime
{GUID} = 5e15087f-7039-4f03-aeab-15063d38b004
{GUID2}= C0588F48-C503-DA11-AC11-0003FFAA155A

CREATE PROCEDURE [SqlQueryNotificationStoredProcedure-{GUID}]

AS

BEGIN

 IF (SELECT COUNT(*) AS numRows FROM sys.sysprocesses

 WHERE program_name='SqlQueryNotificationService-{GUID}') <= 0

 BEGIN

 BEGIN TRANSACTION;

 DROP SERVICE [SqlQueryNotificationService-{GUID}];

 DROP QUEUE [SqlQueryNotificationService-{GUID}];

 DROP PROCEDURE [SqlQueryNotificationStoredProcedure-{GUID}];

 COMMIT TRANSACTION;

 END

END

declare @p3 uniqueidentifier

set @p3='{GUID2}'

exec sp_executesql

 N'IF OBJECT_ID(''[SqlQueryNotificationService-{GUID}]'') IS NULL

 BEGIN

 CREATE QUEUE

 [SqlQueryNotificationService-{GUID}]

 WITH ACTIVATION

 (PROCEDURE_NAME=[SqlQueryNotificationStoredProcedure-{GUID}],

 MAX_QUEUE_READERS=1,

 EXECUTE AS OWNER);

 END;

IF

(SELECT COUNT(*) FROM SYS.SERVICES

 WHERE NAME=''[SqlQueryNotificationService-{GUID}]'') = 0

 BEGIN

 CREATE SERVICE [SqlQueryNotificationService-{GUID}]

 ON QUEUE [SqlQueryNotificationService-{GUID}]

([http://schemas.microsoft.com/SQL/Notifications/PostQueryNotification]);

 END;

BEGIN DIALOG @dialog_handle

FROM SERVICE [SqlQueryNotificationService-{GUID}]

TO SERVICE ''SqlQueryNotificationService-{GUID}''',

 N'@dialog_handle uniqueidentifier output',

 @dialog_handle=@p3 output

select @p3

exec sp_executesql

N'BEGIN CONVERSATION TIMER (''{GUID2}'')

 TIMEOUT = 120;

 WAITFOR(RECEIVE TOP (1)

 message_type_name, conversation_handle,

 cast(message_body AS XML) as message_body from

 [SqlQueryNotificationService-{GUID}]),

 TIMEOUT @p2;',N'@p2 int',@p2=0

exec sp_executesql

N'WAITFOR(RECEIVE TOP (1)

 message_type_name,

 conversation_handle,

 cast(message_body AS XML) as message_body from

 [SqlQueryNotificationService-{GUID}]),

 TIMEOUT @p2;',N'@p2 int',@p2=60000

Calling SqlDependency.Stop shuts down the listener and deletes the SERVICE and QUEUE if it was created by the call to SqlDependency.Start. Each client that uses query notifications will have an open connection to SQL Server specifically for the listener. If you use SqlDependency in a service process such as the ASP.NET worker process, the background thread is shared by all requests in one appdomain (ASP.NET application). This is important, because if each SqlDependency request were to start its own listener, the back end server would be quickly swamped by all those requests issuing WAITFOR(RECEIVE…) statements, each blocking a server thread. One nice feature about being able to specify your own queue as well as your own connection string is that, in a situation where every Web server in a large Web farm is listening on the same query notification, the queue can be on different physical computers. When configured this way, you can limit the number of listener connections on any of the instances of SQL Server. The feature that enables this is Service Broker delivery. If you spread the listeners out like this, you are responsible for defining your own queue and also your own Service Broker routes.

If a client disconnects abruptly without stopping the SqlDependency infrastructure, the queue and service created by SqlDependency.Start are left stranded. This is not a problem, because the SqlDependency infrastructure also deploys a stored procedure associated with activation on this queue and sets up a dialog timer. When this timer fires, the procedure is activated. This procedure cleans up the queue, the service, and the activated procedure itself. Due to the pending WAITFOR(RECEIVE…) permanently posted by the SqlDependency background thread, the activated procedure will launch only if the client has disconnected without cleaning up.
How query notifications work in SQL Server
In addition to setting up and tearing down the listener, query notifications have an interesting internal implementation. You can observe this implementation through experimentation. This experiment was done on a lightly loaded system, using the ADO.NET SqlDependency class, to emulate what query notifications would do if there were sufficient memory. SQL Profiler was set up to trace all query notification-related SQL Profiler events. In all the traces I’ve done, the QN_dynamics event never occurred. This event is supposed to be related to the internal activities of query notifications. When profiling query notifications, the fields that are most important are EventClass, EventSubClass, and TextData. You can catch QN events with Event Notifications/WMI as well as with SQL Profiler. The TextData for QN events is in XML format. The following Transact-SQL statement can be used in every database to see active query notification subscriptions:
SELECT * FROM sys.dm_qn_subscriptions
Query notifications are stored in internal tables. There is one internal table for each different query (not for each table) that has a query notification against it. You can see the information about the internal tables (such as the space used) by querying the sys.internal_tables system view, but there is no visibility into the internal tables. DDL (such as a DROP TABLE statement) results in “table not found or you don’t have permission” error.
The first query notification against a table (with an empty query cache) produces the following events:

