Hands-On Lab
Lab Manual

Linq Project: Unified Language Features for Object and Relational Queries
Information in this document is subject to change without notice. The example companies, organizations, products, people, and events depicted herein are fictitious. No association with any real company, organization, product, person or event is intended or should be inferred. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarked, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2005 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, MS, Windows, Windows NT, MSDN, Active Directory, BizTalk, Sql Server, SharePoint, Outlook, PowerPoint, FrontPage, Visual Basic, Visual C++, Visual J++, Visual InterDev, Visual SourceSafe, Visual C#, Visual J#, and Visual Studio are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names herein may be the trademarks of their respective owners.

Contents
1Lab 1: Linq Project: Unified Language Features for Object and Relational Queries

1Lab Objective

1Exercise 1 – Using Linq with In-Memory Collections

1Task 1 – Creating a Linq Solution

2Task 2 – Querying a Generic List of Integers

3Task 3 – Querying Structured Types

5Exercise 2 – Linq to Sql: Linq for Connected Databases

5Task 1 – Working with Linq to Sql

5Task 2 – Adding a new Data Connection

5Task 3 – Creating your object model

6Task 4 – Querying using Expressions

8Task 5 – Aggregating Data using the Standard Query Operators

9Exercise 3 – Linq To XML: Linq for XML documents

9Task 1 – Creating Documents from Scratch

11Task 2 – Using XML Documents with Files

12Exercise 4 – Understanding the Standard Query Operators

12Task 1 – Working with the OfType Operator

13Task 2 – Working with Min, Max, Sum, and Average

14Task 3 – Working with the Select Operator

16Task 4 – Working with the Where Operator

17Task 5 – Working with Count

1Task 6 – Working with the ToArray and ToList Operators

8

Lab 1: Linq Project: Unified Language Features for Object and Relational Queries
This lab provides an introduction to The Linq Project. The language integrated query framework for .NET (codenamed “Linq”) is a set of language extensions to C# and Visual Basic and a unified programming model that extends the .NET Framework to offer integrated querying for objects, databases and XML.
First, you will look at basic Linq features including the Standard Query Operators. Next, you will see how these features can be used against in-memory collections, connected databases, and XML documents. Finally, you will take a look at the various query operators available for data manipulation and extraction.
Lab Objective
Estimated time to complete this lab: 60 minutes
The objective of this lab is to gain a clear understanding of the Linq project. You will see how data manipulation can occur on objects in memory, database tables, and XML files. These new APIs benefit from IntelliSense™ and full compile-time checking without resorting to string-based queries. This lab will touch on basic Linq technologies, along with database-specific Linq to Sql and XML-specific XLinq. A brief look at query operators will be included.
	Using Linq with In-Memory Collections
Linq to Sql: Linq for Connected Databases
XLinq: Linq for XML Documents
Understanding the Standard Query Operators

Exercise 1 – Using Linq with In-Memory Collections
In this exercise, you will learn how to query over object sequences. Any collection supporting the generic interface System.Collections.Generic.IEnumerable<T> is considered a sequence and can be operated on using the new Linq Standard Query Operators. Support is also included for types defined using System.Collections.IEnumerable so that existing code will work with Linq as well. Standard Query Operators allow programmers to construct queries as well as projections that create new types on the fly. This goes hand-in-hand with type inference, a new feature that allows local variables to be automatically typed by their initialization expression.
Task 1 – Creating a Linq Solution
Click the Start | Programs | Microsoft Visual Studio 2008 | Microsoft Visual Studio 2008 menu command.
Click the File | New Project… menu command

In the Project Types pane on the right, click Visual C#
In the Templates pane on the right, click Console Application
Provide a name for the new solution by entering “Linq HOL CS” in the Name field
Click OK.
Task 2 – Querying a Generic List of Integers
1. In Solution Explorer, double click Module1.vb
Create a new method that declares a populated collection of integers (put this method just below Sub Main):

static void NumQuery()

