[image: image1.png]

Crawling Custom Metadata Using Microsoft® SharePoint™ Portal Server 2001

White Paper

Published: July 2001

Table of Contents

1Introduction

Terminology
2
Tasks
2
Document Profile Creation
2
Content Source Creation
3
Profile Mapping Code
4
Sample Code
4
Property Mapping Script Application
6
Modified HTML IFilter Wrapper
7
Service Restart
8
Update
9
Tips and Troubleshooting
9
Propagating an Index Across Servers
9
Flushing the Cache
9
Overwriting Site Path Rules
9
Creating Site Path Rules
9
Viewing Custom Properties for Site Server Documents
9
Using Namespaces
9
Avoiding Custom Mappings to the Description
9
Using Many-to-One Mappings
9
Overriding the Content Source’s Target Content Class on a Per-File Basis
9
Conclusion
9

Crawling Custom Metadata Using Microsoft SharePoint Portal Server 2001
[image: image2.wmf]White Paper

Published: July 2001

For the latest information, please see http://www.microsoft.com/sharepoint/portalserver.asp
Introduction

This white paper details the steps necessary to promote metadata from externally crawled content into Microsoft® SharePoint™ Portal Server 2001 content indexes. This paper also includes a utility script that allows you to automate the process by editing an Extensible Markup Language (XML) file and running a script.

The need to index custom metadata embedded in documents is particularly important to organizations attempting to include content currently crawled by Microsoft Site Server in an index.

SharePoint Portal Server crawls content sources such as file shares and Web sites. In the process, SharePoint Portal Server gathers full-text information from documents and includes it in the index. However, the ability to map metadata to properties of SharePoint Portal Server is restricted to the contents of Lotus Notes databases.

You can map metadata from file share and Web site content sources to properties of SharePoint Portal Server. However, no user interface exists for this mapping. You can write custom code to perform this mapping.

Properties for HTML files are usually stored in <META> tags. Properties for Microsoft Office documents are usually stored in OLE structured storage. Most Office properties can be accessed from within the Office application by using the File menu and Properties dialog box.

This white paper assumes that the reader is familiar with SharePoint Portal Server, has read the documentation relevant to searching and indexing, and, ideally, has previously configured SharePoint Portal Server to crawl a content source.

Two .exe files containing custom code are provided with this paper: CrawlingMetadataPropmap.exe and CrawlingMetadataHtmlprop.exe.

Important The custom code provided is not supported. There is no guarantee that the object model used will be supported in future versions of SharePoint Portal Server.

Mapping of properties is supported only for Lotus Notes content sources and only by using the facility provided in the user interface.

Terminology

A number of terms used by SharePoint Portal Server differ from the terms used by the underlying Microsoft Web Storage System technology on which SharePoint Portal Server is based. You can usually ignore the Web Storage System terms and use the SharePoint Portal Server counterparts. However, when working with code that uses the automation libraries of SharePoint Portal Server that use the Web Storage System terminology—notably Publishing and Knowledge Management Collaboration Data Objects (PKMCDO)—it is important to keep track of which SharePoint Portal Server terms correspond to which underlying Web Storage System or PKMCDO term. In this document, the following terms are interchangeable.

	SharePoint Portal Server term
	Web Storage System or PKMCDO term

	Document Profile
	Content Class

	Content Source
	KnowledgeStartAddress

In addition, it is important to note how the names of automation component ProgIDs differ depending on whether they are being called using early binding (common in compiled code) or late binding (the only option when using scripting languages). In early binding, most of the automation components of SharePoint Portal Server begin with the prefix PKMCDO, whereas when being called with late binding, they begin with CDO.

Tasks

There are five steps required to configure a SharePoint Portal Server workspace to crawl external content and allow the properties and meta tags in that external content to be promoted as properties in SharePoint Portal Server:

1. Create a document profile that includes the list of profile properties that you want to have available through SharePoint Portal Server. This profile can include custom properties.

2. Create a content source that points to the external data. When saving it, do not begin indexing the data.

3. Modify and apply the property mapping code to map external content meta tags and property tags to the SharePoint Portal Server document profile properties. Example code is provided later.

4. Restart the SharePoint Portal Server services to flush any cached schema.

5. Start the full update for the content source.

These steps are explained in the following sections.

Document Profile Creation

Create a document profile that includes the list of profile properties that you want to have available through SharePoint Portal Server. You can add custom properties to this profile.

