Filename: REAL_Lifecycle_Partitioning.doc
3

[image: image1.png]§Qlﬂ_ Servef 2005

Data Lifecycle - Partitioning
SQL Server Technical Article

Writers: Erin Welker
Technical Reviewers: Grant Dickinson, Dave Wickert, Len Wyatt and Stuart Ozer
Published: June 2005
Updated: December 2006
Applies To: SQL Server 2005
Summary: Table partitioning is a critical component to effectively managing a large data warehouse environment, such as the one used in Project REAL. A well-planned partitioning strategy isolates volatile data from non-volatile data so that only updated data need be maintained, greatly minimizing costs. Partitioning can also be used to implement a more cost-efficient disk subsystem, saving on storage costs. SQL Server 2005 provides a new partitioning feature, table and index partitioning. This paper examines the intricacies involved in implementing a data warehouse using this new feature. Also included are discussions on Analysis Services cube partitioning and the changes to be considered in SQL Server 2005.

Copyright

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

 2007 Microsoft Corporation. All rights reserved.

Microsoft, Intellisense, Visual Basic, and Visual Studio are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Table of Contents

1Introduction

Data Lifecycle Overview
1
Partitioning
2
Moving aged data to inexpensive disks
2
Pruning dimensions
2
Barnes and Noble current environment
2
Relational Partitioning
3
Benefits of partitioning
3
Options in SQL Server 2000
4
Options in SQL Server 2005
4
Partitioned tables compared to partitioned views
6
Implementation decision
8
Partitioning design decisions
8
Partitioned indexes?
9
Converting existing tables to partitioned table
10
Examining the partitioned table
13
Incremental processing
15
Sliding window
15
Aging data
17
Pulling together table partitioning components
26
Observations and recommendations
26
Sharing the partition function
26
Index creation and initial loading
28
User-defined functions for metadata queries
28
Switching between PT and MT
30
Cube Partitioning
33
Benefits of cube partitioning
33
Changes in Analysis Services 2005
33
Analysis Services partitioning strategy
34
XML/A overview
35
XML/A implementation
35
AMO Overview
37
AMO Implementation
38
Observations and recommendations
40
AMO observations
40
XMLA observations
41
Overall observations
41
ETL Implementation
42
Loading sales
42
Loading inventory
43
Conclusion
44
References
45

Introduction
Successful business intelligence (BI) applications need solid tools to run on. They are also facilitated by having an associated base of knowledge about how to carry out a successful implementation—in short, best practices information. Through Project REAL, Microsoft® and several of its partners are discovering best practices for BI applications that are based on Microsoft SQL Server™ 2005 by creating reference implementations based on actual customer scenarios. This means that customer data is brought in-house and is used to work through the same issues that customers face during deployment. These issues include:

· Designing schemas—both relational and for Analysis Services.

· Implementing data extraction, transformation, and loading (ETL) processes.

· Designing and deploying client front-end systems, both for reporting and for interactive analysis.

· Sizing systems for production.

· Managing and maintaining the systems on an ongoing basis, including incremental updates to the data.

By working with real deployment scenarios, we gain a complete understanding of how to work with the tools. Our goal is to address the full gamut of concerns that a large company would face during their own real-world deployment.

This paper provides a detailed discussion on how partitioning was implemented, both on the relational data warehouse and in the Analysis Services cubes. In addition to providing the general "how we did it" overview, we include specific code segments and lessons learned so the reader will benefit from both our successes and failures. Anyone planning or implementing a BI system based on SQL Server 2005 should find the reference implementation useful.

For an overview of Project REAL, see “Project REAL: Technical Overview” (http://www.microsoft.com/technet/prodtechnol/sql/2005/projreal.mspx). Project REAL will result in a number of papers, tools, and samples over its lifetime. To find the latest information, check back to the following site:

http://www.microsoft.com/sql/solutions/bi/projectreal.mspx
Project REAL is a cooperative endeavor between Microsoft and a number of its partners in the BI area. These partners include: Apollo Data Technologies, EMC, Intellinet, Panorama, Proclarity, Scalability Experts and Unisys. The business scenario for Project REAL, and the source data set, were graciously provided by Barnes & Noble.

Data Lifecycle Overview

In any data warehouse implementation it is critical to develop a data lifecycle strategy that is appropriate for the project and that fits the requirements of the business. A data lifecycle could cover various aspects of a project but we defined it to include the database management processes that deal with the introduction of new data and facilitate the removal of old data. So, we divided the data lifecycle into three discreet areas: partitioning to facilitate the movement of data in and out of the data warehouse, moving aged data to an inexpensive disk, and pruning dimensions. This section provides a brief explanation of what is covered in each of these areas.
Partitioning

Partitioning is a method of splitting up a large data set into smaller, more manageable chunks. For this white paper, we address the partitioning of SQL Server tables and Analysis Services measure groups. We focus on horizontal partitioning, which segments rows of data based on values in a partitioning column. This is a common strategy in large data warehousing implementations, primarily as a means of managing data, cube loading, and maintenance. There are also benefits when querying the data, since both SQL Server and Analysis Services provide a means of discerning which partitions are relevant to a query, assuming the query uses the partitioning column to filter the data.
Moving aged data to inexpensive disks
A data warehouse, by its very nature, contains an extraordinarily large amount of data. Any technique possible can and should be used to manage the resource cost for maintaining such large data sets. When a date partitioning strategy is used, look for a chronological division where older data is no longer in high demand. At that point, the relevant data can be moved to less expensive disks where it is still available for queries, but is either less performant, less highly available, or both. This is a tradeoff that is established by the business to determine the balance between resource costs, query performance, and data availability.
Pruning dimensions

A sometimes overlooked aspect of data management is dimension pruning. This is often more of a usability issue than that of disk or database management. With Barnes and Noble, the two largest dimensions are the Item (products) and Customer dimensions. As products are discontinued and customers drop off, business users do not want to see them, especially when browsing dimensions with millions of members.
One requirement for removing members from a dimension is that no fact data should reference them. Analysis Services 2005 provides the capability to store an "unknown" dimension key on fact records where one or more dimension members are not present in the source data, but this is still not desirable in most cases. If the fact record exists, it only makes sense to have matching dimension members.
The business must decide when dimension members can be safely removed from the data warehouse. For example, this might be, "two years after no sales and inventory records exist with references to that product." The policy for deleting old data from fact tables should also be consistent with this decision.

Our implementation of dimension pruning is detailed in a separate future white paper.

Barnes and Noble current environment
In late 2004, when this phase of Project REAL started, Barnes and Noble implemented a data warehouse that uses the Microsoft Data Warehouse Framework. The subject areas include customer sales, store inventory, and DC (distribution center) inventory. At that time there were three years of sales, one year of store inventory, and one-half year of DC inventory. The data was loaded into weekly tables. A table naming standard was implemented to identify the data contained within a table. At that time, SQL Server 2005 Integrated Services (SSIS) was used to load a SQL Server 2000 relational data warehouse. Analysis Services 2000 was used to host a handful of cubes (Barnes and Noble has since implemented SQL Server 2005 throughout). The total relational data warehouse database was in the neighborhood of 2 terabytes. Though the data is conceptually partitioned by using one SQL Server table per partition, there are potentially many benefits to implementing SQL Server 2005 table partitioning, as we will see later in this white paper.
There are several requirements that must be gathered before determining a partitioning strategy. Some of those relate to how the data is loaded and the size of a partition based on a given partitioning interval. The business dictates how long data is to be kept available. The goal at Barnes and Noble is to eventually have five years of rolling sales history and three years of rolling inventory. They have not yet reached that amount of history, so we established our own requirements on the REAL project in order to demonstrate the rollout functionality of the sliding window implementation, discussed later in this white paper. Our next step is to evaluate the pros and cons of partitioning at Barnes and Noble and, assuming that partitioning is a worthwhile pursuit, determine the best method of doing so.
Relational Partitioning

Relational partitioning is the partitioning of the underlying relational data store. In a traditional data warehouse, this data is stored in a dimensional format, commonly referred to as a star or snowflake schema. Such is the case with our data. As a result, the tables are primarily either dimension tables or fact tables. Most dimension tables are relatively small, with several columns and only a few rows. Barnes and Noble does have two very large dimension tables: the Item dimension (7 million rows, 5 GB) and Customer dimension (nearly 6 million rows, 1 GB) tables. Both of these dimensions are type 2 slowly changing dimensions, which result in one row per “version” of the dimension member. The third largest dimension is the Store dimension, which has just over 4,000 rows and occupies less than 2 MB of disk space. Though large by dimension table standards, the Customer and Item dimensions are small when compared to the fact tables, as shown in the following table.
	Fact table
	Row count
	Space used
(data and indexes)
	Number of loaded partitions

	Tbl_Fact_Store_Sales
	1,366,052,628
	306 GB
	157

	Tbl_Fact_Store_Inventory
	8,450,555,562
	1,037 GB
	53

	Tbl_Fact_DC_Inventory
	51,387,065
	4 GB
	18

	Total
	
	1,347 GB
	

To make the fact tables manageable in terms of loading, backup/restore and index maintenance, the best solution is to horizontally segment them into smaller tables, which is the "partitioning" method we have been referring to.
Benefits of partitioning
The benefits of partitioning are alluded to above. All management operations on very large tables can be performed at a more granular level when the table is partitioned. The table backups can be segmented on a partitioned table. This is further facilitated by some of the other new functionality in SQL Server 2005. When a filegroup is read-only, SQL Server no longer requires a transaction log backup in a filegroup-restore scenario. In this case, the most current partitions can reside on filegroups that are separate from older nonvolatile partitions. The nonvolatile partitions can be placed on their own read-only filegroups, which need only be maintained and backed up once. At this point, only the volatile partitions require maintenance. Other operations, such as index maintenance, are also made easier in a partitioned scenario. This can be the difference between actively managing a multi-terabyte database and managing just a couple of data partitions that are less than 100 GB each.
Another benefit, especially in a data warehouse environment, is query performance. This is true whether the queries are issued by Analysis Services during cube processing or when end users query the relational data warehouse directly. In the case of cube processing, the performance improvement comes when the destination cube is partitioned by using the same partitioning column as the relational source. When a partitioned cube is processed, Analysis Services issues a query that limits the data to that contained within the partition. For instance, if the destination partition includes data for the week ending on 01/01/2005, it issues a query to SQL Server that asks for data only in that week. This greatly limits the number of partitions scanned.
Queries that are issued directly by the user against the relational data warehouse commonly have a date component. Common queries are sales comparisons between the current period versus the same period last year. In cases such as these, SQL Server can often limit the amount of data to be referenced and, therefore, improve query performance. The same is true for queries against Analysis Services.
Options in SQL Server 2000

SQL Server 2000 has a single partitioning option, partitioned views. To create a partitioned view, you simply define a view that lists all of the tables that participate in the view and use the UNION ALL statement to concatenate them. In order for the query optimizer to isolate partitions relevant to a given query, a trusted constraint must be in place to report which partitions contain which data. A trusted constraint is a constraint that was created by using the WITH CHECK option. If this option is not used when the constraint is created, or if data has been Bulk Loaded / BCP’d into the table without the CHECK_CONSTRAINTS hint present during every load, data may exist in the table that violates the constraint. SQL Server does not trust these constraints, so as a result, many of the optimization and functional benefits of these constraints are not realized.

Options in SQL Server 2005

SQL Server 2005 offers a new option for partitioning—partitioned tables and indexes. Partitioned tables provide a means of loading and managing horizontal data segments with minimal impact on other users of the table. Detailed discussions on partitioned tables are covered in other forums, so it will not be re-addressed here except to briefly review some high-level concepts. References to other information can be found at the end of this document.

