Intro to ASP.NET 2.0 and Visual Studio 2005 – Presentation Transcript

Hi. My name is Scott Guthrie, and today I'm going to be talking about ASP.NET 2.0 and Visual Studio 2005. Lots of stuff to cover. There's an awful lot of new things that are coming as part of those exciting releases. The general format for this talk is going to be, hopefully, a fairly fun one.

We're going to spend about 20 minutes just providing some high-level overview in terms of how- some of the big things that we're doing and how the features inter-relate, and then we'll be spending the rest of the time doing demos and actually showing off real code using the real product. To do that, to hopefully show all of the things there, we're going to start from scratch with a blank project completely empty. What we're going to go ahead and do is build a Web site using ASP.NET 2.0 and Visual Studio. We're going to start it off by doing a data-driven site against a middle-tier business object. We'll implement a master detail relationship with some data, implement filtering, paging, sorting, and support editing and updating against that middle-tier object. Then we're going to go ahead and implement data caching, and show how you can use some of the new caching features to dramatically improve the performance of reporting scenarios on your site. Then we're going to go ahead and build out the site even more. We're going to implement a consistent look and feel using some new features we call themes and master pages so that all the pages on the site will look the same and have a nice centralized way that we can manage styles and information. Then we're going to go ahead and build a navigation system.

Rather than hard-code in links, we'll build up a menu structure that's build on top of the new site navigation system in 2.0. We're then going to go ahead and implement security. Specifically, we'll implement a forms-based security model with a secure membership credential store, as well as role management so that we can take users and logically group them into higher-level roles. We'll then go ahead and personalize the site and enable end users visiting the site, to go ahead and customize the look and feel of the site. Then we're going to go ahead and implement something called Web Parts, where we're going to go ahead and have a modular portal-like UI that we'll implement across the site and enable drag-drop personalization. Lastly, then we're going to go ahead and localize it, and then publish the site onto a hosted scenario. A fairly rich app. We're going to do it completely from scratch. It shouldn't take too long to build in 2.0, and hopefully, show off some of the fun, exciting stuff that we're doing. Turn to the high-level intro. What are all the things that we're doing in ASP.NET 2.0? There's a lot of things. What I'd like to do is, usually when I think about all the things that we're doing, I try to bucketize them into four main themes or pillars of the release that we spend a lot of time focusing on. First and foremost, and you'll see this a lot more later on when you see the demos, we spent a lot of time focusing on what we call developer productivity. In other words, how do we make developers' lives easier? How do we enable them to be much more productive and to accomplish a lot more in a lot less time?

How do we go ahead and as part of doing that, take some of the hard things that Web developers struggle with today or have to spend a lot of time working on today, make them easy so that developers can actually invest the time to focus on making their application rich. Instead of having to write monotonous code, build that type of functionality into the product so that the end user experience of the apps gets a lot richer because developers get to spend more time on those kind of higher value-add scenarios. You're going to see a lot of that over the next period of time as I drill into the demos and show off how ASP.NET 2.0 works. Productivity is great in the sense of it makes for good demos, but also, it means that developers have to spend a lot less time writing repetitive code. But productivity only works well if, coupled with that productivity, there's the power and the extensibility so that you can go beyond the common cases, and you can handle all the scenarios that you need to do within your particular application or enterprise environment. As part of that, we spent a lot of time in ASP.NET 2.0 focusing on what we call extensibility so that you're not boxed into a pre-canned set of scenarios. You can always go further and further with the product and drill down and enable advanced things that otherwise you might not be able to do. You'll see that, and I'll talk about that in the next couple of slides. But you'll see throughout the product the rich extensibility APIs. You always do have that ability to drop down and do advanced scenarios, and, likewise, integrate some of the rich productivity features that we have within the enterprise environment.
We've also then spent a lot of time with this release focusing on what we call administration management. Developing an app is the first part of building a Web solution. Running it in a production environment is the second part. We try to spend a lot of time bridging those two worlds so that developers and administrators can work well together on the same solution. With ASP.NET 2.0, for example, we've included rich admin tools that allowed an administrator to graphically configure and manage their ASP.NET application. We've included rich configuration APIs so you can now go ahead and automate the set-up as well as the management of your configuration settings and how your server is deployed. We've spent a lot of time adding instrumentation into ASP.NET.

