30

 1

Java to .NET Framework Migration Workshop
Migrating J2EE Applications
[image: image1.jpg]Lab 6: Migrating J2EE Applications

Vs

« Exercise 1: Migrating a Java Web

J Application to the .NET Framework

« Exercise 2: Migrating a JMS
Application to the .NET Framework

1 « Exercise 3: Migrating Enterprise
” . JavaBeans to the .NET Framework
=]

Objectives

After completing this lab, you will be able to:

· Migrate a Web application to the .NET Framework.

· Migrate a JMS application to the .NET Framework.

· Migrate EJBs to the .NET Framework.

Note

This lab focuses on the concepts in this module and as a result may not comply with Microsoft security recommendations.

Note

The line numbers specified in this lab are provided as a guide only. You may find that some of the line numbers vary depending on how you edit the code.

Prerequisites
Before working on this lab, you must have:

· Experience of building assemblies and applications using
Microsoft Visual Studio .NET.

· Familiarity with the structure of J2EE Web applications.

· Experience creating J2EE messaging applications.

· Experience building enterprise applications with J2EE EJBs.

Scenario

Northwind Traders wish to migrate an existing J2EE application to the .NET Framework. The application is a typical model 2, layered application. The data layer comprises a CMP entity bean, which is then accessed by the business layer, containing a number of stateless session beans. The presentation layer consists of a JSP Web application that uses controller servlets, and the JavaServer Pages Standard Tag Library (JSTL). Value objects are used to pass data to the presentation layer. The current deployment context for this application is the JBoss application server running on the JRockit JVM from BEA.
To begin with, Northwind Traders wish to migrate a prototype version of the Web application. This application contains dummy data held in ordinary JavaBeans and does not use EJBs. Once the prototype Web application has been successfully migrated, Northwind Traders will then migrate the full version of the J2EE application to the .NET Framework, replacing the dummy JavaBeans with migrated EJB functionality.

Northwind Traders also wish to migrate a prototype messaging application to test the feasibility of migrating from JMS to MSMQ.

Estimated time to complete this lab: 180 minutes

Log in to the
Hosted Experience

The Visual Studio Hosted Experience is pre-configured to allow you to run the following lab in a hosted environment. A broadband connection is required.

· Log in to the Hosted Experience

1. Open Internet Explorer.
2. Browse to http://msdn.microsoft.com/virtuallab.

3. Click on the lab group titled “Java to .NET Framework Migration Workshop.”

4. Click on the lab titled “Migrating J2EE Applications”

5. Follow the remaining on-screen instructions to start the Virtual Lab experience. Once you have logged in and started the Virtual Lab session you may begin with Exercise 1.

Exercise 1
Migrating a Java Web Application to the .NET Framework

In this exercise, you will migrate the prototype Java Web application to the .NET Framework. The application consists of a JSP, a Servlet, a JavaBean, and uses the JSTL Tag library.

· Examine the existing Web application

1. Please Read: Due to licensing restrictions, Java software has not been installed in the Hosted Experience environment – hence, the steps in this section (“Examine the existing Web application”) will not function. Instead, you should read the steps in this section to familiarize yourself with how the original Java application behaves.
2. Using Windows Explorer, browse to C:\JavaMigration\Labs\Lab06\Starter\prototypewebapp\web-app.

This is the root folder of the Java Web application.

3. Using Notepad, review the contents of the following files in this folder:

	File Location
	Purpose

	

	welcome.jsp
	This is the JSP page that displays the products. It uses the JSTL tag library to loop through an application scoped component that contains a collection of ProductValueObject instances.

	WEB-INF\classes\com\northwind\
ProductValueObject.java
	This is the JavaBean that is used within the prototype application to contain the data. In the J2EE application that you will be using later, it is the value object returned from the session bean.

	WEB-INF\classes\
ControllerServlet.java
	This is the controller servlet for the Web application. It instantiates five ProductValueObject JavaBeans containing dummy data for use in the Web application. It also forwards the request to the JSP.

	WEB-INF\web.xml
	This is the configuration file that specifies the tag library and the URL pattern for the controller servlet.

4. These files have already been compiled and packaged up into the prototype.war file. To deploy the application to JBoss, copy the file C:\JavaMigration\Labs\Lab06\Starter\prototypewebapp\prototype.war into the folder C:\jboss-3.2.3\server\default\deploy.

5. Start JBoss, using Windows Explorer to run the application C:\jboss-3.2.3\bin\run.bat. Wait for the server to finish initializing before continuing.

6. Using Internet Explorer, go to the following URL: http://localhost:8080/prototype/controller.

You will see the following page generated by the Welcome JSP, displaying the five JavaBeans.

[image: image2.emf]

7. Close Internet Explorer, and shut down JBoss by closing the command prompt window.

· Run the JLCA to convert the J2EE Web application to ASP.NET

8. Start Microsoft Visual Studio .NET 2003.

9. Start the Java Language Conversion Assistant and create a new solution. (On the File menu point to Open, click Convert, select the Java Language Conversion Assistant 3.0, select Create new solution, and then click OK).