· QN:parameter_table table created

· QN:parameter_table table pinned

· QN:template template created

· QN:parameter_table table unpinned

· QN:parameter_table LRU reset

· QN:parameter_table LRU reset

· QN:parameter_table Number of user incremented

· QN:subscriptions
 Subscription registered
The following events are produced by the second query notification for the same query.
· QN:parameter_table table pinned

· QN:template template matched

· QN:parameter_table table unpinned

· QN:parameter_table LRU reset

· QN:parameter_table LRU reset

· QN:parameter_table Number of user incremented

· QN:subscriptions
 Subscription registered
The following events are produced by the third query notification for the same query (and for succeeding queries). Each additional QN against the same table results in:

· QN:parameter_table LRU reset

· QN:parameter_table Number of user incremented

· QN:subscriptions
 Subscription registered

Each query notification subscription is visible in sys.dm_qn_subscriptions. The subscriptions stay until either the corresponding event is fired or the timeout expires.
The subscription remains regardless of whether the SqlDependency Stop() method is called or the program that registered the dependency ends. The program is assumed to be continuously running, as far as the subscription is concerned. The DBA can issue KILL QUERY NOTIFICATION SUBSCRIPTION to get rid of them.

When an event fires, you normally get a ‘QN:subscriptions – Subscription Fired’ event. If SqlDependency.Stop() has been called and the queue no longer exists, you get QN:subscriptions – Broker error intercepted instead.

Query notifications affect the original SELECT statement and also the INSERT, UPDATE, and DELETE statements issued against the participating tables. INSERT, UPDATE, and DELETE statements are affected as long as the internal table exists for the table being changed, regardless of whether there are existing query notifications. If there are no more query notifications on a table, the corresponding internal table is dropped 10 minutes after the last query notification is deleted.

The original SELECT with a QN searches the internal table for a matching set of parameters, and then inserts a row. All succeeding INSERT, UPDATE, or DELETE statements check the internal table for appropriate notifications. This adds some overhead to all statements associated with the table(s). This additional overhead is part of the query plan.

In addition to parameter tables, QN notifications can use templates to optimize notification processing. A query template is reused if the parameterized statement that registers the query notification matches the original statement. The parameter values need not match. For example, issuing a parameterized SELECT statement matches the same parameterized (or autoparameterized) statement but if the statement is not autoparameterized, it will not match. A new internal_table is created for each query template. If the SELECT statement with the notification is a JOIN, there is only one internal_table, but its existence affects INSERT, UPDATE, DELETE on each table in the JOIN.
Troubleshooting query notifications

While the SqlDependency infrastructure is a great help to developers, it is often used without a proper understand of its functionality. SQL Server 2005 Books Online has a dedicated section to this called Troubleshooting Query Notifications. SQL Profiler can show the query notification events that are reported when a new subscription is registered. Once a notification subscription is notified, the notification message is delivered by using Service Broker. All of the techniques related to troubleshooting dialogs apply to this message delivery as well. If the notification message is not delivered, the first place to look is the transmission_status column in the sys.trasnmission_queue view in the sender’s database.

Security for the Service Broker objects that query notifications and the query notification listener use must be set up correctly or query notifications will appear not to function. This is especially tricky if you're using the ADO.NET SqlDepedency class or the ASP.NET SqlCacheDependency class (that uses SqlDepedency internally), because the Service Broker objects are created at run time. The "runtime listener creation" has been the cause of most of the frequently asked questions about query notifications. The basic information about security and query notification appears in SQL Server Books Online. It refers to creating a user that appears in the SqlDependency.Start connection string (called start_user) and a user to execute the statement with a query notification (called execute_user). The permissions that start_user needs are:

· CREATE QUEUE

· CREATE SERVICE

· CREATE PROCEDURE

· REFERENCES on CONTRACT http://schemas.microsoft.com/SQL/Notifications/PostQueryNotification

· VIEW DEFINITION

The permissions that execute_user needs are:

· SUBSCRIBE QUERY NOTIFICATIONS

· RECEIVE ON QueryNotificationErrorQueue

· REFERENCES on CONTRACT http://schemas.microsoft.com/SQL/Notifications/PostQueryNotification
· The user must also be a member of the role sql_dependency_subscriber (this role must be created by the DBA)
Some administrators have gone by these instructions and still receive the error message, "either schema dbo does not exist or you do not have permission to access it." This is caused by the separation of users and schemas in SQL Server 2005.

The instructions don't show creating 'startUser' (the principal that creates procedures, queues, and services), so administrators create it, using the new DDL, like this:

CREATE LOGIN startUser WITH PASSWORD = 'SomeStrongPW1'
CREATE USER startUser FOR LOGIN startUser

The problem is that CREATE USER doesn't assign a default database schema (this is the default behavior in SQL Server 2005) and when startUser attempts to create database objects, it creates them in the default default_schema, which is dbo. The quick fix is to create a schema for (owned by) the user and make that schema its default schema as in the following code.

CREATE SCHEMA startUserSchema AUTHORIZATION startUser
ALTER USER startUser WITH DEFAULT_SCHEMA = startUserSchema

A better alternative might be to create a database role for this function and create the default schema owned by the role. Then add startUser to the role. You still must alter the user's default_schema, because database roles cannot have default schemas. Roles cannot have default_schemas. This is because if one user were a member of three different roles and each role had a different default_schemas, which one would be selected as default?