Table partitioning permits each logically distinct segment of a table or index to be treated as a separate entity. These segments, or partitions, can be loaded outside of the table, so that loading does not affect users of the partitioned table during the life of the load. When the partition load is complete, it is "switched in" to the partitioned table. A number of conditions must be in place for a successful partition switch, the most common of which are:
· The schema of the partitioned table structure must be the same as the table to be switched in. This includes column names, data types, nullability attributes, collation, precision, and primary key constraints.
· Any indexes on the partitioned table must be present on the table to be switched in and all index attributes, except for name, must match (for example, columns indexed, clustered attribute, and unique attribute).
· The destination partition must be empty.

· The source table and destination partition must be on the same filegroup.
· The source table must have a trusted check constraint defined that is compatible with the destination partition.

This is a partial list of requirements. More specific limitations can be found in SQL Server Books Online (http://msdn2.microsoft.com/en-us/library/ms130214.aspx).
There are a number of terms that are specific to how SQL Server implements partitioned tables. These are briefly defined here but are covered in detail in other sources, such as SQL Server Books Online and Kimberly Tripp's white paper on partitioned tables (see References at the end of this paper).
Partition function
A partition function is a physical database object that defines upper or lower partition boundaries.
Partition scheme
A partition scheme is a physical database object that is based on a partition function. The partition scheme defines the location on disk for each partition that is defined by the partition function.

Aligned

Partitioned tables and indexes are said to be aligned if they are based on the same partition function, whether implicitly or explicitly.

Co-located
Partitioned tables and indexes are said to be co-located if they share both an equivalent partition function (they are aligned) and an equivalent partition scheme. Their partition boundaries are the same and the data that corresponds to these boundaries are located on the same filegroup.

RANGE LEFT/RANGE RIGHT

This is probably one of the more confusing aspects of table partitioning. Partition functions are defined with either RANGE LEFT or RANGE RIGHT. One way to remember the difference is that a function with RANGE LEFT means that the partition data relative to the boundary is to the left of the boundary; RANGE RIGHT means that the partition data relative to the boundary is to the right of the boundary. So, if the boundary is "01/01/2005" and the partition function stipulates RANGE LEFT, the "01/01/2005" is an upper boundary and data less than the boundary is to the left of the boundary.
MERGE

The merging of partitions makes one partition out of two. MERGE is used to remove a partition.

SPLIT

The splitting of a partition makes two partitions out of one. SPLIT is used to add a partition.
Partitioned tables compared to partitioned views
Partitioned views are still available in SQL Server 2005 but may be deprecated at some point in the future (this excludes distributed partitioned views). For the most part, partitioned tables are easier to manage. The following table gives a quick checklist of advantages and disadvantages of both methods.
Table 1 SQL Server 2005 partitioned tables versus partitioned views
	Functionality
	Partitioned table
	Partitioned view

	Table maintenance
	The table is managed as a single entity.
	Each participating table is its own entity to which metadata changes must be made.

	Indexing
	Each partition must have the same indexes.
	Each table can have its own indexing strategy.

	Index maintenance
	Most maintenance can be performed at the partition level. Indexes cannot be rebuilt ONLINE at the partition level.
	All index maintenance functionality is available since it is at the table level.

	Implementation
	Both are roughly the same in complexity of implementation. Partitioned tables are more explicit in raising errors when a problem occurs.
	There can be hidden issues that prevent a partitioned view from operating as intended. One common issue is creating check constraints without checking current values. The partitioned view will implement successfully but will not optimize correctly, for no evident reason.

	Compilation times
	Since all partitions are indexed in the same manner, the optimizer can use the same execution plan across all partitions and compile times are much shorter.
	Since partitions can have different indexes, the optimizer must evaluate the best execution plan for each table (partition) to be queried. Compilation times suffer when there are many tables in the partitioned view.

	Loading
	A partition can be loaded externally, minimizing the impact on current users of the table.
	A table can be loaded externally, minimizing the impact on current users of the view.

	Switching in new data
	This is a metadata operation that is quick and queues naturally.
	This is a metadata operation, but an ALTER VIEW statement may wait indefinitely for a SCHEMA lock.

	Updatability
	There are no special rules that must be in place in order for the table to be updatable, except for those required to create the partitioned table. Partitioned tables can have identity columns, don't require primary keys, and so forth.
	Several restrictions make it difficult to make a partitioned view updatable, such as no identities and the existence of a primary key on the participating tables. This usually means that the underlying tables must be updated directly, complicating the coding of INSERTs and UPDATEs.

	Backups/Restores
	The partitions of a table can be backed up or restored together or separately, depending on the filegroup implementation.
Note Unless a filegroup is marked Read Only, restoring a filegroup requires re-applying transaction logs from the point of backup.

	Individual tables forming the partitioned view can be backed up or restored together or separately, depending on the filegroup implementation.

Partitioned view tables can also reside in separate databases, which allows for separate database backups for separate partitions.

Note Unless a filegroup is marked Read Only, restoring a filegroup requires re-applying transaction logs from the point of backup.

	Database implications
	All partitions of a partitioned table must reside in the same database.
	Tables joined in a partitioned view may reside in different databases. This can make backup and restore operations for historical segments very simple to implement.

	Query parallelism
	Individual partitions are the unit of parallelism in a parallel query plan for queries that request data from multiple partitions. Single-partition queries may be able to utilize parallelism.
	Each table in a partitioned view is considered separately for parallel query access. Queries touching only a single table may access that table using parallelism.

	Bulk loading
	A partitioned table can be the target of a Bulk Insert / BCP operation directly.
	Partitioned views cannot be a target of Bulk Insert / BCP operations—individual tables within the view must be the target.

	Availability
	Online partitioned tables are still accessible even if one or more partitions are not available. Unavailable partitions can be queried only if they are still in the buffer cache. Otherwise, queries behave as if the missing partition(s) is/are empty.
	If any table that is a part of a partitioned view is unavailable, the entire partitioned view is unavailable.

	Deprecation
	Partitioned tables will be supported in future releases of SQL Server.
	Local partitioned views are in the process of being deprecated (see SQL Server Books Online).

Implementation decision

Compile times for queries against SQL Server 2000 partitioned views can be an issue, especially when many partitions are involved. There are currently three years of Sales data, which correlates to 156 table partitions. A query that spans the entire partitioned view must examine each of the underlying tables to evaluate an execution plan. This is because each table could have a distinct set of indexes. This can make partitioned views unusable. Aside from the fact that local partitioned views may be deprecated in the future, the ease of table maintenance and the ease of performing INSERT, UPDATE, and DELETE operations that span multiple partitions quickly exhibit the benefits of partitioned tables over partitioned views.
After choosing the method of partitioning, we next decided on the partitioning column and optimal partition boundaries. Many of the benefits of partitioning in a data warehouse are realized when the partitioning column is a date column. In our case, the column is not literally a datetime data type, but the data contained in the column refers to a date which is stored as an integer (CCYYMMDD).
Partitioning design decisions
Our first design decision was the column to use as a partitioning key. The sales fact table has a Transact_Date column that is a SQL Server datetime data type. This initially seemed to be the ideal partitioning column. However, this column is not defined on either of the inventory fact tables. The date column is, instead, implemented as a SQL Server int data type (in the format CCYYMMDD) to minimize the space allocation. This column, named SK_Date_ID, is consistent across all three fact tables so it was the column chosen as the partitioning key. One issue with choosing this column is that it will be tempting to query the Sales fact table by the Transact_Date column, since it is a true datetime data type. Remember that the query optimizer can limit the partitions that are scanned to resolve a query only if the query filters on the partitioning column.
Our next design decision was the partitioning interval. The Barnes and Noble data currently exists as weekly tables since Inventory loads are logically done on a weekly basis (a snapshot is created at the beginning of each week and updated daily). This also keeps the partition sizes at roughly 25 GB per partition, which is a manageable size. A monthly partitioning scheme would be roughly 100 GB, which would be more difficult to manage. We chose the same partitioning strategy for Sales in order to reap the benefits of partitioned table alignment, which are discussed later.
Probably our biggest consideration had to do with how the partitions will lay out on disk. Do we map partitions to one or more filegroups, with one or more files? A detailed discussion on the advantages and disadvantages of two high-level strategies for partition mapping are discussed in the “Strategies for Partitioning Relational Data Warehouses in Microsoft SQL Server” white paper (see References in this paper). We decided it was better to map each partition to its own filegroup, each with a single underlying file. That way, we can control how each partition is laid out on disk. There are differing points of view as to whether this is desirable. It could be said that the striping we enforce through the use of separate filegroups could be implemented through the disk subsystem. There are three primary reasons for the separate filegroup implementation:
· The read-only attribute can be set at the filegroup level. As partitions age past eight weeks, which is when fact table inserts no longer occur, we can turn on the read-only attribute to enable piecemeal backup/restore scenarios (this is a new feature in SQL Server 2005).
· The aging scenario could possibly be performed at the disk hardware level. To enable this, the partitions must be isolated in their own disk files. If the partitions are striped across several disks in a filegroup, this is not an option.
· To implement the aging of older partitions to inexpensive disks, we must have at least two filegroups, one for the active disk array and one for the inactive disk array. This would prevent us from mapping everything to a single filegroup.
There were two aspects to implementing partitioned tables in the Barnes and Noble environment. First, we had to move all of the existing tables into the partitioned tables we created, and then we had to modify the existing ETL processes to create new partitions each week and load the new data into those partitions. These are discussed separately later in this paper.

Partitioned indexes

There are a few decisions to make regarding index partitioning. The first is whether to partition indexes on the partitioned tables at all. If we do, we need to decide whether the indexes should be aligned with the base table. Finally, we need to determine whether to co-locate them with the base tables. The decision to partition indexes was an easy one. The whole idea of partitioning to begin with is largely related to manageability and ease of administration. Since only a fraction of our data is volatile, it makes no sense to manage a large index when much of it won't be changing. Most index maintenance commands are partition-aware; therefore, we can perform maintenance on a subset of the index instead of the entire thing.
Indexes can be partitioned differently than the underlying base table, except in the case of a clustered index. This makes little sense in a scenario where we will be regularly swapping data in and out. If the indexes follow the same partition function, data can be moved in and out more effectively since the data is segmented in the same way.
The final issue deals with where the indexes will reside. The clustered indexes, by default, follow the partition scheme of the base table, which defines where partitions reside on disk. Nonclustered indexes could be created on a separate partition scheme, but operations can be more easily parallelized by SQL Server if related data is guaranteed to be on the same filegroup. For more information, see Kimberly Tripp's white paper, “SQL Server 2005 Partitioned Tables and Indexes” in the References section.
Converting existing tables to partitioned table
The first step to converting the existing tables was to review the current Barnes and Noble environment. When delivered from Barnes and Noble, the dimensions and fact tables were stored on two databases, one for the inventory fact tables (store and distribution center inventory), and one for the sales fact tables and dimension tables. For Project REAL, these were consolidated into a single database, REAL_Warehouse, during the data masking process. For our partitioning exercises, we are dealing only with the fact tables so we focus on them.
The legacy Sales fact tables are represented as one physical SQL Server table per week. Each Store Sales table follows the naming convention "Tbl_Fact_Store_Sales_WE_ccyy_mm_dd", where the date refers to the date on which the week ended (Saturday). An example table is "Tbl_Fact_Store_Sales_WE_2003_12_27" which comprises data from 12/21/2003 to 12/27/2003.
The relevant information about the Inventory fact tables is similar to that of the Sales fact tables. There are actually two variations of Inventory fact tables, one for DC (Distribution Center) inventory and one for store inventory. The naming conventions for these tables are "Tbl_Fact_DC_Inventory_WE_ccyy_mm_dd" and "Tbl_Fact_Store_Inventory_WE_ccyy_mm_dd," respectively. The metadata for these two logical fact tables differs significantly, so they cannot be combined. Like the Sales tables, our partitioning column is SK_Date_ID, with the same data type.
We were able to select a common partitioning column, SK_Date_ID, across our three fact tables since the data types were consistent. This enabled us to align the tables for easy joining. The key is an integer representation of the date. For instance, "December 25, 2004" becomes 20041225. Because the existing physical source tables are based on weekly increments, our conversion to like partitions was greatly facilitated. One partition in our partitioned table equals one physical source table. Following is a high-level representation of the steps to load each logical fact table:

1. Create all files and filegroups.
2. Create the partitioning function—this defines all of the boundaries for a given partition table. The following code is a subset of the CREATE PARTITION FUNCTION statement:

CREATE PARTITION FUNCTION pf_Range_Fact(int)

AS
RANGE LEFT FOR VALUES (

 20020105,

 20020112,

 20020119,
 .