It's now possible to see an application running in real time, to see what the state and health of that application is while it's in production. You can see, for example, if someone's trying to log in and they failed, or you can see unhandled exceptions, or you can see what's happening in terms of app domain management. A lot of rich diagnostics there. We've made it- we've taken those diagnostic features and enabled developers to extend them and add even more rich tracing and health monitoring events into the core system. The end result is we think it makes it much, much more manageable to build solutions and makes administration a lot easier. Last but not least then, we've spent a lot of time focusing on what we call performance and scalability. We've always thought of- we like to claim that ASP.NET is the world's fastest app server. With the ASP.NET 2.0 we're trying to make it even faster. A couple of the specific things that we've done there, we focused a lot, for example, on 64-bit with this release. ASP.NET 2.0 is the first 64-bit native version of ASP.NET that will ship. We'll support taking an existing 32-bit ASP.NET application, deploying it now on both an Itanium as well as an X64-based processor chip, and you can now take advantage of a 64-bit address space without having to change any code or even necessarily recompile your application. Likewise, we've spent a lot of time focusing on what we call caching, and I'll show demos of this a little bit later.

We've always had a rich caching feature inside ASP.NET. What we've done in 2.0 is extended that to include what we call database cache and validation, where you can now go ahead and output cache, or use the cache services in ASP.NET on your front-end middle tier and have them automatically be revalidated and regenerated any time the back-end database changes or a value that the Web app is relying on is modified. It enables you to take a much more aggressive use of caching throughout your application and dramatically improve the performance. Likewise, then, we spent a lot of time just improving and tuning the overall system itself. You should find when you take an existing ASP.NET 1.1 app and deploy it on 2.0 that without even taking advantage of 64-bit or without taking advantage of the new caching features, you should still see a slight improvement in terms of performance just by running it under 2.0. We think the combination of those four things: productivity, extensibility, administration, and performance, is a pretty powerful combination. Hopefully, as you see through the demo that I'll do, it's- they fit together very nicely and provide a really powerful solution. Before I get to the demo, I just want to spend a little bit of time walking through architecturally how all the different- some of the different features fit together, and how did we conceptualize and think about how we- as we were designing the features the inter-relationship between them. I mentioned on the previous slide productivity, and I mentioned how we're trying to eliminate the need for Web developers to write a lot of boring, monotonous code, and instead provide a lot of built-in APIs and built-in services in the- out-of-the-box that developers can use in order to do common scenarios. For example, typically if you're a Web application developer today and you're deploying something on the Internet, chances are you've had to try to implement a secure membership user name-password credential store before. Typically, the way developers have to do this is they- you typically store those credentials on a database, that you have to write some database schema, maybe write some stored procedures to go against it, and then probably write a whole bunch of data access code in order to manage those user names and passwords securely.

Hopefully, they're either encrypting or hashing those passwords so that even if the database is compromised the passwords can't be regenerated, supporting log-out or create user register, delete users, locking users out, recovering passwords when people forgot them. There's a whole bunch of code that you need to write in order to write a correct membership system for your application. The nice thing with ASP.NET 2.0 is there's now a built-in membership system in the box. You can now, as a developer, just cite membership dot and take advantage of all that built-in functionality. Typically, that might take 1,500 to 2,000 lines of code. Now, you can basically do all that functionality in about one log. You can just say membership.create user, or membership.validate user for the common scenarios. Then, again, things like recovering passwords, resetting passwords, locking users out, and seeing who's online, all that's built-in as well.

Likewise, we've built in support for role management. Now, you can automatically map users, whether they're stored in our membership store or in a different membership store into higher-level roles that you can then go ahead and apply security privileges to and restrict access with, and then that role manager is built into the box that you can just take advantage of. Likewise, we built in a personalization system, so you can go ahead and store information about the users visiting your site.

For example, what their gender is, where they- what country are they from? What languages do they speak? What is in their shopping cart? What are the last couple of products that they've looked at? Whatever you want, any arbitration property you want to store about that user, you can now go ahead and define it within what we call our profile system in ASP.NET, and you then get a built-in profile object within all of your applications that you can use to get and set those properties for you.

