Intro to ASP.NET 2.0 and Visual Studio 2005 – Demo Transcript

What I’m going to go ahead and do now is- I’ve launched into Visual Studio 2005, and we’re going to go ahead and start off building this application from scratch. One of the things you’ll notice when you use Visual Studio 2005 is it has much richer support for opening and managing Web sites. In the past, with Visual Studio 2003, you were required to have IS locally installed on your system, and it also required that you have FrontPage server extensions enabled in order to edit or author a Web site.

You go now to the new open Web site dialogue with Visual Studio 2005, you’ll see we have a lot more options, specifically now we have support so that you don’t require an IS to be installed locally, and you don’t need to use FrontPage extensions in order to manage a site. Instead, in fact, you can just open up any file system folder directory, and you’re good to go. You can see here, I can- if I wanted to, I could go ahead and point to a directory. We also then have support for browsing ISs directly. This does not require FrontPage server extensions. Instead, we’re able to use the built-in ISs configuration APIs onto manage directly. We also then have FTP support, so that you can go ahead and manage a site over FTP and connect. Then likewise- or last, but not least, we do, obviously, continue to support FrontPage server extensions as well. That’s a perfectly valid way in order to manage your site in addition.

In this case here, I’m just going to go ahead and create a new directory, we’ll call this Webcast, since we’re doing a Webcast, from scratch, and hit Open. You’ll see it was pretty quick. One of the things we spent a lot of time focusing on in Visual Studio 2005 is Web performance at design time. If you take the, I think, the Ibox spy application with Visual Studio 2003 on a 128-meg system, it takes about 50 seconds to load. With Visual Studio 2005, we got it down to about four or five seconds total. It’s much faster in terms of managing large sites, in terms of the overall way we manage systems.

Another thing you’re going to notice when we go to the C drive here is, you’ll see when we into this directory called Webcast, you’ll see we don’t have anything in the directory. This is sort a conscious thing that we’re trying to do with Visual Studio 2005 where we’re trying to avoid having the tool ever do anything in the background for you that you don’t want us to do. Instead, we only add files into your project when you need them to and when we ask you to do so. Likewise, we don’t inject a whole bunch of code in the background or modify your files for you. Instead, we try to keep it very clean and have it be exactly the content and the code in the files that you want within your site. By default, you’ll see the Web’s empty. We don’t use project files any more for Web applications. Instead, if you want to add something into this Web site, I could just simply copy it into this directory, and I’m good to go. It’s much easier to manage, and we think much more productive as you’re building your sites.

What we’re going to go ahead and do is start off with is I’m going to just add a new page into the site by clicking the Add New Item Menu on my directory. You’ll see there’s a lot more items I can add into my Web. We’re going to be using a number of these as we go through the demo to show off. As you can see, there’s much richer support inside Visual Studio for all of them.

To start off with, I’m just going to build a simple page. We’re just going to call this Simple Page.aspx. You’ll notice I can choose what language I want to code against. I can use VB, I can use C#, I can use J# built in. You’ll notice that it’s a drop down for the Add New Items. This isn’t a project system setting; this is actually something I can control in any per-file basis. It’s now possible, for example, to have one page be written in C#, one page be written in VB, both living in the same project, side by side. Makes it much more flexible in terms of how you manage it.

We also, as you build new pages, have support for code behind, which is still our default and our recommended way for building pages. But we also, if you uncheck this, will create a page that is what we call Single File IntelliSense, or single file, where all the asp.net code lives inside the <script runat=server> block within your page. You, as a developer, can choose which of the two methodologies, code behind or single file, you find what best suits your particular needs or your background as well as what language, and you’re good to go. In this case here, I’m just going to use C# code behind, create the new page, and you can see we open it up in the source view.

Couple things to notice about this particular page. One is, first and foremost, you might notice that we are- the default template that we generate in Visual Studio is now XHTML compliant. We spent a lot of time with this release making sure that our tools, as well as our aspx runtime is standards compliant. All of the aspx.net server controls now in MITT, XHTML markup by default. If you do want to generate non-XHTML mark up, there is a config switch you can set, but by default will always generate XHTML compliant mark up. Likewise, inside the tool here, you can see this is an XHTML compliant page, and by default, all the HTML that we add when you drive drop stuff from the toolbox, will also be XHTML compliant. It’s much easier to be standards based.

We now have IntelliSense everywhere. In the past with Visual Studio we obviously had code IntelliSense and code behind and we had some HTML IntelliSense inside the source view. We’ve made it much richer in Visual Studio 2005. You’ll notice, for example, you can get now IntelliSense for any page directive at the top of the page. We get now IntelliSense for things like CSS. For example, if we wanted to add into our body tag here, style = property, you’ll see we actually get IntelliSense now for each of the individual CSS style properties, which is kind of nice.

Likewise, we even have IntelliSense for now things like data-binding expressions, as well as for inline code blocks. If I do something like: string foo., you’ll see I’m getting full C# IntelliSense defined inline within my page, as well as debugging support. The benefit is you get IntelliSense everywhere in the source that you type. Now, this is for an HTML page. Other forms of IntelliSense that we’ve added in Visual Studio 2005, we’ve also added support for XML files. You’ll see a little bit later on when we add a Web.config file into a project, we now have IntelliSense for all the aspx.net settings within it. We also can provide IntelliSense

on any XML file that supports either a DTV or XSD schema. Again, much richer tool that you can take advantage of.

One thing to note. I mentioned about XHTML markup. All this is legal XHTML markup. One challenge as you’re building a Web site, though, is figuring out what standard you want to target or what device or browser type do you want to target, and how do you make sure that what you’re coding or what you’re adding into that page or into that site is legal from that perspective. To help with that, we’ve actually added rich validation support inside Visual Studio 2005. For example, you’ll notice here as I’m typing in the body tag, you’ll see all the attributes that show up here as part of our drop down. There’s a whole bunch of events, there’s a whole bunch of properties, methods, etc. That’s because this is right now targeting an IE6.0 browser, and you can see the device type on the top here.

Not all of those properties are available in things like Firefox or in XHTML compliant browsers. If I want to limit myself to a subset, let’s do just HTML 401, or let’s just say XHTML transitional, I can change this drop-down list, and now any time I go ahead and use IntelliSense, you’ll see that I have fewer properties. I only have the properties available for that browser or for that standard that I want to target. If I was already using one of these properties, I’d get a little red squiggly and have a error show up in my error list identifying that I’m using an invalid attribute and, as such, won’t be compliant.

Likewise, if I go ahead and add some client-side script to the page, let’s say I add a function here called foo, this is client-side Java script, if I say document dot, you’ll see that I now have- I’m getting the IntelliSense client-side Java script and IntelliSense for all the properties, methods, and events available in XHTML on the document object. If I change this back to the IE 6.0, you’ll see I now get all of the properties, methods, and events that are available there as well. IntelliSense updated not just for your HTML markup, but also for all your client-side script as well. It makes it a lot easier to build standards-compliant sites within Visual Studio.

A couple other things, just to show off while we’re in source mode here. One’s actually been a pet peeve of mine for a while, which is, there’s things like the toolbox in the property grid, which today aren’t that useful when you’re using source view, and yet they take up a lot of real estate. One of the things that we’ve done in Visual Studio 2005 is added support now so that you can use things like, for example, the toolbox in source view. I’m just going to go ahead and do here is just drag and drop an HTML table, add some content that says, Some Content Here, and then I can just go ahead and add, for example, a button, and go ahead and take advantage of that toolbox, I can now modify anything I want. Likewise, you’ll notice the property grid now automatically shows up based on where it is in the source view. For example, if I click on this button here, you’ll see that the property grid now has the ASP button properties. If I want to I could go ahead and let’s say, for example, I want to change my markup to have attributes listed like so. I could change the text property either through source, or just say, My Button, and now when I hit enter inside the property grid, you’ll notice the source automatically updated. Again, I can set anything and see any property in the property grid in the source mode as I am navigating around.

We’ve added other cool features into the source editor as well, I’m going to highlight. For example, we’ve added support of what we call collapsible regions in HTML. The way this works is you can define it on a per-tag basis, whether or not you want to support collapsing. For example, you can see the TV here. The way it works, when you support collapsing, you can now expand and collapse that tag in source mode. If I want to collapse the TR, you do it that way; if I want to collapse the three TVs, the different TVs, I can do it that way. It makes it much easier to see the hierarchy in managed content throughout your page, and just a lot cleaner if you’re a source editing kind of person.

Likewise, you’ll notice we added a new feature down here at the bottom we call the Tag Navigator. The way the Tag Navigator works is it shows you, from where you have your cursor, all the way up to the HTML document of the page. It shows you each tag between the current location and the parent- the top-most parent on the page. For example, I click on the TV over here, or I click on the form, you’ll see it’s dynamically updating as I scroll or as I click around.

Another nice thing about this is, you can then go ahead and optionally select the parent contents as you go up and down that hierarchy as well. It makes it much easier, again, to see if you’re embedded within a table, or embedded with one table, or two tables, or three tables, so forth, you can usually the Tag Navigator to figure that out, and you can go ahead and optionally select the tag or just the tag contents and manage it that way.

Likewise, as I’m moving around here, one of the things you might notice is as I click on a tag, for example, this TR, you’ll see that we’re automatically bolding it. Also, again, makes it much easier to see both the beginning as well as then importantly, the end of the tag as you’re moving around the source. The whole combination of this should make it much easier to manage your content, and we think with Visual Studio 2005, we have the richest HTML source editor of any product out there.

Now, one of the biggest complaints about Visual Studio 2003 and Visual Studio 2002, of course, has been HTML reformatting. In the sense of, if you currently have the Visual Studio in source mode, switch to design mode, make some changes, and switch back to source mode, Visual Studio will often reformat your HTML and not respect any white space or any casing semantics that you’ve implemented inside source mode. This tends to drive developers absolutely nuts. One of the big things that we’ve done inside Visual Studio 2005 is to make sure that that doesn’t happen any more. Instead now, we always preserve and maintain your HTML formatting rules, and we never touch any of the HTML code that you’ve written.