.

.

 20050101)

3. Create the partitioning scheme—this defines how each partition lays out on disk. We decided to align the Inventory and Sales fact tables, but they are not co-located. This facilitates joins between discrete partitions but spreads the I/O across physical storage. When we say align, we mean that the partitioned tables share an equal partitioning function. This does not mean that the partitioning function has to be literally the same, but the boundary definitions, partitioning key data type, and number of partitions must match. Storage alignment would indicate that a given partition on both tables would reside on the same filegroup.
4. Create the partitioned table—this looks like any other CREATE TABLE statement but indicates that the table be "placed" on the partitioning scheme previously described.

5. For each source table, such as dbo.Tbl_Store_Inventory_WE_2004_12_25:

a. SELECT INTO a temporary table, which will be switched into the partitioned table. This temporary table will reside on the same filegroup as the destination partition.

b. Add a check constraint (WITH CHECK) that corresponds to the destination partition.

c. Determine the destination partition by using the $partition function:

SELECT @PartitionNum = $partition.FactRangePFN(20041225)

d. SWITCH the temporary table into the destination partition.
6. Create indexes on the partitioned table.
Note If the legacy Sales and/or Inventory were moving to a partitioned table within the same database and already resided on the desired filegroups, we could skip the SELECT INTO step and simply switch the tables into their appropriate partitions after creating the check constraint and changing the partitioning column to NOT NULL. This was not the case, so we needed to copy the source table to a separate table that resided on the desired filegroup prior to switching it in to the partitioned table.

The CREATE PARTITION FUNCTION and CREATE PARTITION SCHEME commands were generated programmatically. Especially at the week level, which resulted in numerous partitions, these commands would be tedious and prone to errors had we manually typed them. This also gave us some flexibility when defining the partition boundaries and made it easier to be sure that the partition scheme matched the partition function boundaries. This code is included for reuse with the Project REAL artifacts.

The initial creation of the partitioned table can be an extremely lengthy process. In our case, we were moving nearly 2 terabytes of data. Our challenge was to make the process as fast as possible. INSERT INTO was quickly ruled out due to the logging and locking overhead. BCP would require that the data first be copied out to disk, then BULK INSERTed back into the temporary table. This gives us more control over how the file is copied than the SELECT INTO option but it was actually faster to perform SELECT INTO than it was to just BCP the data out. The SELECT INTO option proved to be over nine times faster than the BCP out/BULK INSERT combination, even after confirming the BCP to be nonlogged, minimal locking.

The main issue with SELECT INTO is that there is no way to indicate the filegroup of the table that is created in the process. This is critical, as the filegroup of this temporary table must match the filegroup of its destination partition. To guarantee that the temporary table's filegroup is defined correctly, the default filegroup of the database was changed just prior to the SELECT INTO operation to make sure the table was created on the desired filegroup. This greatly limited our ability to process tables in parallel, since all concurrent SELECT INTOs would have to use the same filegroup (only one default database filegroup at a time!). This also would have introduced a disk hotspot, which could have a negative impact on parallelism. However, the serial nature of the SELECT INTO option was still more desirable than the BCP/BULK INSERT option, so we proceeded with the former option.
The source tables did not contain constraints on the date data contained within. In order for a successful switch to occur, a trusted check constraint must exist on the source partitioning column that is consistent with the target partition boundary. This constraint was added during the load process, after the completion of the SELECT INTO.

Also, the partitioning column, SK_Date_ID, was defined to be nullable on all three tables. We could have included a boundary in our partition function that defined a partition where all rows with SK_Date_ID = NULL should go, but this does not make sense when our partitioned strategy is based on dates. Also, a SK_Date_ID with NULL would violate our CHECK CONSTRAINT. We confirmed with Barnes and Noble that SK_Date_ID should never be null so we implemented this business rule through the schema.
Table 2 shows a breakdown of one of our larger inventory fact table loads.
Table 2 Copy table partition breakdown

	Step
	Elapsed time (mm:ss)
	% of Total

	SELECT INTO
	7:33
	74%

	ALTER SK_Date_ID not null
	5:51
	

	ALTER ADD check constraint
	2:42
	26%

	SWITCH to partitioned table
	0:00
	0%

	Total
	10:15
	

Note that we did not use an ALTER TABLE statement to implement the NOT NULL constraint on the SK_Date_ID column in the target table. We were able to implement this, instead, during the SELECT INTO statement by using the ISNULL function. The following statement illustrates this.

SELECT <Column 1>,
<Column 2>,
isnull([SK_Date_ID], -1) as [SK_Date_ID],
.

.

.

<Column x>
INTO dbo.Tmp_NewPartition FROM Tbl_Fact_Store_Sales_WE_2005_01_01
Prior to implementing this trick, the ALTER TABLE statement to add the NOT NULL constraint took nearly six minutes per table, adding a tremendous amount of time when multiplying this per partition across the three partitioned tables. The estimated savings in using this "trick" was over five hours for the store inventory fact table alone!
Examining the partitioned table
After loading the new partitioned tables, we looked at the results. We quickly noticed that the fact that these tables are partitioned is not immediately apparent. There is nothing in the SQL Server Management Studio Object Explorer, upon initial inspection, that distinguishes partitioned tables from nonpartitioned tables. One positive aspect is that there are far fewer objects in the database. The source database housed 229 fact tables; the database with partitioned tables contains three partitioned fact tables. Any one of these three fact tables can be further scrutinized by viewing the properties in SQL Server Management Studio. The following figure reveals the properties for the Tbl_Fact_Store_Inventory table.
[image: image2.png]Selectapas
| oo

[Parisins.

| e Peperes

Commacion

S
BFELOw

Comasn
FENOND s e

oY ——

Prosress
(=

Name
Tranane ofva e

Figure 1
It is obvious by the row count that our load was successful. Additional verification can be done to validate that the sum of the row counts of the source tables is equal to the row count indicated in this dialog box. The Storage section shows that the table is partitioned and indicates the partition scheme to which the partitions are mapped.

Dynamic management views (DMVs) can be queried to give a better indication of the distribution of rows across partitions. This can be an expensive proposition, since an actual count is performed on each partition in the table, but the following query gives a nice overall view of the partitioned table and the distribution of rows (note that this statement will not report empty partitions).
SELECT $partition.pf_Range_Fact(o.SK_Date_ID) AS [Partition Number]

 , min(o.SK_Date_ID) AS [Min Date]
 , max(o.SK_Date_ID) AS [Max Date]
 , count(*) AS [Rows In Partition]
FROM dbo.Tbl_Fact_Store_Sales AS o
GROUP BY $partition.pf_Range_Fact(o.SK_Date_ID)
ORDER BY [Partition Number]
It produces the following information for our Sales fact table (only a subset of the result set is included for brevity).
	Partition Number
	Min Date
	Max Date
	Rows in Partition

	…
	…
	…
	…

	140
	20040829
	20040904
	8061536

	141
	20040905
	20040911
	8308355

	142
	20040912
	20040918
	8044390

	143
	20040919
	20040925
	7824844

	144
	20040926
	20041002
	7864007

	145
	20041003
	20041009
	7853734

	146
	20041010
	20041016
	8056497

	147
	20041017
	20041023
	8017784

	148
	20041024
	20041030
	7684242

	149
	20041031
	20041106
	7924918

	150
	20041107
	20041113
	8845731

	151
	20041114
	20041120
	8963072

	152
	20041121
	20041127
	9361857

	153
	20041128
	20041204
	11201851

	154
	20041205
	20041211
	13974601

	155
	20041212
	20041218
	17549392

	156
	20041219
	20041225
	18736647

	157
	20041226
	20041231
	12016107

Incremental processing
Once the partitioned tables are in place, we need to maintain them on an ongoing basis. This involves creating a new partition for each of our partitioned tables at the beginning of each week. In addition, we chose to implement a sliding window to migrate older data from more expensive disks to less expensive disks.
Sliding window
A sliding window implementation modifies the range of data that is available in a partitioned table over time by adding new partitions when new data is introduced, and removing older partitions as historical data is no longer needed. The amount of data to be available in a partitioned table depends solely on business requirements that vary from implementation to implementation. Let’s say that requirements dictate that three rolling years of Sales always be available. In such case, historical sales can be rolled off at the same time that new sales are added. To clarify the sliding window implementation and to give an example of how adding and removing partitions is accomplished with SQL Server 2005 partitioned tables, we've outlined the following scenario:

7. After loading some information into a new, external fact table for the week ending on 01/01/2005, we want to make the new information available in the partitioned table.
[image: image3.png]Partitioned Table

01/05/2002 | | 01/12/2002 |wwwa| 1271812004 | | 1272572004 01/01/2005

Figure 2
8. First we "split" the last partition in the partition function, which is technically everything after 12/25/2004, to include a new boundary that includes everything after 12/25/2004 up to 01/01/2005.

[image: image4.png]Partitioned Table

ou/05/2002 | (031272002 | wma] s3er2004 | 1272572004 [ox/01/200 | | os/on/2008

Figure 3
9. Now we switch the newly created partition, which is empty, with the external table that was loaded prior to step 1. This results in an empty external table, which we will delete.

[image: image5.png]Partitioned Table

ou/0s/2002 | [o1/12/2002 wm] 271872008 | 1272572004 | [03/01/2005 e+ o3/03/2005

Figure 4
10. We now have a partitioned table that includes the new data.
[image: image6.png]Partitioned Table

m/ns/z&nz 01/12/2002 [ww | 12/18/2004 | | 12/25/2004 | | 01/01/2005

Figure 5
11. Next we want to remove the data in the oldest partition. We start by creating an empty external table with the same table schema as the partitioned table (including indexes). This table is the receptacle for the data to be removed.
[image: image7.png]Partitioned Table

o1/05/2002

[oussya0n | [z

12/18/2004 | | 12/25/2004 | | 01/01/2005

Figure 6
12. We switch the first partition of the partitioned table with the empty external table that we just created.

[image: image8.png]Partitioned Table

o1/05/2002

12/18/2004 | | 12/25/2004 | | 01/01/2005

o [

Figure 7
13. We merge the first partition, which included all dates less than or equal to 01/05/2002, with the second partition. Now our first partition includes all dates less than or equal to 01/12/2002. Now that the data for the week ending in 01/05/2002 is outside of the partitioned table, we can archive it and then delete the table from SQL Server.