Proceed through the wizard, using the values in the following table to specify the settings at each stage:

	Page
	Setting
	Value

	

	Source files
	A directory containing the project's files
	Select

	Select source directory
	Which directory contains the file you want to convert?
	C:\JavaMigration\Labs\Lab06\Starter\prototypewebapp\web-app

	
	Do you need any additional source files to build your project?
	Leave blank or clear contents

	Configure your new project
	What name would you like for your Visual C# project?
	WebPrototype.NET

	
	What type of application is your project?
	Web Application

	Specify Web settings
	Virtual Root
	prototype

	
	Application Domain
	Leave blank

	
	Context Path
	Leave blank

	Specify a directory for your new project
	Where do you want your new project created?
	C:\JavaMigration\Labs\Lab06\Starter\prototypewebapp\WebPrototype.NET

After the migration completes, the C# project is displayed in
Visual Studio .NET together with a conversion report. The JLCA will generate 7 errors and 3 warnings.

· Address the migration issues in the ControllerServlet.aspx file

10. In the Solution Explorer, right-click ControllerServlet.aspx, and click View Code to display it in the code view window.

11. Scroll down to line 3 displaying the UPGRADE_TODO comment:

UPGRADE_TODO: The class 'javax.servlet.http.HttpServlet' was converted to 'SupportClass.ServletSupport', which is not serializable. 'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="jlca1277_3"'

Delete the line containing this comment. The fact that the support class is not serializable is not important for our application.

12. Scroll down to the UPGRADE_WARNING at line 29:

UPGRADE_WARNING: Init functionality has been converted. Runtime behavior might not be the same. 'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="jlca1183_3"'

Delete the line containing this comment. The init functionality that has replaced the original init method will work as it stands.

13. Delete the line containing UPGRADE_WARNING at line 32. This is the same warning as the previous one, repeated in the init method flagging the call to the base.init method.

14. Scroll down to the UPGRADE_TODO comments at line 54 and 55:

UPGRADE_TODO: Interface 'javax.servlet.RequestDispatcher' was converted to 'System.Web.HttpServerUtility' which has a different behavior. 'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="jlca1073_javaxservletRequestDispatcher_3"'

//UPGRADE_ISSUE: Method 'javax.servlet.ServletContext.getRequestDispatcher' was not converted. 'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="jlca1000_javaxservletServletContextgetRequestDispatcher_javalangString_3"'

The RequestDispatcher in a servlet is used to forward requests from one JSP or servlet to another. In ASP.NET, this task is achieved by the following line of code already found in the code at line 59:

Server.Transfer("/prototype/welcome.aspx");

Delete the lines containing these comments.

15. Locate line 56 containing the following code:

System.Web.HttpServerUtility rd = application.getRequestDispatcher("/welcome.jsp");

Delete this line. This code is not required, since the functionality is already provided by the Server.Transfer() method at line 59.

16. Remove the remaining two comments in the doGet() method. They do not require any action to be taken:

//UPGRADE_TODO: Method 'javax.servlet.RequestDispatcher.forward' was converted to 'System.Web.HttpServerUtility.Transfer' which has a different behavior. 'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="jlca1073_javaxservletRequestDispatcherforward_javaxservletServletRequest_javaxservletServletResponse_3"'

//UPGRADE_TODO: Reference conversion may require user modification. 'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="jlca1202_3"'

17. Locate the init() method. Line 35 should read:

application = getServletContext();

Delete this line of code along with the UPGRADE_ISSUE comment above it, as the application object is implicitly available in the ASPX file, so setting this variable is not required.

The servlet's code has now been migrated successfully.

· Address the migration issues in the Welcome.aspx file

You will now fix the errors in the Welcome.aspx file. Most of these errors are due to the fact that the JSTL tag library source code was not converted since it is not part of your application. You will therefore need to remove the references to the JSTL tag class, and rewrite the ASP.NET page to use C# code to loop through the products array.

1. In the Solution Explorer, right-click the welcome.aspx file, and then click View Code.

2. Locate and then remove the following block of declarations between lines 19 and 23 of the file:

protected internal org.apache.taglibs.standard.tag.el.core.ForEachTag ForEachTag1;

protected internal org.apache.taglibs.standard.tag.el.core.OutTag OutTag2;

protected internal org.apache.taglibs.standard.tag.el.core.OutTag OutTag3;

protected internal org.apache.taglibs.standard.tag.el.core.OutTag OutTag4;

protected internal org.apache.taglibs.standard.tag.el.core.OutTag OutTag5;

3. In the Solution Explorer, right-click the welcome.aspx file, and then click View Designer. You will see the ASP.NET page in the design view window, with a control placed on the page along with an error message.

4. Click the HTML tab at the bottom of the design view window to switch to the HTML view.

5. Locate and remove the following block of ASP.NET code between lines 9 and 15:

<c_1:ForEachTag id="ForEachTag1" items ="${stock}" var ="item" runat = "server">

 Id: <c_1:OutTag id="OutTag2" value ="${item.id}" runat = "server"/>

 Name: <c_1:OutTag id="OutTag3" value ="${item.name}" runat = "server"/>

 Quantities: <c_1:OutTag id="OutTag4" value ="${item.quantity}" runat = "server"/>

 Unit price: <c_1:OutTag id="OutTag5" value ="${item.price}" runat = "server"/>

 <hr>

</c_1:ForEachTag>

6. In its place, add in the following ASP.NET code:

<%

ProductValueObject[] products = (ProductValueObject[]) System.Web.HttpContext.Current.Application.Get("stock");

foreach (ProductValueObject item in products)

{

Response.Write("Name: " + item.Name + "
");

Response.Write("Quantity: " + item.Quantity + "
");

Response.Write("Unit price: " + item.Price + "
");

Response.Write("id: " + item.Id + "
");

Response.Write("<hr>");

}

%>

This code obtains the list of items from the cached stock object array, and iterates through it displaying each item found. It is very similar to a JSP scriptlet block.