A less attractive (actually unattractive) alternative is to give startUser CREATE (actually ALTER) privileges on the dbo schema.

GRANT ALTER ON SCHEMA::dbo to startUser

This isn't a good idea because you've just given startUser more privileges than it needs.

Three more comments about troubleshooting setup:

· If you create the user by using the sp_adduser system stored procedure instead of CREATE USER, the query notification code works without explicitly creating a schema. For backward compatibility sp_adduser actually executes the equivalent of the following code:

CREATE USER startUser WITH DEFAULT_SCHEMA = startUser
GO
-- create schema must be first statement in the batch
CREATE SCHEMA startUser AUTHORIZATION startUser
This will not be supported when the sp_adduser backward compatibility procedure is removed.
· With the new separation of users and schemas, granting CREATE TABLE permission doesn't give the user enough permissions to create a TABLE. The user also needs a *container* to create tables (or other database objects) in. The user needs a database schema. Resist the temptation to make a schema for the user; rather, make a schema for a role the user is a member of. The fact that schemas can be owned by a role is one of their best features.

· Technically, Service Broker SERVICEs (as well as MESSAGE_TYPEs and CONTACTs) don't live at schema scope. They live at database scope, so you don't need a schema for them. CREATE privilege is enough. But QUEUEs (and most database objects) do live at schema scope.

Using a pre-configured service and queue

Some administrators want the ability to "pre-provision" the queue, service, and stored procedure that ASP.NET Cache Sync needs. The concern is that the connection string to start up the listener (in Application.OnStart()) used the same security principal as the remainder of the application. That is, the application data access and listener start connection strings were both

"server=myserver;integrated security=sspi;database=mydb".

This meant that the entire application had CREATE QUEUE, CREATE SERVICE, and CREATE PROCEDURE privilege. That's too much privilege. Using a separate SQL login for SqlDependency.Start() may not be an option.

ADO.NET SqlDependency has an override for the static Start method that takes the name of a pre-provisioned queue. This can be combined with use of the constructor of SqlDependency that uses an Options parameter. Currently the queue name must be a one-part SQL identifier; a two-part name (schema.object) doesn't work. This means that the queue, service, and procedure must live in the SQL principal's default schema. The Options parameter is a string that names the service and database (broker instance) that the dependency should use. The options string looks like this:

"service=myservice;local database=mydb" or
"service=myservice;broker instance={GUID}" //where GUID is the Service Broker GUID.

To create a stored procedure to do the same type of processing that the SqlDependency listener does, you can base your procedure on the one SqlDependency dynamically generates and change the name of the queue and service.

Unfortunately, ASP.NET SqlCacheDependency doesn't allow the options string to be specified. And, overriding SqlDepedency.Start() doesn't work without the corresponding options on SqlDependency. So the only way to use a preconfigured service and queue is to build your own cache by using the ASP.NET Cache class as a template. This is not as simple as using the OutputCache directive on the Page class, but it is more secure.
Best practices for query notifications
· Keep the number of Subscribers small. When a query notification is received by the client, each client attempts to refresh the cache at the same time.

· Keep the query that is used for notifications simple. Each table that is used in a query notification results in allocation of a system table. INSERT, UPDATE, and DELETE statements for these tables will be affected. When using a complex query with notifications, the plan of the original query is also affected.
· Call SqlDependency.Stop at application shutdown to release resources in the database.

· Use parameterized queries with query notifications to enable template reuse.

· Use a separate login and user with SqlDependency if possible. This user should have its own SQL Server SCHEMA in the database to avoid having to grant it access to the DBO SCHEMA.
Peer-to-Peer Replication

Peer-to-peer replication is a form of transactional replication, which has been supported in SQL Server for some time. All types of replication use batch jobs, known as replication agents, to implement replication. These jobs must have the appropriate permissions to access the data they need. Two replication agents are used by peer-to-peer replication:
· Log reader agent (logreader.exe)

· Distribution agent (distrib.exe)
All other types of transactional replication also use the Snapshot agent (snapshot.exe) to populate the initial snapshot and synchronize the tables. Peer-to-peer replication does not use this agent. The agent executables and DLLs are located in the C:\Program Files\Microsoft SQL Server\90\COM directory.
Peer-to-peer replication is a form of transactional replication, most closely related to (and an extension of) bidirectional transaction replication, Therefore it is useful to know how transactional replication works in general, and how bidirectional transaction replication works before proceeding to peer-to-peer replication.

In transactional replication, the logreader agent, when invoked, reads transactions in the log that are marked for replication. The transaction must have an LSN (log sequence number) that is greater than the last log sequence number already processed. The logreader determines the last LSN processed by consulting the MSrepl_transactions table. Each transaction log record is processed into a series of singleton commands. For example, if the transaction is an update:

UPDATE jobs SET min_lvl = 10 WHERE job_id BETWEEN 10 and 15;

and six rows were affected by the update, the log record is processed into six singleton commands. This is to ensure transactional consistency in the case of a range-based update. This results in six rows being inserted into distributor.dbo.MSrepl_commands table. The logreader then updates the MSrepl_transactions table to reflect the last LSN processed.

