Security – Demo 1 Transcript

In this demo we’ll be looking at the Forms Authentication ASP.NET 2.0 style. I’d like to begin by running this sample application for you so that you can see what it looks like on the outside. Then we will look inside to see how it is that it does what it does. Let’s begin by running the application. The first page we’ll see is one named default.aspx. Now this page is available to all users of the site whether they have logged in or not. Notice, however, that there are two links in the lower right corner of the page: one that reads members only, another that reads login. If I click the login link, that takes me to the applications login page, where I’m asked to enter a user name and a password to authenticate myself.
Going to go back to the home page here. Notice that if I click the members-only link, because I have not yet logged in, ASP.NET automatically redirects me to that login page. I’m going to login as Jeff here, who is an ordinary user on the site. Now when I go back- now I was sent you the member.aspx page, which is only accessible to members. The members are users of this site, registered users, who belong to the member role. I’ll show you how that role was created in just a few moments hence. Notice that the pages showing me who I’m logged in as, one way to get that information is through user.identity.name. Another way to get it is through the login name control. Also notice that the link that formerly read login now reads log out, now that I am a logged in user. You’re going to see in just a moment that this link is provided by a login status control, which reads log into unauthenticated users and log out to users who are authenticated.

Let’s go back to the main page. Even though it’s accessible to all users, I am logged in as Jeff, and this page shows me that. Notice now when I click the members only link, because I’m already logged in, I don’t have to go back through the login page. I’m going to click log out. That’s going to log me out from the site and take me back to the home page. If I were to click members only again to try to get to member.aspx, which is visible only to members, I’m routed back to the login control. I’m going to do something slightly different. I’m going to click the login link, and this time I’m going to log in as Bill, who happens to be an administrator on this site. Notice that now when I view the home page, logged in as an administrator, not only do I see a link to the members only section of the site, but I see a new link to the admins only section. Only users who belong to the role of administrators are allowed access to this page, which is called admin.aspx. Clicking the link gets me there as you can see. Now I can click return to main page to get back to default.aspx.

Something else I’d like you to see is this. Let me log out again and click login to get back to the login page. If I come to this page, and I have not yet registered on this site, I can click the create-an-account link here in the login control that you see. That takes me to a page named register.aspx where you see a create user Wizard control providing a UI and a logic for registering as a new user. If I am a new user and want to register, I can create that account right here. If I go back, also notice that there’s an option for e-mailing me a forgotten password. I’m already a registered user but have forgotten my password, because my e-mail address is recorded as part of my account information, the membership service knows my e-mail address. Clicking this link takes me to a page where I see a recover password control been used to provide an interface. If I fill this in and click the submit button, provide a legitimate user name, ASP.NET’s membership service will not e-mail that forgotten password.

That’s what the application looks like on the outside; let’s go inside. I’m going to start with the login page itself. You bring this thing up and look at it in source view, actually, let’s go to design view. You’ll see that there’s nothing more on this page other than a login control. I’ve used the auto-format command, which you can get to through this menu to stylize that control, and there’s several other stylization options I could select as well. That UI is being provided by the login control. Also, I didn’t have to write a single line of code to log a user in, to validate their credentials, because the login control is willing to do that for me. Notice that there is no code in the code-behind class for the login page.

Before we go further, let me show you something about the structure of the site. The pages that I want anyone to be able to access, whether they’ve logged in or not, sit in the root directory of this application. That’s where you find default.aspx, login.aspx, register.aspx and others. But the pages that require authenticated access are contained in directories named admins only and members only. When you use Forms Authentication in ASP.NET as we’re doing here, you apply different protection levels to different pages by segregating those pages into different subdirectories and using web.config files in those subdirectories to apply the protection levels. In the members-only directory, for example, I have a web.config files that allows members and administrators, that is users who belong to the groups named members or administrators, to access pages in this directory. All other users are denied access. If you look at the web.config file in the admins- only directory, however, here we only allow access to users who are administrators. We don’t allow access to anyone else.