7. Remove the following statement at line 1 in the ASP.NET page:

<%@ Register TagPrefix="c_1" Namespace= "org.apache.taglibs.standard.tag.el.core" Assembly= "WebPrototypeNET"%>

8. Replace it with the following line:

<%@ Import Namespace="com.northwind" %>

This statement imports the com.northwind namespace that contains the converted ProductValueObject JavaBean generated by the JLCA.

9. Save the project. You have successfully migrated the Java Web application to .NET.

· Test the migrated application in a Web browser

· In the Solution Explorer, right-click ControllerServlet.aspx, and then click View in Browser. You will see the output from Welcome.aspx, shown due to the redirection from the ControllerServlet.aspx.

Note

To test the application using Internet Explorer, navigate to the URL http://localhost/prototype/controllerservlet.aspx.

Exercise 2
Migrating a JMS Application to the .NET Framework

In this exercise, you will migrate two Java console applications. One application sends JMS messages, and the other consumes JMS messages. The message broker for the Java applications is the JBoss application server. The .NET Framework applications that you will create will use MSMQ.

· View and test the Java applications
1. Please Read: Due to licensing restrictions, Java software has not been installed in the Hosted Experience environment – hence, the steps in this section (“View and test the Java applications”) will not function. Instead, you should read the steps in this section to familiarize yourself with how the original Java application behaves.
2. Using Notepad, open and review the following two Java source files in the C:\JavaMigration\Labs\Lab06\Starter\jmsApplications folder:

· MessageProducer.java

· MessageConsumer.java

These are basic JMS applications that send and receive a JMS message using a message queue. Although they are simple, they illustrate the functionality used by most JMS applications.

2. Start JBoss.

3. Open two command prompt windows and move to the folder C:\JavaMigration\Labs\Lab06\Starter\jmsApplications in both of them.

4. In one of the command prompt windows, run the command
ant runConsumer. This compiles and starts the MessageConsumer application.

5. With both command prompt windows in view, in the second command prompt window, run the command ant runProducer. This compiles and starts the MessageProducer application.

Watch the runConsumer command prompt window. You will see the message Hello from the Northwind producer appear.

6. Close all the command prompt windows, and shut down the JBoss server.

· Run the JLCA to convert the JMS applications to MSMQ

· In Visual Studio .NET, start the Java Language Conversion Assistant and create a new solution.

Proceed through the wizard, using the values in the following table to specify the settings at each stage:

	Page
	Setting
	Value

	

	Source files
	A directory containing the project's files
	Select

	Select source directory
	Which directory contains the file you want to convert?
	C:\JavaMigration\Labs\Lab06\Starter\jmsApplications

	
	Do you need any additional source files to build your project?
	Leave blank or clear contents

	Configure your new project
	What name would you like for your Visual C# project?
	Messaging.NET

	
	What type of application is your project?
	Console Application

	Specify a directory for your new project
	Where do you want your new project created?
	C:\JavaMigration\Labs\Lab06\Starter\Messaging.NET

After the migration completes, the C# project is displayed in
Visual Studio .NET together with a conversion report. The JLCA will generate 36 errors and 2 warnings.

· Address the migration issues in the MessageConsumer.cs file

1. In the Solution Explorer, double-click the file MessageConsumer.cs to display it in the code view window.

This file contains the application that connects to an MSMQ message queue and receives messages asynchronously. The file contains an event handling method called onMessage that is invoked when a message is available on the queue, and a Main method that connects to the queue and registers the onMessage handler using the ReceiveCompletedEventHandler delegate.

2. Move to line 28 containing the following UPGRADE_TODO comment:

//UPGRADE_TODO: The equivalent in .NET for method 'java.lang.Throwable.toString' may return a different value.

Remove the line containing this comment. It will not affect this application.

3. Go to the UPGRADE_TODO comment at line 47:

UPGRADE_TODO: The queue location must be given by the path of the MSMQ server and the name of the queue, optionally adding the word "private$" if it is a private queue

Delete the line containing this comment—you will address the points it contains in the next two steps.

4. The code below the comment reads as follows:

System.String queue = null;

System.Messaging.MessageQueue receiver = null;

Modify the first line, initializing the queue variable as shown below:

System.String queue = ".\\private$\\NorthwindQueue";

5. Modify the code that initializes the receiver variable of type MessageQueue as shown below:

System.Messaging.MessageQueue receiver = new System.Messaging.MessageQueue(queue);

This variable is set to be the name of the Queue that you will send your message to. The queue will be created using MSMQ.

6. Go to the UPGRADE_TODO comments at lines 54 and 55:

//UPGRADE_TODO: Constructor 'javax.naming.InitialContext.InitialContext' was converted to 'System.DirectoryServices.DirectoryEntry' which has a different behavior.

//UPGRADE_TODO: Adjust remoting context initialization manually.

The code that these comments refer to is on the following line:

System.DirectoryServices.DirectoryEntry context = new System.DirectoryServices.DirectoryEntry();

These comments and code are the result of the JLCA converting the code that instantiates the InitialContext used to lookup the QueueConnection and QueueConnectionFactory in the original Java code. The JLCA converts this code to use the DirectoryServices API. Directory Services is not required to send a message or receive a message from an MSMQ message queue, so delete both of these comments, and the line of code.