For example, if I- just to illustrate this, if we wanted to, we could go ahead- I’m just going to indent, pulling the indenture of these TVs so that, let’s say, for example, I have a style where I want my TV to always be aligned with the TR, and I have a style where I always want to have my attribute properties be lined up on a separate line, as opposed to together. Let’s say it’s just my personal preference. If I switch to design mode now, you’ll notice if I say- change this to be some new content here, in the past if I flipped back to source mode, I would probably be a frustrated developer and see that my rules had not been maintained. You’ll see now when I flip back to source mode, my TVs are still aligned underneath my TRs, and my attributes on the button are still aligned likewise.

Similarly, if I go back to design mode now and decide to change the text property of this button, I can go to property grid, select the text property, and say, My New Button, flip to source mode, and you’ll see here that the HTML properties are preserved, just like they were when I last used them. The tool have been not changed or formatted anything for me, instead, kept the exact same settings that I had before. Hopefully, for those of you that have had resizing done on you in the past, hopefully, a big improvement.

One other sort of minor thing, just to show as we’re flipping back between design mode and source mode that is probably one of the subtle things that you might not immediately pick up, but it’s kind of a cool feature, and it’s in the product. Notice, for example, when I click on a tag and I flip from source mode into design mode, what’s selected? You can see here it’s the button that’s selected. By default, anytime we switch between source and design mode, we’ll actually keep- it will automatically select or position the cursor based on where it was in the previous mode. For example, if I highlight the O in content in design mode now and flip to source mode, you’ll see that the cursor is not only on the O, but we’ve automatically selected that O for you. It makes it much easier to flip back and forth between the two modes, and because we no longer reformat your HTML, it’s also a very safe operation to do, and you can take advantage of the rich features in both.

Other cool features in source mode I can call out is rich support for what we call- through formatting rules. The idea here is the designer will never change your HTML for you. You don’t have to worry about it reformatting it behind the covers for you, but the designer does now support, the tool does now support the ability for you to define custom rules that you want to apply anytime the tool does add new HTML. For example, if you add something through the toolbox or through an online wizard, you can now right click, set your specific formatting rules that you want us to apply whenever we add new markup. For example, I can control whether or not tags should be capitalized or not capitalized by default. I can control when does text wrap on the page. I can also even go into and control any per-tag basis exactly what the rules are in terms of stylistically what should happen. In other words, should there be a closing tag, or should this be a self-terminating tag, or there should be no closing tag can now be configured. Whether or not there’s line breaks before and after, just after, just before, before and after, etc., you can go ahead now and configure precisely within here. Likewise, whether or not the contents should be indented or not. I can even go ahead and on a per-tag basis, specify colorization rules for both the foreground and the background for how that tag should look. Allow me to customize it just how I want to.

The other nice thing about this is, once I set up these rules, I can- they’ll automatically be applied anytime I add new HTML content in the design view. I can also then optionally select any HTML that I want and apply those rules on the formatted selection. This very useful if you are, for example, working with someone else or importing some HTML that you got from another location, and you don’t really like the way the way they’ve done the HTML, you don’t like the indention, you don’t like the style, you don’t like the casing, etc., you can go ahead and use that dialogue I showed earlier to specify the exact way that you want to see it. Then you can just hit Format Selection and apply those rules on top of that. It’s ideal, again, if you’re working in a team environment, and other people don’t have the “right” formatting rules of a set or being followed, you can now go ahead and control it yourself.

All of those formatting rules, as well as all the preferences inside Visual Studio can now also be saved out to an XML file. The benefit there is, it provides an easy way you can share across in a multi-team environment and go ahead and take advantage of them.

Few other things just to show in design view before we add some code. You’ll notice that we now support dynamically resizing tables on the fly. We also then now support the notion of HTML layers as well. You can define a layer, and you see assess positioning in order to position that layer across the site. It makes it much easier to do control layout, and all of our style information’s persisted as CSS, so it’s also now in a very standards-compliant, standards-friendly kind of way.

Turn to other standards just to mention, in addition to storing things as XHTML and generating standards-compliant markup from a- markup a browser specific standard kind of way, we’ve also added richer support inside the tool, as well as inside the ASP.NET to support accessibility standards. With accessibility- accessibility standards are critical if you want to build Web sites that can be viewed by anyone that is seeing impaired or blind, and is potentially using a device like a Braille reader. This is really important if you’re doing any Government work. There’s now Government regulations that specify that all Government sites must be accessible compliant. It’s something else that large corporations, as well as small corporations are increasing requiring as a guideline or standard. Regardless of regulations, it’s also just a very good practice to make sure that anyone can visit your site, and that you’re not inadvertently denying access to someone who wants to visit your site.

The tricky thing with accessibility is, how do you make sure, and as you’re coding, how do you prevent accidental things that are going to cause you to be nonaccessible? For example, let’s say I added an image tag into my site, and said, through the jpeg, just to invent one here, and add it into the site. Now, this is perfectly legal HTML operation to use, and it is standards compliant. This does work from a pure market perspective, and it’ll work in all UI browsers. The downside right now, though, is this image tag is going to cause huge accessibility problems if someone cannot see what the image is and cannot infer, by looking at the image, what this image is supposed to represent within the site. The reason is, is because it’s missing an alt-text attribute, or a long- description attribute that’s enabling a Braille reader to provide an alternative rendering or alternative semantic information about this particular tag.

The way I could find this, well, if I built and deploy my site, I could use an online accessibility checker to try to validate the HTML. The challenge there is going to be that I need to run through every single page on the site and every single possible way it could be used, looking for these types of validation errors or accessibility errors, or I can now go ahead and use the new built-in accessibility checker that’s in Visual Studio 2005. The way this works is I can just go ahead and click this accessibility icon on my toolbar, I can choose what standards I want to go ahead and check against, we support checking against both Section 508 as well as the W3C accessibility or W-Cad guidelines. I hit validate, this is going to go ahead and check all the content of my page. You can see it automatically identified that we had an error, pinpointed the exact line, and took me to the place where the error is. You can see from your description, it’s saying, you’re missing either an alt or a long-description attribute. We add it and said, welcome image, provided a little bit of information that’s an alternative about that particular site, know the Braille reader’s going to be able to go ahead and now provide information, revalidate, you can now see our site’s now legal. I’m still getting an error on the foo tag, just because there is no foo tag in my project, but from an accessibility perspective, this page is now legal and can be viewed anywhere.

You can do the accessibility checking on either a per-page basis by clicking that icon on the toolbar. You can, optionally, then also go ahead and set up at build time, you can add both the control F5 and the F5 build process, do a validation either on the current page or across all pages in the site in automated ways as well. It enables you to build obviously much more accessible solutions as a result. Only ASP.NET controls as well now a MITT accessible compliant markup. You can also now use standard ASP.NET controls and get sites that are going to be accessible compliant as well.

We’ve moved through a lot of HTML features here, a lot of markup features, let’s go ahead and spend a little bit of time looking at coding features as well. You’ll see that we have a button here. What I’m going to go ahead and do is just double click on this button and add an event handler into my code behind, specifically, a button-click event handler. I’m just going to go ahead and say, Button 1.Text is = to “I was pushed!” One thing you’ll notice in your code behind here, as I scroll up, is how clean it is. We’ve gotten rid of the need for Visual Studio to add any custom designer specific code into our code behind, so that there used to be, for example, that initialized form method that had a joint comment that said, do not touch anything inside here. That’s now gone, and so the tool never injects code into your code behind or manages code in your code behind. Instead now, it’s just your event handlers and your code specifically. Keeps it much cleaner and much more manageable in save solution.

We’re going to go ahead and run this. I’m just going to go ahead and hit Ctrl F5, and this is going to go ahead, and let us view this in a browser. Couple of things to call out here. One is, you’ll notice in the bottom right here, this ASP.NET development server popped up. That’s because when we started editing this site, we created that C: webcast directory, and that directory that we created from scratch was not registered with IIS, which means it’s not an IS application site or v-root. I can’t right now use IIS in order to actually run that site. Visual Studio detected that, and instead of using IIS, it went ahead and launched its own built-in Web server, which is this ASP.NET development Web server on my system. This development Web server only allows local requests, so you can’t, for example, access this Web site from another machine inadvertently as you’re developing it, so it makes it much more secure. It uses a random port, so it’s nonguessable, even on local apps, and it will automatically shut down any time you close the Visual Studio IDE. You don’t have to worry about a Web server running in the background without you realizing it.

The other benefit here is because this Web server runs as a normal user, it does not require admin privileges in order to set up or use, which means that you can go ahead and log in and do all of your development as a normal user, not as an administrator on your own machine. That includes development time, both IntelliSense and debugging, as well as now runtime. This is also ideal for a university environment or a school environment where you have, say, a shared cluster of machines. It’s also ideal for corporations with lock-down desktops, or anyone who wants to run as a normal user on your system, which, obviously, for security reasons is the recommended best practice.

Now we’re running this out, if I go ahead now and push this button, you’ll see we get I was Pushed, because we executed that code, fairly simple sample there. One thing I want to call out through that’s pretty powerful about Visual Studio 2005 and ASP.NET 2.0 is that fact that I can go ahead and still have that browser loaded and make a quick change to the code in my code behind, hit Save, not hit rebuild, not go ahead and rerun this again, so I’m not compiling it again, instead now, I can just go back to the page and push this button again. You’ll notice the change immediately took effect. It did not need to recompile; it did not need to rebuild. I was able to just go ahead and make the search build change, hit Save, run it again, and I’m good to go. This is kind of a key benefit of the new Visual Studio 2005 project model for Web projects and with ASP.NET. Makes it much easier for you as a developer to go ahead and makes changes. Obviously, if I hit Ctrl F5 or F5 to launch the page in the debugger or just to build it, I can rebuild and get full compile errors if there are any, but this ability to make quick surgical changes is a pretty nice thing, and something that everyone can now take advantage of.

