Security – Presentation Transcript

Let's take a few moments to talk about security. Now, is security a big deal these days? You bet it's a big deal. Security is something that you have to know about when you're building Web applications, whether you're building them with ASP.NET or with some other tool. ASP.NET does a lot to make it easier for you to build secure Web sites, especially ASP.NET Version 2.0. We're going to spend the next few minutes looking at security in ASP.NET to look at the various services that are available to you to build secure Web sites. Here's what we're going to cover and what order we're going to cover it. I won't go through this list right now, but just a quick road map of where we're going. Let's start with the bare-bones basics. This schematic shows how security works in ASP.NET.

It begins with Authentication. You can't build a secure site unless you know who your users are. On a typical site, some of the content on the site is available to everyone. Other content is available only to authenticated users, users that have logged in or have been identified by other means. ASP.NET today supports three forms of authentication: Windows, Passport, and Forms. Forms Authentication is going to be our focus here, because it's going to be the form of authentication that is the most useful to you in the project that's coming up. Authorization is also an important aspect of security, because once you've identified who a user is, then you need to apply rules that dictate what that user can do on your site and what they cannot.

Authorization allows us to define those rules. Impersonation is also a part of security. It's not something we're going to spend a lot of time on here, but impersonation is something that is supported in ASP.NET. By default when your code executes in ASP.NET, it executes using the identity of the process that ASP.NET is running inside. We refer to that process as the ASP.NET Worker Process, and what identity it runs under depends on how you've configured ASP.NET and which version of IIS you are running ASP.NET on top of. Impersonation isn't something that should be used when there is an alternative. In fact, companies often use impersonation when they shouldn't be using it. You won't need to use impersonation in the project that you're about to embark upon.

Here is one of the most popular ways to secure an ASP.NET Web site. This combines Windows Authentication with file authorization, sometimes referred to as ACL authorization. This setup is most commonly used not on Internet-style applications, but on intranet applications. Applications that run behind the firewall and are designed to serve a fixed and known population of users. In this scenario, you configure IIS to disallow anonymous access to resources in the application. Also, in IIS, you tell it what form of Windows Authentication you wanted to use. A popular choice there is Integrated Windows Authentication, because that is the most seamless to the end user. Once you've done the IIS configuration, you configure ASP.NET to use Windows Authentication. It essentially piggybacks on IIS now. It lets IIS authenticate users. But, each time IIS forwards an authenticated call over to ASP.NET, it passes along with that call an access token that identifies that user.

ASP.NET does a couple of things with that access token. One, it does an ACL check on the ASPX file that has been requested by that user. If, for example, the request comes from Bob, and the access token passed to ASP.NET represents Bob, and Bob has requested an ASPX file that Bob doesn't have permission to read, then ASP.NET will deny that request. On the other hand, if Bob has permission to read that ASPX file, then he will be allowed to see that file through ASP.NET. A second very popular way to secure an ASP.NET Web site is to use Forms Authentication combined with URL Authorization. It's represented by the schematic you see right here. This is what you will probably elect to use in the application that you'll be building.

In this scenario, we configure IIS to allow anonymous access to the pages on the site. Therefore, it falls to ASP.NET to authenticate users when those users need to be authenticated. The essence of Forms Authentication is this. You tell ASP.NET through Web.config which resources require authenticated access, and you also designate the URL of a log-in page. Each time a request comes into the application, ASP.NET checks the resource thing requested to see if it requires authenticated access. If the person who's making that request has not been authenticated yet, ASP.NET will automatically redirect that user to the log-in page that you designated where they can authenticate by logging in.

Typically, by providing a user name and a password. Once they have logged in successfully, you issue them an authentication ticket. It takes a little bit of code to do this in ASP.NET 1.0. As you'll see, you can do it with no code in Version 2.0. But, the purpose of the authentication ticket is to allow that authenticated user to remain authenticated on your site for a pre-determined period of time. While they remain authenticated, they can get back into the protected portions of your site, that is, the pages that require authenticated access, without having to log in again and again. Through ASP.NET, you have a lot of control over that authentication ticket, and the authentication ticket is key to providing a pleasurable user experience.