You don't need to go ahead and write any data access code in order to manage it. You don't need to implement a caching system in order to make it performant. It's just built into the box and something you can take advantage of. Likewise, we've added features- a rich set of features we call site navigation. The idea here is it provides a way that rather than have to hard-code in links throughout your site, you can go ahead and instead just provide a- define your site structure in a nice, clean way, whether it's an XML file, or a content management service database, define how the site looks, what the relationship is across different nodes within the site, and then there's a rich site navigation API you can take advantage of to see, for example, when an incoming user is visiting the site where are they in that site map, and where are they in relation to the other links? It makes it a lot easier to build dynamic link structures across your site and menu systems. I mentioned previously about caching when I talked about performance. This is a key feature you can use throughout your site in order to go ahead and avoid having to constantly regenerate expensive content or having to go against an external database. You can then instead store it inside ASP.NET on the middle tier. In this caching and validation mechanism allows you to keep- make sure that those cached settings that you save can be automatically regenerated and then validated any time the back-end database changes.

Again, that's all built in for free. It enables you to improve your performance in your site quite dramatically. Then, last but not least, in terms of some example APIs that are new in 2.0 is our health-monitoring APIs. As I mentioned earlier, ASP.NET 2.0 now has much richer diagnostics built into the box, so we've instrumented all the core features of ASP.NET so that as they're being used we actually expose events so that an administrator can actually watch and see what's happening within the system. We've extended that then so that you, as a developer, can add your own events into the system and basically plug in as well as expose your own custom auditing or tracing infrastructure within your application, and also then have an administrator be able to seamlessly view both your events as well as the built-in ASP.NET events, and actually see the inter-relationship between them. You can see, for example, on a single request as you go in and out of processing it, every step along the way, both built-in ASP.NET code and your own code, on what's happening during the execution. Those are just a couple examples of common APIs and common services that we've built into ASP.NET 2.0. There's many, many more APIs that I can reference. There's about 4,000 new APIs, in fact, total in .NET 2.0. There's a lot of stuff to take advantage of. One of the things though that I think it's worth calling out is not just the fact that we have a number of these built-in APIs that you can take advantage of, but the way we've architected these new ASP.NET 2.0 APIs to make sure that we have rich extensibility so that you're not constrained by just what they support. You can actually plug these APIs into a variety of different environments.

What we've done is we've made sure that everything that we've built from a core API perspective is built on top of a new design pattern we call the provider model. What a provider model is, is it's basically a pattern where you implement a- where all of our core APIs are built on top of what we call contract. It's either an interface or an abstract base class, that we've defined well known methods and signatures for what we call a provider that actually implements that particular API and implements a specific storage mechanism for that API. For example, we have a membership API that does user's name, password, management, in prudential storing. The API itself has no notion of a schema. It has no notion of a particular database or Active Directory implementation. Instead, the API calls into what we call a membership provider contract. That- and the class implementing that contract is what ultimately does all of the storage and password management for that membership API. The way you can configure a provider is you first build a class that implements that contract. You deploy it as part of your site. Then within the Web.config file for your application, you configure that application for that particular provider to point at that class that you built. Once you do that, then any membership API call that anywhere in the application occurs delegates through to that class that implements that contract. Out of the box then, we've provided implementation support for providers built on Windows. For example, you can go against Active Directory for membership as one example. We've also built in support for SQL Server so you can automatically store things like membership and roles inside a SQL database. But, again, because everything is contract driven you, as an advanced administrator, can go ahead and plug in your own provider that you build yourself or one that you buy from a third party. Once you do that, then any code that uses that membership API will automatically go through your provider and you control exactly what the semantics are for how the membership detail- data is being stored or how it's being used and how it's being validated. This provides tremendous extensibility where you can now go ahead and take all these great productivity features and integrate them within literally any environment out there. A little bit later on when we go through the demo, keep in the back of your mind, Yes, this is going against the SQL database by default, but I can just as easily have all of the security information go against an LDAP system on a non-Windows platform, or I can be going against an Oracle database instead of a SQL one, or I can be going to any existing credential system that I have within my enterprise. That kind of flexibility I think is key and one of the special things about ASP.NET 2.0. All these core building block APIs provide a nice foundation that we can build even richer services on top of. All these APIs I've mentioned to date are non-UI specific so there's no notion of HTML. There's no notion of a browser-based application.