{

 int[] numbers = {1, 4, 2, 7, 8, 9};
}
Add the following code to query the collection for even numbers:
 static void NumQuery()

{

 int[] numbers = {1, 4, 2, 7, 8, 9};
 var evenNumbers = from num in numbers
 where num % 2 == 0

 select num;
 }
Notice that the left-hand side of the assignment does not explicitly mention a type. This is possible due to one of the new features of the C# compiler. Type information, where possible, will be inferred directly by the compiler (this is called Type Inference). The right-hand side of the assignment is a query expression, which is a language extension introduced by the Linq project. Type inference is being used here to simplify the code. The return type from a query may not be immediately obvious. This example is returning System.Collections.Generic.IEnumerable<T>, but many queries return structured results with no obviously corresponding declared type; indeed, sometimes there will be no way to specify the type when they are created as anonymous types. Type inference provides an elegant solution to this problem.
Add the following code to display the results (this code retrieves the even numbers only):
 static void NumQuery()

{

 int[] numbers = {1, 4, 2, 7, 8, 9};
 var evenNumbers = from num in numbers
 where num % 2 == 0

 select num;
 Console.WriteLine("Result:");
 foreach (var number in evenNumbers)
 {
 Console.WriteLine(number);
 }
 Console.ReadLine();
 }
Notice that the foreach statement has been extended to use type inference as well: we don’t specify a type for ‘number’.
Finally, add a call to the NumQuery method from the Main method:
static void Main(string[] args)

{
 NumQuery();
}

Press F5 to launch the application. A console window will appear. As expected all even numbers are displayed (numbers 4, 2, and 8 appear in the console output).
Press ENTER to exit the application.
The final line, Console.ReadLine(), is used to prevent the console window from disappearing until enter is pressed. In subsequent tasks, this step will not be stated explicitly.
Task 3 – Querying Structured Types
2. In this task, you will move beyond primitive types and apply the query features to custom structured types. Within the Module1 declaration, add the following declaration to create a Person class:
class Person
{
 public int Age;
 public string Name;
}
Notice that no constructor has been declared. In the past this would have required consumers to create an instance of the object using the default parameterless constructor and then set the fields explicitly as separate statements.
Within, create the following new method:
 static void ObjectQuery()
 {
 List<Person> people = new List<Person>();

 people.Add(new Person { Age=13, Name=”Bob” });
 people.Add(new Person { Age=18, Name=”Cindy” });

 people.Add(new Person { Age=13});
 }
There are several interesting things to note about this code block. First of all, notice that the new collection is List<T>, not an array. Second, notice that the Person elements are being created with a new syntax (known as object initializers). Even though there is no constructor with two parameters for the Person class, it is possible to create objects of that class as expressions by setting its fields explicitly inside curly braces. Simply type ‘New <object> With {‘ and now, use the properties on your instance of <object>. Finally, notice that only the fields that have to be set need to appear in the initialization code. For example, the third element only sets the Age field of the Person object. Its Name property will retain its default value of null.
Next, query the collection for teenagers. Add the following query code:
static void ObjectQuery()

{
 List<Person> people = new List<Person>();
 people.Add(new Person { Age = 12, Name = "Bob"});
 people.Add(new Person { Age = 18, Name = "Cindy"});
 people.Add(new Person {Age = 13});
 var teenagers = from person in people
 where person.Age > 12 && person.Age < 20
 select person;
}
Finally, output the results with the following code:
static void ObjectQuery()