7. Go to the UPGRADE_TODO comment at the new line 55:

//UPGRADE_TODO: Method 'javax.naming.InitialContext.lookup' was converted to 'System.Activator.GetObject' which has a different behavior.

This comment relates to the following line of code generated by the JLCA.

System.Object tmp = Activator.GetObject(typeof(System.MarshalByRefObject), SupportClass.ParseURILookup("ConnectionFactory"));

The JLCA converts the lookup method into code that uses remoting to locate the ConnectionFactory object. Remove both the comment and the line of code.

8. Go to the UPGRADE_ISSUE at the new line 55. This comment and those that follow down to line 62 are concerned with using the JMS queue connection factory. This functionality is not required, so delete lines 55 to 62 inclusive.

9. Go to the UPGRADE_TODO comments at new lines 57 and 58:

//UPGRADE_TODO: Method 'javax.naming.InitialContext.lookup' was converted to 'System.Activator.GetObject' which has a different behavior.

//UPGRADE_TODO: The queue location must be given by the path of the MSMQ server and the name of the queue, optionally adding the word "private$" if it is a private queue.

The JLCA generates the following line of code to connect to the message queue using remoting:

queue = (System.String) Activator.GetObject(typeof(System.MarshalByRefObject), SupportClass.ParseURILookup("queue/testQueue"));

Delete these two comments and the line of code.

10. Go to the UPGRADE_ISSUE at the new line 59. This comment concerns the automatic acknowledgement feature of JMS which has not been converted. MSMQ has its own mechanism for acknowledging messages, so delete the comments at lines 59 to 62 inclusive.

11. Examine the UPGRADE_TODO comment at line 67. This comment notes that the mechanism used by MSMQ to handle message events can exhibit different behavior than that provided by JMS. Delete the line containing this comment.

12. Go to the UPGRADE_ISSUE comment at line 71:

//UPGRADE_ISSUE: Method 'javax.jms.Connection.start' was not converted.

/*

connection.start(); */

MSMQ does not require this functionality, so remove this comment and the commented code.

13. Go to the UPGRADE_ISSUE comment at line 22:

//UPGRADE_ISSUE: Method 'javax.jms.Message.acknowledge' was not converted.

Remove the line containing this comment, and the following two lines of code:

message.acknowledge();

System.Console.Out.WriteLine("acknowledgement sent");

14. Delete the UPGRADE_ISSUE comments and commented-out code in the Main method from lines 35 to 43 inclusive. These comments concern JMS functionality that the JLCA could not convert, and are not needed by this application as much of it is implemented by MSMQ.

15. Move to the new line 36, containing the following line of code:

System.Messaging.MessageQueue receiver = new System.Messaging.MessageQueue(queue);

Immediately preceding this line, add the following statement:

if (!System.Messaging.MessageQueue.Exists(queue))

 System.Messaging.MessageQueue.Create(queue);

This code checks whether the MSMQ message queue used by the application already exists. If not, the code creates the queue.

16. Locate the following statement at line 59 in the Main method:

System.Console.Out.WriteLine("Starting Connection");

Add the following statements immediately after this statement, but before the closing brace of the enclosing try block:

System.Console.Out.WriteLine("Press Return to finish");

System.Console.In.ReadLine();

One important difference between the JMS implementation of messaging and the .NET Framework concerns the life of a JMS client application as it runs. A JMS application that creates a QueueConnection and executes the start method will continue running, listening for messages on that queue until the connection is closed, even if the main thread of the application finishes. The model used by .NET Framework console applications causes the application to finish when the Main method exits. So although the application registers an event handler for receiving messages, the event handler may not be invoked before the application terminates unless the Main method is temporarily paused. In this example, the ReadLine method blocks the Main method until the user presses ENTER, allowing the event handler to run.

17. Examine, and then delete the remaining UPGRADE_TODO and UPGRADE_NOTE comments in this file (don't delete any code that is not commented). Most of them concern comments alerting you to the way in which the JLCA has mapped JMS exceptions to .NET Framework exceptions.

· Address the issues in the MessageProducer.cs file

1. In the Solution Explorer, double-click the MessageProducer.cs file to display it in the code view window.

This file contains the application that connects to an MSMQ message queue and sends a message. The file contains a Main method that connects to the queue, creates a message, and then posts it to the queue. Many of the issues reported by the JLCA in this file are the same as those in the MessageConsumer.cs file.

2. Delete the lines containing the UPGRADE_ISSUE comments and associated code (which has been commented out by the JLCA) from lines 12 to 20 inclusive.

3. Go to the new line 12:

UPGRADE_TODO: The queue location must be given by the path of the MSMQ server and the name of the queue, optionally adding the word "private$" if it is a private queue

Delete the line containing this comment.

4. The following two lines of code are the same as in the MessageConsumer.cs file:

System.String queue = null;

System.Messaging.MessageQueue sender = null;

Modify these lines as before:

System.String queue = ".\\private$\\NorthwindQueue";

System.Messaging.MessageQueue sender = new System.Messaging.MessageQueue(queue);

5. Delete the UPGRADE_TODO comments and associated code from lines 19 to 44 inclusive.

6. Move to the new line 25, containing the following line of code:

sender = new System.Messaging.MessageQueue(queue);

Immediately preceding this line, add the following statement to create the queue if necessary:

if (!System.Messaging.MessageQueue.Exists(queue))

 System.Messaging.MessageQueue.Create(queue);

7. Delete the UPGRADE_ISSUE and commented code from lines 31 to 33 inclusive.

8. Go to the UPGRADE_ISSUE comment at line 48:

//UPGRADE_ISSUE: Method 'javax.jms.Session.close' was not converted.