[image: image9.png]Partitioned Table

oy 0171272002 |nwwa 1271872004 | | 1272572004 | 01/01/2005

Figure 8
A sliding window implementation usually represents adding and removing partitions at the same time through the split/switch and merge/switch actions. Adding and removing partitions are not directly dependant, however, and they can certainly occur separately. A variation of the sliding window may indicate that old data cannot be removed with the same frequency that new data is added. An example is a business requirement that three full fiscal years be available. In this scenario, a new fiscal year is gradually built, week by week or month by month, until it reaches a full fiscal year. Then, the oldest fiscal year is removed all at once. All of these scenarios can be accomplished through a variation of the sliding window implementation used for Project REAL. The difference is in how and when the merge/switch operations are performed.
Barnes and Noble had not yet accumulated the amount of data for Sales or Inventory that would warrant data archival based on their business requirements. Therefore, we decreased the deletion period in order to test the sliding window implementation. The process is parameter-driven and can be easily modified to adjust the timing.

Aging data
A concept that is rarely implemented is maintaining the most active data on the fastest and most highly available disk subsystem, and hosting less active data on less expensive disks that are slower and/or less highly available. This particularly comes into play in a data warehouse where there is an extremely high disk storage requirement and often several years of data must be kept online. There will be a hotspot of activity on the last year or two of data. This doesn't mean that older data does not need to be available for occasional queries or for legal requirements. To manage the expense of maintaining such an infrastructure, we looked into a mechanism for Project REAL to move partitions from a more to a less expensive disk subsystem during our incremental processing. This was done during the same incremental process where partitions are added and deleted. Remember that we are actually moving data from one disk subsystem to another. This can be a very expensive operation, especially when moving the amount of data in a data warehouse. We chose to move one partition with each week to minimize the amount of data movement at any given time.
Method 1

The most obvious means of implementing an aging process is to remove the moving partition from the partitioned table, move it to an inexpensive disk filegroup, and then re-add it to the partitioned table. This can be performed through the following steps:

14. Create an external table that matches the schema of the partitioned table. This new table must match in regard to indexes and the current filegroup of the moving partition.
15. SWITCH the moving partition to this new external table.

16. Remove the moving partition, which is now empty, from the partitioned table function by performing a MERGE operation.

17. Alter the partition scheme to specify the location of the next partition that is created to be on the new filegroup on the inexpensive disks (ALTER PARTITION SCHEME).

18. Re-add the moving partition range to the partitioned table function by performing a SPLIT operation. This new partition will reside on the filegroup specified in the previous step.

19. Create a second external table that matches the schema of the partitioned table, minus any indexes.

Note: If the table has a clustered index, the filegroup on which this second external table is created is irrelevant at this point. If the table does not have a clustered index, use the ALTER DATABASE command to define the default filegroup as the filegroup specified in step 4.

20. Use SELECT * INTO Second External Table FROM First External Table.
21. Drop the first external table.

22. Create a constraint on this second external table that matches the boundary range of the moving partition.

23. If there is a clustered index on the partitioned table, create the clustered index to reside on the new filegroup for the moving partition. This will be a filegroup specified in step 4.

24. Create any necessary nonclustered indexes on the second external table.

25. Switch the second external table into the appropriate partition. This is the partition that was defined as a result of the SPLIT operation in step 5.
Though this seems like a lot of steps, most of them are metadata operations that run very quickly. The only steps that require any time are the SELECT * INTO (step 7) and the index creations.
Method 2

There is a second method of moving to inexpensive disks. The previous method should work in most cases. If several tables share the same partition function, and will be moved to inexpensive disks at different times or using a different criteria for moving, this second method might be required. This was true in Project REAL. This second method could also be more desirable if many partitions are moved to different filegroups in the same operation.
This method appears somewhat complex, in theory, but is relatively simple in actuality.
It does not make any modifications to the underlying partition function, such as was performed in the previous method with the SPLIT and MERGE commands. Instead, we create a second partition scheme and partitioned table to define the new disk layout with the moving partition on inexpensive disk.
[image: image10.png]‘ﬁ‘ Agedo2 ActiveD(X-1) | ActiveOx
Agedot Aged2 Active01 activeox-)[3 | activeox
Agedot Agedo2 ctive0(x-1)1 | Activeox
Agedo1 Agedo2 Active(x-1) | ActiveOx

01/04/2003 | | 01/11/2003 mm. 'm 121242004 | 01/05/2005

Legend

Flle

Filegroup

Figure 9

Following is a high-level overview of the steps we used to perform the movement of aged data. Initially, this process appears to be somewhat complex, particularly in a situation, as our in Project REAL, where the Sales partitioned table has over 150 partitions! Since all of the above steps are metadata steps, except for the data movement step, it actually runs very quickly.
26. Create a new partition scheme, based on the existing partition function that exactly duplicates the existing partition scheme except for the moving partition or partitions. The moving partition boundary in the partition scheme definition will indicate a filegroup on less expensive disks.

27. Create a new partitioned table on top of the new partition scheme.
28. Iterate through each partition and switch from the old partition to the same partition number in the new partition (both partitioned tables use the same partition function) until the moving partition is reached. The shaded boxes refer to populated partitions and the white boxes indicate an empty partition.
[image: image11.png]vartion 1 |} [Partion 2 woung |1 [partion x| [partion x
Farttion
i
Temporary
pariion oned
Table
v)) ¥)
varition 1 || [‘pattion 2 woung |1 [parion x] § [partven x New
Panion rition
01/0472003 | [03/13/2003 | w 01/03/2004 1272072004 | 0310572005

Figure 10
29. The moving partition must be explicitly copied, since the data is moving. This is done by copying the data directly from the old partition to the new one, using a INSERT INTO..SELECT statement. Or, we can SELECT INTO an external table that resides on the same filegroup as the destination partition. As in the initial load, the SELECT INTO performed far better than the INSERT INTO so we chose that method.
[image: image12.png]vartion 1 |} [Partion 2 R
i
i
o Temporary
Farin oned
Table
v)) ¥)
varition 1 || [‘pattion 2 woung |1 [parion x] § [partven x New
Panion rition
01/0472003 | [03/13/2003 | w 01/03/2004 1272072004 | 0310572005

Figure 11
30. When using the SELECT INTO method, we then need to switch the external table into its ultimate destination in the new partitioned table.
[image: image13.png]partition 1 |1 [partition 2 Moving parttion x-1 + | partiion x

Partition

Moving
Partition

v v H v L]

partition 1 |} | partition 2 Moving

Partition

partition x-1| | partition x

01/04/2003 | | 01/11/2003 |

01/03/2004 }. = 1272412004 | | 01/05/2005

Figure 12
31. Now we iterate through the remaining partitions in the current partition scheme and switch out the partitions to the new partitioned table as we did in step 3.

[image: image14.png]partition 1 |1 [partition 2 Moving

Partition

partition x-1| + [partition x

Moving
Partition

v v H v v

partition 1 |} | partition 2 Moving

Partition

partition x-1| | | partition x

01/04/2003 | | 01/11/2003 |

01/03/2004 }. = 1272412004 | | 01/05/2005

Figure 13
32. We clean up by deleting the old partitioned table and partitioning scheme, and renaming the new partitioned table to the original partitioned table name.
[image: image15.png]partition 1 |} | Partition 7|~ Moying —p+—Fartition -1 | | Partition X
i il e e o il
! et !
&
2 T]
Partition 1 || | Partition 2 H Moving Partition X-1 Partition X Current
parttion
03/13/2003 | mwe | 03/03/2004 e 1212472004 | [o3j0572005

01/04/2003

Figure 14
Code Samples
The following provides a more in-depth look at the process that would be used to implement the management of aged data that was just outlined.
33. Create the new partition scheme.
The new partition scheme is an exact copy of the existing partition, except that the date boundary that defines when to “age” a partition has changed. The name is suffixed with the date of our current week end so it will be unique. Partition scheme names cannot be changed, so this name will be kept until our next aging process, when a new partition scheme replaces this one.

In the typical weekly process to create a new partition, only one partition will move from an active filegroup to an aged filegroup. A cursor is created on the metadata to walk through the boundaries and build the script for the new partition scheme. Though cursors are typically a bad idea in any ETL process due to their low performance, in this case they are used only to iterate through a small number of metadata objects. Note that all filegroups must remain the same between both partition schemes except for the partitions that are moving from “active” to “aged.” The code for this looks like this:

DECLARE CurrentSchemePartitions CURSOR FOR

SELECT FileGroupName, ValueInt

FROM part.uf_GetPartitionBoundaries (@psOld_Scheme_Name)

ORDER BY ValueInt ASC

OPEN CurrentSchemePartitions

SET @psSQL_Text = 'CREATE PARTITION SCHEME ' + @psNew_Scheme_Name +
' AS PARTITION pf_Range_Fact

TO ('

FETCH NEXT FROM CurrentSchemePartitions

INTO @psFG_Name, @pnBoundary_Date

WHILE @@FETCH_STATUS = 0

BEGIN

-- If the partition boundary is less than the beginning date,
-- use the file group for the new partition to move into the
-- Aged area.

IF @pnBoundary_Date <
CONVERT(int, CONVERT(char(10), @pdLogical_Date, 112))

BEGIN

SET @psSQL_Text = @psSQL_Text + @psFG_Name + ', '

SET @psAged_FG_Name = @psFG_Name

END

-- If the partition boundary is less than or equal to the Aged
-- date and was previously in one of the "Current" filegroups,
-- script the partition to the Aged filegroup that will be
-- relinquished when the old partition drops off.

ELSE IF @pnBoundary_Date <=
CONVERT(int, CONVERT(char(10), @pdAged_Date, 112))
AND @psFG_Name LIKE @psActive_FG_Prefix + '%'

BEGIN

SET @psSQL_Text = @psSQL_Text + @psAged_FG_Name + ', '

SET @psActive_FG_Name = @psFG_Name

END

ELSE

SET @psSQL_Text = @psSQL_Text + @psFG_Name + ', '

FETCH NEXT FROM CurrentSchemePartitions

INTO @psFG_Name, @pnBoundary_Date

END

-- !!When we are done, we need to add a additional partition to the
-- scheme. This is for the right-most partition, which was not
-- represented in our cursor query because it is not in the
-- partitioning function. Since we are left partitioning, no data
-- will ever be in this final partition.

SET @psSQL_Text = @psSQL_Text + '[Primary])'

EXEC (@psSQL_Text)

CLOSE CurrentSchemePartitions

DEALLOCATE CurrentSchemePartitions
34. Create the new partitioned table.
The new partitioned table definition looks exactly the same as the old one. The only difference is that it will be defined on the new partition scheme that we just created. Indexes also must be created so that partitions can switch directly from the old partitioned table to the new one.

35. A new cursor is created that is identical to the one used in step 1. When looping though this cursor, we will switch each partition directly into the equivalent partition in the new table. Since both the new and the old partition schemes are based on the same partition function, the source and destination partition numbers are known to be the same.
SELECT @PartitionNum = $partition.pf_Range_Fact(@pnBoundary)

SET @psSQL_Text = 'ALTER TABLE ' + @psPartitioned_Table_Name +
' SWITCH PARTITION ' + CONVERT(varchar(3), @PartitionNum) +
' TO ' + @psNew_Partitioned_Table_Name +
' PARTITION ' + CONVERT(varchar(3), @PartitionNum)

EXEC (@psSQL_Text)

36. If the partition is moving, we need to copy the data to a new external table with the same structure. As previously mentioned, the most efficient way to do this is to perform a SELECT INTO operation, followed by the creation of the check constraint and indexes. Then we switch the external table (now a partitioned table, after creating the indexes) into the partitioned table we created in step 2. The code segment for these steps is as follows:

SET @pnAged_Boundary_Date = @pnBoundary

-- Get the name of the Aged FG that the moving partition will reside on by

-- looking it up on the new partition scheme

SELECT @psNew_FG_Name = part.uf_GetFilegroupForBoundary
(@psNew_Scheme_Name, @pnBoundary)

-- Change the default filegroup to the filegroup the moving partition will

-- reside on so the SELECT INTO will create the table on the correct filegroup.