To create a document profile

1. In the workspace, open the Management folder.

2. In the Management folder, open the Document Profiles subfolder.

3. Double-click Add Document Profile. The Add Document Profile Wizard opens.

4. Type a descriptive name for the document profile.

5. Select an existing document profile to use as a template. The Base Document Profile is the default template.

6. Click Next.

7. Define the properties that make up the fields on the document profile:

· To select or clear a property to appear on the document profile, click the box next to the property name.

· To add a new property, click New.

· To edit the attributes of an existing property, select the property by clicking the property name, and then click Edit.

8. Click Next.

9. To choose the order in which the properties appear on the document profile, select a property, and then use the Move Up and Move Down arrows.

10. Click Next.

11. Review the settings for your new document profile, and then click Finish.

When the wizard is complete, the new document profile appears in the Document Profiles folder. The document profile is now available for a coordinator to associate with folders in the workspace. After users associate this document profile with a folder, users can select the document profile from a list when checking in a document or editing the properties of a document.

Content Source Creation

Create a content source that points to the external data. When saving it, do not begin indexing the data.

Propagation of custom metadata is dependent on the creation of and/or modifications to two entries in the workspace: a content source and a site path rule.

To create a content source

1. Open the Management folder, and then open the Content Sources folder.

2. Double-click Add Content Source.

3. The Add Content Source Wizard opens. Follow the on-screen instructions to complete the wizard. Do not begin building an index of the data.

SharePoint Portal Server places the new content source in the Content Sources folder. The information available from the source is included in the index and is available for users to search for and view on the dashboard site.

You can modify an existing content source that was created with the SharePoint Portal Server client user interface, or you can create a content source programmatically by using PKMCDO. In either case, you must add the following four properties to the content source:

· An array containing the names of the properties to be read from the source documents.

· An array containing the source data types of those properties.

· An array containing the names of the properties into which the source metadata will be stored in the index.

· The document profile that will be attributed to the documents found at the content source.

You must add these four properties programmatically. No user interface exists for creating or editing these properties other than for Lotus Notes content sources.

You must create a site path rule that corresponds to this content source. The site path rule should have the same starting address as the content source. In addition, you must programmatically modify the rule so that it contains the following two properties (the included script code does this):

· A reference to the target document profile that will be attributed to the documents found through this site path. This reference must be to the same document profile you applied to the content source.

· A URL reference to the content source. The site path rule retrieves its property mapping instructions from the content source entry.

Profile Mapping Code

Modify and apply the property mapping code to map meta tags and property tags from external content to the SharePoint Portal Server document profile properties. Example code is provided later.

Sample Code

The following code fragment details the required actions to register the propagation of properties and metadata from the external content source into SharePoint Portal Server. This is Microsoft Visual Basic® 6.0 code, not Microsoft Visual Basic Scripting Edition (VBScript). For VBScript examples, see the included PropMap.wsf script in CrawlingMetadataPropmap.exe. If you add this code to a Visual Basic project, you must include the PKMCDO type library as a reference. The sample that follows makes liberal use of built-in constants for SharePoint Portal Server namespaces.

Note The following code sample shows the path to content sources as /Management/Content Sources/. If you are running on a non-English system, replace this path with the localized string that contains the name of the content sources folder.

Dim objCS As PKMCDO.KnowledgeStartAddress

 Dim objSPR As PKMCDO.IKnowledgeCatalogSitePathRule

 Dim colSitePathRules As IKnowledgeCatalogSitePathRules

 Dim strUrlContentSource As String

 ' Change the following values to reflect the names of your server,

 ' workspace, content source, and target document profile.

 Const MYSERVER = "SharePoint_Portal_Server_computer"

 Const MYWORKSPACE = "SharePoint_Portal_Server_workspace"

 Const MYSOURCE = "FileContentSource"

 Const MYDOCPROFILE = "DocProfileName"

 ' Construct the URL to the Content Sources folder for your workspace.

 strUrlContentSource = "http://" & MYSERVER & "/" & MYWORKSPACE _

 & "/Management/Content Sources/" & MYSOURCE

 ' Open the KnowledgeStartAddress (Content Source) item.

 Set objCS = New PKMCDO.KnowledgeStartAddress

 objCS.DataSource.Open strUrlContentSource, , adModeReadWrite

 ' Indicate which content class (Document Profile)

 ' should be attributed to crawled files.

 objCS.Fields(PKMCDO.cdostrURI_TargetContentClass) = _

 PKMCDO.cdostrNS_ContentClasses & MYDOCPROFILE

 ' All tags will have namespaces prepended to them.

 ' PKMCDO provides built-in constants for most of these. Change

 ' the array elements below to the property names you wish to use,

 ' adding or deleting lines as needed. NOTE: it is important that

 ' all three of the following arrays match up in terms of number of

 ' elements and the ordering of property names.