Delete the line containing this comment.

Replace the following line containing the commented-out call to the session.close method:

sender.Close();

9. Remove the UPGRADE_TODO and UPGRADE_NOTE comments from the file.

10. Save all the files in the project.

· Compile and run the applications

You are now ready to build and test the MessageProducer and MessageConsumer applications. You will compile the MessageProducer and MessageConsumer files as executable assemblies, and the support class as a shared assembly as it is needed by both applications.

1. Open a Visual Studio .NET Command Prompt window and move to the project folder:

C:\JavaMigration\Labs\Lab06\Starter\Messaging.NET.
2. To compile the shared assembly and build the MessageProducer executable, type the following commands:

csc /t:library SupportClass.cs

csc /r:SupportClass.dll MessageProducer.cs

csc /r:SupportClass.dll MessageConsumer.cs

Note

It is also possible to perform these tasks using Visual Studio .NET, but it involves splitting the solution generated by the JLCA into multiple projects—one for the shared assembly, one for the message producer, and one for the message consumer. In this example, it is quicker and easier to build the assemblies from the command line.

3. Execute the command MessageProducer.exe. This will run the MessageProducer application, create a message, and post it to the NorthwindQueue. You will see messages displayed on the console as it does so.

· View the MSMQ message

18. Click Start, point to All Programs, then point to Administrative Tools, and then click Computer Management.

19. In the Computer Management console, expand Services and Applications, expand Message Queuing, and then click Private Queues. In the right pane, you will see the northwindqueue created by your application.

20. In the left pane, expand Private Queues, expand the northwindqueue, and click Queue messages. In the right pane will be your message as shown below.

[image: image3.emf]

21. Double-click the message. The Properties dialog will appear. From this dialog you can view the message properties.

22. In the Properties dialog, click the Body tab. You will see the contents of the message as shown below.

[image: image4.emf]

23. Close the Properties dialog, but leave the Computer Management console open.

24. In the command prompt window, run the MessageConsumer application. It will retrieve the message from the Queue and display the message Hello from the Northwind producer, as before with the JMS version of the application.

25. To confirm that the message has been retrieved, in the Computer Management console, view the Queue Messages for the northwindqueue as you did before. Press F5 to refresh the view. You will observe that the message has now disappeared.

26. Close the Computer Management console, and the Visual Studio .NET Command Prompt window.
Exercise 3
Migrating Enterprise Java Beans to the .NET Framework

In Exercise 1 you established the feasibility of migrating the Web application to the .NET Framework. The Web application used JavaBeans to simulate access to the database. The fully functional version of the application uses entity beans, a session bean acting as a façade, and a set of value objects. You will migrate this functionality to the .NET Framework using two serviced components. One for the entity bean, and then one for the session façade. You will then modify the prototype Web application migrated earlier to use the serviced component instead of the EJBs.

· Deploy and run the J2EE application to be migrated

1. Please Read: Due to licensing restrictions, Java software has not been installed in the Hosted Experience environment – hence, the steps in this section (“Deploy and run the J2EE application to be migrated”) will not function. Instead, you should read the steps in this section to familiarize yourself with how the original Java application behaves.
2. Using Windows Explorer, copy the following files from the source locations to the destinations shown in the following table, overwriting any existing files with the same name when prompted:

	Copy these files:
	To this folder:

	

	C:\JavaMigration\Labs\Lab06\Starter\enterpriseapp\products.ear
	C:\jboss-3.2.3\server\default\deploy

	C:\Program Files\Microsoft SQL Server 2000 Driver for JDBC\lib*.jar
	C:\jboss-3.2.3\server\default\lib

	C:\JavaMigration\Labs\Lab06\Starter\enterpriseapp\jbossfiles\mssql-ds.xml
	C:\jboss-3.2.3\server\default\deploy

	C:\JavaMigration\Labs\Lab06\Starter\enterpriseapp\jbossfiles\standardjbosscmp-jdbc.xml
	C:\jboss-3.2.3\server\default\conf

	C:\JavaMigration\Labs\Lab06\Starter\enterpriseapp\jbossfiles\login-config.xml
	C:\jboss-3.2.3\server\default\conf

3. Start the JBoss server.

Watch the console carefully for error messages. If there are any, review and correct the errors. If you are unsure, ask your instructor for assistance.

4. Using Internet Explorer, browse to http://localhost:8080/products/index.jsp. The Web page displayed lists products retrieved from a SQL Server database rather than the hard-coded values shown earlier. Close Internet Explorer when you have finished.

5. Stop the JBoss server.

· Review the functionality of the Enterprise JavaBeans

Please Read: Due to licensing restrictions, Java software has not been installed in the Hosted Experience environment – hence, the steps in this section (“Review the functionality of the Enterprise JavaBeans”) will not function. Instead, you should read the steps in this section to familiarize yourself with how the original Java application behaves.
· Using Notepad, examine the code in the following files to get an idea of how the enterprise application is structured. They are all located in the folder C:\JavaMigration\Labs\Lab06\Starter\ejbs\src:

	EJB Code File
	Description

	

	Product.java
	The remote interface for the Product CMP entity bean. It defines methods for accessing the properties (Id, Name, Quantity, and Price) of products.

	ProductBean.java
	The abstract implementation class for the Product CMP. It provides an ejbCreate method that populates products.