To distribute changes, the distribution agent consults the MS_replication_subscriptions table to determine the last LSN applied to that subscription (this is known as the watermark) and runs the commands that come from the MSrepl_commands table in batches. Then it updates the watermark in the MS_replication_subscriptions table.
Bidirectional additions

Bidirectional replication adds a Simple Originator Record (SOR) to the log to avoid "ping-ponging" the change back and forth across the bus. In a bus topology, each node gets each update only from a single node. Therefore, if the originator node is not equal to the Subscriber node, changes are applied. Simple Originator Records are emitted to the log once per transaction, not once per update. In the original updater's log, the SOR has a blank value, indicating that there is no originator.

The last transaction processed at each Subscriber is determined from the watermark table, as with directed transactional replication. When changes are applied to the Subscriber, the Subscriber also writes log records. The SOR in the Subscriber's log indicates that the original updater is the originator. As the change passes down the bus, the originator is changed at each node to reflect the node that sent the change. This ensures that changes are never sent back to the nodes that sent them in the first place. So, if node A sends to node B, node B then sends to node C.

However, when the Subscriber's log is replicated to a third node, the originator is set to "first Subscriber" (B, in this case) in the Distributor's table. When the third node writes a transaction log record, the SOR indicates that the first Subscriber (not the original updater) is the originator. Having the originator change to B ensures that C will never send B's own changes back to it. But because the originator must change in order to prevent returning updates, the original originator is lost.
To follow this through a multi-node, bus topology case where node A -> (replicates to) node B -> (replicates to) node C then:
· In the log record from node A, the originator is blank.

· In the distribution database for node A to B, the originator is set to node A.
· In the log record from B, the originator is set to A.
· In Distributor from B to C, the originator is set to B.
· If C replicates to A, the originator is B (not = A) and the duplicate update, insert, or delete action proceeds.
So A -> B -> C -> D... (bus topology) works using the simple originator record. But if this is a ring topology rather than a bus topology, when the logreader and the Distributor run at C to send changes to A, the Distributor will attempt to insert the changes into node A again. It attempts this because the originator in the Simple Originator Record is set to node B. And the SOR must be set to B to prohibit C from sending B it own changes.
Peer-to-peer replication adds an Extended Originator Record (EOR). The EOR always keeps track of the original writer (A, in the previous case example). Changes from every node to every other node are tracked using a new table, MSPeer_lsns, to ensure that changes from any node are never applied to another node twice. The MSPeer_lsns table contains the highest LSN applied from each node and does not contain a row for the current node. In fact, rows that have already been applied are never sent from the Distributor to the Subscriber, because the distribution agent does an INNER JOIN between the MS_repl_commands table and MSPeer_lsns. This permits any distribution agent to connect to any of the other nodes without reapplying changes. The JOIN not only maintains multi-master integrity in a ring topology, but also results in the behavior that non-qualifying replicated rows are never sent from a Distributor to a Subscriber.
Although peer-to-peer replication enables topologies that are not supported by bidirectional replication, the extra overhead of the EOR record result in a slight performance hit. The EOR record and the SOR records are both written once per transaction. So the biggest performance difference between bidirectional and peer-to-peer replication will be seen when there are a large number of transactions with singleton changes. At worst case, peer-to-peer replication speed is about 80% of that of bi-directional replication.

Other replication performance enhancements in peer-to-peer replication
In general, SQL Server replication works by transmitting synthesized textual insert, update, and delete commands and storing them at the Distributor. The larger the text, the more bytes must be transmitted and stored. Two changes were made in SQL Server 2005 to minimize the size of the text—shorter default replication stored procedure names and the SCALL command format. Because peer-to-peer replication is new in SQL Server 2005, these are the default for peer-to-peer replication. Other types of replication can use these conventions, but the default behavior was preserved for backward compatibility reasons.
The first change is in the shorter default names for the stored procedures that apply replication changes to the Subscriber. The new naming conventions are:

· i_tablename_int(hash) - for insert

· u_tablename_int(hash) - for update

· d_tablename_int(hash) - for delete
Even this naming convention results in names that are longer than necessary. The convention is needed so that arbitrary subscriptions can be configured without naming conflicts. If you know there will not be naming conflicts, you can specify (in sp_addsubscription) shorter names. Because these names appear in every Extended Originator Record, short names can save space and transmission time. In general, descriptive names are better; non-descriptive names for replication may make a system difficult to maintain. The exact layout of the Extended Originator Record is a proprietary implementation detail, and subject to changes in future releases.

Another way to shorten text is to use a new replication command format called SCALL. In SCALL format, instead of passing the string NULL for values that are unchanged, a single space is passed. If your system does many updates to tables that contain many columns, using SCALL format can result in substantial savings. SCALL is the default format for peer-to-peer replication.