 ' If you are crawling HTML documents, all properties will have a

 ' standard HTML namespace prepended to them. The source namespace

 ' may vary for other file types. See below for details.

 objCS.Fields(PKMCDO.cdostrURI_SourceProperties) = Array(_

 PKMCDO.cdostrNS_HtmlMetaInfo & "ExternalTag1", _

 PKMCDO.cdostrNS_HtmlMetaInfo & "AnotherTag2", _

 PKMCDO.cdostrNS_HtmlMetaInfo & "TheLastTag")

 ' One data type entry is needed per source property.

 objCS.Fields(PKMCDO.cdostrURI_SourceTypes) = Array(_

 "string", _

 "string", _

 "string")

 ' All SharePoint Portal Server properties are prepended with the standard Office

 ' namespace. Ensure that they match up in order with their source

 ' properties.

 objCS.Fields(PKMCDO.cdostrURI_TargetProperties) = Array(_

 PKMCDO.cdostrNS_Office & "SharePoint_Portal_Server_Property1", _

 PKMCDO.cdostrNS_Office & "SharePoint_Portal_Server_Property2", _

 PKMCDO.cdostrNS_Office & "SharePoint_Portal_Server_Property3)

 ' Adding four properties to the content source definition item

 ' is not enough. You must also add a site path that corresponds to

 ' this content source. You can see these by going to the Content

 ' Sources management folder and opening the "Additional Settings"

 ' item, then clicking the "Site Paths" button on the resulting dialog box.

 Set colSitePathRules = objCS.Workspace.Catalog.SitePathRules

 ' NOTE: this code does NOT check to see if a matching site path

 ' already exists. Before you run this code, check to see if matching

 ' site paths are already present, and if so, delete them.

 Set objSPR = colSitePathRules.Add(objCS.Address & "/*", True)

 objSPR.ContentClass = objCS.Fields(PKMCDO.cdostrURI_TargetContentClass)

 objSPR.PropertyMappingUrl = strUrlContentSource

 ' Clean up object references and save everything. The site path rule

 ' item does not need to be explicitly saved, but the content source does.

 Set colSitePathRules = Nothing

 Set objSPR = Nothing

 objCS.Fields.Update

 objCS.DataSource.Save

 Set objCS = Nothing

Property Mapping Script Application

The previous sample code is intended to illustrate the steps to take when using PKMCDO. The sample that follows, however, is a fully functional application that you can immediately use to configure property mapping. The code is provided in CrawlingMetadataPropmap.exe.

The CrawlingMetadataPropmap.exe file contains a Microsoft Windows® Scripting Host script file named PropMap.wsf. PropMap.wsf accepts as input an XML file that supplies server, workspace, and content source information, plus property mapping information. An example of the file format expected by this script is provided as PropMap.xml.

You can run the script on any computer running Microsoft Windows 2000 on which the SharePoint Portal Server (or client) software is installed (that is, a computer on which PKMCDO has been installed). The script accepts a single parameter, the path name of the XML file containing the mapping instructions to be processed. If that parameter is missing, the file PropMap.xml, in the same directory as the script file, is assumed.

The code that follows illustrates the XML document expected by the PropMap.wsf script. The element names are intended to describe in detail the information needed to create a property map.

Note This format is not supported and is not suggested as a standard representation. Its scope is restricted to this white paper, and it is intended to add value to the sample custom code included here.

When examining the <targetContentClass> element, note that the script code prepends “urn:content-classes:” to any value that does not have a namespace prepended to it.

When examining the <sourceName> elements, note that the script code prepends “urn:schemas.microsoft.com:htmlinfo:metainfo:” to any value that does not have a namespace prepended to it.

When examining the <targetName> elements, note that the script code prepends “urn:schemas-microsoft-com:office:office#” to any value that does not have a namespace prepended to it.