You’ll notice right now I’m not running the debugger. If go ahead and set a break point by hitting F9, and then hit F5 to launch the debugger, you’ll notice first that this dialogue will pop up. It’s basically the tool saying, Hey, you don’t have the bugging enabled on your site. Do you want to enable it? It’s going to prompt me to add a new web.conf file with the bug enable, which I hit OK. This goes back to that message I was saying a little bit earlier, in the sense of our goal being with Visual Studio 2005 to not do anything in the background for you that you’re not aware of. Instead, we’re being very conscious about telling you, Hey, you need to go ahead and make this change in order for something to work. Would you like me to do it for you? Yes/No. Being very explicit about what we’re potentially going to do, and asking you, as the developer, what do you want us to do it. It makes it much friendlier as a Web developer to use the tool; you don’t have to worry about the tool doing a whole bunch of things in the background that you’re not happy with.

Now, for example, if I run this button, you’ll see we’re going to break in the debugger. One thing to note, actually, if you hover over any variable now inside the debugger, you’ll see you get now hover IntelliSense on that particular set of properties for that particular control. Now I can go ahead and much more easily reflect and introspect over values and properties in source view as I’m going ahead and editing it. Hit F5 and run it. You’ll notice also, just like I was able to make changes before, I can now make changes also, even though I had the debugger attached and loaded. I’ll say, yet again in debug mode. Make a quick change, hit Save, hit Refresh, hit the break point again, F5 to continue, and you’ll see away we go. I did not need to stop, change the code, rebuild, and then reattach the debugger. Instead, I was able to make a change ability. This ability dramatically improves your agility as a developer to make the sort of small changes. You’re not limited to only making one-line changes. You can add new variables, you can add code, you can even change the signature of classes and methods. It really is a very powerful thing you can use all over the place.

Other things: we still get the debugger attached, but other things I’m going to go ahead and do here, show off a few new features is just set the button to be null by default, hit Save. This is going to cause an error, obviously, because I’m setting a variable to be nothing or null, and I’m trying to access a property on it. Notice what happens, though, when we do the error now. We’re going to break into debugger automatically, and you’ll see that it will automatically highlight the line that caused the error, and will provide this UI in the bottom right here, which is telling us- it gives us extra information about what the error is, specifically, Hey, I know reference exception was hit. If I want to I can go ahead and view details about that particular exception. You can drill into to see the Internet exception and more details about where exactly it occurred. We also then integrate the help system, so that we can jump you directly to a couple of tips and guides based on the error- which can provide some more information in terms of what the problem was and how to fix it. We’ll just hit continue, and, obviously, we’re going to fix our error there, and away it goes.

Last but not least, show off another cool feature that is new to Web Projects, which is the ability as you are building sites to avoid getting blocked by having one page have an error and causing another page to not run because of it. This is an example- this is the sort of scenario that, especially with team projects you often run into, and then also even with your own projects where you might have- might working actively on a page, and get separated and have to come back in a little bit and say, Oh, I’m going to fix this later. I’m going to have a method that’s- in this case here, I’m just going to have a method called Do Some Error. This method doesn’t exist, so this is going to cause compile error. In the past when I went ahead and tried to run another page, like the simple page that we were working on earlier, I would get an error and it wouldn’t let me continue. Visual Studio wouldn’t let me to continue to. I either fix the error or it explicitly excluded things from the project.

The benefit here now you’ll see is, I’m still getting a compile error when I try to run, but it’s going to ask me, Hey, do you want to try to continue to run anyway? If I hit Yes, what’ll happen is, I’ll still be able to run all the pages on the site that are working, and I’ll only run into problems if I try to run a page that isn’t working. It makes it much easier so I don’t get blocked by other people or other changes, I can now just continue to keep working. As long as I don’t access something that isn’t compiling or has an error, I won’t run into problems. Much better for team development and overall management of the system.

The last quick thing I’ll also show, a few people have asked in the past is, is this callout that we now have as part of our source editor much richer refactoring support that you can take advantage of. The idea with refactoring is- I’ll show a very simple example here, if I have a block of code, for example, I’m just going to add a string called Some Message, and I go ahead here then and set this like so. Obviously, if I had a more complex set of code block. I want to make it a little bit more real, I can now go ahead and, for example, choose to refractor this, to pull this out into a method by just highlighting any text and saying, extract a method out of this. We can call this Simple Text Method. You’ll see now what we did was we automatically pulled out that code, and then changed all references to use that code to call into that method forming automatically.

Likewise, if I wanted to, I can rename properties or fields or variables, and I can go ahead and update any reference to that within my code, whether it’s on the same class file or other class files within my project, I can remove parameters or reorder parameters, and automatically update all the references all the way through my project and take advantage of them. The big benefit there is that it makes much easier to go ahead and restructure the code that you’re writing, make it more optimal and not have to worry about, Oh, boy, now I have to go ahead and clean up 100 references and do it everywhere. Maybe I won’t make that change. Now you can just say, Hey, I’m going to make the change, and the tool can automatically update everything for you. Makes it much cleaner, much richer text editing experience, source editing experience. As you saw earlier, much richer Wizard redesign experience. The way the project system now works for Web projects, a much more flexible Web development model that you can take advantage of. As a result, a much richer tool.

Now that we’ve shown off a little bit of Visual Studio, I’m going to go ahead and take this site a little bit richer, and we’re going to do some data access, which is probably the most common thing when people do when they’re building Web sites and Web applications.

There’s a couple of ways we could do data access. The simple way that typically gets shown in demos is to do a kind of simple two-tier data binding model, where you’re going directly against the database. It makes demos look good, but it’s not really a good real-world best practice. What I’m going to do is something a little bit different here, which is I’m going to go ahead and actually do all of my data binding demos against a middle tier, business-object component. I’m going to go ahead and add in my project right now. Specifically, what I just added was two subfolders, one called DAL or Data Access Layer, which has a class called Author DB, which is just a simple class with some ADO.NET methods exposed; they’re returning data sets and fetching data sets.

Then I’m going to go ahead and I added two other classes. The first one is called author.cs. This is a standard author class that we’re going to use to represent authors inside the pub’s database inside standard SQL Server installation. You’ll see here, this author class has no special base class, doesn’t implement any interfaces, has no special metadata. It’s just a pretty vanilla class with a constructor, and some public properties that get inset the different fields that we want to go ahead and set. No data access code in it whatsoever.

I then have a publisher class that we’re going to go ahead and use. This is going to have three methods that’ll go ahead and call into the data access layer and return either a single or a collection of author objects. The first one is called Look Up Authors by State. It takes a state parameter as a string, and then calls the data access layer, gets the data set, and then it goes ahead and creates a collection of type author, populates that author collection, and returns it.

Now this author collection is kind of interesting. You’ll notice that it’s using slightly different syntax than you might be used to if you’re coming from Version 1.1, and that’s because this is using a new feature called Generics. The deal behind Generics is that you can now type either an object or a collection to be of a strongly typed nature. This is actually a list or a collection of type author, which means that I’ll get IntelliSense for each item as an author, as opposed to, say, a generic object or another data type. It also means that I get a little bit better runtime performance. Obviously, it also means I get great compile-time checking. It’s a great new feature; you can use this from both C# and VB with .NET 2.0.

In addition to Look Up Authors by State, I’m going to have a method called Look Up Authors Details. This takes an idea of an author and returns a single author class instance. That was another collection by single instance. I then have a method called Update Author, which is going to take an author object and then use that call the data access layer to update the database. Fairly simple class with these three methods, but somewhat indicative of what maybe a typical signature might look like in an middle-tier access layer.

Let’s go ahead now and build a page that’s going to go ahead and consume and use these objects. To do that, I’m just going to say, Add New Item. Specifically, I’m going to create a new page that I’m going to call Data Page that we’ll add into our project, go to design mode, and we’ll just call this Author Data at the top. What I’m going to go ahead and do is just highlight this author data. Now I want to bind it against that publisher class. Specifically, we’re going to use the Look Up Authors by State method on that publisher class. To do that, the first thing I go ahead and do is just add a control to let me pick a state. I can put a text box and have someone type it in. In this case, yes, I’m just going to use a drop-down list. I’m going to add some items into this drop-down list, specifically, a few states. We’ll add California, we’ll add Utah, and we’ll add Kansas, which are three states inside the pub’s database. We’ll set it up so that we’ll do- and then we’ll post back when this value gets changed.

What we then want to go ahead and do is add a data grid UI control on the page and bind it to that middle tier. Through that when you go to my toolbox, notice that there’s a lot of different categories that we have here. We actually have so many new controls that we had to invent this thing we call Hierarchial Toolboxes, so that we can manage them a little better. What I’m going to go ahead and do here is use the grid view control, which is a new enhanced data grid that we’re shipping as part of ASP.NET 2.0. You’ll notice that I add this control as well as when I added the previous drop-down list controls, this UI popped up here that provides tasks. We call this the Common Tasks UI. It’s a way that a control developer can surface one of the common operations that I might want to use or do- perform with this control. This case here, I’m going to go ahead and select a data source. Within ASP.NET 2.0, we support, as I mentioned, multiple ways that you can do data binding. You can do two-tier data binding directly against the database. In this case here, though, we’re going to do data binding against that middle-tier object.

Visual Studio automatically shows me what classes are available within my project that I can bind against. In this case here, I’m going to bind against the publisher class. For getting data, I’m going to bind against the Look Up Authors by State Method on that class. You’ll notice we’re automatically reflecting to populate those values. Look Up Authors by State takes a state parameter as an argument. I can either write code to manually set that value, or I can use this UI to data bind it directly against a number of built-in sources. This case here, I’m going to data bind it or pull the value automatically from the control, which is drop down list one. Hit Finish. You’ll see when we go back to design view, we’ve automatically reflected on that author collection that was returned from Look Up Authors by State, and we now have a data grid that’s data bound to those properties. I can go ahead and format it, different styles I can choose, I’m just going to choose Snowy Pine, and then I can hit Save and then just hit Run.

Now what I have is a grid that’s bound against this drop-down list in providing values that’s calling into that middle-tier object layer, which is publisher, which is then calling into the data access layer, which is going into our database. A nice clean model for doing data access. If I want to implement paging, unless we have a number of values here, I could just back to this grid. I could say, enable paging, and then just because then I can set what the pages size is, in this case we’ll just say 5. When you have more than 5 rows, we’ll go ahead and implement paging, hit Save, hit Refresh here in the browser, you’ll see now I can page over the results of that middle-tier layer. I can either do client-side paging or I can do it on the server side close to the database, depending on how many rows I get returned and how I want to optimize that. Now I have simple filtered pageable grid bound against the middle-tier layer.