I should say also in this scenario, you use a different form of authorization. Rather than designate which pages a given user, like Bob, can and cannot see, you provide URL directives in your Web.config files. You'll see some examples a little bit later on and what those URL directives look like. With those URL directives, you have the power to implement not only security based on individual users, but based on roles. You can say, for example, that administrators can view this page but ordinary users, or non-administrators, cannot. How do you specify the authentication type that you want ASP.NET to use? You do it through Web.config. You're looking at a sample Web.config file here. The authentication element, the one that's highlighted, is the one that lets you tell ASP.NET what type of authentication to use.

In this example, we're configuring it to use Windows Authentication. If we changed the highlighted line to read authentication mode equals forms, then we would be configuring ASP.NET to use Forms Authentication instead. Something else that you should know about before you set out to build a secure site is how ASP.NET and .NET in general handles security principals. Security principal is simply a representation of an identity. If Bob makes a request to your site, and you authenticate him, then that call is accompanied by a security principal that identifies Bob and allows you to programmatically find out that the call did come from Bob. You can even find out through security principals how Bob was authenticated. Because ASP.NET supports different styles of authentication, it attaches to every call that comes in a security principal object, which looks like the object you see diagrammed here. The security principal object is a constant. It's the same no matter what type of authentication was used to authenticate Bob.

At runtime, if you want, you can use the IPrincipal interface on this object to find out more about who made the call, to find out that indeed it was Bob, to find out whether he was authenticated by Forms Authentication, Windows Authentication, or some other mechanism. Within your pages, you can use the user property that you inherit from system.web.ui page to get a reference to the IPrincipal interface of the security principal representing that current user. Through the IPrincipal interface, you can use another property named Identity to get an IIdentity interface to the encapsulated identity object. Here's an example of how you use security principals in practice. It's very common in a Web application to want to know whether your caller has been authenticated and if they have, what their authenticated user name is.

You can use this to personalize pages, to say Hello, Bob, when Bob comes back to your site. Getting that information is very easy in ASP.NET. This code is code that would work very well in an ASPX file. I first check user.identity.isauthenticated to find out if indeed the caller is authenticated. If the answer is yes, then we read user.identity.name to get the authenticated user name. Again, user is a property of the page class that contains a reference to the IPrincipal interface of the corresponding security principal object so you're using that security principal object when you write code like this. In ASP.NET Version 1.0, Forms Authentication was supported by the runtime, but you still had to write quite a lot of code to make Forms

Authentication work. For example, it was up to you to build the log-in page and to provide the logic behind that page that would validate a user based on the credentials that he or she typed in. One of the many security-related enhancements coming in ASP.NET 2.0 is a new service called the Membership Service, which by and large prevents you from having to write that kind of code. The Membership Service is one that allows ASP.NET to manage users and credentials for you. You no longer have to manually create a database, for example, to store user names and passwords.

The Membership Service will store those for you. It also provides a public API that lets you validate log-in credentials, create new users, delete users from the Membership database, and so forth and so on. I believe this is going to be one of the most heralded and most used new features of ASP.NET 2.0 not only because it can dramatically reduce the amount of security-related code that you have to write, but also because you're writing less code, there's less chance for you to make an error and inadvertently deploy insecure code. This is what the Membership Service looks like schematically. At the top, you have classes that represent log-in controls. We'll talk about those log-in controls in just a moment. The log-in controls, a new family of controls in ASP.NET 2.0, integrates with the Membership Service and allows you to do things like log-in a user, or create a new user on your site without writing any code to do it.

Underneath the log-in controls are classes anchored by a pair of classes named Membership and Membership User. Those two classes are the gateway to the API on top of the Membership Service, so if you don't want to use the log-in controls but would rather program to the Membership Service directly, you use the members of those two classes. Like many of the state management services in ASP.NET, the Membership Service is provider-based. That means you have infinite flexibility in where membership data is stored.

