
ASP.NET MVC 2 Beta Release Notes

This document describes the Beta release of the ASP.NET MVC 2 framework.
2Installation Notes

2Documentation

2Support

2Upgrading an ASP.NET MVC 1.0 Project to ASP.NET MVC 2

3New Features

3New RenderAction Method

4Strongly Typed UI Helpers

4TempDataDictionary Improvements

4Client Validation Library

5“Add Area” Dialog Box

5Calling Action Methods Asynchronously

5Blank Project Template

5Multiple Model Validator Providers

6Multiple Value Provider Registration

6Other Improvements

7Bug Fixes

8Breaking Changes

8Changes in ASP.NET MVC 2 Beta

8Changes in ASP.NET MVC 2 Preview 2

9Changes in ASP.NET MVC 2 Preview 1

9Known Issues

10Disclaimer

This document describes the Beta release of ASP.NET MVC 2 for Visual Studio 2008 SP1.

Installation Notes

The ASP.NET MVC 2 Beta for Visual Studio 2008 can be downloaded from the following page:

http://go.microsoft.com/fwlink/?LinkID=157068
ASP.NET MVC 2 can be installed and run side-by-side with ASP.NET MVC 1.0.
Note Because Visual Studio 2008 and Visual Studio 2010 Beta 2 share a component of ASP.NET MVC, installing ASP.NET MVC 2 Beta on a computer where Visual Studio 2010 Beta 2 is also installed is not supported.

Documentation

Documentation for ASP.NET MVC is available on the MSDN Web site at the following URL:

http://go.microsoft.com/fwlink/?LinkId=159758
Tutorials and other information about ASP.NET MVC are available on the ASP.NET Web site at the following URL

http://www.asp.net/mvc/
Support

This is a Beta release and is not officially supported. If you have questions about working with this release, post them to the ASP.NET MVC forum (http://forums.asp.net/1146.aspx), where members of the ASP.NET community are frequently able to provide informal support.

Upgrading an ASP.NET MVC 1.0 Project to ASP.NET MVC 2

To upgrade an existing ASP.NET MVC 1.0 application to version 2, follow these steps:
1. Make a backup of the existing project.

2. Open the project file (the file with the .csproj or .vbproj file extension) and locate the ProjectTypeGuid element. In the value of that element, replace the GUID {603c0e0b-db56-11dc-be95-000d561079b0} with {F85E285D-A4E0-4152-9332-AB1D724D3325}.When you are done, the value of that element should be as follows:

<ProjectTypeGuids>{F85E285D-A4E0-4152-9332-AB1D724D3325};{349c5851-65df-11da-9384-00065b846f21};{fae04ec0-301f-11d3-bf4b-00c04f79efbc}</ProjectTypeGuids>

3. In the Web application root folder, edit the Web.config file. Search for System.Web.Mvc, Version=1.0.0.0 and replace all instances with System.Web.Mvc, Version=2.0.0.0.

4. Repeat the previous step for the Web.config file located in the Views directory.
5. Open the project using Visual Studio and in Solution Explorer, expand the References node. Delete the reference to System.Web.Mvc (which points to the version 1.0 assembly). Add a reference to System.Web.Mvc (v2.0.0.0).

6. Add the following bindingRedirect element to the Web.config file in the application root under the configuraton section:

<runtime>

 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

 <dependentAssembly>

 <assemblyIdentity name="System.Web.Mvc"

 publicKeyToken="31bf3856ad364e35"/>

 <bindingRedirect oldVersion="1.0.0.0" newVersion="2.0.0.0"/>

 </dependentAssembly>

 </assemblyBinding>

</runtime>

7. Create a new ASP.NET MVC 2 application. Copy the files from the Scripts directory of the new application into the Scripts directory of the existing application.

8. Compile the application and run it. If any errors occur, refer to the Breaking Changes section of this document for possible solutions.