	ProductHome.java
	The home interface for the CMP. It defines the create method and three finder methods.

	ProductAccess.java
	The remote interface for the session façade. It defines methods for retrieving all products, or individual products by name and by id.

	ProductAccessHome.java
	The home interface for the session façade.

	ProductAccessBean.java
	The implementation class for the session façade.

	ProductValueObject.java
	The value object passed by the session façade to the client applications.

· Review the JSP that accesses the session façade

Please Read: Due to licensing restrictions, Java software has not been installed in the Hosted Experience environment – hence, the steps in this section (“Review the JSP that accesses the session façade”) will not function. Instead, you should read the steps in this section to familiarize yourself with how the original Java application behaves.
· Using Notepad, open the file C:\JavaMigration\Labs\Lab06\Starter\enterpriseapp\web-app\index.jsp.

This JSP contains code that accesses the session façade and then processes the returned value objects, generating a Web page displaying the details of each product.

· Use the JLCA to migrate the EJBs

· In Visual Studio .NET, start the Java Language Conversion Assistant and create a new solution.

Proceed through the wizard, using the values in the following table to specify the settings at each stage:

	Page
	Setting
	Value

	

	Source files
	A directory containing the project's files
	Select

	Select source directory
	Which directory contains the file you want to convert?
	C:\JavaMigration\Labs\Lab06\Starter\ejbs

	
	Do you need any additional source files to build your project?
	Leave blank or clear contents

	Configure your new project
	What name would you like for your Visual C# project?
	EJB.NET

	
	What type of application is your project?
	Class Library

	Specify a directory for your new project
	Where do you want your new project created?
	C:\JavaMigration\Labs\Lab06\Starter\ejbs\EJB.NET

After the migration completes, the C# project is displayed in
Visual Studio .NET together with a conversion report. The JLCA will generate 27 errors and 5 warnings.

Notice that the JLCA creates two projects—ComPlusApplication1 containing the code for the EJBs, and EJBNET which contains the migrated code for the ProductValueObject class.

Note

You will not actually use the migrated value object in this solution, and the entity bean will be re-architected to return the data as a DataSet. DataSets are a very powerful feature of ADO.NET, allowing data to be retrieved from a database and serialized for transportation between process and computer boundaries. DataSets also provide comprehensive mechanisms for batching multiple updates, and are ideal for operating in a disconnected manner.

· Examine and edit the Entity Bean C# code generated by the JLCA

· If you examine the migrated code for the CMP entity bean in the three files ProductHome.cs, Product.cs, and ProductBean.cs, you will observe that the JLCA is currently not able to migrate the functionality required for CMP. You will therefore re-architect the entity bean code to return a DataSet.

You will then re-architect the session bean code to return a DataSet to client applications, based upon the method invoked within by the client.
· Modify the migrated code to use a DataSet

6. In the Solution Explorer, expand the COMPlusApplication1 project, and then expand the src folder. Review the following files:

ProductHome.cs

Product.cs

ProductBean.cs

These are the migrated entity bean files. You will begin to migrate the entity bean now.

7. In the Solution Explorer, double-click the file ProductHome.cs to display it in the code view window.

This file contains the migrated definition of the ProductHome interface of the entity bean and the implementation in the ProductHome class.

8. Examine the definition of the ProductHome class. As well as implementing the IProductHome interface, it extends ServicedComponent allowing the class to be deployed using COM+. The [ComponentAccessControl] attribute enables security checking to be performed whenever methods on the component are called.

9. Add the following using statements to the top of the file ProductHome.cs:
using System.Data;

using System.Data.SqlClient;

10. You will now modify the interface definition IProductHome. Within the interface definition, remove the create method declaration. Clients to this component will not need to create instances of the migrated entity bean.
11. Change the return type of the remaining three methods to DataSet. Also remove the ref keyword from the argument to the findByPrimaryKey method. Those methods are:
Product findByPrimaryKey(ref System.Int32 i);

System.Collections.ICollection findAll();

Product findByName(System.String name);

They should be changed to:

DataSet findByPrimaryKey(System.Int32 i);

DataSet findAll();

DataSet findByName(System.String name);

12. Locate the create method and review the code. Clients will not need to create instances of the entity bean, so remove this method.
13. Add the following instance variable to the ProductHome class:

private string sql = "select ProductID, ProductName, QuantityPerUnit, UnitPrice FROM Products";

14. Add the following private method that returns a SqlConnection object:

private SqlConnection getConnection()

{

}

15. Add the following code to the body of this method:

SqlConnection conn = new SqlConnection("Data Source=localhost;Initial Catalog=Northwind;User ID=user;Password=password");

conn.Open();

return conn;

This method returns a connection for the database. It will be used by the finder methods.

16. Add another private method that takes a SqlCommand object as a parameter and returns a DataSet that will be populated with data when this command is executed Set the method name to retrieveDataSet:

private DataSet retrieveDataSet(SqlCommand command)

{

}

17. In this method, add the following code to instantiate a DataAdapter object. The DataAdapter is used to populate the DataSet object:

SqlDataAdapter adapter = new SqlDataAdapter();

adapter.SelectCommand = command;

18. Add the following code to the method that populates the DataSet:

DataSet MyProductDataSet = new DataSet();

adapter.Fill(MyProductDataSet);

This code creates a new instance of your DataSet class, and assigns it to a new variable MyProductDataSet. It then populates the DataSet using the Fill method.