EXEC etl.up_SetDefaultFG @pnBoundary, @psNew_Scheme_Name

IF (SELECT COUNT(*) FROM sys.tables WHERE name = 'MovingPartition') > 0

DROP TABLE MovingPartition

-- Copy the data from the moving partition on the old table to a temporary

-- partition on the new filegroup.

SELECT @PartitionNum = $partition.pf_Range_Fact(@pnBoundary)

SET @psSQL_Text = 'SELECT * INTO MovingPartition
FROM ' + @psPartitioned_Table_Name + '
WHERE $partition.pf_Range_Fact(SK_Date_ID) = '
+ CONVERT(varchar(4), @PartitionNum)
EXEC (@psSQL_Text)

-- Since constraints and indexes were lost during the SELECT INTO, create them -- to match those on the destination partitioned table.

SET @psBoundary = @pnBoundary

SET @pdWeek_Begin = SUBSTRING(@psBoundary, 5, 2) + '/' +

SUBSTRING(@psBoundary, 7, 2) + '/' +

SUBSTRING(@psBoundary, 1, 4)

SET @psSQL_Text = 'ALTER TABLE MovingPartition WITH CHECK

ADD CONSTRAINT MovingPartition_Date CHECK

(SK_Date_ID BETWEEN ' +
CONVERT(varchar(8), DATEADD(dd, -6, @pdWeek_Begin), 112) + ' AND ' +
CONVERT(varchar(8), @pnBoundary, 112) + ')'

EXEC (@psSQL_Text)

EXEC etl.up_CreateIndexes 'MovingPartition', @psPartitioned_Table_Name,
@psNew_FG_Name, 0
-- Get the partition number for the moving partition and switch it in to the
-- new partitioned table

SET @psSQL_Text = 'ALTER TABLE MovingPartition
SWITCH TO ' + @psNew_Partitioned_Table_Name + '
PARTITION ' + CONVERT(varchar(3), @PartitionNum)

EXEC (@psSQL_Text)

DROP TABLE MovingPartition
37. Delete or rename the old partitioned table.
38. Rename the new partitioned table.
Pulling together table partitioning components
When approaching the automation of this functionality, it was tempting to try to consolidate the activities of data movement with the sliding window implementation. This quickly grew to be fairly complicated, especially from a future maintenance standpoint. This approach entails creating the new partition scheme to include the new partition and then removing the old partition. The addition or deletion of partitions is actually at the partition function level, which is shared by all partition schemes. This quickly complicated the code as we tried to determine if this was a partition that existed in the old scheme but not in the new, and conversely. Ultimately, separating the two made the code much more simple and provides the opportunity to physically separate the processes if a business need dictates this. In fact, the sliding window implementation was also separated into two stored procedures. This facilitates the potential future change in business requirements. If, for instance, it is later decided that new partitions will be added weekly, but old partitions will be removed one year at a time, this change can be implemented more easily. The following stored procedures were created to encapsulate the logic for incremental partition maintenance:

· up_CreateNewPartition—Based on the logical date (the date to which the data applies), check to see that a partition exists for this data and, if not, create it. If this is an inventory partition, initialize the partition with data from the preceding partition, changing relevant columns such as SK_Date_ID. If this is a sales partition, no additional steps are necessary.

· up_RemoveOldPartitions—Based on the logical date, check to see if any partitions are due to be archived. For Project REAL, we simply deleted the data in the old partitions after switching them out, but there may be a tape archiving strategy to be implemented.

· up_MoveAgedPartitions—Based on the logical date, check to see if any partitions are due to be moved to an inexpensive disk.

These three stored procedures can be called by a parent stored procedure, such as [pt].[up_FactStoreSales_Maintain]. Note that, due to time constraints, partition aging and archiving were not implemented in the formal final release of Project REAL.
Observations and recommendations
There were several observations made based on experimentation with a full set of data. These are primarily related to performance comparisons. These observations are documented in the next sections.

Sharing the partition function
There is logically a single partition function across the three fact tables. We resolved to partition them in the same way to facilitate joins between them. For instance, suppose we issue a relational query that asks for the sales of an item compared to inventory for each month in the current year. SQL Server can identify that these two partitioned tables are aligned, meaning that they share the same partitioning attributes. When joining two aligned partitioned tables, the optimizer has the option to join within the partitions first, and then bring the subset joined results together. When we say the tables share the same partitioning attributes, this does not mean that they must literally share the same partition function. Their respective partition functions must have the same number of partitions, the partitioning key must be of the same data type, and the boundary values must be the same. The easiest way to keep within these rules was to literally share the same partition function.

Sharing the same partition function comes with some issues. When splitting the last partition to add a new boundary, all partition schemes that reference the partition function must have identified where the next partition will be located. When removing partitions with the merge function, all dependent partitioning schemes should have emptied the partition. If the first partition is not empty for all tables that reference the partition function, the merge action physically moves the rows from the removed partition to the location of the partition to which it is merging. This is not a critical issue but would be a performance hit while the rows move and, more importantly, will not actually remove the rows we wish to archive.

To demonstrate, in the following table we've laid out the partition function in the left column and the three partition schemes in the right columns. When we split the last partition in preparation for switching in new data, the appropriate NEXT FG must be set for all three partition schemes so that new data goes to the correct location. When we merge the first partition in preparation for removing the week ending on 01/05/2002, the first partition data for all partitioned tables using the three schemes must have been switched out and must be empty. If, for instance, the Tbl_Fact_Store_Inventory table still has data for this week, the merge action results in this data moving to Aged FG 3.
	Partition function
	Partition schemes

	Pf_Range_Fact
	ps_FactStoreSales
	ps_FactStoreInventory
	ps_FactDCInventory

	01/05/2002
	Aged FG 1
	Aged FG 2
	Aged FG 3

	01/12/2002
	Aged FG 2
	Aged FG 3
	Aged FG 4

	…
	
	
	

	12/18/2004
	Active FG 1
	Active FG 2
	Active FG 3

	12/25/2004
	Active FG 2
	Active FG 3
	Active FG 4

	01/01/2005
	Next FG
	Next FG
	Next FG

This could all be resolved by creating separate partition functions but the same actions would have to be performed either way—the only benefit is that they would not have to be done all together. Separating the partition functions could also result in a disparity in the number of partitions the fact tables have at any given time. This would nullify the benefits of having aligned tables to begin with.
Index creation and initial loading
During the initial population of the partitioned tables, the question came up as to whether to create the indexes on the partitioned table upfront, or after it had been loaded. Initially, this decision would seem to have minimal impact on performance. The options are outlined below:
Option 1 - Create indexes on the partitioned table prior to loading

39. Create the partitioned table.
40. Create indexes on the partitioned table.
41. For each source table:
e. Create an external table.
f. SELECT INTO the external table.
g. Create a CHECK constraint.
h. Create indexes to match those on the partitioned table.
i. Switch the external table into the appropriate partition in the partitioned table.
Option 2 - Create indexes on the partitioned table after loading

1. Create the partitioned table.
2. For each source table:
j. Create an external table.
k. SELECT INTO the external table.
l. Create a CHECK constraint.
m. Switch the external table into the appropriate partition in the partitioned table.
3. Create indexes on partitioned table.
The underlined steps indicate the differences between the two options. Since, in either case, the indexes are created after the data is loaded, there should not have been a substantial difference between the two options, but there was. Option 2 proved to be 70% faster, so that was the option we chose for the initial load. We don't have a choice between the two options for incremental loading because we are ultimately switching into a partitioned table that already has the indexes created. As such, we must create matching indexes on the external table prior to the switch.
When using Option 1 either for the initial load or for incremental loads, be sure to create the index on the partitioning scheme used by the destination partitioned table. This, in essence, makes the external table a partitioned table with a single loaded partition. As such, you must indicate the partition number for both the external source table AND the destination table during the SWITCH. Another option is to create any nonclustered indexes with the INCLUDE (partitioning key) syntax when the index does not explicitly reference the partitioning key. For more detail behind this option, see Switching between PT and MT later in this white paper.
User-defined functions for metadata queries
There are several new data management views (DMVs) that represent the metadata for the partition functions and schemes. We relied on these for various portions of our implementation but abstracted the complexity by creating two user-defined functions that are documented here. Since these DMVs were not documented at the time of our development, the correct means of using them was determined by tracing the queries that were produced by SQL Server Management Studio when scripting CREATEs on the partition function and partition scheme objects.
The first function returns a table result set of all filegroups and their associated partition boundaries (upper boundaries in our case, since we used the LEFT partition function) for a partitioning scheme.
CREATE ALTER FUNCTION [part].[uf_GetPartitionBoundaries](

 @partitionScheme
sysname

)

RETURNS TABLE

AS

/***

* UDF Name:

*
part.uf_GetPartitionBoundaries

* Parameters:

*
 @partitionScheme
sysname

*

* Purpose: This function returns the details for each partition boundary in the

*
specified partition scheme.

*

* Example:

select * from part.uf_GetPartitionBoundaries('ps_FactStoreSales')

*

* Revision Date/Time:

*
October 31, 2005(G Dickinson)

- Authoring complete

*

***/

RETURN

(

SELECT

 fg.name
 as FileGroupName

,prv.boundary_id as BoundaryID

,convert(int, prv.[value]) as ValueInt

,convert(datetime, convert(varchar, prv.[value]))

 as ValueDate

FROM sys.partition_schemes ps

INNER JOIN sys.partition_functions pfn

ON ps.function_id = pfn.function_id

INNER JOIN sys.destination_data_spaces AS dds

ON dds.partition_scheme_id = ps.data_space_id

AND dds.destination_id <= pfn.fanout

INNER JOIN sys.partition_range_values prv

ON pfn.function_id = prv.function_id

AND prv.boundary_id = dds.destination_id

INNER JOIN sys.filegroups AS fg

ON fg.data_space_id = dds.data_space_id

WHERE

util.uf_GetCanonicalName(ps.[name], 1, 0) =
 util.uf_GetCanonicalName(@partitionScheme, 1, 0)

) --FUNCTION
The second user-defined function returns the last filegroup prior to or equal to a specified boundary.

CREATE FUNCTION [part].[uf_GetFilegroupForBoundary](

 @schemeName
sysname

,@boundary

int

)

RETURNS sysname

WITH RETURNS null on null input,

EXECUTE AS caller

AS

/**

* UDF Name:

*

part.uf_GetFilegroupForBoundary

* Parameters:

*
 @schemeName
sysname

*
,@boundary

int

*

* Purpose: This function returns the last filegroup prior to or equal to specified boundary.