{

 List<Person> people = new List<Person>();
 people.Add(new Person { Age = 12, Name = "Bob"});
 people.Add(new Person { Age = 18, Name = "Cindy"});
 people.Add(new Person { Age = 13});
 var teenagers = from person in people
 where person.Age > 12 && person.Age < 20
 select person;
 Console.WriteLine("Results:")

 foreach (var teen in teenagers)
 {
 Console.WriteLine("> Name = {0}, Age = {1}", teen.Name, teen.Age);
 }
 Console.ReadLine();
}
Notice that again the compiler is using type inference to strongly type the teen variable used in the foreach loop.
Add a call to the ObjectQuery method in the Main method (and remove the call to NumQuery):

static void Main(string[] args)
{

 ObjectQuery();
}
Press F5 to debug the application.
Three results are shown. The first two results show the name and age, but the second result shows no name. This is the expected output since the Name field of that object was never initialized. As you can see, using Linq query expressions, working with complex types is just as easy as working with primitive types.
Exercise 2 – Linq to Sql: Linq for Connected Databases
Note: This exercise demonstrates that the same features available for querying in-memory collections can be applied to databases.
In this exercise, you will learn about Linq to Sql, a new part of ADO.NET that supports Language Integrated Query, allowing you to query and manipulate objects associated with database tables. It eliminates the traditional mismatch between database tables and your application’s domain-specific object model, freeing you to work with data as objects while the framework manages the rest.
Task 1 – Working with Linq to Sql
3. The first step is to create business objects to model the tables. Go to the Project menu, and select Add | New Item.

4. In the Templates click Linq To Sql Classes
5. Provide a name for the new item by entering “Northwind.dbml” in the Name field

6. Click OK
Task 2 – Adding a new Data Connection

7. In Microsoft Visual Studio, click the View | Server Explorer menu command (or press Ctrl+W,L)
8. In the Server Explorer click the Connect to database button
9. In the Add Connection dialog provide the local database server by entering “.\sqlexpress” in the Server name field

10. Choose our database by choosing “Northwind” in the Select or enter a database name combo box

11. Click OK
Task 3 – Creating your object model

12. Open the Data Connections treeview
13. Open the Northwind folder

14. Open the Tables folder

15. Ensure Northwind.dbml is open by double clicking it from the solution explorer.
16. From the tables folder drag the Customers table into the design pane

17. From the tables folder drag the Products table into the design pane

18. From the tables folder drag the Employees table into the design pane

19. From the tables folder drag the Orders table into the design pane

Task 4 – Querying using Expressions
20. In Program.cs, within the Program class declaration, create the following new method:

static void DatabaseQuery()
{

 // Use a standard connection string
 NorthwindDataContext db = new NorthwindDataContext();
}
This creates a NorthwindDataContext object that represents the strongly typed connection to the database. The ‘NorthwindDataContext’ object was named bcusased on the name we gave our dbml file: it simply appended ‘DataContext’ to the end.
Each table can now be accessed as a property of the db variable. At this point, querying is identical to the previous exercise. Add the following code to retrieve American customers:
static void DatabaseQuery()

{
 // Use a standard connection string
 NorthwindDataContext db = new NorthwindDataContext();
 var matchingCustomers = from cust in db.Customers

 where cust.Country = "USA"
 select cust;
}
Displaying matching customers is straightforward. Add the following code:
static void DatabaseQuery()

{
 // Use a standard connection string

 NorthwindDataContext db = new NorthwindDataContext();
 var matchingCustomers = from cust in db.Customers
 where cust.Country = "USA"
 select cust;
 foreach (var customer in matchingCustomers)
 {

 Console.WriteLine("> {0,33} / {1,30} / {2,4}",
 customer.CompanyName, customer.ContactName, customer.Country);
 }
 Console.ReadLine();
}
Of course, at this point the collection of matching customers could be displayed in a list box or printed in a report just as easily.
Finally, add a call to the new method in the Main method (and remove the call to ObjectQuery):

static void Main(string[] args)

{
 DatabaseQuery();
}
Press F5 to debug the application.

Thirteen results are shown. These are all the customers in the Northwind Customers table with a Country value of USA.