Beta 1.0 of ASP.NET Version 2.0 comes with two membership providers. One for Access databases, another for SQL Server databases, that will change in beta 2.0 when the Access membership provider will be replaced by a SQL Express membership provider. Let's talk for just a moment about the membership class, because it is one of the two classes that provides the bulk of the API that you can use to talk to the membership service. This class represents the membership service itself. It has a variety of public methods and properties. You can call those methods and use those properties to perform some of the tasks that you see listed here, including validating logins. Taking a user name and a password that a user types into a log-in page, and finding out from a membership service whether that user name and password are valid.

This is a partial list of the public methods in the membership class. You can scan this list and tell from the names of the methods what the methods do. The Create User Method, for example, allows you to create a new registered user in the membership service. The Validate User Method that you see at the bottom allows you to pass in a user name and a password. It tells you whether that user name and password are valid. Here is a quick example of how I could program against the membership service. If I wanted to create a new user on my site with the user name, password, and e-mail address you see here, I simply call the Static Create User Method of the membership class. If that fails for some reason, it throws a membership Create User Exception.

Then, I can examine the status code passed back to me to determine exactly why that attempt to create a new user failed. One thing that can cause Create User to fail is if you try to create a new user that has the same user name as a user who is already registered. If the call does fail, once you determine why, you can provide an error message or some other type of information to the end user letting them know why it failed and giving them the chance to register again. Another example of using the membership class, if you build a log-in page where you ask a user to type in a user name and password, when they click the log-in button you'll want to take that user name and password, find out if they're valid. It only takes one line of code to do that thanks to the membership service. You can call membership.validate user as I am doing right here. This effectively replaces many lines of code in an ASP.NET 1.0 application. There was no membership service there, so validating a user meant you had to write the code to go touch the membership database, or talk to Active Directory, or somehow find out from the back end whether those credentials are valid. The other class that plays an important role in the membership service is the membership user class.

Whereas the membership class represents the membership service itself, the membership user class represents registered users, users who have been registered and created in the membership service. Through this class you can get all kinds of information about users who are currently registered with that service. You can also change that information. If you want to change a user's password, for example, you can do that programmatically through the membership user class. Here are some of the properties that the membership user class exposes.

Given a membership user object representing a registered user, for example, if you want to find out what that user's e-mail address is you simply read the membership user object's e-mail property. One of the properties that you should note here is the first one, comment. Comment is a property where- that allows you to store extra information regarding a user who is registered with your site. There are a lot of different things you can do with that. If there's any information that you want to associate with individual users that isn't supported natively by the membership service, you can use the comment field of a membership user object to store that information. Here are some of the methods that belong to this class. If you wanted to change a registered user's password, for example, you could use the Change Password Method to do that.

Here's an example of how I might use that comment property that I mentioned just a few seconds ago. Suppose that you wanted to add to beta 1.0 a feature that would automatically lock out a user after a specified number of failed attempts to log in. A lot of sites that use Forms Authentication do that, because if a given user tries to log in but fails several times in a row, that may mean that someone is trying to hack into your site by hacking that user's password. In this example, what I do is this. Each time a user attempts to log in but fails, I increment a count that I store in the corresponding membership user object's comment field. When that count reaches five, I suspend log-in privileges for that user by setting the corresponding membership user object's Is Approved property to false. Until an administrator goes in and resets that Is Approved property to true, that user will not be able to log in again to your site. Their account is still there. They're still registered in the membership data store, but their account is inactive. I should note that in beta 2.0, ASP.NET will have a feature that allows you to do this without writing code to do it.

You'll be able to do that declaratively. I think that's a good thing, because this is a feature that a lot of companies that use Forms Authentication will want to take advantage of. As I mentioned earlier, the Membership Service is a provider-based service. Again, beta 1.0 comes with two membership providers. One for Access databases, another for SQL Server databases. That will change in beta 2.0. It's also possible that at some point in the near future, an Active Directory membership provider will show up as well. One of the things that you'll want to do if you use this service, most likely, is configure it to use SQL Server to store membership data rather than an Access database, which is the default in beta 1.0. You make that configuration change through web.config using a membership element like this one.

