2 SQL Server 2005 and ADO.NET

SQL Server 2005 Data Mirroring 5

Hands-On Lab
Lab Manual

SQL Server™ 2005:

SQL Server and ADO.NET
Information in this document is subject to change without notice. The example companies, organizations, products, people, and events depicted herein are fictitious. No association with any real company, organization, product, person or event is intended or should be inferred. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarked, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

2004 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, MS, Windows, Windows NT, MSDN, Active Directory, BizTalk, SQL Server, SharePoint, Outlook, PowerPoint, FrontPage, Visual Basic, Visual C++, Visual J++, Visual InterDev, Visual SourceSafe, Visual C#, Visual J#, and Visual Studio are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names herein may be the trademarks of their respective owners.

SQL Server 2005 and ADO.NET

Objectives

After completing this lab, you will be able to:

· Build a Windows application displaying a bound data grid.
· Execute a long-running query that would normally block the user interface as it runs.
Note

This lab focuses on the concepts in this module and as a result may not comply with Microsoft security recommendations.

Note

The SQL Server 2005 labs are based on beta builds of the product. The intent of these labs is to provide you with a general feel of some of the planned features for the next release of SQL Server. As with all software development projects, the final version may differ from beta builds in both features and user interface. For the latest details on SQL Server 2005, please visit http://www.microsoft.com/sql/2005/.

Prequisites
Before working on this lab, you should:

· Be familiar with either Visual Basic .NET or C#.

· Understand ADO.NET and how to create connection, command and other objects.
· Know how to create Windows applications, and work with various Windows Forms controls.

Estimated time to complete this lab: 60 minutes

Lab Setup

· Log in using the Administrator user account. The password is pass@word1.

Exercise 1:
Building a Windows Form Application Utilizing the Asynchronous Capabilities of ADO.NET

In this exercise, you will build an application that returns data and binds it to a DataGrid control. In order to fill the grid, you’ll execute a command that simulates a long-running query. In order to demonstrate how you can avoid blocking the user interface while waiting for the results of the command, this demonstration uses the new asynchronous functionality available in ADO.NET. Although you could use any of the existing .NET asynchronous design patterns, this lab uses a delegate to illustrate this behavior.
· Task 1: Build a Windows application

1. Load Visual Studio 2005.

2. Create a new Windows application (in either C# or Visual Basic .NET). Set its name to AdoNetAsync, and its location to C:\SQL Labs\User Projects.
3. In the Solution Explorer window, right-click the AdoNetAsync project, and select Add Reference from the context menu. In the Add Reference dialog box, select System.Data.dll, and click OK to add the reference. Your project may already include this reference, but adding it again won't cause any trouble. Repeat for the System.Xml.dll assembly.
4. Use the View | Toolbox menu item to ensure that the Toolbox window is visible. Expand the Windows Forms tab in the toolbox, so you can use controls from this section.

5. Add a TextBox control named txtSql to Form1.
6. Add a DataGridView control named grdDemo to Form1.

7. Add a Button control named btnExecute to Form1. Set the Text property to “Execute”.

8. Add a Label control named lblInfo. Set the label's AutoSize property to False. Dock the control to the bottom of the form. Set the Text property to “Ready”.

9. Lay out the controls on the form so that they look something like Figure 1.
[image: image1.png]

Figure 1: The completed form.
· Task 2: Add Synchronous data access code to the Form

Now that you have created the form, you can add the code needed to retrieve data from the local SQL Server and bind it to the grid.
1. Double-click btnExecute to load the code editor.

2. Add a using/Imports statement for the System.Data.SqlClient namespace. In Visual Basic, add an Imports statement for the System.Data namespace, as well:
' Visual Basic

Imports System.Data.SqlClient

Imports System.Data

// C#

using System.Data.SqlClient;

3. Declare a private class-level SqlCommand object named cmd. If you're programming in C#, set its value to null:
' Visual Basic
Private cmd As SqlCommand

// C#
private SqlCommand cmd = null;

4. For the remainder of this exercise, add code to the Click Event procedure of btnExecute.
a. Declare a local SqlConnection variable named cnn, initialized to Nothing/null:
' Visual Basic
Dim cnn As SqlConnection = Nothing
// C#
SqlConnection cnn = null;

b. Add a Try/Catch block to the procedure. In the Catch block, catch an Exception object named ex.
c. Until instructed otherwise, add code to the Try block. Inside the Try block, update lblInfo to display "Connecting…"

' Visual Basic
lblInfo.Text = "Connecting…"