So far, our queries have been primarily based on filtering; however, Linq supports many options for querying data that go beyond simple filtering. For example, to sort matching customers by ContactName simply use the orderby clause:
static void DatabaseQuery()

{
 // Use a standard connection string

 NorthwindDataContext db = new NorthwindDataContext();
 var matchingCustomers = from cust in db.Customers
 where cust.Country = "USA"
 orderby cust.ContactName
 select cust;
 foreach (var customer in matchingCustomers)
 {
 Console.WriteLine("> {0,33} / {1,30} / {2,4}",
 customer.CompanyName, customer.ContactName, customer.Country);
 }
 Console.ReadLine();
}
Press F5 to debug the application.

The same thirteen results are shown, but notice that the order is now determined by the alphabetical ordering of the ContactName field.

You can also use built-in string methods in queries. Modify the where clause as shown:

static void DatabaseQuery()

{
 // Use a standard connection string

 NorthwindDataContext db = new NorthwindDataContext();
 var matchingCustomers = from cust in db.Customers
 where cust.CompanyName.Contains("Market")
 orderby cust.ContactName
 select cust;
 foreach (var customer in matchingCustomers)

 {
 Console.WriteLine("> {0,33} / {1,30} / {2,4}",
 customer.CompanyName, customer.ContactName, customer.Country);
 }
 Console.ReadLine();
}
Press F5 to debug the application.

The results have now been filtered down to just the four rows that contain "Market" in the CompanyName column.

Task 5 – Aggregating Data using the Standard Query Operators
Data Aggregates can be produced by simply calling the Standard Query Operators on the result just as you would with any other method. Add the following code to determine the average unit price of all products starting with the letter "A":
static void DatabaseQuery()

{
 // Use a standard connection string
 NorthwindDataContext db = new NorthwindDataContext();
 var matchingCustomers = from cust in db.Customers
 where cust.CompanyName.Contains("Market")
 select cust;
 foreach (var customer in matchingCustomers)
 {

 Console.WriteLine("> {0,33} / {1,30} / {2,4}",
 customer.CompanyName, customer.ContactName, customer.Country);
 }
 var avgCost = (from prod in db.Products
 where prod.ProductName.StartsWith("A")

 select prod.UnitPrice).Average();
 Console.WriteLine("Average cost = {0:c}", avgCost);
 Console.ReadLine();
}
Press F5 to debug the application.
In addition to the customers, the results now show the average cost for products starting with "A". From left to right, we first specify the table (db.Products) and then restrict the results to those rows with product names beginning with an "A". To this first filtered set of results we apply two more operators. First, we select the UnitPrice column, getting back a collection of prices, one for each original result. Finally, using the Average operator, we average over the collection of prices and return a single value.
Exercise 3 – Linq To XML: Linq for XML documents
Note: XLinq is an in-memory XML cache that takes advantage of the Standard Query Operators and exposes a simplified way to create XML documents and fragments.
In this exercise, you will learn how to read XML documents into the XDocument object, how to query elements from that object, and how to create documents and elements from scratch. In addition you’ll also be introduced to Visual C# language-integrated XML support.
Task 1 – Creating Documents from Scratch
21. Creating full-fledged documents from scratch requires first instantiating the XDocument object and then adding appropriate XElement, XAttribute and other entities as the document requires. However, to create an XML fragment, the XElement class is all you need. After the Main method, enter the following code to create a small document containing contact names:
static XDocument CreateDocument()
{

 // create the document all at once
 return new XDocument(
 new XDeclaration("1.0", null, null),
 new XElement("organizer",
 new XElement("contacts",
 new XElement("contact", new XAttribute("category", "home"),
 new XElement("name", "John Smith")),
 new XElement("contact", new XAttribute("category", "home"),
 new XElement("name", "Sally Peters")),
 new XElement("contact", new XAttribute("category", "work"),
 new XElement("name", "Jim Anderson")))))
}
Let’s display the document. After the CreateDocument method, create a new method, XMLQuery, that invokes CreateDocument and then writes the document to the console as follows:
static void XMLQuery()
{

 XDocument doc = CreateDocument();
 Console.WriteLine(doc);
 Console.ReadLine();
}
Replace the code in the Main method with a call to XMLQuery():

static void Main(string[] args)

{
 XMLQuery();
}
Press F5 to debug the application.