<?xml version="1.0"?>

<propertyMap>

<server>

<name>server1</name>

<workspace>

<name>test1</name>

<contentSource>

<name>dogbreeds</name>

<targetContentClass>DogBreed</targetContentClass>

<property>

<sourceName>breedOrigin</sourceName>

<sourceType>string</sourceType>

<targetName>breedOrigin</targetName>

</property>

<property>

<sourceName>breedName</sourceName>

<sourceType>string</sourceType>

<targetName>breedName</targetName>

</property>

<property>

<sourceName>breedFirstBred</sourceName>

<sourceType>dateTime</sourceType>

<targetName>breedFirstBred</targetName>

</property>

<property>

<sourceName>breedWeight</sourceName>

<sourceType>i4</sourceType>

<targetName>breedWeight</targetName>

</property>

<property>

<sourceName>Abstract</sourceName>

<sourceType>string</sourceType>

<targetName>Description</targetName>

</property>

<property>

<sourceName>ContentClass</sourceName>

<sourceType>string</sourceType>

<targetName>DAV:contentclass</targetName>

</property>

<property>

<sourceName>Categories</sourceName>

<sourceType>string</sourceType>

<targetName>urn:schemas-microsoft-com:publishing:Categories</targetName>

</property>

</contentSource>

</workspace>

</server>

</propertyMap>

Modified HTML IFilter Wrapper

An add-on IFilter designed for Index Server is available on Microsoft MSDN®. This filter is designed to be registered in place of the standard HTML IFilter. The filter works by loading the “true” HTML IFilter, intercepting the <META> tag values it returns, and converting selected values into numbers and/or dates as they are passed to the indexing service.

A series of tests in a SharePoint Portal Server environment showed this IFilter to work properly, with little if any discernable performance penalty.

The original IFilter code is available on MSDN at http://msdn.microsoft.com/library/default.asp?URL=/library/techart/msdn_ismeta.htm. It is strongly recommended that you read this article before proceeding further. You should use the modified copy of that IFilter that is included with this paper, rather than the code supplied with the original article.

The modified version, for which source is included, is contained in CrawlingMetadataHtmlprop.exe. The modified version contains support for the additional date formats mentioned in Knowledge Base article Q240390, specifically:

· Sun Nov 6 08:49:37 1994

· Sun, 06 Nov 1994 08:49:37

· GMT Sunday, 06-Nov-94 08:49:37

· GMT Sun Nov 6 08:49:37 1994

It also supports the more XML and Web Storage System–centric storage format of:

· 1994-11-06T08:49:37.000

The original source code supported a smaller number of formats, which were less standard for HTML content crawling purposes (although they would have been very familiar to developers conversant in Microsoft’s development environments).

The original source code required the administrator to indicate in an .ini file which properties should be transformed into different data types.

While full source code is included, the only files necessary to begin are HTMLProp.dll and HTMLProp.ini. The .ini file contains installation (and removal) information. There is a ReadMe.txt file provided for background context, but a large amount of its content is specific to earlier versions of Index Server. HTMLProp.ini contains all the information needed to install and register HTMLProl.dll.

Service Restart

Restart the following SharePoint Portal Server services to flush any cached schema.

To restart the services

1. Click Start, point to Programs, point to Administrative Tools, and then click Services.

2. Right-click Microsoft Exchange Information Store, and then click Restart.

3. Right-click Microsoft Search, and then click Restart.

4. Right-click SharePoint Portal Server, and then click Restart.

Update

Start the full update for the content source.

To start a content source update

1. In the Management folder, open the Content Sources folder.
2. Right-click the content source that you want to update, and then click Start Full Update.

Tips and Troubleshooting

Propagating an Index Across Servers

In this scenario, the content source and script must be created and run, respectively, on the server dedicated to indexing. The profile and any SharePoint Portal Server custom properties must be on both the server dedicated to indexing and the server dedicated to searching.

Flushing the Cache

Iterative modifications to the mappings that you define can result in perceived failures. The majority of perceived problems are the result of not flushing the cache between iterative changes to the property mapping information. To prevent these issues, ensure that you stop and start the MSSearch and MSExchangeIS services before each full index update.

Overwriting Site Path Rules

To keep the above sample code as simple and illustrative as possible, no code is included to check for a matching preexisting site path entry and to delete the entry if it exists. You must manually do this or augment the sample code to perform such a check and delete each time it runs. If you do so, delete and recreate the site path rule. Do not attempt to edit the rule.

The included PropMap.wsf script performs this checking and deletes any such rule before creating a new one.

To view site path rules

1. In the workspace, open the Management folder, and then open the Content Sources folder.
2. Double-click Additional Settings.

3. On the Rules tab, click Site Paths.

Creating Site Path Rules

When possible, have only one site path rule per content source. Site path restrictions match in top-down order. If the URL of a document matches a site path rule that is not associated with the property mapping, the properties will not be mapped and will be empty. It is the site path rule that determines whether mapping takes place. The content source entry is used only to determine how to do the mapping.

Viewing Custom Properties for Site Server Documents

Office documents managed by Site Server are usually tagged with custom properties. These custom properties cannot be viewed in Office, nor can they be viewed with the PROPDUMP utility from the Platform Software Development Kit (SDK). However, the ENUMALL utility from the Platform SDK should be able view these custom properties.