// C#
lblInfo.Text = "Connecting…";

d. Create and instantiate a SqlConnection variable cnn, using the connection string shown here:
' Visual Basic

cnn = New SqlConnection(_

 "Data Source=localhost;Integrated Security=true;" & _

 "Initial Catalog=AdventureWorks")
// C#

cnn = new SqlConnection(
 "Data Source=localhost;Integrated Security=true;" +
 "Initial Catalog=AdventureWorks");
e. Open the connection:
' Visual Basic
cnn.Open()
// C#
cnn.Open();

f. Update the text in lblInfo to display "Executing…":

' Visual Basic
lblInfo.Text = "Executing…"

// C#
lblInfo.Text = "Executing…";

g. Create a new instance of the SqlCommand object, cmd, and in its constructor, specify the CommandText parameter to be the Text property of the txtSql textbox, and the connection to be the SqlConnection object you created earlier:
' Visual Basic

cmd = New SqlCommand(Me.txtSQL.Text, cnn)

// C#

cmd = new SqlCommand(this.txtSQL.Text, cnn);

h. Create a new DataSet instance named ds:
' Visual Basic
Dim dt As New DataTable()
// C#
DataTable dt = new DataTable();

i. Create a SqlDataReader and call the ExecuteReader method of the SqlCommand to supply its data:
' Visual Basic
Dim reader As SqlDataReader = _
 cmd.ExecuteReader(CommandBehavior.CloseConnection)

// C#
SqlDataReader reader =

 cmd.ExecuteReader(CommandBehavior.CloseConnection);
j. Call the Load method of the DataTable, passing the SqlDataReader object as the parameter, and then close the SqlDataReader:
' Visual Basic
dt.Load(reader)

reader.Close()
// C#
dt.Load(reader);

reader.Close();

k. Set the DataGrid control’s DataSource property to be the DataTable you just filled:
' Visual Basic
Me.grdDemo.DataSource = dt
// C#
this.grdDemo.DataSource = dt;

l. Update the text in lblInfo to say "Ready" again:

' Visual Basic
lblInfo.Text = "Ready"

// C#
lblInfo.Text = "Ready";

m. Inside the Catch block, display the message corresponding to the exception:
' Visual Basic
MessageBox.Show(ex.Message)
// C#
MessageBox.Show(ex.Message);
5. The completed procedure should look like the following:

' Visual Basic
Dim cnn As SqlConnection = Nothing
Try

 lblInfo.Text = "Connecting..."
 cnn = New SqlConnection(_

 "Data Source=localhost;Integrated Security=true;" & _

 "Initial Catalog=AdventureWorks")

 cnn.Open()

 lblInfo.Text = "Executing..."
 cmd = New SqlCommand(Me.txtSql.Text, cnn)

 Dim dt As New DataTable

 Dim reader As SqlDataReader = _

 cmd.ExecuteReader(CommandBehavior.CloseConnection)

 dt.Load(reader)

 reader.Close()

 Me.grdDemo.DataSource = dt
 lblInfo.Text = "Ready"

Catch ex As Exception
 MessageBox.Show(ex.Message)

End Try

// C#

SqlConnection cnn = null;

try

{

 lblInfo.Text = "Connecting...";

 cnn = new SqlConnection(
 "Data Source=localhost;Integrated Security=true;" +

 "Initial Catalog=AdventureWorks");

 cnn.Open();

 lblInfo.Text = "Executing...";

 cmd = new SqlCommand(this.txtSql.Text, cnn);
 DataTable dt = new DataTable();

 SqlDataReader reader =
 cmd.ExecuteReader(CommandBehavior.CloseConnection);
 dt.Load(reader);

 reader.Close();

 this.grdDemo.DataSource = dt;
 lblInfo.Text = "Ready";

}

catch (Exception ex)
{
 MessageBox.Show(ex.Message);
}
6. Run the application. When the form appears, enter the following query into the SQL Textbox:

WAITFOR DELAY '00:00:10'; SELECT * FROM Person.Contact
7. Click the Execute button.
Note that while the query is executing the form’s user interface will be unresponsive—try to move or resize the form, and your efforts will go unheeded until the query has completed its operation.

· Task 3: Add Asynchronous data access code to the Form

In this step, you’ll change the implementation and flow of the application. Instead of loading the data synchronously, this version of the application will use the asynchronous capabilities of ADO.NET to allow the form to remain responsive while waiting for results. You’ll need to be aware of one important issue: When using the asynchronous capabilities of Windows applications, you must ensure that you bind the data to the grid on the form’s thread, not on a background thread. Because of the way Windows forms have been designed, you may not interact with the form, its contents, or its properties from any thread besides the form’s single thread.
In this example, much of the code you’ve already entered still applies but you’ll need to change the flow of the code somewhat to accommodate the asynchronous features.
1. Within the form’s class, create a new Delegate to bind the data to the DataGrid:
' Visual Basic
Private Delegate Sub UICallback(ByVal param As Object)

// C#

private delegate void UICallback(object param);
You need to create two callback procedures for this application to work properly. One of the callbacks, ExecCallback, is called when the results from the query return. The other callback, ReBindOnUIThread, is needed when you interact with the user interface; for example, when you bind the results of your query to the grid. The important consideration here is that for Windows applications, any user interface interaction must be performed on the thread that created the form, and this complicates the code.