19. Add the following statement that returns the DataSet to the end of the method:

return MyProductDataSet;

20. Locate the findAll() finder method. Remove the body of the method that currently returns null. Change the return type from System.Collections.ICollection to DataSet.
21. Within the finder method curly braces declare a variable of type SqlConnection called conn, and assign it to the return value from the getConnection() private method, as shown below:

SqlConnection conn = getConnection();

22. Add the following statements to the finder method, that instantiate a SqlCommand object and assign it to a new variable command. Then set the CommandText property to the SQL query specified in the instance variable sql:

SqlCommand command = new SqlCommand();

command.Connection = conn;

command.CommandText = sql;

23. Add statements that call the retrieveDataSet method, assigning the return value to a DataSet called data. Then close the connection, and return the DataSet:

DataSet data = retrieveDataSet(command);

conn.Close();

return data;

You have now written one of the finder methods; it returns a DataSet containing all rows from the Product table. You will now complete the findByNameand findByPrimaryKey methods which return DataSets containing only matching rows.

· Implement the remaining serviced component methods

1. Locate the method findByName, and clear the contents of the method body, leaving the curly braces. Change the return type from ProductValueObject to DataSet.
2. In the body of the method, declare a variable of type SqlConnection called conn, and assign it to the return value from the getConnection() private method:

SqlConnection conn = getConnection();

3. Add the following statements that instantiate a SqlCommand object and assign it to a new variable command and sets the CommendText property to the SQL query specified in the instance variable sql, with the appropriate where clause appended. The SQL statement uses a parameter for the name:

SqlCommand command = new SqlCommand(sql + " WHERE ProductName=@Name", conn);

SqlParameter myParm = command.Parameters.Add("@Name", SqlDbType.NVarChar);

myParm.Value = name;

DataSet data = retrieveDataSet(command);

conn.Close();

return data;

4. Locate the findByPrimaryKey method, and remove the ref keyword from the parameter declaration. It does not need to be a reference value.

5. Repeat steps 1 to 3, for the getProductByPrimaryKey method The SQL statement returns all products with a matching product Id, which is an integer. The code is shown below:

SqlConnection conn = getConnection();

SqlCommand command = new SqlCommand(sql + " WHERE ProductID=@ID", conn);

SqlParameter myParm = command.Parameters.Add("@ID", SqlDbType.Int);

myParm.Value = i;

DataSet data = retrieveDataSet(command);

conn.Close();

return data;

As you can see, when migrating an entity bean using a DataSet, there is no need for the migrated implementation class ProductBean, or a migrated remote interface Product, as the home interface does all the work, and returns DataSet objects, not entity bean instances. This emphasizes again that there is no clear migration path for an entity bean.

6. In the Solution Explorer, right-click ProductBean.cs, and select Delete. At the warning, confirm that you wish to permanently delete the file.

7. In the Solution Explorer, right-click Product.cs, and select Delete. At the warning, confirm that you wish to permanently delete the file.

· Migrating the Session Façade

1. In the Solution Explorer, double-click the file ProductAccessBean.cs to display it in the code view window.

2. Examine the code. Note that the ProductAccessBean class also extends ServicedComponent. When a session bean is migrated using the JLCA, the JLCA generates two serviced components; one for the home interface in the EJB, and one for the implementation class in the EJB.

This class also makes use of the [PrivateComponent] attribute making it visible only to other classes in the same application, the [Transaction] attribute forcing the use of a transaction when methods are called, and the [Serializable] attribute enabling instances of this class to be serialized for transportation purposes.

3. Scroll through the code. Notice that the JLCA generates UPGRADE_NOTE comments concerning the lifetime methods of the session EJB which are not supported (or required) by serviced components. Remove the following methods from this file:

ejbCreate

setSessionContext

ejbActivate

ejbPassivate

4. Remove the following helper methods that were used in the original session bean to create value objects, and work with the CMP entity bean classes:

locateCDHomeInterface

convertBean

convertCollection

You will add code to this class later that replaces these methods and returns the data to the client Web application.

5. Remove the private ProductHome home instance variable.

6. In the Solution Explorer, double-click ProductAccess.cs to display it in the code view window.

This file is the migrated version of the remote interface for the EJB. Notice that it extends the IDisposable interface, providing additional control over how the CLR manages the memory used by objects that implement this interface.

The serviced component will return DataSets as value object, not simple collections of components, so you will need to modify the interface.

7. Add a using statement at the top of the file, to bring the System.Data namespace into scope:

using System.Data;

8. Modify the Products property to be of type DataSet instead of System.Collections.ICollection.

9. Modify the return type of the getProductByName and getProductById methods from ProductValueObject to DataSet.

10. In the Solution Explorer, open ProductAccessHome.cs. Locate the create method, and remove the line that invokes the ejbCreate() method, as this method is not required.

· Modify the migrated session bean to use the migrated entity bean

1. Using the Solution Explorer, open ProductAccessBean.cs in the code view.
2. Add a using statement for System.Data.

3. Locate the Products property and modify the type to be DataSet.

4. Clear the contents of the get accessor for the Products property.
5. Within the get accessor, add code to instantiate a ProductHome object, and then return the result from a call to findAll(), as shown below:

ProductHome home = new ProductHome();

return home.findAll();

6. Locate the method getProductByName, and modify the return type to be DataSet.

7. Clear the body of the method, and replace it with the following code:

ProductHome home = new ProductHome();

return home.findByName(s);

8. Locate the method getProductById, and modify the return type to be DataSet.

9. Clear the body of the method, and replace it with the following code:

ProductHome home = new ProductHome();

return home. findByPrimaryKey(n);

· Add a name for COM+

1. In the Solution Explorer, double-click AssemblyInfoComPlus1.cs to display it in the code view window.

2. Add the following attribute to the class:

[assembly: ApplicationName("ProductServicedComponent")]

This will name the assembly for deployment to COM+.