Now, rather than have all the different columns displayed here in a single row, what I’m going to go ahead and do is implement a master details relationship. We’ll have this page be the master, and I’ll have a separate page which will make details that I can drill into specific authors. What I want to go ahead and do then is just select a few of these rows to remove, and just include the ID, first name, last name on this main page. We’ll get rid of a few. I’m going to go ahead and add a new column. I specifically pick a hyperlink column, which lets me do linking UI. I’m going to call this value Details, that’ll show up here, and then I’m going to send- when you click on this link, I’m going to send the user to a Details page and pass in an ID parameter to it. What I’m going to bind this parameter is just pull it from the ID property of the author control. Hit OK, and now you notice we have a details link set up, hit Save, come back here and hit Refresh. Now on the drop-down list you’ll see we have details links, and those are each going against a details.aspx page passing in the ID parameter.

To build that page, I’m just going to go ahead and add a new page called Details. I’ll make the title of this page Author Details. I can do a couple of things to pull up the Author Details. One is I could use a new control we call Form View, which provides a container control that I could then drop individual text boxes and other input controls into and data bind against that middle-tier layer and have complete control over what the UI looks like. In this case here, I was going to use a separate control, which is called Details View, which will do all that for me. I’ll bind it against the middle tier, just like before, against the publisher class. The difference here is instead of going into Look Up Authors by State, I’m going to pull up a single author row, using the Look Up Authors Details Method, and we’re going to bind the ID value—I could write code, obviously—but in this case here, I’m just going to bind it against the query string, specifically, an ID parameter that we’re going to pass in from that master’s page. Hit Finish. We now have simple details view, go ahead and format it to also be Snowy Pine. Just to make navigation a little bit easier, we’re going to set up a link to go back to that data page. I’m just going to spam this over so everything fits nicely, hit Save, hit Refresh in the browser. Now I can pick a state, click on the details link, go straight to them, and pick up the details, navigate back when I want to. Easy way to implement master details on my site.

Now, if I want to go ahead and implement updating as well, so not only can I see it but I can also update it, doing so’s pretty easy. All I need to do is go back and configure my object data source again. Instead of just having a select method, I can also now specify an update method. Specifically, I’m going to pick the update author method on that publisher class. It’s going to take a single-author instance to update. Then I’m just going to go ahead and click the enable editing option inside the common task list, and hit Save. Now, when I go ahead and hit Refresh, Marjorie’s in Oakland, but she’s living in Kansas, which seems a little wrong, so we’re just going to edit this, move it to California, hit Update, and now she’s in Oakland, California, on the data page and you’ll see her right there. What we just implemented is master details with filtering, with paging, with updating, all going against the middle-tier access layer. As you saw, it was pretty easy to do, very clean code, very nice model to follow.

This is showing editing data. Let’s take this a little bit further and talk a little about presenting data and specifically presenting data using caching. For those of you- to do that, we’ll go ahead and build a new page, I’m going to call Cache Test into our project. What I’m going to do on this page is I’m going to add two controls. One is just going to be a standard-label control; the other one is going to be the grid-view control, just like we did before. The difference here, though, is when we bind them against the middle-tier layer, instead of using a drop-down list to pull the values for the state parameter, what I’m going to go ahead and do is still bind to the same method, but pull the parameter source from the query string instead, and have this parameter be called State and have the default value be California, if none specified. Then hit Finish. Then going to go ahead and format this just like before.

One last thing I’m going to go ahead and do is just bump up the label size here to be 24 points, make it a little bit more visible. Then I’m going to go ahead and add a Page-Load Event method. I’m just going to go ahead and set the text property of this label that we added to be page generated, and just spit out the current date time. Now I’m going to go ahead and run this page. You’ll see I have a grid of information, by default it’s California. If I changed the query string to be, let’s say, Kansas, I can pull up just Kansas or Utah. You’ll notice that every time I run this page now, the time stamp is changing up here at the top. The reason for that is because, well, right now the page is not being cached at all, so every time someone hits it from a browser, it executes- goes against the database, populates the page, and sends back the HTML response.

What I can do in asp.net D11 today is take advantage of this cool feature we call Caching. The way caching works is it enables me either programmatically or through a page directive, like I’m going to add right here called Output Cache, to indicate that I want to save the contents of this page for a specified period of time. In this case here, I’m going to say 5 seconds. Vary it based on the parameters being sent in, in this case, State, and now every time someone hits this page during that 5-second interval—once the page content’s been saved—we’ll actually send back the same HTML response down to the client. We don’t need to go ahead and recreate the page. It means we also don’t need to go and hit the database. You’ll notice here when I’m hitting Refresh now, notice the time stamp’s not changing for a period of about 5 seconds. When it says 30, yes, there it changed. Any client- this browser’s getting back the same HTML response during that 5-second window; it also means that any other user on the Internet hitting this same site with the same state parameters can also get that same safe content during that 5-second interval. The big benefit there, of course, is performance. Doing a lot less load on the server; hitting the database a lot fewer times, much, much better performance.

This feature’s really good. You can use it today. Ideally, though, what you’d want to do is increment this. Instead of being 5 seconds, you can actually output cache this thing for, say, 555,000 seconds, or 5 million seconds, or some very large value. You certainly can do that today. The downside, though, is what happens if the data changes during this duration window. In other words, after 10 seconds or after an hour or after 2 hours, the back-end database changes, well, there’s no way today in ASP.NET 1.1 for us to know that. You have the potentially of showing what we call stale data to users visiting the site, until that window expires and we regenerate the page. That’s probably fine for some things, but for price listings or product listings or things like that, that might not be okay. As a result, either you can’t use output caching, or you can only use output caching with smaller window sizes, like, say, a minute in duration.

That was until V 2.0. What we did in V 2.0, we added support for what we call SQL output caching invalidation. What that does is it provides a way that I can go ahead and indicate another policy. I can say, Cache this thing for this long a time, except if policy is invalidated due to an external action, for example, like the database changing. The way I set up this policy is pretty simple. What I’m going to go ahead and do here is just add into my web.config file two values. One is a connection string section that I’m just going to add here. This is a new section that we support in ASP.NET V 2.0 for storing database connection strings. One nice thing about it- is true about both this section and any other section now is that you can encrypt those settings. It’s much easier to go ahead, and once you deploy an app, make sure that you lock down the settings and keep things secure.

The second setting that I’m going to go ahead and add is a caching section, which is a new section, also in ASP.NET V 2.0. Specifically what we do is, I’m going to set up a cache dependency with the database that middle-tier layers column. I can call this dependency anything I want. In this case here, I’m just going to call it Webcast Demo, and I just point at the connection string that indicates to that database that I want to monitor. That will cause ASP.NET to go ahead and keep an eye on that database. If an administrator installs a special set of triggers on that database for SQL 2000, we can automatically keep track anytime a table that we’re looking at is modified.

To enable this then on my page, all I need to do is go back and add to this output cache section a SQL dependency attribute, which is a new attribute, and set in Webcast Demo Authors as to link up this page that dependency we set in the SQL file. Now what will happen is, when I go ahead and rerun this page, it’ll keep running like normal. Instead now invalidating every 5 seconds though, it’s going to invalidate every half million seconds or more, except if, or if the back-end database changes. For example, we’ll keep this page up. We’re going to go back to this editing page that we had earlier. I’m going to go ahead and add Marjorie back into Utah, or move her to Utah, hit Update, come back here, hit Refresh. Notice now she just immediately popped up in Utah, and the time stamp of the page changed. That’s because database changed, ASP.NET noticed that, and with the next request we regenerated the page and sent down a new HTML response down to the client.

Likewise, if we removed her, sent her back to California, hit Update, come back here and hit Refresh; notice again the time changed, and she’s no longer in the list. This works regardless of whether or not the database is being updated inside an ASP.NET app. It could also be updated in a WinForms app, or any other application out there. It’s not limited to only doing updates through ASP.NET. It also will work with both SQL 2000 and with SQL 2005. The SQL 2000, the way this works is ASP.NET installs some triggers in the database, or more specifically, an administrator installs some triggers that ASP.NET will keep an eye on. Anytime the table changes, we just update an invalidation clause in the trigger, and ASP.NET then will detect that and automatically invalidate any pages that are cached. With SQL 2005, we’ve enabled what’s called Push Invalidation, where SQL 2005 can automatically push to ASP.NET a notification that rows have changed, and we can invalidate it that way. Both with SQL 2000 and SQL 2005, it’ll work, provide dramatically better performance. Because of the extensibility layer that I talked about earlier during the slides, if you want to use this same mechanism against an Oracle database or against a SQL DB2 database or My SQL database or any other data store out there, all you need to do is build a SQL cache provider or a dependency provider that implements a specific contract that we’d publish, register it in the config file just like we did before with that SQL dependency section, and away you can go. You can use this same mechanism in a variety of different ways. It’s very extensible and get great performance as a result.

Okay, so now we’ve shown using Visual Studio and some of the cool features there for Web; now we’ve shown Data Access and SQL caching and how can a data fits together. Let’s go back and now and start working on a broader context of our application, and spend a little bit of time thinking about UI and how we’re going to go ahead and manage that.

One of the challenges as I start building out this site, we start to have four or five pages now, and one of the challenges is going to be, how do I, as the site gets more complicated and as I add more pages, enforce a nice, clean consistent look and feel across all the pages within the site, both from a stylistic perspective, as well as from a layout perspective, and have some kind of system so that anytime I want to make a change, I don’t need to go back and touch dozens of files across the site—or hundreds of files across the site. Instead, I can just go ahead and update it in one single location and have it apply everywhere. Likewise, as part of that, I want to have a nice way that I can have designers and developers work together on the same solution, and, hopefully, have a structure so that I don’t have to worry about them stomping on each other’s changes, and it’s a much cleaner way for them to manage it.