As you can see, creating the document required only a few steps, and can be accomplished in a single line of code

Our next step is querying the document. Visual C# allows direct construction of XML documents and also simplifies accessing XML structures via XML properties, identifiers in C# code that are bound at run time to corresponding XML attributes and elements. We can query all descendant elements of the typed variable (in this case, contact). Add the following code to query for all contact elements with a category attribute matching "home" (usage of the Where method should be familiar from the previous exercises):
static void XMLQuery()

{
 XDocument doc = CreateDocument();
 Console.WriteLine(doc);
 IEnumerable<XElement> contacts = from cont in doc.Descendants("contact")
 where cont.Attribute("category").Value == "home"
 select cont;
 Console.WriteLine("Results:");
 foreach (var contact in contacts)
 Console.WriteLine(" {0}", contact);
 Console.ReadLine();
}
Press F5 to debug the application.

Notice that the contact variable contains an XML element in turn containing only the two non-work contacts. This is a departure from DOM programming that requires that all elements be part of a document. This XML element can be considered "document-free." Notice that the descendant axis expression doc...<contact> translates into the raw Linq to XML call doc.Descendants(“contact”), which returns the collection of all elements named at any depth below contact.

Exercise 4 – Understanding the Standard Query Operators
Note: Linq contains more than forty different query operators, of which only a small sample of them will be highlighted here. Additional operators can also be added programmatically.
In this exercise, you will learn about several of the query operators available for data access and manipulation. These operators are declared as extension methods on the System.Query.Sequence type and are known together as the Standard Query Operators. These operators operate on sequences, that is, any object that implements IEnumerable(Of T).
Task 1 – Working with the OfType Operator
22. Linq retains all type information through queries and modifications. The OfType operator can be used on its town, to restrict a result set, or in conjunction with other operators. Above the CreateDocument method, add the following new method:
static void OperatorQuery()

{
 Object[] values = {1, "ant", 2, "x", 3, True, 4};
}
An unlikely collection such as this would be difficult to query. Having numeric, string, character, and Boolean values makes many common comparisons impossible.
The OfType operator restricts a result set to contain only values of its argument type, regardless of any other criteria. Add the following code to see a simple restriction query in this format:
 static void OperatorQuery()

{

 Object[] values = {1, "ant", 2, "x", 3, True, 4};
 IEnumerable<int> results = values.OfTyp<int>();

}
Now that the results have been restricted, the values can be used or simply displayed. Add the following code to dump the integer results to the console:
 static void OperatorQuery()

{

 Object[] values = {1, "ant", 2, "x", 3, True, 4};
 IEnumerable<int> results = values.OfType<int>();
 Console.WriteLine("Results:");
 foreach (int result in results)
 {
 Console.WriteLine(result);
 }
 Console.ReadLine();
 }
Add a call to the new method in the Main method:

static void Main(string[] args)

{
 OperatorQuery();
}
Press F5 to debug the application.

Notice that only the int values are displayed and that, as usual, these results can be again filtered or manipulated as needed.

Task 2 – Working with Min, Max, Sum, and Average

23. In the previous exercise, you worked with the Northwind database tables. You will now return to the DatabaseQuery method to apply some additional operators to the data. Add a call to the method in the Main method:

static void Main(string[] args)

{
 DatabaseQuery();
}
In the DatabaseQuery method, delete most of the body so that it looks like this:
static void DatabaseQuery()

{
 // Use a standard connection string
 NorthwindDataContext db = new NorthwindDataContext();
 Console.ReadLine();
}
Then, add the following lines to demonstrate aggregation using Min, Max, Sum, and Average:

static void DatabaseQuery()

{
 // Use a standard connection string
 NorthwindDataContext db = new NorthwindDataContext();
 var minCost = (from prod in db.Products
 select prod.UnitPrice).Min();
 var maxCost = (from prod in db.Products
 select prod.UnitPrice).Max();
 var sumCost = (from prod in db.Products
 select Convert.ToInt32(prod.UnitsOnOrder)).Sum();
 var avgCost = (from prod in db.Products
 select prod.UnitPrice).Avg();
 Console.WriteLine("Min = {0:c}, Max = {1:c}, Sum = {2}, Avg = {3:c}",
 minCost, maxCost, sumCost, avgCost);
 Console.ReadLine();
}
This example shows how the various aggregate math functions can be applied to data.