Replication agent jobs execute by starting up, running until they have no more work to do, and then shutting down. If the work is continuous, the agent never shuts down. If the work is almost continuous, there could be a lot of shutdowns and startups. Setting the PollingInterval property for the Distributor and logreader agent to an appropriate value for your application can increase performance. If your system is constantly shutting down and re-starting the agent, setting a higher polling interval can reduce agent churning. However, setting a lower polling interval can increase the skew between replicated table information.
Replication metadata views used by peer-to-peer

Distributor metadata views
· MSrepl_commands originator_lsn. Used to JOIN MSrepl_commands against the MSPeer_lsns table.
· MSrepl_originators publication_id, dbversion. Used to match against the fields in the Extended Originator Record.
· MSCached_peer_lsns. A local cached copy of the MSpeer_lsns table, used to ensure that as few rows as possible are sent to the Subscriber from the Distributor.
Subscriber metadata views
· MSpeer_lsns. Used to match transactions to subscriptions in peer-to-peer replication.
Monitoring and troubleshooting peer-to-peer replication

The most straightforward way to monitor peer-to-peer replication is to use Replication Monitor in SQL Server Management Studio (SSMS). This tool allows you to collect all of the Publishers that you are interested in monitoring into a single tree, similar to the way the Registered Server pane of SQL Server Management Studio collects a list of registered servers. To obtain a list of tasks for a Publisher, right-click the Publisher. Tasks include:

· Changing some of the Publisher settings.
· Setting properties of the agent profiles.
· Configuring replication alerts.
The agent profiles include check boxes that correspond to some of the commonly used command-line switches from distrib.exe and logreader.exe. Replication alerts not only monitor replication but send a notification, using the standard SQL Alerts notification mechanism, when there is a problem with replication performance or a replication failure. You can view publication and subscription status and performance information in Replication Monitor.
Some of the information in Replication Monitor may look different for peer-to-peer replication than for other types of replication. For example, network latency may appear to be abnormally high for some nodes; this is because all messages are being measured and some messages may be being processed by other nodes in the topology. There may also appear to be undistributed commands for some of the peer-to-peer nodes (double-click a subscription, open the Undistributed Command tab). This can occur because those commands have been delivered by other peer nodes in the topology. Peer-to-peer replication commands are always distributed by the fastest network path between nodes, but there is no way to either predict or control the path that peer-to-peer replication uses.
Double-clicking a publication in the tree in the right pane allows you to use a graphic user interface to send tracer tokens. This is a new feature of SQL Server 2005 that sends a dummy command to see how quickly the commands will be processed by the distribution agent and applied to subscriptions.
Replication Monitor also shows the status of all common replication jobs for a particular node, as well as replication performance history. You can configure a variety of alerts for replication through the SQL Agent-based Alert mechanism. As with all alerts, you can configure administrator notification or job execution when the alert takes place. Replication alerts can be grouped into:

· Agent status alerts - agent success, failure, retry, and custom shutdown

· Exceeding performance thresholds - transactional latency thresholds

· Subscription expiration or dropping of expired subscriptions

· Data validation at a Subscriber
For more information on Replication Monitor, see SQL Server 2005 Books Online.
Replication diagnostic stored procedures

In addition to using Replication Monitor, you can execute diagnostic stored procedures directly. Tracer tokens are a mechanism for measuring publication latency and can be by requested by using sp_posttracertoken. These are not specific to peer-to-peer replication and may even give higher than normal latency readings because peer-to-peer replication can use multiple network paths to deliver changes in a network-route-redundant topology. Be aware of this when you use tracer tokens, as the Peer-to-Peer Replication Wizard sets up a publication and subscription for every combination of nodes, so there will be redundant routes.

A peer-to-peer specific way to determine if all previous commands have been replicated to all nodes is to use sp_requestpeerresponse. This sends a request to each node. To review the responses, use the sp_helppeerresponses procedure. It is always a good idea to ensure that all changes are posted after quiescing a peer-to-peer topology before any peer-to-peer configuration change. These requests on responses are stored in the MSpeer_request and MSpeer_response tables. Unwanted history can be cleared by using sp_deletepeerrequesthistory.

A benefit of using the diagnostic procedures directly is that you can script them to run on a schedule or in response to a replication alert to gather more diagnostic information or to automate configuration.
Diagnostic stored procedures

· sp_posttracertoken. Posts a tracer token into the Publisher transaction log.
· sp_helptracertokens. Returns one row per tracer token posted.
· sp_helptracertokenhistory. Returns details about Distributor latency, Subscriber latency, and overall latency.
· sp_deletetracertokenhistory. Deletes specified rows from the token and history tables.
· MStracer_tokens table. Used to track token posting requests.
· MStracer_history table. Used to track token history requests.
· sp_requestpeerresponse. Requests a response from each peer as to whether all changes have been posted to peer-to-peer Subscribers.
· sp_helppeerresponses. Gets information returned by sp_requestpeerresponse.
· sp_deletepeerrequesthistory. Deletes rows from the MSpeer_request and MSpeer_response tables.

· MSpeer_request table. Used to track status requests.
· MSpeer_response table. Used to store a node's responses to status requests.

Diagnosing and resolving replication agent errors

When peer-to-peer replication causes a replication update conflict, this manifests itself at the Distributor. Update conflicts stop the distribution agent with an error. Peer-to-peer replication conflicts are similar to other transactional replication conflicts, so the same diagnostic and resolution procedures apply. For example, using the sp_publication_validation stored procedure to validate a transactional publication at the Publisher is also effective with peer-to-peer publications.
You can obtain additional diagnostic information from the distribution agent, by running it with the -OutpuVerboseLevel and -HistoryVerboseLevel command-line switches set to value of 2 and 3 respectively. These switch values are used to report progress and error messages and to always insert new history records in the log. You can also execute the system stored procedure sp_helpsubscriptionerrors to obtain a rowset of all transactional subscription errors and corresponding transaction sequence numbers.
You can compare tables at the Publisher and Subscriber by using the tablediff command-line utility. The tablediff utility has a vast array of options; for a complete list, see SQL Server Books Online. When you confirm a difference between tables, you can use tablediff to generate INSERT, UPDATE, and DELETE statements to bring the tables back in sync. Be aware that tablediff cannot generate statements that synchronize SQLCLR user-defined types (UDTs). For large value types (VARCHAR(MAX), NVARCHAR(MAX), VARBINARY(MAX), XML), it generates only the first 8,000 bytes.