There’s where some of these next couple of features come into play, specifically, themes and something we’re going to call Master Pages. Let’s talk about themes first. For example, to help motive why themes are interesting, I want to show the code for one of these data pages that we just built, specifically, DataPage.aspx. You’ll notice that if we look in the source file, we’ve got standard HTML, we then have an ASP drop-down list control, and then we have a grid-view control that we’ll just go ahead and see right here, which is providing the UI for what the grid looks like, as well as the behavior for it.

One challenge with this grid right now if you look at it closely, is that it’s really combining a couple of different things. Some of these things I think of more as procedural operations aspects. This is controlling a functionality, if you will, of the control. Other things I then have here are style information. Because they’re both set on the same control instance, I can run into situations where if a designer works on this and a developer works it, potentially, we’re going to cause problems with each other’s aspects. Designer might whack one of the columns; the developer might inadvertently change the style cover. That’s going to be a problem.

The other problem is because all this style information’s embedded inside the control definition, like so right here, where we’re instantiating the control, if I ever want to go ahead and change what grids look like on the site in a nice, common consistent way, I can’t do it. I need to go ahead and touch every grid on every page within the site, and modify each of them independently.

All that was true until ASP.NET 2.0 came out, and we introduced this new feature we call Themes. What Themes does is they provide a nice clean way that you can extract out the style information, and the control’s look and feel from the page itself, and store it in a nice central way.

How do we do this? Well, step 1, in terms of applying a theme, the first thing I want to do here is go back to design view, click on this grid, and remove the formatting of it. The way we do that is just click the auto format dialogue and then click remote formatting. What this is going to do is it’s going to strip out all the style information outside of the grid view control. What I’m left with now is just all the functional properties that the developer has been sent. It’s much cleaner, and I don’t have any style properties. But the downside, though, of course, is when I run this is, it looks ugly. That’s because there is no style property set, so it’s just giving me a perfectly vanilla default grid-looking field.

What I can do though to make it more attractive, is rather than embed the style information directly within the source is to go ahead and add a app themes directory into my Web site. What a themes directory does is, it provides a way you can go ahead and define what are called themes. A theme is represented as a subdirectory underneath the app themes root directory. Each subdirectory is a different named theme. In this case I have here two themes: One called Bob, one called ScottGu.

I want to go ahead and apply a theme to a page now. I can go ahead and just say, set either style shoot theme or a theme property on the page directive, do the theme I want. You’ll notice that Visual Studio’s automatically providing IntelliSense only for those themes that are installed onsite. If you look inside this directory, a theme can have multiple things. For example, it can have a CSS style sheet for common HTML style properties, and then it can have what’s called a .skin file. What is a skin file is, we’ll just pull it up right here, is a definition of server controls that provides both a default look and feel for what a grid- a control should look like. For example, here I had a grid view. This is just using the same syntax that I would declare a grid view inside a vanilla .aspx page. It’s just setting the style informations that I want the default view of a grid to look like. A skin file can then also have what are called name skins. For example, right here I have another grid view. You’ll notice it has a skin ID property. This is giving us a specific named version of this grid, and this’ll override the default look and feel. In my page now, I’ll say apply the ScottGu theme, but have this grid pick up the skin ID of skin 2, it would use this one instead. I can have any number of these controlled definitions I want within a .skin file. Once I go ahead and apply this theme to the page, by just saying a style sheet theme = ScottGu, I go to design mode now, you’ll see I’m picking up the skin automatically. If I go to run it now, you’ll see, likewise, this page is going to pick up that theme. Now you can see it looks much more attractive, and best of all, because all the style information’s being stored in an external file instead of hard-coded into the page, the controls I do declare on my page are much cleaner. Because they’re in a central place, I can now update this in one place and have all grids across my site pick up that look and feel.

We could go back to the details page here. I could choose to also remove the style information from this details view control, and I can also go ahead and pick up that style sheet theme that we defined. We'll use the same one that we used on the other page, we’re just saying ScottGu. In addition to setting up the page directive, I can also set up a web.config file if I wanted to set it outside of the page. Now, once I set it, I go to Author Details, you’ll see this page is also picking up the default look and feel. It’s much more attractive, and, because it’s stored in a central place, it’s much more manageable and allows designers to participate much better in the overall solution workflow.

One last thing just to point out is that if you have a control like the grid view here where you have multiple skins, I can set a- you pick a different skin by just setting the skin ID property in the property grid. I can also, optionally, just go back to this auto format dialogue. You’ll notice that if you have a theme applied with multiple skins, you’ll notice that in addition to the built-in auto formats that we provide with ASP.NET, you’ll notice that all of the skins will show up as well, that you define yourself as the developer or as a designer. Here’s the default one that we have applied today. If you want to apply skin 2 from this theme, just hit apply and you’ll notice- we’ll go ahead and pick that theme instead. Again, we’re not setting anything specific in the aspx, we’re just setting a skin ID property which will pick it out of that theme directory that we defined earlier. Now I have a nice consistent look and feel across all the controls on my site. This is about style information; this lets us do a nice clean style setting across my site.

Let’s talk a little bit about layout now. With style I can set colors and templates and things like that. With Layout, I want to be able to actually change the structure of the page itself. For example, I want to be able to add a header or add a navigation system on the left-hand side, or I might want to be able to add a copyright logo on the bottom. I want to be able to define this layout in one central place, and have all the pages within my site optionally pick it up.

The way I can do that with aspx V 2.0 is by using a new feature we call Master Pages. The way Master Pages work is you just go ahead and add a new .master file into your site. In this case here, I’m going to create one called Site.master. What a master file looks like, it looks very much like a regular .aspx page. It can have any HTML you want within it. It can also have server controls declared within it, and it can also have code declared within it, and even a code behind. It functions very similarly to a regular aspx.net page in terms of capabilities. What makes it different, though, it’s not a design so much to provide in functionality, but it’s designed more to provide a template layout for what you want all pages on the site to look like.

What I’m going to go ahead and do here is do just that for this site that we’re going to build, by adding a table. Let’s make it one row, three columns. What I want to do on this table is I’m just going to make the background color blue. I want to use this as a header layout for all the pages on my site. To help with that, I’m going to also add some images into the site, and I’m going to add a kind of common logo at the top, and we’re just going to choose a company logo for the top left of the world. Notice, I can resize the table automatically and wysiwyg mode.

I’m going to add a second table into this page. It’s going to have two columns, and what I want to go ahead and do with the second table is I want to use it to control the layout of the content on my site. I’m going to have a menu that we’re going to go ahead and fill in, in a little bit that we’re going to keep on the left-hand site. It’ll define the overall site structure and site navigation for the site. Then what I want to do is I want to use this right-hand most column to actually contain the content on each page. Each page I want to have fill-in very unique specific content in this right most column. To do that, I can go ahead and add a new control that’s in ASP.NET V2.0, called the ContentPlaceholder Control. The way this works is you can add any number of content placeholder controls you want on a page. All you need to do is make sure that each one has a unique ID value. In this case here, we’re going to call this Main Content. Then I can go ahead and build new pages based on this master, and fill in each of those content placeholder regions. For example, now that we’ve defined this, I can now go ahead and build a new default .aspx page. Let me go ahead and build the new default .aspx page. When I build it, I can optionally select a Master Page that I want to have it based on.

In this case here, I’m going to say selected on the site master page. You’ll notice now when we create the page, instead of having an HTML body in form tag like most pages do, because this is based on a Master Page file, it’s going to have inside, instead of it in source view, it’s going to go ahead and just have an asp content region, which is set up to replace the main content defined on that site master.

If I go to design view you’ll see that it’ll actually gray out the background of what the page looks like on the master, and just allow an editable region for the replaceable contents in the middle. I can go ahead here now and just say, Welcome to my Demo, increase the font a little bit there, or whatever unique content I want to have on this page. If you go into source-view mode, you’ll notice that the only thing we’re setting here is the actual content that we filled in. Everything else is still defined on that master template in a separate file. When we go ahead and run this now at runtime, ASP.NET will merge the two together and send down a single HTML response down to the client.

I’m going to go ahead and apply this template now to other pages like the data pages we already built. Doing that’s pretty easy. I just go back to those pages, and I’m just going to set a Master Page file directive on the page, point at the same site master, and notice we got automatic IntelliSense for populating that. Then I’m going to add a new content section, called foo, this case here. I’m going to point at the main content region in the Master Page. Notice, again, we provide IntelliSense automatically showing you what’s available. Then I’m just going to wrap the content we added earlier with this content section. Now when I going to go to design view, you’ll see it automatically picks up the Master Page, and it’s now embedded within that replaceable content region.

Likewise, I can go to the details page. I can set the Master Page file there as well. Hit Save there. Now when we go ahead and run this author data page you’ll see, it’s now embedded inside the same master page. Now and so is the details. The beauty is because the master template’s stored in a separate source file, if I spot an error or I want to make a change later, for example, like this to-do menu is now center justified instead of being aligned at the top, all I need to do is go into that one single master page, change, for example, this particular table to be aligned at the top, I’m setting the be align property here at the top, hit Save, come back here, hit Refresh, and now all the pages on the site will pick up that change automatically. It’s much easier now to make global structural changes, the look and feel; everyone will pick it up, much cleaner story.

We’re starting to have multiple pages now on our site. We have the two data pages and the home page as well as the simple page. What I want to do now is spend a little bit of time stitching them all together and providing a nice navigation system that an end user can user to navigate throughout them and to find their way in the site.

Couple ways I could do that. Previously, the simplest way, of course, would be to come back to the site master and just start hard-coding in HTML links inside the master to let people navigate off to the different node structures. It’s pretty low-tech approach way to do it. There’s a couple downsides, though. If I start adding links into my HTML across my site, if I ever want to change the names of the links or move the files around, I end up having to make a lot of changes in a lot of different places. That can become quite messy as I start to build out a larger site.

A cleaner approach, of course, would be to store the link structures in a data file, say, either a database or an XML file, and be able to read those at runtime and use the data file to construct the links. The downside is that’s typically extra work, and before ASP.NET 2.0, I might not have enough time to do it cleanly, so I might just choose the quick-and-dirty approach.