*

* Example:

*
select part.uf_GetFilegroupForBoundary('ps_FactStoreSales', 20041218)

*

* Revision Date/Time:

*
October 31, 2005(G Dickinson)

- Authoring complete

*

**/

BEGIN

DECLARE @filegroupName sysname

--Convert to canonical form for simple comparisons

SET @schemeName = util.uf_GetCanonicalName(@schemeName, 1, 0)

--Derive result

SELECT TOP 1

@filegroupName = util.uf_GetCanonicalName(sf.[name], 1, 0)

FROM sys.partition_schemes AS sps

INNER JOIN sys.partition_functions AS spf

ON sps.function_id = spf.function_id

INNER JOIN sys.destination_data_spaces AS sdd

ON sdd.partition_scheme_id = sps.data_space_id

AND sdd.destination_id <= spf.fanout

INNER JOIN sys.partition_range_values sprv

ON sprv.function_id = spf.function_id

AND sprv.boundary_id = sdd.destination_id

INNER JOIN sys.filegroups AS sf

ON sf.data_space_id = sdd.data_space_id

WHERE @schemeName = util.uf_GetCanonicalName(sps.[name], 1, 0)

AND @boundary >= sprv.value

ORDER BY sprv.value DESC

--Return result

RETURN @filegroupName

END --function
Switching between PT and MT

We can describe the entire workings of partitioned tables in a scenario that presented itself in Project REAL. We wanted to be able to complete performance testing on tables that were partitioned with a partitioned table versus a collection of multiple tables that, when joined together, formed a logical table. Two immediate options presented themselves when considering the ways to provide both environments:

· Maintain two databases, one for a multi-table (MT) configuration and one for a partitioned table (PT) configuration. This has the immediate disadvantage of a large amount of disk consumption. Remember, our database is close to 2 terabytes. Storing it twice in two different formats has tremendous storage space implications. It would also require that our stress test programs have the capability to point to two different databases.

· Maintain a single database that moves back and forth between MT and PT by moving all rows in our three partitioned fact tables. The initial physical load of the partitioned table from the multi-table configuration took approximately 36 hours. This is a huge time investment to move between the two configurations.

Another option is to utilize partition switching to literally switch every single partition back and forth between a single partitioned table and many tables. This option has an added benefit. Since a switch carries a strict requirement that the source and target table schemas be identical, we can be assured that we have not unintentionally introduced any metadata changes that would corrupt our performance results.

The implementation of this method is actually very simple. Let’s start with the partitioned table (PT) to multi-table (MT) switch. We’ve already looked at some of the underlying DMVs that support partitioned tables. We leverage them to walk through each partition in a partitioned table and:

42. Determine the name of the target table based on the upper boundary of the partition (the week ending date).

43. Create the source table with the name determined in step 1.

44. Switch the partition to the table created in step 2.

45. Create a new view on top of the table created in step 2 (used as the source of the cube partitions)

When we’re done with each partition, we drop the partitioned tables and the view on top of the partitioned table and we have a multi-table environment. We retain the partitioning function and schemes to make the switch back to PT easier. The stored procedure to switch back from MT to PT works in much the same way only the “partitions” are determined by finding all tables that begin with the logical fact table name, for example: Tbl_Fact_Store_Sales%.

When coding the stored procedures to switch back and forth, we made an important discovery. The switching of the DC_Inventory tables worked wonderfully, but it had no indexes on it at the time. We weren’t as successful with Store_Inventory and Store_Sales. We discovered a hidden aspect of partitioned indexes that arises when the index definition does not explicitly contain the partitioning key. Let’s use an example of an index on Store_Sales that was created with something like the following statement:

CREATE NONCLUSTERED INDEX [IX_FactStoreSales_SKItemID_SKStoreID] ON [dbo].[Tbl_Fact_Store_Sales]

(

[SK_Item_ID] ASC,

[SK_Store_ID] ASC

)

ON [ps_FactStoreSales]([SK_Date_ID])
This statement does not explicitly specify our partitioning key, SK_Date_ID, in the definition. However, since the index was partitioned (note that the index was created on a partitioning scheme), SK_Date_ID is actually physically stored on the index leaf pages so that partitioning will work. When we initially created an index on the MT table (nonpartitioned), we kept the same exact definition only the index was created on a specific filegroup and not on the partitioning scheme. When we attempted to switch out the underlying table, SQL Server returned the following error:

Msg 4947, Level 16, State 1, Line 1

ALTER TABLE SWITCH statement failed. There is no identical index in source table 'REAL_Warehouse.dbo.Tbl_Fact_Store_Sales' for the index 'IX_FactStoreSales_SKItemID_SKStoreID' in target table 'REAL_Warehouse.dbo.Tbl_Fact_Store_Sales_WE_2004_10_16'.

The workaround for this, once the problem became evident, was to add SK_Date_ID to the MT table index definition with the INCLUDE verb, which is new in SQL Server 2005. This adds SK_Date_ID to the index leaf pages, without adding it to the higher level index levels where performance testing results would be skewed. This duplicates what is done behind the scenes in the partitioned table. Code was added to our index maintenance stored procedures to dynamically add the INCLUDE verb if the index was to be nonpartitioned.

This lesson raises another option for the creation of indexes on external tables. Our code was initially written to create all external tables and indexes on a partitioned scheme. Even the external temporary tables were partitioned. They only contained a single partition, but they were technically partitioned tables. We briefly considered whether it made sense to create these tables on the desired filegroup and add SK_Date_ID on those indexes that did not contain it in the definition to the script using INCLUDE. We ultimately decided against this latter option. First, we would need to query the partitioned scheme to determine the filegroup to use for the external table. It is absolutely necessary that these match or there will be data movement. Second, it was burdensome to have to remember to add INCLUDE on those indexes that did not have the partitioning key in the definition. This may not be a big consideration short-term, but if this requirement is not relayed to other database administrators (DBAs) or future DBAs, it would be an easy thing to overlook and difficult to debug by team members who are not aware of it.

After testing that the switching stored procedures worked on all three partitioned tables on a sample database, we were ready to run it on our full-sized database. So, how long does it take to switch nearly 2 terabytes of data from a partitioned table to over 250 external tables? Remember that this is a metadata operation that should be split-second on a single partition. However, we were creating all of the tables and views as a part of this mechanism and switching over 250 partitions, not just one. The actual run time was 35-40 seconds. This is far better than keeping two sets of data or manually moving it, which were our first two obvious options. And, it satisfied our goal of moving easily between the two environments for performance testing.

This exercise drives home the minimal impact of the switch operation, both in terms of requirements for a successful switch and the impact (or lack of impact) on performance. It is truly a sub-second operation. Again, this exercise is not one that most implementations require, but it demonstrates the fundamentals of partitioned tables.

The stored procedures for switching between MT and PT are available in the Project REAL sample database, REAL_Warehouse_Sample_V6, in part.up_SwitchToMT and part.up_SwitchToPT.
Cube Partitioning

Just as relational data warehouses can benefit from partitioning, so can Analysis Services cubes. Cube partitioning is not new to SQL Server 2005, but there are some changes to consider regarding how to implement cube partitioning in this version. This section highlights those changes.

Benefits of cube partitioning

In addition to partitioning the relational data warehouse, we chose to partition the Analysis Services cubes. More accurately in Analysis Services 2005, we partitioned the measure groups, though we will generically refer to the whole process as cube partitioning. There are many benefits to partitioning a larger cube, similar to those of partitioning the relational data warehouse. One of the most obvious benefits is cube maintenance. Cubes are processed, fully or incrementally, at the partition level. A cube with several partitions can be processed selectively. This is particularly relevant when only one or a couple of the partitions would be affected by changes to the source tables. This greatly decreases the batch window for incremental processing. Partitions also have their own aggregations and storage mode. When partitioning by date, older partitions could be reprocessed at a lower aggregation level or with a different storage mode (ROLAP/HOLAP/MOLAP) to decrease the amount of disk space and processing time required. Proactive cache settings are also defined at the partition level. Partitions can even be stored on a remote server, as remote partitions. Manageability is easier because older partitions can simply be deleted, as opposed to having to reprocess the entire measure group to recognize the removal of data in the underlying relational data source. Query performance can also be improved when cube queries are written in such a way as to limit data based on the partitioning key.

Changes in Analysis Services 2005

Most of the partitioning principles that were applicable in Analysis Services 2000, are also relevant in Analysis Services 2005. There are a handful of changes, most of which are improvements over the previous version.
First of all, a partition is defined at the measure group level instead of the cube level. A cube contains one or more measure groups that relate to a logical fact table in the measure group's source tables. A wonderful performance enhancement in Analysis Services 2005 is the fact that the processing of a cube or measure group automatically results in the parallel processing of the underlying partitions. In Analysis Services 2000, the partitions were processed serially unless a custom DSO (Decision Support Objects) program explicitly forced parallel processing, such as the Parallel Process utility (available as a free download on the Microsoft Web site).

In Analysis Services 2000, query performance benefits from partitioning could only be realized if data slices were defined on cube partitions to let the OLAP engine know what data is contained in which partition. This was similar to the definition of check constraints on partitioned views to enable the SQL Server optimizer to minimize the number of tables that were queried based on the partitioning column. In Analysis Services 2005, MOLAP partitions no longer require data slices for this purpose. That is because MOLAP partitions include heuristics to map the data contained in the various partitions. Note that any partitions that revert to ROLAP, such as during the rebuild of the proactive cache, will not have these heuristics available and performance could suffer unless data slices are defined. Thus, if the partition will ever revert to ROLAP, it is a good practice to define data slices.
Source data in Analysis Services 2000 cubes were defined directly from a table or view in the source relational database. A filter could be defined to specify a subset of the table or view. For instance, if a partitioned view were used, the name of the partitioned view could be used as the source of an Analysis Services 2000 partition and a separate filter served to limit the data in the Analysis Services partition to the data in an underlying table in the partitioned view. In Analysis Service 2005, the source is specified to be either a table/view or a query. If a subset of the underlying table or view will populate the partition, the partition definition specifies a query. This is called query-binding.
Finally, there are more automation options for partition creation in Analysis Services 2005. Previously, DSO (Decision Support Objects) was used to "clone" an existing partition, change the relevant attributes, and then save the new partition. DSO has been replaced with AMO (Analysis Management Objects). All requests from AMO are ultimately translated into XMLA (XML for Analysis) scripts. Since SSIS has the capability to execute native XMLA, this is another option. Which is preferred? That is what we hoped to determine.
Analysis Services partitioning strategy

The first step in implementing partitioning in Analysis Services is to determine the partitioning strategy, namely, on which column(s) and on which boundary the partitions should be divided. As in the relational data warehouse, a common strategy is to partition based on date. This simplifies processing since data is usually incrementally loaded based on date. It also simplifies archival since, as mentioned previously, old partitions can simply be deleted after backing up. It is useful to partition Analysis Services cubes with the same criteria as the underlying relational data warehouse. As such, data archival can be performed in a single process that deletes the appropriate partitions from both the data warehouse and the cubes. This is the strategy that was chosen at Barnes and Noble and for Project REAL
.