Press F5 to debug the application.

As you can see, the addition of these operators can considerably reduce code complexity.

Task 3 – Working with the Select Operator
24. The Select operator is used to perform a projection over a sequence, based on the arguments passed to the operator. Source data are enumerated and results are yielded based on the selector function for each element. The resulting collection can be a direct pass-through of the source objects, a single-field narrowing, or any combination of fields in a new object. In the DatabaseQuery method, delete most of the body so that it looks like this:

static void DatabaseQuery()
{

}
Add the following lines to create a direct projection:

static void DatabaseQuery()

{
 // Use a standard connection string
 NorthwindDataContext db = new NorthwindDataContext();
 var productsWithCh = from prod in db.Products
 where prod.ProductName.Contains("Ch")
 select prod;
 Console.ReadLine();
}
This query will first restrict the source data based on ProductName and then select the entire Product.
static void DatabaseQuery()

{
 // Use a standard connection string

 NorthwindDataContext db = new NorthwindDataContext();
 var productsWithCh = from prod in db.Products
 where prod.ProductName.Contains("Ch")
 select prod;
 var productsByName = from prod in db.Products
 where Convert.ToInt32(prod.UnitPrice) < 5
 select prod.ProductName;
 Console.ReadLine();
}
This query restricts based on unit price, then returns a sequence of product names.
Add the following lines to create a multi-value projection by using an anonymous type:

static void DatabaseQuery()

{
 // Use a standard connection string

 NorthwindDataContext db = new NorthwindDataContext();
 var productsWithCh = from prod in db.Products

 where prod.ProductName.Contains("Ch")
 select prod;
 var productsByName = from prod in db.Products
 where Convert.ToInt32(prod.UnitPrice) < 5
 select prod.ProductName;
 var productsDetails = from prod in db.Products
 where prod.Discontinued
 select new { prod.ProductName, prod.UnitPrice } ;
 Console.ReadLine();
}
Notice that the type returned in this example was never explicitly declared. The compiler has created it behind the scenes, based on the selected data types.
Finally, display the results with the following code:
static void DatabaseQuery()

{
 // Use a standard connection string

 NorthwindDataContext db = new NorthwindDataContext();

 var productsWithCh = from prod in db.Products

 where prod.ProductName.Contains("Ch")

 select prod;

 var productsByName = from prod in db.Products

 where Convert.ToInt32(prod.UnitPrice) < 5

 select prod.ProductName;

 var productsDetails = from prod in db.Products
 where prod.Discontinued
 select new { prod.ProductName, prod.UnitPrice };
 Console.WriteLine(">>Products containing Ch\n");
 foreach (var product in productsWithCh)
 {
 Console.WriteLine("{0}, {1}",
 product.ProductName, product.ProductID);
 }
 Console.WriteLine("\n>>Products names only\n");
 foreach (var product in productsByName)
 {
 Console.WriteLine(product);
 }
 Console.WriteLine("\n>>Products as new types\n");
 foreach (var product in productsDetails)
 {
 Console.WriteLine("{0}, {1}",
 product.ProductName, product.UnitPrice);
 }
 Console.ReadLine();
}
Press F5 to debug the application and view the results

Task 4 – Working with the Where Operator
25. The Where operator filters a sequence of values based on a predicate. It enumerates the source sequence yielding only those values that match the predicate. In the DatabaseQuery method, delete most of the body so that it looks like this:

static void DatabaseQuery()

{
 // Use a standard connection string

 NorthwindDataContext db = new NorthwindDataContext();
 Console.ReadLine();
}
The Where operator can filter based on any predicate. Enter the following code to filter employees based on their birth date:
static void DatabaseQuery()