They're just procedural APIs that you can take advantage of. This next set of features I'm going to be talking about though build on top of these four-level APIs, and, specifically, enable targeting richer browser-based applications in a- and add a lot of feature value there. These are what we call the page framework features. A few examples of these. The first one here is called master pages. The idea here is it enables a way that you can enforce a consistent look and feel from a layout perspective across your site. The idea here is the user can define a common master template that defines a, say, a common header, or sidebar, or footer that you want on your site in replaceable regions within that template that you, as a developer, want to enable to be filled in or overridden by pages that are deployed on your site. It makes it much easier again to have a consistent layout and a consistent look and feel. Themes and skins provide a similar stylized mechanism.

Rather than doing layout though, they're focused much more in styles than specifically, a look and feel of individual controls on the site. Again, they provide a nice way you can define a common set of skin files that define the look and feel for controls across the entire site, and avoid you having to hard-code in look and feel in multiple different places. Instead, you can store it in a nice themes directory and apply it consistently everywhere up across the site. We have a bunch of richer localization features in the product. If you're building a site that's targeting, say, users that speak multiple languages you can now dynamically change locales on the fly, and you can easily store string information and resource strings in a much cleaner resource model that's, again, much easier to manage and maintain.

We'll be seeing demos of all these features a little bit later. Then, last but not least, we have much richer client scripting support in ASP.NET 2.0. We now support client-side events from all of our- from most of our controls. We also then have a rich model where you, as a advanced developer or as a control developer, can now call back to the server out of band, so not as part of a post-back but in a separate mechanism, to go ahead and exchange data between the client and the server in a fairly rich way, and provide a much more seamless and up-level experience for your standard browser apps. It makes for a much nicer user experience and enable a whole bunch of rich scenarios. All of our client-side scripting support is designed to be across browser so it does work not only with IE, but also up-level browsers like Firefox, Safari, and Opera. You can take advantage of these rich features and do so in a browser-independent way that'll work on any device.

On top of these page-framework features then, we've added support for a whole bunch of new controls that we're shipping as part of ASP.NET 2.0. Specifically, we have about 50 brand new controls that we're shipping directly in the box. They fall into many, many different buckets, lots of cool different controls. A few of the big buckets of controls that I'd like to call out are a whole bunch of built-in new security controls that enable building Forms Authentication sites much, much easier. We'll see demos of those a little bit later. Some rich data controls that enable you to do two-way databinding as well as middle-tier object databinding in a very easy, consistent way across your site. Build new navigation controls that implement features like menus, tree views, bread crumb-style UI, enable you to have a nice structural layout across your site, and a nice, consistent way to navigate around, as well as a new set of controls we call our Web Part controls, which are probably the funnest to demo. We'll show all these things again in a little bit.
The idea with Web Parts is they enable you, as a developer, to build nice, clean, modular UI across your site that can be then personalized by a end user visiting in a browser who's logged in. For example, you can now drag and drop content across the site, and save the layout that the user when they drag and drop it, personalize it for that particular user, and have it so any time they log in again they'll get those same personalized settings. This Web Part infrastructure is similar to the model that SharePoint builds on today. In fact, the next version of SharePoint will build natively on top of these Web Parts and as well as all these features that I have listed on this slide. You'll be able to build Web Parts in ASP.NET 2.0 that work both in SharePoint and get all the benefits that you have with SharePoint in terms of management and layout, but you can also take these Web Parts now and you can use them on regular ASP.NET pages as well. It provides a great control re-use model in a singular developer story that works across the entire stack. All these features then, all these controls I mentioned, take advantage of the features that are listed lower in this diagram.

For example, these security controls build on top of the membership and role management APIs defined at the lowest level. Likewise, the navigation controls, things like menus and tree views, can automatically take advantage of the site navigation APIs. Because there's a provider model underneath all of those core APIs, if you plug in a new provider into the system that implements, say, the membership or role management service, you'll get all of the features that I listed above here for free. All of the controls will just work because they'll be using the standard membership and role management APIs that your provider will go ahead and provide the implementation for so you'll get all these rich productivity features, again, but being able to extend it so that you can plug into any environment that you have. We think the combination's pretty powerful. I think you'll see in the demo there's some pretty great stuff you can do. Everything I've been talking about so far is from the ASP.NET one-time perspective. As you can see, we've done a lot of new features, a lot of exciting stuff there. We've also then made huge strides in the Visual Studio space to enable Visual Studio to be a much richer development tool, both for Web applications as well as for a variety of different application types out there.
There's three big things in the Visual Studio 2005 time frame that I wanted to call out before we get to the demo. One is that we spent a lot of time in the 2005 time frame focusing on looking at not just the development lifecycle, or not just the development stages that a developer does, but looking at how does- how do developers integrate across an entire application lifecycle that involves testers, architects, operators, administrators, etc.? We spent a lot of time looking at how do we build a suite of development tools that target and think about that overall lifecycle and manage it appropriately.