What we’ve done in ASP.NET 2.0 to make it a lot easier is to introduce a system we call the Site Navigation System. The way site navigation works is it provides a way that you can go ahead and define a site map for what your site looks like. In this case here, I’m going to store it in an XML file in my project. I could also- it’s provider driver, so I could point it at a content management system or another database schema that I defined. In this case here, I’m just going to define the site map, what the links in my site look like. I’m going to say there’s a top-level link called Default.aspx, which is my home. Then I’m going to go ahead and add two data pages that we built. One’s going to be the author data, author list, and the other one, which is our details page, of course, is going to be the author details. Now I can go ahead and have any number of hierarchy levels that I want within this site map file.

What this means is that once I’ve added this to my site, is that I can programmatically access the site map and identify where is the current request in the site map, and what are the link relationships of that current request relative to other URLs around the site. The way I can do is I can just programmatically use the site map property on the page. I can say current node to see what the current page node inside that site node, and I can go ahead and, for example, get access to the child nodes as well as the parent nodes and the sibling nodes, and construct my own menu structures, if you will, around the site based on top of this.

I can do all this programmatically. I can also go ahead and just use some of the built-in navigation controls, if I wanted to do it for me automatically. The way I can do that is- there’s one way I could do that I could go to the new navigation section of my toolbox. Let’s see here. There’s a couple new controls in ASP.NET V 2.0, one’s a menu control that provides both a drop-down as well as a fly-out menu structure uses Java script that’s all cross browser mutual. It’ll support upleveling on all brat major modern browsers and will allow me to dynamically bind against that site map. I could also go ahead and use a tree-view control to do the same thing. I could populate this tree view programmatically, or in this case here just bind it directly to the site map. You’ll notice that now the tree view’s showing me the three links that we defined in that site map a little bit earlier. It’s showing live data binding at design time. In this case here, I can format it to look a little bit more attractive. We could make it look like MSDN; we can make it look like my MSN Messenger link, Windows File Explorer, or in this case here, we’re just going to make it simple.

Now we have kind of attractive looking list, go back here in the browser, hit Refresh, and you’ll see now this tree view’s populating at runtime links across my site. As I move around the site, you’ll notice that the tree view’s automatically highlighting the currently selected link and showing the- giving the user some UI telling him exactly what link they’re on, and where they are in relation to other files in the site. Much cleaner way for me to now go ahead and define layout.

I can make the site map not just single level, but also arbitrarily deep. For example, if I wanted to, I could go ahead and add another node here. In this case here, one for that simple page that we built earlier. We’ll just call this simplepage.aspx. You can remember this is that first page we built when we were just starting off showing the Visual Studio demos. Then I could optionally go ahead and say, Gosh, let’s go ahead and collapse the two data samples underneath a common header, called data. I’m just going to nest these inside a data page, which we’ll call Data Samples. Site map page will be a peer of it on the top level. These two will now be embedded underneath. Just update the XML file, hit Save, go back to the browser, hit Refresh, and now you can see we have simple page showing up. You’ll notice that the data samples are now embedded underneath this extra data samples hierarchy level. It’s just making it a little bit easier to navigate and see some- as you can see, you can have hierarchy.

You can leverage this hierarchy a couple different ways. One of my favorite controls in 2.0, it’s kind of a simple control, but it’s kind of fun, is the site map path control. What this does it shows me the hierarchy level from where I currently am in the hierarchy relative to the root. If you hit Save here, you’ll see when I hit Refresh, I’m now in the author list which is underneath data samples, which is underneath home. Again, this is also driven off of that site map file, which means that anytime I navigate around or anytime I ever change that file, it’ll automatically pick up that level hierarchy and reflect it. It makes a lot easier to build rich navigation across my site, and makes it a lot easier for end users to find where they’re at, more importantly, for me as a developer, to design my site so that I can define the structure in one simple, common place. Anytime I want to change it, alter it in that one place and it’ll reflect everywhere.

Okay, now we have navigation enabled on our site. Let’s go ahead and take the site to the next level and also add in some security support. What I want to be able to do is I want to be able to implement a login system to allow browser-based users on the Internet to access the site, create and manage accounts for their user names and passwords, and then be able to restrict access to certain portions of the site, based on whether or not they have permissions to see them.

Let’s go back into Visual Studio, and let’s walk through how we’re going to do that. Now to implement a forms authentication system with ASP.NET today, now the first place you start is your web.config file, and that’s true also for ASP.NET 2.0. What I’m going to go ahead and do here is just go visit the authentication section in that config file and change it from mode = windows to mode = forms. What this’ll do is it’ll take advantage of the built-in ASP.NET authentication system, create encrypted user identity tickets that we can store as cookies, and do all that management for me. That’s all done with ASP.NET 1.1 today. What I then do, if I was using 1.1 today and using V 2.0 is to add a login page. I could just go ahead and create login.aspx. I’m going to base it also on this same master file that we’ve been using for other pages. I would then go ahead and provide some simple UI. In this case here, I’m going to call it Username to pick someone’s user name. I will text box where I’m going to enter it, provide UI for a password, and then I could go ahead and have a login button. If I want to go ahead and implement some code to implement login, I just double-click on the button, and what I do today is I’d go ahead and add my 1,500 lines of code in order to implement my security credential system, and assuming that user name/password was correct, I would go ahead and issue an authentication ticket to log the user on the system.

Everything sounds conceptually simple. The hard thing is that the 1,500 lines are more to implement the secure credential system. That’s a lot of tricky code; it’s going to take awhile to get right. More importantly, you’ve really got to make sure it’s secure. You got to spend a lot of time threat-modeling it and looking through to make sure that you have a nice, clean secure implementation.

The nice thing with V 2.0 is you don’t need to spend all that time. Instead, you can actually leverage the built-in membership system that we provide out of the box. Instead, I could just go ahead and say, If membership.validateuser, pass in TextBox1 and TextBox2.Text., as the user name and password. Assuming this returns true, it means that I entered a valid name and password credential in the box, and then I could just use the built-in ASP.NET forms authentication system to issue an authentication cookie, and log the user in, and I’d be done. I’d be able to collapse what is literally over a thousand lines of code today in fact you can see three lines of code total in 2.0. So, that’s all good. The downside, though, is I’d still need to go ahead and add into that UI page some validation logic, potentially change the UI a little bit to see whether or not you’re a registered user, and there’s some extra stuff I need to add, and those 3 lines of code quickly add into 15, 20, 25 lines of code total.

While I could still just keep doing that, I could also just be lazy, and I’m lazy by nature, and get ride of all that code entirely and rather than have to build my own UI, just take advantage of a new built-in control we have in V 2.0 called the login control, should do it all for me. What this does, it just provides a built-in UI that does conceptually the same logic that I did before, but adds additional validation checks, so I don’t need to. I can just make this thing look attractive by making it elegant, formatting it to look a little bit cleaner. I could use a theme or skin to make this look a little bit snappier as well. Now I have a login page going against my secure membership system to log people in.

Last, but not least, I’ll just go back to my site master, and I need to provide some way to send the user to the login page. To do that, I’m going to go ahead and just change this background color of this top right cell to be white, so we can see text a little bit better. If I wanted to, I could then just ahead and just provide a link to that login page in that location. Now, I could just provide a simple link. Alternatively, what I’d like to be able to do is actually toggle it so that I show a login link, if you’re not currently logged into the system, but if you’re already logged in, I want to be able to toggle and prompt you to log out option. I could write code to do that using like a link button on the site, or I could also go ahead and just use the built-in login status control. What this does, it’s another new V 2.0 control. It just literally toggles login or logout, depending on whether or not you’re authenticated when you visit the site.

Now we go ahead, hit Refresh on our site, and you should see here is on the top right, we’re going to have that login link, because we’re in that login status control, click the login link, it’s going to take us to the login page using this new login. I could pick a user name. In this case

here, I’m just going to call it ScottGu, and I’ll pick a password, and hit login. This is the first time we’ve built our site, which means that we don’t have a built-in membership system created. What’s happing right here this first time it’s a little bit of a pause, because we’re automatically provisioning a membership system for this particular site. The place that we provisioned, it is in a directory called the at-date directory that we added to the site, and we’ve gone ahead and installed a SQL express.mdf file that has automatically has all the schema necessary to support both membership and roles and personalization, and a whole bunch of other features as part of our site.

The benefit there is that I didn’t have to do any of that provisioning for me. The other benefit is now when I’m finished with this app, it’s much easier to copy it under a production system and deploy it. Because this is stored in a SQL.mdf file, it’s the same file format as SQL Server proper or enterprise, which means that I can either continue running it with SQL Express for low-volume sites, or for small departmental level sites. I could also then just take this exact same file, attach it to a full-blown SQL, and scale it as much as I want to. If I want to go to a 32 processor SQL database, great. It’s the exact same file format, exact same program and model. It gives me really nice scalability and really nice deployment.

Now, everything’s working here. We tried to login, though, you’ll notice, Hey, I wasn’t successful. The reason I wasn’t successful is because this is a brand new app, and it doesn’t know who ScottGu is. It’s not a registered known user on the system, and so when I try to log in using a user name and password, it’s going to fail. What I need to do, of course, is create a new user called ScottGu on the system, do that, or I could either use our admin tool, which we’ll see in a little bit, or in this case here, I’m just going to build a new registration page. Also base it on the master. I’m going to design this registration page to provide UI to let someone log in. To do that, I could add my own controls and just use the membership API directly to do it, or I could use the new ASP create user control to do it for me. In this case here, I’m just going to format to also look a little elegant, hit Save. We’ll go back to our login page now and provide some extra links to find this registration page, just by setting the create user text, and we’ll say, Hey, registered new user, and point them at the register.aspx page, hit Save, and now I’m going to go ahead to log into my site. You’ll see this create user is logging in and login control has a “create new user” link, I click that, it’ll prompt me for a user name. We actually now starting in Beta 2, enforce password complexity length. You can set a few different parameters in terms of how long and how random you need the password to be. It’s just a much more secure, it makes a little harder from the demo to remember the password, but it makes the system much more secure; it’s just one of those built-in features.