Let’s take a quick look at the web.config file in the application root directory. It contains an authentication element enabling Forms Authentication. You can see that right here. It does not contain an authorization element with URL directives denying access to pages in this part of the Web site to anyone. That’s why unauthenticated users can see the pages in the root directory. Now, we’re using login controls here. We’re also using the membership service, because I want to store the membership data in a SQL Server database. You can see that I’ve included this element right here, selecting or enabling the ASP.NET SQL Server membership provider as the default. We are using role-based security here. I want to store the roles information in the same database, so I also use a role manager element not only to enable the role management service, but also to elect to use the SQL Server roles provider there. Notice this statement right here, by the way. One of the requirements in the stack for the site that you’ll be building is that when a session or temporary authentication cookie is issued to a logged-in user, that cookie should last for exactly 30 minutes and no more. By default in ASP.NET 2.0, at least in beta 1, sliding expiration is enabled on those cookies, which means that even though nominally a session authentication cookie is good for 30 minutes, if a request containing that cookie is received during that 30-minutes time period, the cookie is automatically renewed for another 30 minutes. With this element here in web.config, I’m turning that sliding-expiration feature off. That means that if the user is issued a session authentication cookie, they will have to log in after 30 minutes have passed by.

You’ve seen the structure of the site; you’ve seen how through web.config and URL directives in those web.config files we specify who can and cannot access the pages in those directories. Let’s go momentarily to the Web site administration tool where we can see the users that have been defined on this site and the roles that they belong to. We’ll give this just a moment to come up. When it comes up we’ll go to the security page. You can see here that we have three users currently defined in the site. I could add new users through this interface right here, or by using the registration page built into the app. For a given user you can see the roles that they belong to here. For example, Bill was both an administrator and a member. Brian and Jeff are members, but they are not administrators. There is no interface in this application for making someone an administrative user. I have to use this administrative interface to make them an administrative user. However, when someone creates an account on my site, they’re automatically added to the members role. Take a look at register.aspx. This is the method that executes in my code when a user finishes using the create user Wizard control to create a new account. Notice here I get their authenticated user name from the membership service. I pass that name to add user to role to add them to the role named members. Then I programmatically redirect them back to the application’s home page, default.aspx.

Back in the Web site administration tool, let’s look at the interface for creating roles. How did I create these roles named members and administrators in this application? Well, you can do it through the create roles interface here. I can simply type in a new role name, click the add role button, and it gets added. If I want to see the existing roles, the ones that have already been defined, I can see them in this part of the Web site administration tool. I can delete roles here, and if I click manage, I can get a list of the users who are in that role. Through the Web site administration tool, we have a complete interface for creating and managing users and the roles that they belong to. We also, through the controls in our application like create user Wizard, provide a limited capability for users to manage this themselves.

Let’s go look at the content in some of these pages. You saw in, for example, that in default.aspx the links shown in the lower right corner of the page depend somewhat on who is viewing them. If we run that page again, remember an unauthenticated user sees a login link and a members-only link, but doesn’t even see an admin link. An admins-only link only appears if I do login as an administrative user. Let’s take a look in source view at default.aspx to see how we built that UI, that adaptive UI.

First off, notice the login view control here. Remember a login view control allows you to present different sets of content to different users. You can define an anonymous template inside a login view, and that defines what unauthenticated users will see. Here I’m showing them a link to the members-only section of the site. I’m also showing them a login status control that allows them to login or log out. I also have in this login view control a role-groups element. This allows me to specify for individual roles that I’ve defined on the site what users in those roles should see. For users who are administrators, that is belong to the administrative role, I show them an admins-only link here, a members-only link here, and a login status control for logging in and out. If they log in to the site and they’re a member, but they’re not an administrator, then I show them this UI here where I show them a members-only link and a login status control and nothing more. That means that only administrators will see this admins-only link. Of course, there’s nothing to prevent a user from trying to get to my admin.aspx page directly. That’s okay, because ASP.NET will automatically redirect them to my login page if they do that. If they don’t log in as a user who is an administrator, they will not be permitted by ASP.NET to see that page. Login view is very useful for adapting the content you display to who is viewing that content.

Let’s take a quick look back at the register.aspx page. You’ve already seen login.aspx and see how I’ve used the login control there. In register.aspx I’ve put a create user Wizard control. It provides both the UI and the functionality for creating new users on this site. Many Web sites have used Forms Authentication provide functionality like this that allow users to register. You’ve already seen the small snippet of code in there, because the control won’t do this for me, at least not in beta 1. If, upon creating a new user, I want to add a user to a role or a set of roles, I need to write code like the code you see here to make that happen.

That is an overview of how Forms Authentication works in ASP.NET. The site that you’ll be building in your project can be architected very much like this, because we do have requirements that different types of users see different things on the site and different pages have different visibility to different users. I would suggest that before you begin designing and implementing security in this site, that you come back to this demo and review what we’ve done right here. I think you’ll find the information in this demo very helpful.
Page 3 of 4