The Barnes and Noble implementation includes a view on top of each fact table to add some additional information from associated dimension members. This served as the source "table" for the Analysis Services 2000 cube partitions. With the introduction of partitioned tables, the number of views collapses down from one view per week per fact table (229 views), to one view per fact table (three views). The Analysis Services 2005 partitions specify a query against the relevant view with a WHERE statement to limit the data to a single partition, such as:
SELECT *
FROM [olap].[vTbl_Fact_Store_Inventory]

WHERE SK_Date_ID > 20041211 AND SK_Date_ID <= 20041218
There are two ways to automate the creation and processing of cubes in Analysis Services 2005. These are documented in the following sections.
XML/A overview
The first method of automating the creation and processing of cubes is to use XMLA or, more specifically, ASSL. XMLA is an XML specification for querying OLAP data that was first released in April 2001 (for more on the XMLA specification, see the XML for Analysis (XMLA) Web site at www.xmla.org). ASSL is specific to Analysis Services and is an XML DDL specification for OLAP. XMLA is the native data exchange protocol for Analysis Services 2005. All communication with Analysis Services is performed, ultimately, through XMLA. This makes it the fastest means of communicating with Analysis Services 2005 since no translation needs to occur. This is probably not a significant factor in most metadata operations, however, since there will not be a significant number of queries submitted to Analysis Services and this translation cost will be small.
XMLA scripts can appear to be somewhat complex at first. Like any other XML scripting language, the elements in XMLA are represented in a hierarchical structure and are self-describing. The language is verbose and not something that could easily be developed from scratch. Fortunately, Analysis Services 2005 gives us a good head start.
XML/A implementation
In Analysis Services 2005, there are vast improvements in the ability to script objects, such as cubes/measure groups, dimensions, and partitions. In comparison, there was no scripting capability for Analysis Services 2000 out of the box. This scripting capability makes using XMLA a reasonable alternative, since an intimate knowledge of the XMLA specification is not required. XMLA can be executed in SQL Server Management Studio by opening a new Analysis Services XMLA Query window. It can also be executed in SQL Server Integration Services (SSIS) through the Analysis Services Execute DDL task. This enables us to easily automate partition creation and processing through XMLA.

The first step is to produce an XMLA script for each cube measure group. To do this, in SQL Server Management Studio navigate to a partition in a measure group, right-click, and select Script Partition as. Next, view the XMLA to see what needs to be changed for each partition. To do this, paste the script in a SQL Server Management Studio XMLA Query window. Paste this script into a SSIS Script task and all of the text that is variable from partition to partition is replaced with variables that are modified based on partition. This XML string is saved as an SSIS variable that is executed in the Analysis Services Execute DDL task. The following script was taken from the SSIS Script task that scripts a partition for the Store Inventory measure group in the REAL Warehouse cube. Variables were created for the partition name, the partition ID, and the query against the relational source.
sXMLA = sXMLA & "<Create

xmlns=""http://schemas.microsoft.com/analysisservices/2003/engine"">"

sXMLA = sXMLA & " <ParentObject>"

sXMLA = sXMLA & " <DatabaseID>REAL Warehouse Sample V6 MT</DatabaseID>"

sXMLA = sXMLA & " <CubeID>REAL Warehouse</CubeID>"

sXMLA = sXMLA & " <MeasureGroupID>Store Inventory</MeasureGroupID>"

sXMLA = sXMLA & " </ParentObject>"

sXMLA = sXMLA & " <ObjectDefinition>"

sXMLA = sXMLA & " <Partition xmlns:xsd=""http://www.w3.org/2001/XMLSchema""

xmlns:xsi=""http://www.w3.org/2001/XMLSchema-instance"">"

sXMLA = sXMLA & " <ID> & sPartitionName & </ID>"

sXMLA = sXMLA & " <Name> & sPartitionName & </Name>"

sXMLA = sXMLA & " <Annotations>"

sXMLA = sXMLA & " <Annotation>"

sXMLA = sXMLA & " <Name>AggregationPercent</Name>"

sXMLA = sXMLA & " <Value>20</Value>"

sXMLA = sXMLA & " </Annotation>"

sXMLA = sXMLA & " </Annotations>"

sXMLA = sXMLA & " <Source xsi:type=""QueryBinding"">"

sXMLA = sXMLA & " <DataSourceID>REAL Warehouse</DataSourceID>"

sXMLA = sXMLA & " <QueryDefinition> & sQuery & "</QueryDefinition>"

sXMLA = sXMLA & " </Source>"

sXMLA = sXMLA & " <StorageMode>Molap</StorageMode>"

sXMLA = sXMLA & " <ProcessingMode>Regular</ProcessingMode>"

sXMLA = sXMLA & " <ProactiveCaching>"

sXMLA = sXMLA & " <SilenceInterval>PT10M</SilenceInterval>"

sXMLA = sXMLA & " <Latency>-PT1S</Latency>"

sXMLA = sXMLA & " <SilenceOverrideInterval>-PT1S</SilenceOverrideInterval>"
sXMLA = sXMLA & " <ForceRebuildInterval>-PT1S</ForceRebuildInterval>"
sXMLA = sXMLA & " <Source xsi:type=""ProactiveCachingInheritedBinding"" />"
sXMLA = sXMLA & " </ProactiveCaching>"
sXMLA = sXMLA & " <AggregationDesignID>Store Inventory</AggregationDesignID>"
sXMLA = sXMLA & " </Partition>"
sXMLA = sXMLA & " </ObjectDefinition>"
sXMLA = sXMLA & "</Create>"
To script cube processing in XMLA, navigate to a measure group partition in SQL Server Management Studio, right-click, and select Process. Press the Script button at the top of the dialog box that opens. Following is a sample XMLA script to process a cube.
<Batch xmlns="http://schemas.microsoft.com/analysisservices/2003/engine">

 <Parallel>

 <Process xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <Object>

 <DatabaseID>REAL Warehouse Sample V6 MT</DatabaseID>

 <CubeID>REAL Warehouse</CubeID>

 <MeasureGroupID>Store Inventory</MeasureGroupID>

 <PartitionID>Store Inventory WE 2004 12 11</PartitionID>

 </Object>

 <Type>ProcessFull</Type>

 <WriteBackTableCreation>UseExisting</WriteBackTableCreation>

 </Process>

 </Parallel>

</Batch>
AMO Overview

Analysis Management Objects (AMO) is a complete set of Microsoft® .NET objects for managing Analysis Services. AMO replaces the DSO object model that was used in Analysis Services 2000 and OLAP Services in SQL Server 7.0. Just as all Analysis Manager activities were implemented through DSO in Analysis Services 2000, all mechanisms for administering Analysis Services instances and databases are implemented by using AMO in Analysis Services 2005. AMO is a layer on top of XMLA and ultimately generates XMLA to perform all communication with an Analysis Services instance. This makes it slightly less performant than XMLA. Unless there are many AMO method calls, however, this performance difference will likely be undetectable.
Other enhancements in SQL Server 2005 make working with AMO much easier than using its predecessor, DSO. Since automation tasks were frequently implemented in DTS, we were relegated to the VBScript development environment. This environment did not have the rich set of coding (Intellisense® technology, color-coding) functionality that is found in the Script task in SSIS, which uses a Microsoft Visual Studio® for Applications (VSA) interface. This functionality was heavily relied upon in the development of AMO code in Project REAL since the AMO documentation in SQL Server Books Online was still sparse.
Perhaps the most confusing aspect of DSO was the implementation of the MDStores interface to navigate down to the partition object. This is gone in AMO and database navigation is much more intuitive. This is demonstrated in a code sample to follow.
As we began development on Project REAL, it was noted that the implementation of Analysis Services 2000 at Barnes and Noble did not create cube partitions through DSO and SSIS. Partitions were manually created a year at a time. Processing was implemented through the Parallel Process utility since Analysis Services 2000 could not process partitions except through DSO. The enhancements in Analysis Services 2005 allowed us to easily automate these processes, resulting in lower administrative overhead.
AMO Implementation

Our goal was to perform the same functionality with AMO as we did in the previous example with XMLA. We were able to improve the functionality based on the looping mechanisms that are inherent in the AMO object model. We looped through each measure group and checked if the measure group referenced the given fact table. If it did, we used the given process date to determine if the associated partition already existed. If the partition did not exist, we needed to create it.
With the XMLA implementation, the partition was created by running a previously generated script and changing the elements in the XML that designated the partition name, the partition ID, and the query definition. AMO provides the ability to copy an existing partition in the measure group with the Clone method. Instead of creating the partition by explicitly setting the partition properties in the code, we used the Clone method to copy everything from an empty template partition and change the same properties that were modified in our XMLA script.

The VSA environment that is implemented with the Script task also allowed us to tap into richer error-handling capabilities. VBScript code in DTS required that each method call be followed by a check for an error since there was no way to globally handle errors. This made for more complicated, less-readable code. Using Visual Basic® .NET in a SQL Server Integration Services (SSIS) Script task, we could use the Try..Catch statement to handle errors consistently in a single set of statements. We also used the ability to declare and initialize variables in the same statement for code readability.
Another technique was to gather the connection information from an SSIS connection manager that was already in existence. This leveraged the use of configuration files to dynamically adjust connection strings when packages were moved. So, we did not need to modify the script code when packages were moved.
The following code segment can be used to accomplish the partition creation functionality, equivalent to the previous XMLA example, in AMO.

 oServer.Connect(sConnectionString)

 Dim oDB As Database = oServer.Databases(sDatabase)

 Dim oCube As Cube = oDB.Cubes("REAL Warehouse")

 Try
 ' Find all measure groups that reference the table being processed

 For Each oMeasureGroup In oCube.MeasureGroups

' Get the last partition in the measure group

oPartition = oMeasureGroup.Partitions(oMeasureGroup.Partitions.Count - 1)

 oQueryBinding = CType(oPartition.Source, QueryBinding)
 If oQueryBinding.QueryDefinition Like "*" & sTableName & "*" Then
 ' Get the relevant boundary partition name and check to see if it
 ' already exists
 sPartitionNew = GetNewPartitionName(sWeekEnd, oPartition.Name)

 oPartitionNew = oMeasureGroup.Partitions.FindByName(sPartitionNew)

 If oPartition Is Nothing Then

' Clone the properties from the last partition to the new
' partition.

 oPartitionNew = oPartition.Clone

 oPartitionNew.ID = sPartitionNew

 oPartitionNew.Name = sPartitionNew

 oQueryBinding = New QueryBinding(oDB.DataSources(0).Name, sQuery)
 oMeasureGroup.Partitions.Add(oPartitionNew)

 oPartitionNew.Update()

 End If

 End If

 Next

 Dts.TaskResult = Dts.Results.Success

Catch ex As Exception

 Dts.Events.FireError(0, "Create Partition", ex.Message, "", 0)

 Dts.TaskResult = Dts.Results.Failure

End Try

If oServer.Connected Then

 oServer.Disconnect()

End If

VSA requires that all referenced assemblies be located in the appropriate version subdirectory of the <windows path>\ Microsoft.NET\Framework path. The AMO and SMO assemblies must be manually copied from the <SQL Server>\90\SDK\Assemblies directory to this directory. With the installation of subsequent builds of SQL Server, a new VSA version directory will probably be created and changes to the assemblies could have occurred that will require that these files be recopied. For the AMO coding referenced in this paper, only the AMO assembly was required (Microsoft.AnalysisServices.DLL). Note that this is not required to run AMO code written in VSA, only for development.
After making sure that the appropriate files have been copied to the directory where VSA will recognize them, add a reference to them in the Script task. To do this, in Project Explorer, right-click References and select Add Reference. Locate the Analysis Management Objects reference and add it. Then add a line at the beginning of the script that imports Microsoft.AnalysisServices as shown in the following figure.
[image: image16.png]Microsoft Visual Studio for Apblications

Ble Edt Vew Debug Tools Window

S| &

Broject

2 @ |

(5] ScrptTask_50435ca 49200405034t
& Lo Referencss

x0q100L

-5 Mirosoft,slserver. ManagedDTs
-5 Mirosoft. sqlserver,SerptTask
3 irosoft vss
-3 system
5 System.Data
5 System Windows Forns

) serptivan

[-[CIx]
Community tielp

o | R R E

Scriptain® |
[scripttain
T -

Option Strict OFf
systen

Systen.Data

Systen.Hath
Hicrosoft.SqlServer.Dts. Runt ime
Microsoft.Analysisservices

[oran

Hicrosoft SQL Server Integration Services Script Task

rite scripts using Microsoft Visual Basic
The ScriptMain class is the entry point of the Script Task.