Likewise, every time we create a user, we’re automatically hashing the password. We don’t know-it’s called a one-way hash. What that means is we take the password and we change it to be so complex there’s no way to reverse engineer it. Someone enters the password again, we can also run it through the same process and compare the hash codes to see if they’re hashed the same. The nice thing is it means that even if someone was able to ever crack the database and get access to that hash code, there’s no way to reverse engineer the original password. It makes the system secure by default.

I can also then go ahead and ask a question, let’s say, favorite pet name, test, and it provides a way the user can recover their password at a later date, if they forget it, without having to call an administrator and ask them to do so. Hit Continue, and notice now when I come to this page, this login link now says logout. That’s because I’m logged into the system as a ScottGu user. If I go ahead and just approve it, we could go back to the default page. We could change this text and say, Welcome to my Demo. I might want to change it so that if I’m logged in, it’s going to say, Welcome ScottGu. To do that, I could do a couple things, one is I could just create a label, and I could programmatically see whether or not I’m logged in using the exact same authentication APIs I used in ASP.NET V 1.1 today. I used the user.name property, or I could also go ahead and take advantage of a new control in V 2.0 called the Login View Control. This is a view container control. We have a few of these in the product. They provide a way that you can have templatized views that you can automatically switch, depending on different behaviors, as to which is accurate.

For example, here’s an anonymous view, which I’m going to have called, Welcome to my Demo, and I could put whatever content I want within that view. I’m then going to go ahead and add into this control a logged in view. The way the logged in view will work is it will go ahead and prompt me- it’ll let me go ahead and provide some specific UI that’s going to go ahead and welcome the user. To do that, I’m just going to go ahead and add here the logged-in template. You can see how the way this content is persisted, it’s persisted in source. I’m just going to say, Welcome, and I want to be able to spit out the user name. To do that, I can either write code, or I can just go ahead and use the login name control to do it for me.

As you can see, it’s just a templated control. I put whatever content I want within that. Now, if I’m anonymously on the site, it’s just going to say, Welcome to my Demo. If I’m logged in, though, as you can see, it’s going to say, Welcome ScottGu. If I log out now, it shows me anonymous view. A very simple way I can go ahead and automatically vary the logged-in content or content, depending on whether or not I’m logged in or not.

We have a pretty rich authentication system on the site. If I forget my password, I can go ahead and build a password-recovery page like so. We could just say, recover password. What this page will do is it’ll provide some UI so that rather than a user having to call up on the phone and say, Hey, change my password, I can just go ahead and use the password-recovery control to let them enter in their login name or their e-mail address, look up that question that they reserved at the beginning when they created their new account, and if they get it correct, issue them a new password and send it to them as an e-mail that they can change on the next login. To do that here, we’ll just change the login control to also say, recover password, point them at the recover password page, and now if I’m dumb and I forget my password, I can go to the login page, follow the link to recover it, type in my user name. It’ll look up my pet name, which is that question that I stored earlier. If I type in the correct name, which is test, it’ll go ahead, change my password, issue me a new one over e-mail, give me a link to follow, and what if I go ahead and follow it, I can then go ahead and change my password- login and change my password on the next go around. Now I’ve implanted a secure way to let users recover their password without having the administrator involved. Again, easy way to add security to your site; very powerful features.

This lets me login users. Now I can identify them, securely let them log in, and change some UI depending on whether or not they’re logged in or not. What I want to do next is extend this even more, so that I can introduce a notion not just of users, but what we call roles. The idea with roles is that I can go ahead and define top level or common groupings that I want to go ahead and map users into, for example, like administrators or paying customers or premium users, or friends. I can then map each of those accounts of people that log into one of those roles and grant them or deny them privileges based on whether or not they’re in that role.

The way I can do that is pretty easy. Just go into the tool here, and I’m going to go ahead and go to the Web site menu and launch the ASP.NET configuration utility. What this does is it launches a Web-based admin tool that’ll go ahead and pop up on my browser so I can use it remotely if I wanted to. It will show me details about my site. For example, on the security tab you’ll see there’s one user on the site right now that’s been created, and that’s obviously that ScottGu account we created a little while ago. Then there’s a roles tab. To enable roles then, I just go ahead click the enable roles section, and it will go ahead and enable the roles. You’ll notice currently there’s not any roles on the system. If I want to create a role, I can just click this link to create the role, then I can go ahead and create the friends role, or I could go ahead and create the admin’s role, or I could go ahead and create the paying customers role. Whatever roles I want, I can name them anything I want. I want to go ahead then and map people into those roles. I can just manage them. It’ll show me a listing of all the users. In this case here, I’m going to look for ScottGu, or I could also just look for all the S users. You can see he’s not currently in this role. If I want to add him, just click this check box, now he’s in that role. Now I can go ahead and programmatically get access to that.

Anywhere in the site I can now say, programmatically do a check that says, user.isinrole, which will pass in the role name, that’ll then return true or false as to whether or not the current user on the request is currently in that role. I can do declaratively permission checks, so I can block access to classes or to methods depending on whether or not someone’s in that role. I can also then go ahead and change UI on the site. For example, if I wanted to go ahead on this default page, I could very easily say, Hey, in addition to anonymous in a login template, I’m going to create a Role Group template. Now I can go ahead and say, Oh, if you’re in the Friends role, I’m going to go ahead and say, Welcome Friend. Because I’m currently logged in as Scott and Scott is a friend, I’m going to go ahead and visit the site. Right now, you’ll notice, I’m not logged in, so I’m just going to get the anonymous view. If I login as Scott, who is a friend, you’ll notice I’m going to get the Welcome friend view, which is that role template for the friend. If he had a falling out with me and I removed him from the friends’ role, you’ll notice it goes back to just the login view.

It provides a nice way that I can go ahead and alter UI on different pages depending on whether or not someone is in a role or not.

If I want to do some security privileges, I could go a step further. I could go to the web.config file, and I could, if I wanted to, add what’s called a location directive. If I want to block access to the simple page, .aspx, I could add a system.web section, and then add a authorization section underneath it. You’ll notice I’m getting IntelliSense inside web.config. I can say, here allow roles friends, and I could say, deny everyone else. This’ll go ahead and allow anyone who’s in the friend role to log into the site; anyone who is not in the friend role will be denied access to this particular page.

Now, because I’m not in the friend role right now, if I go ahead and try to access the simple page, you’ll notice it’s going to fail, it’s going to send me the login page by default. I could also configure a access-denied page to be sent to instead. If I get added to the friends’ role, come back here, click this link again, and you’ll notice now I go back. I have access to the simple page that we built earlier. Very simple way to go ahead and control authorization roles and access the site.

Last but not least, I might want to say, Gosh, if I’m not logged in as a friend, rather than show me this link at all, maybe I want to hide it. I could take advantage of another feature that’s built in the site navigation system, which is called Roll Permission security trimming. The way this works is, I’m just going to go ahead and configure this provider in my web.config file so that instead of always showing access to all the links, I’m going to add what’s called a security trimming property, set to True. What it’ll do is, it’ll automatically look at the authorization rules for links inside my web.config file, depending on whether or not I have access, automatically hide or show it from the site map when the user visits the site. Right now you’ll notice I’m logged in as a friend, so I do have access to see that page. Again, if I’m not a friend, come back to the site, you’ll notice I no longer see it in the tree view. It’s now hidden automatically for me. A nice easy way I can go ahead and control access to different resources on the site, and control permissions based on that.

Okay, now we’ve added role-based security. We’re starting to have the basics of our pretty rich site. We have master details going on with data access against miniature object layer; we’ve got data caching going on; we’ve got consistent look and feel with themes and master pages; we have the security system with the login system and role-based security.

Now let’s go ahead and make this thing a little bit richer. Even before we actually make it richer, one thing that to call out again, now that we’ve started building out our site, we have multiple pages, multiple things going on, the beauty is because all of the design, look, and feel has been centralized in master pages and themes, as we go ahead and extend this site even more and add more capabilities to it, it’s very easy for us to go ahead and update and change that look and feel without having to change a whole bunch of code everywhere.

For example, if I wanted to go ahead and pick up a slightly different look and feel, we built this one from scratch, this master page from scratch. I’m not a great designer, so what I want to go ahead and do is I want to pick up a different look and feel that a designer on my team’s worked on. The beauty is because it’s all centralized in a master page and with themes, it’s very easy to do so. All I need to do to pick up a new look and feel is just get rid of the old site master and replace it with a new one that a designer’s working on. As well as a CSS file they’ve included. Now I’m going to go ahead and hit Refresh here on my site. What you’re going to see is this site is going to start looking a lot more attractive. It’s picked up a common header with a much more professional looking logo and banner. You can see all the pages in the site continue to work, going into same themes, we got the same navigation UI that we had before, and we have the same security system. You can see I’m logged in, and I can see access to what resources I have.

Very simple as you saw for us to update the look and feel of the site, I didn’t have to change any code, and now we’re starting to have a little bit more of a professional looking site.

The next thing I want to go and do is take this thing to the next level by updating the Home Page to be a lot richer. Right now you can see we just have this Welcome text, that changes depending on whether or not you’re logged in or not. What I want to do is make this a little bit richer and provide more of a portal-like layout on this Home Page, have some nice modular UI, that’s going to go ahead and show off some of the common things on the site, and provide a summary details and suck the user into deeper into the site and help them navigate and browse through that data.

How can I do this? Well, there’s a couple of different things I can do. The first thing I do, if I want to have a modular look and feel on the site, is to- I’m going to go ahead and add a few modular controls to help facilitate that. Specifically, I’m going to add a user controls directory to this site. What a user control is, if you’re new to ASP.NET, is just a file with a .aspx control, and it provides a nice way you can encapsulate either content or functionality in a control that you can then declare and use in multiple pages throughout the site. The one I have here is four user controls, your breaking news, market, politics, and rates control that just provide some built-in functionality that we’re going to take advantage of.

To use a user control, I can do a couple things. The first thing I’m going to do is declare it. I’m going to go back to my Home Page to use this. I’m just going to get rid of the login view that we had before, and I’m going to go ahead and add a registered directive at the top of the page, or a set of registered directives, just to go ahead and declare these user controls. All I’m doing to declare it is adding a name for a tag prefix, and then a tag name for a specific aspx file, and pointing to the source of that file. Fairly simple.