After manually applying changes generated by tablediff, rerun your distribution agent with the SkipErrors command-line switch. Use sp_setsubscriptionxactseqno to manually adjust the next transaction sequence number that will be distributed. Use your transaction sequence number, obtained from sp_helpsubscriptionerrors and error specifics, to determine what the next transaction sequence number should be. If you use this procedure, be sure to consult the SQL Server 2005 Books Online, which contains a warning about the possible repercussions of using this procedure incorrectly, which may include producing additional errors.
The Microsoft FTP site contains a utility, repldiag.exe, that you can use to collect the replication-based metadata to submit to Product Support Services to assist in problem diagnosis. You can choose to collect all replication metadata or a subset of the metadata tables. Which metadata to collect is configurable using an XML-based configuration file.

Stored procedures for troubleshooting replication
· sp_helpsubscriptionerrors. Lists all distribution errors.
· sp_setsubscriptionxactseqno. Sets the next transaction sequence number to process at the Publisher.
· sp_publication_validation. Validates a publication by counting rows at Publishers and Subscriber.
Best practices for peer-to-peer replication

· Peer-to-peer replication has distinct advantages when it comes to disaster recovery as compared to bidirectional transaction replication.
· Favor bidirectional transactional replication over peer-to-peer replication if a bus topology can be used. The extended originator record entails overhead, but this overhead is not excessive unless there are a lot of transactions with singleton changes.
· Use only the appropriate amount of replication path redundancy. The Peer-to-Peer Replication Wizard sets up a subscription between every Publisher and every Subscriber. With four or more peers, this may be more redundancy than you need.

· Register alerts for replication events based on service level agreements.
· For best results, assign a Distributor per Publisher in your replication topology. The Distributor can be located on either the same computer as the Publisher or on a separate computer, based on expected traffic.

· Monitor replication traffic over time using the information in the replication history tables or using Replication Monitor.

· Use tracer tokens for troubleshooting and as a rough measure of performance. Keep in mind that latency measurements may be skewed in a peer-to-peer scenario.
Distributed Partitioned Views, Queries, and Updates
You can scale out a database application by distributing the data among multiple database instances. Distributed partitioned views can be used to query a table split across multiple databases as though it were a single table. Distributed queries are used to retrieve information from a table that is located on a remote database instance.
Distributed partitioned views and distributed queries use linked servers, which use the OLE DB APIs for connectivity. The OLE DB APIs allow the consumer to ask the provider for information and optimize the distributed query accordingly. The basic set of information about provider that consumers can ask for is extensible. This information is provided by the OLE DB rowset IDBInfo. For the SQLNCLI provider (SQL Native Client OLE DB provider) used in SQL Server 2005, the capability information returned looks like this:
<ProviderInformation>

<Provider>SQLNCLI</Provider>

<LinkedServer>SQLDEV02</LinkedServer>

<ProviderCapabilitiesAndSettings>

<Ansi92EntrySupport>1</Ansi92EntrySupport>

<ODBCCoreSupport>1</ODBCCoreSupport>

<ODBCMinimumSupport>1</ODBCMinimumSupport>

<SimpleGrammarSupport>0</SimpleGrammarSupport>

<AnsiLikeSupport>0</AnsiLikeSupport>

<SQLLikeSupport>0</SQLLikeSupport>

<DateLiteralsSupport>1</DateLiteralsSupport>

<GroupBySupport>0</GroupBySupport>

<InnerJoinSupport>0</InnerJoinSupport>

<SubqueriesSupport>0</SubqueriesSupport>

<SimpleUpdatesSupport>0</SimpleUpdatesSupport>

<HistogramsSupport>1</HistogramsSupport>

<ColumnLevelCollationSupport>1</ColumnLevelCollationSupport>

<ConnectionSharingSupport>1</ConnectionSharingSupport>

<MultipleActiveRowsetsSupport>1</MultipleActiveRowsetsSupport>

<MultipleResultsSupport>1</MultipleResultsSupport>

<AllowLimitingRowsReturned>1</AllowLimitingRowsReturned>

<NullConcatenationYieldsNull>1</NullConcatenationYieldsNull>

 <StructuredStorageAccessToLargeObjects>1</StructuredStorageAccessToLargeObjects>

<MultipleConcurrentLargeObjectSupport>0</MultipleConcurrentLargeObjectSupport>

<DynamicParametersSupport>1</DynamicParametersSupport>

<NestedQueriesSupport>1</NestedQueriesSupport>

<IndicesAvailableAsAccessPath>0</IndicesAvailableAsAccessPath>

<AllowDataAccessByReference>1</AllowDataAccessByReference>

<RowsetChangesAreVisible>1</RowsetChangesAreVisible>

<RowsetSupportsAppendOnly>0</RowsetSupportsAppendOnly>

<UseLevelZeroOledbInterfacesOnly>0</UseLevelZeroOledbInterfacesOnly>

<RowsetUpdatability>1</RowsetUpdatability>

<AsynchronousRowsetProcessingSupport>1</AsynchronousRowsetProcessingSupport>

<DataSourceUnicodeLocaleId>0</DataSourceUnicodeLocaleId>

<DataSourceUnicodeComparisonStyle>0</DataSourceUnicodeComparisonStyle>

<DataSourceCollationComparisonFlags>0</DataSourceCollationComparisonFlags>

<DataSourceCharacterset></DataSourceCharacterset>

<DataSourceSortOrder></DataSourceSortOrder>

<DataSourceNullCollationOrder>4</DataSourceNullCollationOrder>

<CurrentDbCollationSameAsDefaultRemoteDbCollation>1</CurrentDbCollationSameAsDefaultRemoteDbCollation>