New Features

This section describes features that have been introduced in the ASP.NET MVC 2 Beta release.
New RenderAction Method
Html.RenderAction (and its counterpart Html.Action) is an HTML helper method that calls into an action method from within a view and renders the output of the action method in place. Html.RenderAction writes directly to the response, whereas Html.Action returns a string with the output. RenderAction works only with actions that render views.
Strongly Typed UI Helpers

ASP.NET MVC 2 includes new expression-based versions of existing HTML helper methods. The new helpers include the following:

· ValidationMessageFor
· TextAreaFor
· TextBoxFor
· HiddenFor
· DropDownListFor
TempDataDictionary Improvements

The behavior of the TempDataDictionary class has been changed slightly to address scenarios where temp data was either removed prematurely or persisted longer than necessary. For example, in cases where temp data was read in the same request in which it was set, the temp data was persisting for the next request even though the intent was to remove it. In other cases, temp data was not persisted across multiple consecutive redirects.

To address these scenarios, the TempDataDictionary class was changed so that all the keys survive indefinitely until the key is read from the TempDataDictionary object. The Keep method was added to TempDataDictionary to let you indicate that the value should not be removed after reading. The RedirectToActionResult is an example where the Keep method is called in order to retain all the keys for the next request.

Client Validation Library

MicrosoftMvcAjax.js now includes a client-side validation library that is used to provide client validation for models in ASP.NET MVC. To enable client validation, include the following two scripts in your view.
· MicrosoftAjax.js
· MicrosoftMvcAjax.js
The following example shows a view with client validation enabled.

<script type="text/javascript" src="MicrosoftAjax.js"></script>
<script type="text/javascript" src="MicrosoftMvcAjax.js"></script>
<% Html.EnableClientValidation(); %>
<% using(Html.BeginForm()) { %

 //...

<% } %>

“Add Area” Dialog Box
ASP.NET MVC 2 Beta includes a new Add Area context menu item when you right-click either the root project node or the Areas folder (if one exists). If a root Areas folder does not already exist, the command creates one, and it then creates the files and folders for the area that you specify.
Calling Action Methods Asynchronously
The AsyncController class is a base class for controllers that enables action methods to be called asynchronously. This lets an action method call external services such as a Web service without blocking the current thread. For more information, see Using an Asynchronous Controller in ASP.NET MVC In the ASP.NET MVC 2 documentation.

Blank Project Template

In response to customer feedback, an empty ASP.NET MVC project template is now included with ASP.NET MVC 2 Beta. This empty project template contains a minimal set of files used to build a new ASP.NET MVC project.
Multiple Model Validator Providers
ASP.NET MVC 2 Beta lets you register multiple validation providers. The following example shows how to register multiple providers.
protected void Application_Start() {

 ModelValidatorProviders.Providers.Add(new MyXmlModelValidatorProvider());

 ModelValidatorProviders.Providers.Add(new MyDbModelValidatorProvider());

 //...

}
Multiple Value Provider Registration

In ASP.NET MVC 2 Beta, the single value provider that was available in ASP.NET MVC 1.0 has been split into multiple value providers, one for each source of request data. The new value providers include the following:
· FormValueProvider
· RouteDataValueProvider
· QueryStringValueProvider
· HttpFileCollectionValueProvider
These value providers are registered by default. You can register additional value providers that pull data from other sources. The following example shows how to register additional value providers in the in Global.asax file.
protected void Application_Start() {

 ValueProviders.Providers.Add(new JsonValueProvider());

 //...

}
Other Improvements
The following additional changes have been made to existing types and members for ASP.NET MVC 2 Beta.
· The build task for multi-project areas has been removed and placed in the ASP.NET MVC Futures project.
· A new GetDisplayName method was added to the ModelMetadata class.
· A new IsComplexType property was added to the ModelMetadata class.
· Default object templates display only top-level properties of a model and do not attempt to recursively display properties of the properties of the model.

· ViewDataDictionary<T> now allows value types for the Model property.
· A new HideSurroundingHtml property was added to the ModelMetadata class. This is used to indicate that the HTML “chrome” surrounding a field in a template should not be displayed.
· Templated helpers now support byte[] and System.Linq.Binary properties on the model. When the HiddenInput UI hint attribute is applied to properties of these types, the editor template will Base-64-encode the value of these properties in a hidden input element.