With this ASP.NET 2.0 I can now, if I wanted to alternatively, instead of always registering at the top of the page, you can also go ahead and register it now in the web.config file. It makes it a little bit easier to maintain and manage. For this demo, we’re just going to go ahead and keep it registered at the top of the page.

What I’m going to go ahead and do is just add a little more content as well into the site. Specifically, what I’ve done here is I’ve just copied and pasted in a HTML table. What this table does is it has three columns, each of these columns contains within what’s called a Web port zone control, which we’re going to learn more about in a few minutes. We’ll this- contained within each of these Web port zone controls then are some of those user controls that we added just a few moments ago. You can see the breaking news and the rates, and then down here the market one. In the third column, I then have what’s called a catalog zone, which we’ll also see in a little bit.

What these zone controls do is they provide a nice way to lay out information on the site. When I Refresh here now you’re going to see two of these zones pop up. Here’s the left one, here’s the middle one. You can see contained within each of those Web part zones are some modular controls, which were those user controls that we added. There’s the breaking news ones, there’s the current rates one, there’s the market statistics one. What Web port zones control does is it help provides consistent layout in look and feel for these controls. They also, a little bit later on, we’ll show personalization, provide a way that I can go ahead and minimize controls and move them around on the page.

Before we get to personalization, though, let’s go ahead and make the site a little bit more dynamic. Even before that, let’s just go ahead and add some additional content to this page. The way I’m going to do that is I can go to my site and just add a new user control to add to it. I’m going to declare a user control that we’re going to call Webcast into the site that we’re going to go ahead and work on. It’s just a .aspx file. I could put whatever content I want within this Webcast control. In this case here I’m just going to bind to that middle-tier object layer that we’ve built before, that we bound to before. I’m just going to add a new grid view onto the page, bind it to the publisher object, and bind it against the Look Up Authors by State method, just like before. This case here I used just the time, I’m just going to hard-code to California. I could, obviously, make that dynamic.

We’re going to go ahead and get rid of some of those columns, just have a few columns here, go ahead and format it, make it look a little bit more attractive, and then last two things I’m going to go ahead and do is make this hundred percent wide, and I’m going to go ahead and take this font size and shrink it down to be 7 points. It’s a little bit smaller in total size. Then I’m going to go ahead and hit Save. Now I have a control called Webcast that I can use anywhere I want within my site, any number of times.

If I want to declare onto this default Home Page, let’s go to design view. You’ll notice that we now in Visual Studio support wysiwyg rendering of user controls, so you can see those existing user controls embedded within this default.aspx Home Page on the master site. If I want to add this Webcast, I can just drag and drop it into a free location, hit Save, hit Refresh. What you’ll see now is this Webcast control is showing up in the bottom right, that we just built.

This provides a nice easy way, as you can see, that I can add new functionality to the site, and how to pick up this common layout. The really cool thing about Web parts, though, is that in addition to layout, they provide rich personalization. Ideally, what I want to be able- since I’m letting users log in and I do know something about them, I’d ideally like for them to be able to control and personalize their experience on the site. For example, to be able to store properties about where they’re located or what they’ve bought in the past. For this particular page, I want to be able to allow them to control exactly the layout of this information based on what they want to see. If they think this bottom right-hand control is the most important bit of information on the site, they should be able to move it to the top left. If they don’t want to see current rate information, they should just be able to delete it. That’s what Web parts are going to allow us to do.

To let us to enable that Web part personalization, all I need to do is go into the site master, or anywhere on the page for that matter, and add a link which is going to allow the user to indicate that they want to turn the page into a customization mode. To help with that link, I’m just going to add an ASP.NET link button, make it white, I’m going to call this customize. Call it customize, and I’ll double click to handle an event handle on this. What I want to do is when you click the customize link, I want to change the Webparts into a customization mode that we call catalog. The way to do that is I’m just going to go ahead and set the Webpart manager, controls, display mode property to = webpart manager.catalog mode. What this is going to do is to cause the page to go into a personalization mode and let the end user inside the browser go ahead and customize the experience. Hit Save, let’s go ahead and hit Refresh- ooh, and you run into a problem, just to prove this is real. It’s trying to show- I need to hit the control and add a semicolon at the end of that statement, and now it all works.

Now I’m logged in as a user, I have personalization hooked up, so if I click the customized link, you’ll notice when I do so, the page has gone into that personalization mode I talked about earlier, and now I have in addition to the standard two columns I now have this catalog zone that displays on the third. What I can then go ahead and do is I can now optionally close or remove any of these controls that I want from the page. When I do that, you’ll see that they’re automatically showing up in this catalog zone on the right-hand side, so if I want to add it back in, well, I can do that too. What I can also then do is, as a user, again in the browser, I can now select any of the controls on the page and drag and drop them. I can go ahead and physically move the UI in the controls into new locations, and have them look and feel exactly the way I want to. If I want to get rid of those, I can do that. Once I’m satisfied with what this page looks like, I, as a user, just hit Close. What this’ll do is it’ll store this personalized layout for this particular ScottGu user in the ASP.NET personalization store on the server.

Now, if I log out of the site, you’ll notice it goes back to the default look and feel. If I went to any other machine on any other part of the network and went back to the site and logged in, you’ll notice it’ll go back to the same setting that I, as a user, personalized before. It’ll store my settings persistently, and it’ll work on any machine in a work cross browser. It provides a very nice way. I can go ahead and personalize my experience on the site, have a much more tailored experience, and as a result, be much happier as a end user visiting this site than I was before. As you saw, as a developer, it was really easy to enable and lets you really build some pretty cool stuff.

Now that we’ve built our app, the last thing I want to go ahead and go ahead and deploy it. To go back to Visual Studio, there’s a couple different ways I can choose to deploy the application that we built. One way, of course, would just be to copy the files onto the server and be good to go. One of the things that we built into Visual Studio 2005 is a new utility to help with that. It’s called Copy Website. It’s on the Website menu. What this does is it provides a simple way that I can go ahead and connect to a remote site, whether it’s over FTP or FrontPage server extensions, or just a remote file share. In this case here, I’m going to connect to a remote hosting site. Then I can go ahead and very easily select files and publish them. This’ll go ahead and just publish it up to the remote system and deploy that site. When it goes ahead and returns, I’m good to go with the rest of the site.

Now you can see here we just published all those files and copied over. As I make changes on either side of this system, it’ll actually highlight which is the newer file on each side, so it helps keep you also in sync in terms of if you’re propping a live server, making sure you don’t clobber newer changes and always keep track of which is the most up-to-date.

This is one way to deploy source files and deploy a Web in a hosting environment. The other ports we then have is a utility we call Copy File, or sorry, a utility we call precompile. This works on your build menu and it’s called publish. The way it works is you can point at a directory, we’ll just call this Publish Test, and what this’ll go ahead and do is it’ll go ahead and precompile your site, removing all the source code from your code behinds, and deploying a final solution as part of your directory structure. If we go down here now you’ll see here’s this publish test, and notice the code-behind files are no longer in the site; they’ve been removed. What does remain, by default, is your HTML within your pages. It is possible to go ahead and if we look at the source file for some of these pages, you can see the code-behind references are gone, they’re now pointing to a sync compiled dlls, and what’s left is my HTML.

One of the things that’s nice is we don’t compile themes away, so you can optionally allow the customer to go ahead and change the themes. By default we’ll keep the themes references around, so you can now deploy this site by your customer, all your code is complied in the bin directory, so it’s binary compiled. You’re not giving away your source code. They can now, if they want to, change the look and feel of the site subtly, if you choose to allow them too on the their production system, and you’re good to go.

Now you have an app. You can either give them this that they can x-copy directly onto the system. Visual Studio also then has a set-up project that you can create, if you want to create an MSI that does additional automation behind it.

Now that app that we’ve built from scratch, started off with data access, with master details, filtering, editing, and sorting against a middle-tier business object layer, we then added themes and master pages to go ahead and keep the site consistent. We used caching in order to make it super fast. We added navigation in the menu controls that will navigate around the site. We added login system and a role-management system to have a secure way to identify users and group them into roles. We used Webparts in order to personalize the experience and enable custom tailoring. As you saw, we wrote all the code from scratch, from start to finish, and ended up with a pretty great site that we can now easily deploy and manage.

The one thing I’ll mention if you’re using Visual Studio and have Beta 2, if you want to learn more about this site, the code for this site that we built here as part of the demo will be included next to the link for this webcast. If after seeing this, you can just go ahead and download the exact same code that I built here and try it out on your own system.

You can also, if you want to, go ahead and use the new file Web site feature inside Visual Studio to use some of the built-in starter kits that we ship with the product. One of them is called the Personal Web Site Starter Kit. The way this works is you can just choose whether you want the VB or the C# version. I’m going to use the VB version here. Just give it the name, in this case here we’ll call it See My Website. What the starter kits are designed to do is get your from 0-60 very, very quickly, provides a built-in template for what a site should look like, some nice UI that our designers have worked on, and built-in security, menu system in data access model. For example, for this personal starter kit, it’s designed to give you a personal Web site, and as you can see when you run it, uses all the same features that I showed earlier in terms of master pages, themes, data access, site navigation, security, etc. I’m now going to go ahead and run this. It’s provisioning everything for the first time. I’m going to go ahead and launch it now. You’ll see that I now have a personal starter kit provisioned and deployed, has a nice photo album system, does dynamic image resizing on the fly, so I can manage my photos, page forward and backwards, there’s a security architecture so I can restrict access to only those photos I want to show, provides a simple registration mechanism, login system, navigation system, etc. A simple way you can go ahead and built a personal site.

We’re also going to have starter kits for club site, if you want to set up an organization on the Internet, we’ll have starter kits for doing data reporting, for doing line-of-business applications for Internet sites, for doing portal-like UI sites. Our goal over time is to add more and more. There’s actually a built-in mechanism inside Visual Studio to download them incrementally. Expect to see more and more appear over the next couple of months, both before we ship the final product as well as afterwards.

Page 1 of 30