By setting the default provider to ASP.NET or ASP.NET SQL provider, rather, I'm configuring ASP.NET to go to a SQL Server database to get and to write membership data. The same caveat that I mentioned earlier regarding the profile service applies here as well. Before you can use the SQL Server membership provider, you need to create the SQL Server database that ASP.NET stores membership data, profile data, and other state in. Remember that ASP.NET comes with a command-line tool named ASP.NET_regSQL.xe that you can run to create that database. When you use the membership service, the various providers that you choose from offer a number of different options as to how the membership service should behave.

For example, whether every user registered with the membership service must have a unique e-mail address is a configuration setting that you can specify. I want to show you how to change these configuration settings for the built-in providers, because sometimes it's not very obvious to someone who hasn't done this before. In this Web.config file, I'm configuring ASP.NET to use the SQL Server provider. I'm also changing some of the default configuration settings for that provider. You can see that I'm applying configuration settings using attributes in the Add element that registers the provider. But, also note the Remove element. Since the SQL Server provider for the membership service is registered by default, before I can re-register it I need to de-register it. That's what the Remove element is doing. If there are any configuration settings, default configuration settings, in the SQL Server provider that you want to change, come back to this slide for an example of how to change that configuration setting.

The membership service is one facet of security in ASP.NET Version 2.0. Another facet is a new family of controls called the log-in controls. While the membership service dramatically reduces the amount of code that you write, without the log-in controls you would still be responsible for providing user interfaces for logging users in, for allowing new users to register with your site, etc. With the log-in controls, however, you can let the system provide those user interfaces for you. When you build a log-in page to point the Forms Authentication subsystem to, for example, you can put a log-in control on that page and it will provide the UI for allowing users to log in using user names and passwords.

The flexibility that you have with that control, and with the other members of the log-in controls family, is almost infinite. As long as you can represent it in HTML, you can configure these controls to look any way you want to. A quick run-down on what kind of controls are available to you here. The Change Password control provides a UI allowing users to change their passwords. The Create User Wizard allows users to register with your site, create new accounts. If you want to provide a registration page, for example, on your site, this is the control you would want to put on it. The log-in control provides a UI for logging in using a user name and password. The log-in name control simply renders out text that echoes the authenticated user's name. The log-in status control displays a log-in/log-out link. A log-in link when accessed, when the page is accessed by a non-authenticated user, a log-out link when the page is accessed by an authenticated user. The log-in view control is a very powerful one. It lets you present different content to users on a page based on whether they're logged in or not, and if they are logged in, what role or roles they belong to. You'll see the log-in view control, as well as some others used, in a demo in just a few moments. Finally, there's the Password Recovery Control if the user forgets their password and wants that password e-mailed to them. Rather than craft the UI for doing that yourself, you can use the Password Recovery Control. It will provide that UI for you. I should also mention that these controls don't just render out HTML.

They're not just about providing user interfaces, they contain logic as well. For example, when you put a log-in control on a log-in page you don't even have to write the single line of code that calls membership.validate user to validate that user name and password. You still can write that code if you want to, but by default the log-in control will make that call for you. Simply by dropping the logon control onto a page, not only do I get a UI for logging in unauthenticated users, I get the logic required to log them in as well. Another important element of security in ASP.NET and another element that is new in Version 2.0 is the Role Management Service.

Role management allows you to exercise role-based security. Role-based security was supported in ASP.NET 1.0, but you had to write some code to make it work. It was up to you, for example, to write code in global.asax or perhaps in a custom HTTP module that would examine each incoming request, figure out who the request came from, map role information into that request so that URL directives in your Web.config files could check to see if the user accessing a given resource had permission to do so. Thanks to the Role Management Service in ASP.NET, you can do all of that without writing a single line of code. ASP.NET will now do the mapping of users to roles for you. Like most of the state management services in ASP.NET, too, this is a provider-based service. This is what the service looks like schematically.