2. Create a void method/sub named ReBindOnUIThread that has one parameter of type object. This method binds the resulting data to the grid. The code looks like the following snippet:
' Visual Basic
Private Sub ReBindOnUIThread(ByVal param As Object)
 If TypeOf param Is DataTable Then

 grdDemo.DataSource = param

 cmd = Nothing

 lblInfo.Text = "Ready"

 Else

 lblInfo.Text = "Ready (last failed: " & _

 CType(param, Exception).Message & ")"

 End If

End Sub

// C#

private void ReBindOnUIThread(object param)

{

 if(param is DataTable)

 {

 grdDemo.DataSource=param;

 cmd=null;

 lblInfo.Text="Ready";

 }

 else

 lblInfo.Text="Ready (last failed: " +
 ((Exception)param).Message + ")";

}
3. Create a void method/sub named ExecCallback with one parameter that is of type IAsyncResult. The code for this method looks like the following:

' Visual Basic
Private Sub ExecCallback(ByVal ar As IAsyncResult)

 Using reader As SqlDataReader = cmd.EndExecuteReader(ar)

 Try

 Dim tbl As New DataTable

 tbl.Load(reader)

 Me.Invoke(_

 New UICallback(AddressOf ReBindOnUIThread), _

 New Object() {tbl})

 Catch ex As Exception

 Me.Invoke(_

 New UICallback(AddressOf ReBindOnUIThread), _

 New Object() {ex})

 End Try

 End Using

End Sub
// C#

private void ExecCallback(IAsyncResult ar)

{

 using (SqlDataReader reader = cmd.EndExecuteReader(ar))

 {

 try

 {

 DataTable tbl = new DataTable();

 tbl.Load(reader);

 this.Invoke(new UICallback(ReBindOnUIThread),
 new Object[] { tbl });

 }

 catch (Exception ex)

 {

 this.Invoke(new UICallback(ReBindOnUIThread),
 new Object[] { ex });

 }

 }

}
4. Modify the code in the button’s Click event so that instead of calling the ExecuteReader method, it calls the new BeginExecuteReader method. This method uses the standard .NET asynchronous callback design pattern, and allows you to pass a delegate that handles the work for you (in this case, the ExecCallback procedure). You can also remove the code that creates and fills the DataTable, and then binds the DataTable to the DataGridView (that is, the remainder of the Try block after executing the reader)—that will happen in the callback procedure. Once you’re done, the call to BeginExecuteReader should look like the following:

' Visual Basic
cmd.BeginExecuteReader(_

 New AsyncCallback(AddressOf ExecCallback), Nothing, _

 CommandBehavior.CloseConnection)

// C#

cmd.BeginExecuteReader(new AsyncCallback(ExecCallback),
 null, CommandBehavior.CloseConnection);
5. Modify the connection string, adding the Asynchronous Processing=true key/value pair. This feature allows asynchronous processing using the connection:

' Visual Basic
cnn = New SqlConnection(_

 "Data Source=.;Integrated Security=true;" & _

 "Initial Catalog=AdventureWorks;" & _

 "Asynchronous Processing=true")

// C#

cnn = new SqlConnection(

 "Data Source=.;Integrated Security=true;" +

 "Initial Catalog=AdventureWorks;" +

 "Asynchronous Processing=true");

6. In the catch block, add code to set the SqlCommand cmd to null/Nothing and if the SqlConnection object is not null/Nothing, close it:
' Visual Basic
cmd = Nothing

If cnn IsNot Nothing Then

 cnn.Close()

End If

// C#

cmd = null;

if (cnn != null)

{

 cnn.Close();

}

7. The completed procedure should look like the following (with extra user interface code, updating the label on the form):

' Visual Basic

Dim cnn As SqlConnection = Nothing
Try

 lblInfo.Text = "Connecting..."
 cnn = New SqlConnection(_

 "Data Source=.;Integrated Security=true;" & _

 "Initial Catalog=AdventureWorks;" & _

 "Asynchronous Processing=true")
 cnn.Open()

 lblInfo.Text = "Executing..."

 cmd = New SqlCommand(Me.txtSql.Text, cnn)

 cmd.BeginExecuteReader(New AsyncCallback(_

 AddressOf ExecCallback), Nothing, _

 CommandBehavior.CloseConnection)