<UnicodeLiteralSupport>1</UnicodeLiteralSupport>

<UnicodeLiteralPrefix>N'</UnicodeLiteralPrefix>

<UnicodeLiteralSuffix>'</UnicodeLiteralSuffix>

<DateLiteralPrefix>'</DateLiteralPrefix>

<DateLiteralSuffix>'</DateLiteralSuffix>

<ObjectNameConstructionFlags>54</ObjectNameConstructionFlags>

<SchemaSeparator>.</SchemaSeparator>

<CatalogSeparator>.</CatalogSeparator>

<QuoteSeparator>"</QuoteSeparator>

<ProviderOledbVersion>131152</ProviderOledbVersion>

<HalloweenProtectionNeeded>1</HalloweenProtectionNeeded>

<RowsetUsableAcrossThreads>0</RowsetUsableAcrossThreads>

<ObjectNameIsSinglePart>0</ObjectNameIsSinglePart>

<ObjectVersion>167147256916728</ObjectVersion>

<Cardinality>0</Cardinality>

<BookmarkSupport>1</BookmarkSupport>

<BookmarksReusable>0</BookmarksReusable>

<BookmarkType>Numeric</BookmarkType>

<BookmarkDataType>19</BookmarkDataType>

<BookmarkSize>4</BookmarkSize>

<TableFlags>0</TableFlags>

</ProviderCapabilitiesAndSettings>

</ProviderInformation>
This information could be coded into the query processor to special-case distributed partitioned views between servers running SQL Server. However, making the information available minimizes the amount of special-case code in the query processor. An example would be the OLE DB provider for Oracle, which might return some, most, or all of this information, depending on how it's coded. Two of the most useful pieces of information are Histograms Support and CurrentDBCollationSameAsDefaultRemoteDBCollation; the optimizer makes good use of this information. Note that some items differ between releases of SQL Server; for example, MultipleActiveResultsetsSupport was introduced in SQL Server 2005.
In SQL Server the ability to perform heterogeneous queries and updates is built into the query processor. The SQL Server query processor represents each operator as a unique node in the query tree. This gives the query processor more options than if a set of query operators were represented as a single node. Because of the granularity available when considering query options, SQL Server uses ordinary query costing rules but has some specific rules for constructing plans for remote queries. A few of the general costing rules that SQL Server uses for queries that include remote data sources are:
· Use the plan that results in the least network traffic from remote servers.
· Push as much of the processing to the remote server as possible.
· Use auto parameterized queries to the remote server.
· Group joins based on locality.
· Optimize selection predicates if the remote server supports the specific predicate and the optimization.
· Use scan, range, and fetch operations on the remote server if supported.
· Spool the remote rowset to the local server if it will be used more than once.
Constructing a remote query consists of combining, if possible, the query plan steps that need to be executed to fetch data from the remote server and synthesizing a query for each remote server. The query can be as simple as "select all of the rows from the remote server and send them across the network" or as complex as a multi-table JOIN with parameterized selection predicates.

When you use distributed partitioned views with a federation of SQL Server database servers, SQL Server can use the generalized remote costing built in to the query processor as well as additional information about the query; that gives the optimizer as much information as possible to work with. For example, queries against distributed partitioned views can use the same statistics histograms that local SQL Server queries use to estimate cardinality. The optimizer can't estimate network latency for remote queries; this is why the first rule is to use the plan that will produce the least network traffic.
One of the most expensive operations in a query or action statement that uses distributed partitioned views is setting up the connection to the remote servers. The first thing that the query processor does as an optimization is to assess whether it needs to connect to remote servers. When using an action statement (INSERT, UPDATE, or DELETE), it must always connect to each remote server, even if the statement doesn't directly affect that server, to ensure that the metadata of the tables in the distributed partitioned view hasn't changed. It defers doing this until it absolutely needs to, because, in our linked server definition, we specify lazy schema validation.
If the statement is a SELECT statement, the query processor can eliminate partitions that would produce no data and save the overhead of a connection. It performs partition elimination based on the CHECK constraints specified as part of the view. For example, if a distributed partitioned view is partitioned by the orderdate column and each partition is one year's worth of data, a query for orders in 2006 Q1 needs to access only a single partition.
The main reason for lazy schema validation and partition elimination is that, no matter how simple the remote query, setting up the connection and exchanging metadata information (calling IDBInfo::GetInfo) is a fairly time-consuming operation. SQL Server 2005 optimizes setup by caching setup information. In addition, SQL Server 2005 queries against linked servers can be issued in parallel. Note that this means that setting up the connection and beginning the query on the remote server is parallelized; rows are still retrieved from remote servers serially.