Using both FILTDUMP and IFILTTST from the Platform SDK, the Site Server custom properties are emitted from HTML files but not from Office documents. This is because the Office IFilter does not directly emit the properties, instead indicating to the calling code that it should use IPropertyStorage to retrieve these additional properties.

Use the following attributes with IFILTTST: IFILTER_INIT_APPLY_INDEX_ATTRIBUTES and IFILTER_INIT_APPLY_OTHER_ATTRIBUTES. IFILTTST does not support the IFILTER_INIT_APPLY_CRAWL_ATTRIBUTES value.

Using Namespaces

Although the properties embedded in HTML and Office documents have no namespace qualifiers, namespaces are prepended to them during the file crawl. Your property mapping arrays must take this into consideration.

All HTML properties emerge from the crawl with the namespace prefix “urn:schemas.microsoft.com:htmlinfo:metainfo:”, for which PKMCDO provides the constant cdostrNS_HtmlMetaInfo.

If the file source being crawled represents documents maintained by Microsoft Site Server 3.0, all .stub files (which are HTML files with embedded redirect statements) also emit properties with this namespace.

If Site Server is managing an Office document, Site Server stamps its own properties into the document as a separate property set in OLE structured storage. The properties stamped into the file by the tag tool in Site Server will have the previously mentioned cdostrNS_HtmlMetaInfo namespace prepended to them, even though they are not HTML documents but are Office documents crawled by Site Server.

Any other Office document properties will be prepended with the namespace “urn:schemas-microsoft-com:office:office”, for which PKMCDO provides the constant cdostrNS_Office. This is the same namespace prepended to all properties that you create by using the user interface of SharePoint Portal Server for creating and editing document profiles. The character “#” is appended to the namespace when followed by a property name.

Avoiding Custom Mappings to the Description

You should avoid custom mappings to the Description property unless you are crawling only HTML files. The Description property, specifically urn:schemas-microsoft-com:office:office#Description, is derived differently depending on the document type. While mapping the <META> tag of your choice to Description works for HTML files (including Active Server Pages [ASP] files), it does not work for Office documents. For Office documents, the Description field always comes from the embedded Comments property, no matter what you may have specified in the property map.

Using Many-to-One Mappings

A content source can contain several types of files, and the same target property can be found in different places, with different property names, depending on the source document. Because of this, it is possible to have multiple source properties mapped to the same target property. On a per-document basis, the first property for which a non-blank value is encountered is the one mapped into the target property.

Overriding the Content Source’s Target Content Class on a Per-File Basis

If you map a source property, typed as a string, to the target property DAV:contentclass, that property mapping takes precedence over the default target content class you specified for both the content source definition and the site path rule. Note, however, that the value stored in the source file must be a Uniform Resource Name (URN) that matches that of a document profile already registered for this workspace (for example, urn:content-classes:My Content Class).

Categories can be assigned, but only one per file

Mapping a source property, typed as a string, to the target property urn:schemas-microsoft-com:publishing:Categories results in the item being assigned to that category. Source values must be valid category names preceded by colons (for example, “:Category 1”). When mapping from META HTML tags, only one value can be mapped per document. SharePoint Portal Server assigns only a single value to the Categories property.

Date and Numeric data types require additional handling

Although SharePoint Portal Server supports a Date property type (dateTime, in Web Storage System terminology), the standard HTML IFilter does not emit date properties from HTML documents as dates.

SharePoint Portal Server conducts no type checking or mapping on the properties. SharePoint Portal Server includes each value in the index as it arrives, in the format returned by the IFilter. In other words, if a source property is mapped to a target dateTime property, but the source value is a string, the content index stores a string value. This can have unforeseen, perhaps error-inducing, effects on the SharePoint Portal Server client user interface.

You can implement date and type checking by using a small amount of extra custom code and by implementing a custom IFilter. For instructions on how to add support for non-text properties when crawling external files, see the section “Modified HTML IFilter Wrapper.”

Conclusion

The preceding steps show how to map custom metadata from external content sources to your document profiles in SharePoint Portal Server. By following a simple sequence of steps, and by using the scripts provided with this white paper, you can adapt this technique for the custom content in your organization. You can use the Advanced Search Web Part, or your custom search application, to search this external content by using your document profiles and the properties they contain.

For more information: http://www.microsoft.com/sharepoint/portalserver.asp

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

The example companies, organizations, products, people and events depicted herein are fictitious. No association with any real company, organization, product, person or event is intended or should be inferred.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, SharePoint, Visual Basic, and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

� EMBED MSPhotoEd.3 ���

[image: image3.png]

ii
Crawling Custom Metadata Using Microsoft SharePoint Portal Server 2001 ii

_1042975363.bin