3. Build the solution and correct any errors before continuing.

· Create a Strong named assembly

All serviced components must be strongly named and deployed to the GAC.

1. Open a Visual Studio .NET 2003 Command Prompt window and move to the solution folder C:\JavaMigration\Labs\Lab06\Starter\ejbs\EJB.NET.

2. Use the sn tool to create a key file as follows:

sn -k ProductServicedComponent.snk

Do not close the Visual Studio .NET Command Prompt window as you will need it later.

3. Return to Visual Studio .NET, displaying AssemblyInfoComPlus1.cs in the code view window.

4. Locate the AssemblyKeyFile attribute and modify it as shown to reference the strong name key file:

[assembly: (AssemblyKeyFile("..\\..\\ProductServicedComponent.snk")]

5. Rebuild the solution and correct any errors before continuing.

· Deploy the component the GAC and register it with COM+

1. Return to the Visual Studio .NET 2003 Command Prompt window and move to the C:\JavaMigration\Labs\Lab06\Starter\ejbs\EJB.NET\obj\Debug folder.

2. Deploy the assembly to GAC by executing the following command:

gacutil –i ComPlusApplication1.dll

3. Execute the following command to register the assembly as a serviced component with COM+:

regsvcs ComPlusApplication1.dll

4. To confirm that the assembly has been deployed as a serviced component, click Start, point to All Programs, point to Administrative Tools, and then click Component Services.

5. In the Component Services console, expand Component Services, expand Computers, expand My Computer, and then expand COM+ Applications.

Verify that ProductServicedComponent appears in the list of COM+ applications.

You must configure the component to allow access when it is invoked by the Web application. The Web application will run using anonymous access, so you must grant privileges to the local IUSR account, named IUSR_JAVAMIG.

· Configure component access security

1. In the Component Services console, expand ProductServicedComponent, and then right-click Roles. Point to New, and then click Role.

2. In the Role dialog box, type ProductRole, and then click OK.

3. In the Component Services console, expand Roles, expand ProductRole, right-click Users, point to New, and then click User.

4. In the Select Users or Groups dialog box, in the Enter the object names to select (examples) text box, type IUSR_JAVAMIG. Click OK.

5. In the Component Services console, expand ProductServicedComponent, and then expand Components, right-click com.northwind.ProductAccessBean, and select Properties.

6. Select the Security tab, and then select the ProductRole. Click OK.

7. Repeat the previous two steps for the com.northwind.ProductAccessHome component.

8. In the Component Services console, right-click the ProductServicedComponent, and then click Shut down.

9. Right-click ProductServicedComponent, and then click Start.

10. Close the Component Services console.

11. Close the Visual Studio .NET 2003 Command Prompt window.

· Modify the client Web application to use the component

You will now change the prototype Web application that you migrated in Exercise 1 of this lab, to use the DataSet returned from the serviced component.

1. In Visual Studio .NET, open the project that you created in Exercise 1, C:\JavaMigration\Labs\Lab06\Starter\prototypewebapp\WebPrototype.NET\WebPrototype.NET.csproj.

2. In the Solution Explorer, right-click References, and then click Add Reference.

3. In the Add Reference dialog, click the .NET tab. Click Browse, and then select C:\JavaMigration\Labs\Lab06\Starter\ejbs\EJB.NET\obj\Debug\COMPlusApplication1.dll, and then click Open. Then click OK to close the Add Reference dialog box.
Note

Applications built using the .NET Framework do not reference serviced components also built using the .NET Framework as COM components.

4. Add a new ASP.NET Web Form to the project.

5. Using the Solution Explorer, rename the new Web Form default.aspx.

6. Drag and drop a DataGrid control from the Toolbox onto the Web Form in the designer view window. The DataGrid will appear as shown below.

[image: image5.emf]

The DataGrid control can be used to display data from a variety of different datasource types as a grid.

7. On the Web Form, select the new DataGrid control, and use the Properties window to change the DataSource property to the value data.

8. To create the variable data, in the Solution Explorer, right-click the file default.aspx and then click View Code.

The code behind the Web form appears in the code view window. This file is called default.aspx.cs.

9. Add a using statement for the namespace of the COM+ component com.northwind.

10. Declare a protected variable called data of type DataSet as shown:

protected DataSet data = null;

11. Locate the method with the following signature:

private void Page_Load(object sender, System.EventArgs e)

12. Where directed by the comment “Put user code to initialize the page here”, add the following lines of code to instantiate your serviced component and to obtain the DataSet:

ProductAccessHome home = new ProductAccessHome();

ProductAccess products = home.create();

data = products.Products;

DataBind();

The DataBind() method is used to bind data from a datasource to a Server control.

13. Use the Solution Explorer to open Web.Config in the editor pane.

14. Locate the entry:

<authentication mode="Windows" />

15. Add a new entry just below as shown:

<identity impersonate="true" />

16. Save and rebuild the solution.

17. Preview the page in Internet Explorer. You will see the data from the Products database, retrieved using the serviced component.

[image: image6.emf]