We'll be focusing in the provider layer on the SQL role provider, because it's probably the one that you'll find most useful in the project that you will be embarking upon very soon. The role management service has an API that lets you access it if you want. Most of that API is exposed as members of a new class named Roles. That class has methods and properties for creating roles for, deleting roles for, adding users to roles, and for doing just about anything else that you need to do programmatically regarding role-based security. Here is a short list of some of the most important methods in the roles class. As usual, you can look at the names and tell what that method is designed to do. If you want to create a new role named Administrators on your site, for example, you could use roles.create role to do that.

Once that role is created, you could use Add User to Role in a roles class to add a new user to that role. This is an example of some code that uses the roles API. In this example, I'm first checking to see if a role named Developers exists. If the answer is no, then I don't do anything. If the answer is yes, then I call the roles classes Static Create Role Method to create a new role named developers. Once I've created that role, I may subsequently want to add some users to that role programmatically. Here is how I would do that. I'm first calling membership.getuser to get the user name of the current user, the one who submitted this request to my site. Then, I call roles.add user to role to add that user to the developer's role. You may want to put a bookmark on this slide here, because in the app that you'll be building as part of this project, you'll need to write some code very much like this. By default, the Role Management Service in ASP.NET is not enabled. If you're going to use it, the first thing you'll need to do is enable it. You do that through Web.config. The role manager element that you see here accompanied by an enabled=true attribute is sufficient to enable this service in ASP.NET. One of the features of the Role Management Service is something called Role Caching, which is very important.

When developers implement role-based security by themselves in ASP.NET, they sometimes debilitate performance when they do that. They'll write code that examines each incoming request, and it goes out to Active Directory or to a SQL Server database or somewhere else to find out what role or roles that user belongs to. That impedes performance, because now that means that data accesses are being performed on each and every request. Obviously, one of the ways to build a performant Web application is to minimize the number of redundant requests. Smarter implementations of role-based security will do that data access one time to find out what role or roles a user belongs to.

They'll then encode that information somewhere, oftentimes in a cookie, so that on subsequent requests from that user ASP.NET can figure out what role or roles that user belongs to without hitting the role's data store again. You can have the Role Management Service do this for you automatically. It does offer an option for recording roles in cookies. This allows your application to be more performant by reducing the external data accesses that would otherwise be required on each and every request. How do you enable this feature of the Role Management Service? This, too, is done through the role manager element in Web.config. The role manager element you see here, we're not only enabling the Role Management Service, but we're enabling roles to be cached in cookies with the cache roles in cookies = true attribute.

Also listed here, you see the other attributes that you can include in the role manager element. Generally, you probably don't need to change any of those settings. But, if you want to you may do so simply by including the corresponding attributes in the role manager element. By default, for example, a role's cookie lasts for 30 minutes. If you wanted to shorten that to, say, ten minutes, you could add a cookie timeout = 10 attribute to the role manager element. I mentioned earlier that the Role Management Service is provider-based. Beta 1.0 of ASP.NET comes with four different role providers, the ones that you see right here. This list may change some in subsequent betas and before the product is released. If you're using SQL Server as your membership provider so that membership data is stored in a SQL Server database, then you'll probably want to use SQL Server as your roles provider as well if you elect to use role-based security. You can make that configuration change using this role manager element. The key is the default provider attribute that here configures ASP.NET to store roles data in a SQL Server database.

I'd like to close out this presentation with a demonstration. In this demo, we're going to look at an application that uses forms-based security, or I should say Forms Authentication. The way that it enacts security is closely patterned after the application that you'll be building as part of this project. In this demonstration, you'll see both the membership service and the role management service at work. You will also see several of the log-in controls family at work, and you'll see what an ASP.NET application that uses Forms Authentication looks like inside and out. That does it for security. Hopefully, that provides you with the information that you will need to build a secure Web site based on Forms Authentication. Remember that security is always a big deal. It's never easy to write a site that is very secure. However, I think you'll agree with me when I say that ASP.NET 2.0 makes it much easier than ASP Classic or ASP.NET 1.0 to build secure Web sites.

Page 1 of 9