· A new AdditionalValues dictionary property was added to the ModelMetadata class.
· A new RouteLink method overload was added that requires only two parameters, link text and the route name.
· A new protected virtual CreateTempDataProvider method was added to the Controller class. This allows you to supply a custom derived TempDataProvider object by overriding that method.
· When the model is binding to a collection, the DefaultModelBinder object no longer requires collection indexes to be an unbroken ascending sequence of positive integers.

· A new Ajax.Escape method was added that lets you escape JavaScript strings.

· The default templates for the Decimal type now format values to two decimal places.

· GenerateUrl is now a public method of UrlHelper.

· The AccountController class in the default template was updated to make use of the template helpers and data annotations.

· Modified the default T4 templates for the Add View dialog to emit expression based helpers. Also removed the validation summary.

Bug Fixes

The following bugs have been fixed in the ASP.NET MVC 2 Beta release.
· Fixed a bug in ModelMetadata.FromStringExpression that caused invalid form generation for null models.
· Fixed a bug in which display templates were displaying null models. Now null models are not displayed by display templates (although editor templates do display an editor for null models).
· Fixed a bug in which the IsReadOnly property of the ModelMetadata class returned false in cases where the expression points to a read-only property, but the instance of the property is mutable and thus can be written to.
Breaking Changes

The following changes might cause errors in existing ASP.NET MVC 1.0 applications.

Changes in ASP.NET MVC 2 Beta
Introduced the IValueProvider interface, which replaces all usages of IDictionary<string, ValueProviderResult>.
Every property or method argument that accepted IDictionary<string, ValueProviderResult> now accepts IValueProvider. This change affects only applications that include custom value providers or custom model binders.
Examples of properties and methods that are affected by this change include the following:
· The ValueProvider property of the ControllerBase and ModelBindingContext classes.
· The TryUpdateModel methods of the Controller class.
· New CSS classes were added in the Site.css file that are used to style validation messages.
Changes in ASP.NET MVC 2 Preview 2
Helpers now return an MvcHtmlString object
In order to take advantage of the new HTML-encoding expression syntax in ASP.NET 4, the return type of the HTML helpers is now MvcHtmlString instead of a string. Note that if you use ASP.NET MVC 2 and the new helpers with ASP.NET 3.5, you will not be able to take advantage of the HTML-encoding syntax; the new syntax is available only when you run ASP.NET MVC 2 on ASP.NET 4.
JsonResult now responds only to HTTP POST requests
In order to mitigate JSON hijacking attacks that have the potential for information disclosure, by default, the JsonResult class now responds only to HTTP POST requests. AJAX GET calls to action methods that return a JsonResult object should be changed to use POST instead. If necessary, you can override this behavior by setting the new JsonRequestBehavior property of JsonResult. For more information about the potential exploit, see the blog post JSON Hijacking on Phil Haack’s blog.
Model and ModelType property setters on ModelBindingContext are obsolete

A new settable ModelMetadata property has been added to the ModelBindingContext class. The new property encapsulates both the Model and the ModelType properties. Although the Model and ModelType properties are obsolete, for backward compatibility the property getters still work; they delegate to the ModelMetadata property to retrieve the value.
Changes in ASP.NET MVC 2 Preview 1
DefaultControllerFactory class changes break custom controller factories that derive from it
This change affects custom controller factories that derive from DefaultControllerFactory. The DefaultControllerFactory class was fixed by removing the RequestContext property and instead passing the request context instance to the protected virtual methods GetControllerInstance and GetControllerType.

Custom controller factories are often used to provide dependency injection for ASP.NET MVC applications. To update the custom controller factories to support ASP.NET MVC 2, change the method signature or signatures to match the new signatures, and use the request context parameter instead of the property.

“Area” is a now a reserved route-value key

The string “area” in Route values now has special meaning in ASP.NET MVC, in the same way that “controller” and “action” do. One implication is that if HTML helpers are supplied with a route-value dictionary containing “area”, the helpers will no longer append “area” in the query string.

If you are using the Areas feature, make sure to not use {area} as part of your route URL.

Known Issues

· Adding a debugger watch that shows a value from TempData will mark it for deletion. The side effect was introduced as part of the changes to TempDataDictionary.
Disclaimer

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2009 Microsoft Corporation. All rights reserved.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.
ASP.NET MVC 2 Beta Release Notes

Page 2
Copyright © 2009 Microsoft Corporation