To troubleshoot performance problems with distributed partitioned views, the OLE DB trace events in SQL Profiler are useful, as are the query plans on the server where the distributed query executes.
Troubleshooting distributed partitioned views

Besides possible performance issues, the biggest three reasons for troubleshooting when using distributed partitioned views are connectivity issues, security setup, and MSDTC (Microsoft Distributed Transaction Coordinator) setup.

Connection dropping is based on the concept that a database connection must be a continuous connection. Whether the requestor is a client connection or a server connection, losing network connectivity (even temporarily) with a database is a serious event. Dropping a database connection in the middle of a distributed partitioned view operation causes the entire operation to fail. When using distributed partitioned views with INSERT, UPDATE, and DELETE statements, you are required to use the SQL Server session option SET XACT_ABORT ON. This is because dropping the connection automatically rolls back a transaction in progress. This is what you need if connectivity outages arise.
The timeout value for a distributed partitioned view connection is set to 600 seconds in SQL Server 2005. Therefore, if the connection drops, the timeout wait you experience can be considerable. In addition, SQL Server cannot notify a connection that the network is down between calls. The next network call (query or update) simply returns a "connection not available" message. This problem is ameliorated somewhat by using database mirroring, but a failure to a mirror will roll back transactions in progress. Notification of failover occurs on the next database call. If failover occurs between calls, failover must be handled by your application.
Distributed partitioned views use distributed transactions for all INSERT, UPDATE, and DELETE operations, even if data is only being inserted into a single partition. The MSDTC (Microsoft Distributed Transaction Coordinator) service must be started and configured for network access with security in mind on all nodes running as part of a federation. For information about setting up and troubleshooting MS DTC, see Knowledge Base articles KB306212 and KB306843. You can troubleshoot connectivity issues by using the DTCPing utility program.

Bear in mind that MSDTC is not a distributed lock manager. Deadlocks cannot be detected between nodes in a federation as with a single local instance. Distributed transactions have a timeout value for this reason. Also note that network connectivity or deadlock problems in a distributed transaction can cause a transaction to hold locks longer—this can reduce system throughput. When using distributed partitioned views that have a lot of INSERT, UPDATE, and DELETE activity, it is best to ensure an uninterrupted network, on a local subnet if possible, and to watch the transaction timeout value to ensure you have maximum throughput.

The white paper Planning and Administering Scale-Out Solutions with SQL Server 2005 mentions the different security choices for linked servers, and the possible need for delegation if pass-through security is used from client to the server and also from server to the linked server in a distributed query. This is one of the most common issues that you may encounter. You can determine which remote logins are used in linked servers that are used by distributed partitioned views by querying the metadata views sys.linked_logins (local server to linked server) and sys.remote_logins (incoming logins for linked servers).

SQL Server 2005 has security on its metadata tables. This can cause a problem if users of distributed partitioned views do not have the ability to access the CHECK constraints on linked servers. You need to ensure that the users corresponding to the remote logins used by distributed partitioned views have at least VIEW DEFINITION permission on all tables that contain CHECK constraints used by distributed partitioned views.

Linked server catalog views

· sys.linked_logins. One row for each linked server to login mapping. Used for outgoing linked server logins.
· sys.remote_logins. One row for each linked server/login combination that has the ability to login to the current instance. Used with incoming linked server logins.
· sys.servers. One row per local or remote server registered.
Best practices for distributed partitioned views

· Use constrained delegation for linked servers if needed, rather than enabling delegation computer-wide.

· Beware of network latency; the query optimizer cannot estimate this factor, which may affect query response.

· Try to keep the partitions relatively equal with respect to number of rows.

· Use data-dependent routing to direct queries to the node with the most rows returned, if this can be determined.

· Consider using clusters along with distributed partitioned views for maximum availability.

· Be aware of the extra overhead distributed partitioned views introduce on INSERT, UPDATE, and DELETE statements.

· Check for OLE DB Provider and ensure provider support of appropriate provider interface and metadata availability for remote queries.
Conclusion

This white paper provides details implementing SQL Server 2005 scaleout features and how you can use these features to build and troubleshoot scaleout systems. The information in this paper also helps you assess the best type of scaleout architecture for your specific implementation.
For more information:

http://www.microsoft.com/technet/prodtechnol/sql/default.mspx
Did this paper help you? Please give us your feedback. On a scale of 1 (poor) to 5 (excellent), how would you rate this paper?

� This explanation of how the sample DDR implementation works was posted as a blog entry by Rushi Desai at � HYPERLINK "http://blogs.msdn.com/rushidesai/archive/2005/12/22/746825.aspx" \o "blocked::http://blogs.msdn.com/rushidesai/archive/2005/12/22/746825.aspx" �http://blogs.msdn.com/rushidesai/archive/2005/12/22/746825.aspx� and is used (edited slightly) with permission of the author.

� This explanation of how the sample DDR implementation works was posted as a blog entry by Rushi Desai at � HYPERLINK "http://blogs.msdn.com/rushidesai/archive/2005/12/27/746826.aspx" \o "blocked::http://blogs.msdn.com/rushidesai/archive/2005/12/27/746826.aspx" �http://blogs.msdn.com/rushidesai/archive/2005/12/27/746826.aspx� and is used (edited slightly) with permission of the author.