As part of Visual Studio 2005, we're introducing a new set of products we call the Visual Studio Team System products that are specifically designed to focus on different customer profiles and looking at how end-to-end an application is put together from the design phase, to the coding phase, to the testing phase, and, ultimately, to the deployment phase. We've also then, in Visual Studio 2005, spent a lot of time focusing on creating a set of products that enable anyone to get started with development, and to focus on enabling anyone to be productive on building applications. These are- one way that we're enabling this is through something we're calling our express products. These are very focused SKUs that are aimed at a specific audience skill set or specific application type.
For example, we've introduced for Web development a new product we call Visual Web Developer Express Edition. It's about 35 megabytes in total size so it's optimized and designed for download off of a Web site, and it includes a built-in Web Server as well as optionally built-in SQL Express database. SQL Express is a free database engine built on top of the SQL technology so it provides an automatic upgrade to SQL, but also provides a rich relational database engine that you can take advantage of as well. As part of this Express Edition of products, you can download them at home, you can download them in a University environment, you can download them at work, and you can very quickly get- become very productive in terms of building Web applications or any other application type, and leverage your skill set to get, if you want to in the future, build up and take advantage of even more features that are in Visual Studio itself or inside the Visual Studio Team System products that I mentioned earlier. We think the combination's pretty powerful. It's one set of skills to learn, and it's one set of tools that just build on top of each other and enable a lot of rich development technology.
Enough slides. Rather than spend more time talking at a high level in terms of how all this stuff works, what I want to do is spend the next amount of time actually building an application from scratch. We're going to start with a blank directory and we're going to go ahead and build a fully rich feature- fully feature-rich site that shows off and takes advantage of all the new, great stuff. As you've seen, ASP.NET 2.0 and Visual Studio 2005 are going to be a major release for Web developers. Building rich Web applications will be easier than ever before. You, as a developer, are going to be able to spend a lot less time having to write monotonous low-level code and spend a lot more time focusing on the end-user value that you can provide to your customers, whether it's through personalization, richer security, better data management, or a host of other rich features that are available in the ASP.NET 2.0.

You're going to be able to pass on a whole bunch of productivity savings and build much, much better applications, and your customers are, hopefully, going to be very happy as a result. Upgrading to ASP.NET 2.0 should be easy. We run on all the existing operating systems and Web servers that ASP.NET 1.1 supports today.

Specifically, if you're running on Windows 2000, or Windows XP, or Windows Server 2003, you'll be able to install ASP.NET very easily on all of those existing operating systems. They run side by side, both ASP.NET as well as Visual Studio 2005 with older releases. You can have- not only can you upgrade your existing boxes to use the new stuff, you can also keep your existing applications and your existing Visual Studio working just fine on the old versions and choose which version you want to use as you're doing development. It makes it much easier to upgrade, hopefully, at a very smooth transition. Beta 2.0 of ASP.NET 2.0 and Visual Studio 2005 will be coming this April of 2005. It's designed to be the final beta of the product. It's a feature-complete beta with very good quality.

We will have as part of beta 2.0 what's called Go Live license, which means that you can optionally choose to actually Go Live in production on production deployments of ASP.NET 2.0 apps just fine. There will be a license specifically enabling them. It's still a beta release, but we feel very confident in terms of the quality, both in terms of- from a feature-set perspective, from a functional perspective, from a struss perspective and a perf perspective, and we will be upgrading most of the internal Microsoft systems as well as our external microsoft.com sites to run on beta 2.0. That's how confident we feel. The final release of the product will occur in the second half of this year. We're very excited about it. We think it's going to be a great, great release. We hope you enjoy it as well. Good luck with the product. We're looking forward to seeing what you build with it. Thanks.

PAGE
Page 5 of 8