{
 // Use a standard connection string

 NorthwindDataContext db = new NorthwindDataContext();

 var janBirthdays = from empl in db.Employees
 where empl.BirthDate.Value.Month = 1
 select empl;
 foreach (var employee in janBirthdays)
 {
 Console.WriteLine("{0}, {1}", employee.LastName, employee.FirstName);
 }
 Console.ReadLine();
}
Press F5 to debug the application and view the results

Task 5 – Working with Count
26. Count simply returns the number of elements in a sequence. It can be applied to the collection itself, or chained to other operators such as Where to count a restricted sequence. In the DatabaseQuery method, delete most of the body so that it looks like this:

static void DatabaseQuery()

{
 // Use a standard connection string

 NorthwindDataContext db = new NorthwindDataContext();
 Console.ReadLine();
}
Add the following code to count the number of elements in the Customers table:
static void DatabaseQuery()

{
 // Use a standard connection string

 NorthwindDataContext db = new NorthwindDataContext();
 int before = db.Customers.Count();
 var after = (from c in db.Customers
 where c.City == "London"
 select c).Count;
 Console.WriteLine("# of Customers= {0}, In London= {1}",
 before, after);
 Console.ReadLine();
{
Notice that restriction using Where can occur prior to Count being invoked, but it can also take effect directly within the call to Count.
Press F5 to debug the application and view the results

Task 6 – Working with the ToArray and ToList Operators
27. The ToArray and ToList operators are convenience operators designed to convert a sequence to a typed array or list, respectively. In the DatabaseQuery method, delete most of the body so that it looks like this:

static void DatabaseQuery()

{
 // Use a standard connection string

 NorthwindDataContext db = new NorthwindDataContext();

 Console.ReadLine();
}

These operators are very useful for integrating queried data with existing libraries of code. They are also useful when you want to cache the result of a query. Remember that the instantiation if a query does not RUN the query: it’s not actually run until used (such as For…Eaching over your query). Calling ToArray or ToList can force this to be earlier. Start by creating a sequence:
static void DatabaseQuery()

{
 // Use a standard connection string

 NorthwindDataContext db = new NorthwindDataContext();

 var customers = from c in db.Customers
 where c.City == "London"
 select c;
 Console.ReadLine();
}
Note that the sequence could even be as simple as db.Customers. Restricting the results is not a necessary component to use ToArray or ToList.
Next, simply declare an array or List collection, and assign the proper values using the appropriate operator:
static void DatabaseQuery()

{
 // Use a standard connection string

 NorthwindDataContext db = new NorthwindDataContext();

 var customers = from c in db.Customers

 where c.City == "London"
 select c;

 Customer[] custArray;
 custArray = customers.ToArray();
 List<Customer> custList;
 custList = customers.ToList();
 foreach (var cust in custArray)
 {
 Console.WriteLine("{0}", cust.ContactName);
 }
 Console.WriteLine("--------------");
 foreach (var cust in custList)
 {
 Console.WriteLine("{0}", cust.ContactName);
 }
 Console.ReadLine();
}
Press F5 to debug the application and view the results

Lab Summary

In this lab you performed the following exercises.

	Using Linq with In-Memory Collections
Linq to Sql: Linq for Connected Databases
XLinq: Linq for XML Documents

Understanding the Standard Query Operators

You saw how the Linq framework and features seamlessly tie together data access and manipulation from a variety of sources. Linq allows you to work with in-memory objects with the power of Sql and the flexibility of Visual Basic. Linq to Sql further builds on this support to link your objects to database tables with little extra effort. Finally XLinq leverages XML query abilities with the features of XPath, but the ease of Visual Basic. The large collection of standard query operators offers built-in options for data manipulation that would have required extensive custom code in the past. Using the Linq additions to Visual Basic, querying and transforming data in a variety of formats is easier than ever.
Page 1
Page 19