Tuports
Tuports
Tuports
Tuports
Tmports

EPublic Class ScriptMain

! The execution engine calls this method when the task execute
! To access the object model, use the Dts ohject. Connections,
' and logging features are available as static members of the

! Before returning from this method, set the value of Dts.Task

Public Sub Hain()

Din

Declarations
olleasureGroup ks MeasureGroup
Dim oPartition is Partition
oQueryBinding As QueryBinding
oPartitionew is Partition

sPartitioniev hs String

Dinm
Dim
Dinm

Ready

Figure 15
Observations and recommendations

Both the XMLA scripting and AMO options can be easily implemented, especially when utilizing SSIS. Some observations for each method are mentioned in this section. Specific implementations may make one option more desirable than another. Overall, we found that AMO provided some benefits over XMLA.

AMO observations
Benefits
· More elegant and straightforward. This is a subjective statement but is generally the case.

· Can be used to include future objects. In the AMO sample code in this white paper, the first partition in each measure group in a cube is checked for a query reference to the fact table that passed. With well-designed cubes, it is unlikely that additional measure groups will be added to reference the same fact table, but this situation is handled. The AMO method also handles the possibility of a measure group rename; measure group names are hard-coded in the XMLA implementation.
· Dynamically incorporates partition property changes. Since the last partition is copied, any changes to aggregation design, storage mode, proactive caching, etc., are copied to the new partition. In most cases, this is desirable.

· All code is in one easy-to-read Script task. The XMLA implementation requires a Script task and a separate Execute Analysis Services DDL task.
· Can combine additional work, such as processing, in a single task. Processing can be performed by adding a single line to the AMO script.
Disadvantages
· Must manually copy assemblies to the Microsoft .NET with each new SQL Server build.
XMLA observations

Benefits
· Everything is exposed. All relevant properties of the underlying object are exposed, making it easy to determine what should be changed and what should not.
· Lowest level. Since XMLA is the native communications protocol for Analysis Services, it is the fastest.
Disadvantages
· Must manually script each measure group. This is not a strict requirement. A generalized script could be developed that would use variables to replace all properties that could change from measure group to measure group. These properties would either have to be hard-coded for each measure group or extracted from each measure group by using AMO. Additional measure groups would still need to be manually added to the script.
· Still requires AMO to check for partition existence. In our scenario, we wanted the ETL process to be restartable, so we checked for the pre-existence of the desired partition before proceeding to create it. This can only be accomplished through AMO. This code is naturally incorporated in the partition creation code in the AMO implementation scenario.
· Changing anything not originally scripted requires re-scripting or a manual change to the script. This is probably the biggest problem with using XMLA scripting for automating partition creation. In some rare cases it may be desirable to always keep the original, scripted properties. This case could be implemented easily with either AMO or XMLA.
Overall observations

Both methods benefit from many of the enhancements in SSIS:

· Partition creation is easily implemented in SSIS. Though DTS provided the VBScript task for DSO coding, the development environment included few of the benefits available in the VSA environment with the SSIS Script task. The Execute Analysis Services DDL task provides a very easy means of executing XMLA.

· Better error handling and debugging capabilities result in easier to read code and faster code development.

Remember, when using AMO, you must use a workaround so that VSA can reference the AMO assembly (see the last bulleted item under AMO Observations).
ETL Implementation
Now that all components have been defined to implement incremental partition maintenance, we need to integrate this back into the ETL process. Since the data from Barnes and Noble did not reach the criteria for data movement and archival, and because of time constraints, only the issue of adding new data to the partitioned fact tables was ultimately implemented in the released version of Project REAL. The addition of new data is treated differently for the Sales fact tables versus the Inventory fact tables. Each is discussed separately.

Loading sales
The loading of Sales data follows the traditional implementation of ETL. First, we need to establish if the partition exists for the latest sales date to be loaded. We create this partition if it does not exist by executing a SPLIT operation. One of the appealing aspects of table partitioning in SQL Server 2005 is that the update operation is simplified. Unlike partitioned views, there are no special rules required to make a table partition updateable. The ETL to load sales involved a three-part conditional branch to handle sales for this week, sales for last week, and all other sales. This final branch was the most complicated as it had to determine which partition was affected for each row. Very few rows fell into that category, however.
Partitioned tables seemingly simplify the load, as all inserts can simply be directed to the single partitioned table. However, this technique proved to be slow, so a modification was made to the most voluminous scenario—sales for the current week. For this scenario, we switched out the current week’s partition into an external table. The indexes on this external table are dropped, the new rows inserted, and the indexes re-added. Finally, the updated table is switched back to the appropriate partition in the partitioned table. This method introduced an interesting issue.

We used a partitioned table for our external table, based on the same partition scheme and function as the fact partitioned table from which data is switched out. This provides a few benefits:

· The external partitioned table was created on the same partition scheme and partition function, so the SWITCH operations are guaranteed to go smoothly.

· The use of a partitioned table for the external table circumvented the need to add CHECK constraints to the external table before switching it back into the partitioned table. Remember that any table that is switched into a partition in a partitioned table must have a CHECK constraint that is defined within the boundary of the destination partition.

· This circumvented the need to explicitly use the INCLUDE statement on nonclustered indexes that did not have the partitioning key explicitly defined. See Switching between PT and MT in this white paper.
Though this technique provides a few benefits, it is important to remember that the external table is a partitioned table. Since it shares the partitioned function of the large Sales fact table, there is a home for all rows, even those that are not in the current week. This exhibited itself as a bug in our ETL process as we switched out the current partition to an external partitioned table, loaded all new sales data, then switched only the current partition back into the Sales fact table. Some of the sales data was loaded into other partitions that were never switched back in, resulting in the loss of rows (see Figure 16). This was further exacerbated by the fact that no error was thrown to alert us that something had gone wrong.
[image: image17.png]20050101
20041225
20041218
20041211

20050101
20041225
20041218
20041211

Step 1 — Switch out current partition

Step 2 — Load new Sales

Sales Fact PT

Staging PT

Sales Fact PT

Staging PT

20050101

20041225

20041218

20041211

Step 3 — Switch back

current partition|

Step 4 — Delet:

e Stagi

ng table

Sales Fact PT

staging PT

Sales Fact PT

Staging PT,

20050101

20041225

20041218

20041211

|— 123,996 rows

—
—

421 rows
43 rows

Figure 16
To solve the problem, we modified the ETL to filter the loading of data into the SWITCHed out partition, including only the data relevant to that partition. Then that partition was SWITCHed back in. An additional step dealt with the out-of-range or noncurrent data—loading it directly into the Sales partitioned table. This out-of-range data represented a very small percentage of the total daily load (usually 5% or less), so inserting it directly into the partitioned table made the most sense for our project. This decision could vary, depending on the characteristics of the fact data for a given environment. Perform testing in your environment to determine how to handle this.
The use of partitioned tables for loading Sales did not simplify ETL processing as much as expected, but it did change the three-way conditional branch into a two-way branch. The solution is also more elegant, especially for noncurrent sales data.

Loading inventory
Inventory snapshots are a common scenario in the world of Retail data warehousing. The concept is to retain several views of the inventory related to points in time. Inventory snapshot fact tables are often very large because they contain a row for each product in each location for a given snapshot. Barnes and Noble uses weekly Inventory snapshots. Using the counts mentioned previously in this white paper, the number of rows would be 2,500,000 (approximate number of active items) x 4000 (approximate number of stores) or 10 billion rows per week! Not every item is stocked in every store, but this example shows the size of the Store Inventory fact table.

Inventory snapshots are also vastly different when it comes to loading. When the time comes for a new partition, the methodology in the Barnes and Noble environment is to take a copy of the previous week’s partition, since that is the current known inventory, and then update that on a daily basis. This makes a lot of sense, so this methodology was replicated in the Project REAL ETL, with a few changes for table partitioning.
Following is a high-level overview of the incremental partition maintenance, both for Store and DC Inventory:
46. Check if the partition for this date exists. If not, create it.
47. Use SELECT INTO to copy data from the last partition into a new external table on the next filegroup (we can re-initialize columns such as SK_Date_ID during this step).
48. Create indexes on the new external table (since a SELECT INTO was used).
49. Switch the new external table into the partitioned table.
This process seems simple, but there are a couple of comments that should be made. In step 1, your to check if a partition for this date exists. Remember that all fact tables share the same partition function. Since there is no guarantee which of the three fact tables will be the first to create a partition, an additional check should be made to see if any rows exist in the partition. For example, if DC Inventory runs first, this process will perform the partition split, resulting in a new partition. When Store Inventory runs, it will check for the partition and find that it exists because the DC Inventory process created it. If we relied only on this check, the new partition for Store Inventory would never be populated. Therefore, we must check both for the existence and the population of the partition. For more information, see Sharing the Partition Function.
Another observation regards the copying of the data from the previous week’s partition into an external table by using SELECT INTO. This results in a nonpartitioned table. In most cases, we need to create a CHECK constraint before SWITCHing the data back into the partitioned table. We did not have to do that because we converted the external table into a partitioned table when we create the indexes. All three fact tables have a clustered index defined on them. When we create the clustered index on the external table, we define it to reside on the partitioned scheme associated with the fact table. For example, if we are creating a new partition for Store Inventory, we create a clustered index to reside on the ps_FactStoreInventory partition scheme. This converts the external table into a partitioned table (only a single partition has rows). The new partition is then SWITCHed back into the associated fact table. This is faster than creating the index AND adding a check constraint.
Conclusion

Barnes and Noble can reap many benefits from using partitioned tables in SQL Server 2005. Partitioned views may be unusable due to implementation requirements and/or long compile times. The data was partitioned into separate tables, but these tables were managed separately. The ETL process required coding to determine the appropriate table to update while loading data. Local partitioned views are also in the process of being deprecated. Partitioned tables facilitate the ETL process and result in much lower administrative overhead. The new features and tools in SQL Server 2005 facilitate the creation and maintenance of partitions in both the SQL Server relational data warehouse and in Analysis Services cubes.
References

· Strategies for Partitioning Relational Data Warehouses in Microsoft SQL Server - http://www.microsoft.com/technet/prodtechnol/sql/2000/plan/spdw.mspx
· SQL Server 2005 Partitioned Tables and Indexes by Kimberly L. Tripp - http://www.sqlskills.com/resources/Whitepapers/Partitioning%20in%20SQL%20Server%202005%20Beta%20II.htm.
· TechNet Webcast: REAL-World Experience with SQL Server 2005 Table Partitioning (Level 300) –https://msevents.microsoft.com/CUI/Register.aspx?culture=en-US&EventID=1032276813&CountryCode=US&IsRedirect=false
· TechNet Webcast: SQL Server 2005 Series (Part 6 of 10): Managing Large Databases using Partitioning - http://msevents.microsoft.com/cui/WebCastEventDetails.aspx?eventID=1032270016&Culture=en-US
For more information:

http://www.microsoft.com/sql/solutions/bi/projectreal.mspx
Did this paper help you? Please give us your feedback. On a scale of 1 (poor) to 5 (excellent), how would you rate this paper?!href(mailto: sqlfback@microsoft.com?subject=Feedback: Data Lifecycle - Partitioning)

� In the full-sized Project REAL cube, the Store Inventory measure group was partitioned by a combination of subject and date to make the partition sizes more manageable.