Catch ex As Exception
 MessageBox.Show(ex.Message)
 cmd = Nothing

 If cnn IsNot Nothing Then

 cnn.Close()

 End If

End Try
// C#

SqlConnection cnn = null;

try

{

 lblInfo.Text = "Connecting...";

 cnn = new SqlConnection(
 "Data Source=.;Integrated Security=true;" +

 "Initial Catalog=AdventureWorks;" +

 "Asynchronous Processing=true"
);
 cnn.Open();

 cmd = new SqlCommand(this.txtSql.Text, cnn);

 lblInfo.Text = "Executing...";
 cmd.BeginExecuteReader(

 new AsyncCallback(ExecCallback), null,

 CommandBehavior.CloseConnection);

}

catch (Exception ex)
{
 MessageBox.Show(ex.Message);
 cmd = null;

 if (cnn != null)

 {

 cnn.Close();

 }

}

8. Save and build the application.

9. Run the application. When the form appears, enter the following query into the Textbox control:

SELECT * FROM Person.Contact
10. Click Execute. The query returns and the data grid displays the bound data.
11. Now enter the following query into the Textbox control. This query is intended to simulate a long-running operation. There could be other queries and/or actions that are occurring while the queries are being executed on the server side:
WAITFOR DELAY '00:00:10'; SELECT * FROM Person.Contact
12. Click Execute. Note that while the query is executing the user interface will still be responsive.

Lab Summary

In this lab, you performed the following exercises.

· Created an application that retrieves data synchronously. This query simulated a long-running query.

· Updated the application to utilize the new ADO.NET asynchronous behavior.
In this lab, you used the new asynchronous capabilities of ADO.NET. This functionality is useful when retrieving larger segments of data or executing queries that may perform other operations on the back end that take extended periods of time.
Lab 2: SqlDependency and SqlNotifications
The objective of this lab is to demonstrate the new SqlDependency and SqlNotifications infrastructure available from ADO.NET. These features provide the developer with the capability to execute queries and be notified when the specific data returned from that query has been changed. When coupled with ASP.NET, the entire response, or portions of the response, can be cached by the server and can provide greater performance and scalability.
Exercise 1:
Create a Windows Application Using SqlDependency

You will create two applications for this exercise:
1.) A Windows application that binds data to a data grid.

2.) A Windows application that adds, updates, and deletes a row in the database.
The first application will execute a command and register for a callback when the data has been retrieved. The second application will make changes to the same data so that SQL Server 2005 will notify the first Windows application.

· Task 1:Build the Windows User Interface

1. Create a new Windows application (in either C# or Visual Basic .NET). Set its name to AdoNetDependency and its location to C:\SQL Labs\User Projects.
2. In the Solution Explorer window, right-click the AdoNetDependency project, and select Add Reference from the context menu. In the Add Reference dialog box, select System.Data.dll, and click OK to add the reference. Your project may already include this reference, but adding it again won't cause any trouble. Repeat for the System.Xml.dll assembly.
3. From the Windows Forms tab of the Toolbox window, add a Label control to the form that's open in the form designer. Set its Text property to “Data Source:”
4. Add a Textbox to the form to the right of the existing label, and set its Name property to txtConnect. Set its Text property to the following text:

Data Source=localhost;Integrated Security=True;Initial Catalog=AdventureWorks

5. Add a Label control below the first text box/label pair. Set its Text property to “Query:”
6. Add a Textbox control to the right of the second label. Set the Name property to txtSelect and set its Text property to the following text:

SELECT ContactID, FirstName, LastName, EmailAddress FROM Person.Contact
7. Add a Button control beneath the two text box/label pairs. Set its Name property to btnGetData and its Text property to “Get Data”.

8. Add a DataGridView control to the form. Set its Name property to grdDemo.
9. Add a Label control to the bottom of the form. Set its AutoSize property to False. Set its Name property to lblStatus and delete the text from its Text property. Set the label's Dock property so that it docks to the bottom of the form.
10. The form should look similar to Figure 1.
[image: image2.png]SELECT ContaciD FrtNome, Lot Name. EralAddrss FROM Person Cotact

Get Data

Figure 1: The completed form.
11. Double-click on an empty area of the form to load the code designer.

12. At the top of the form’s code file, add the following imports/using statements:

' Visual Basic

Imports System.Data
Imports System.Data.SqlClient
// C#

using System.Data.SqlClient;

13. Inside the form's class, declare a class-level integer variable named changeCount, and instantiate a class-level DataSet variable named ds:
' Visual Basic

Private changeCount As Integer

Private ds As New DataSet

// C#

private int changeCount = 0;

private DataSet ds = new DataSet();

· Task 2: Create GetData method
1. In the form's class, create a private void procedure/sub with no parameters named GetData.

2. Add a Try/Catch block to the new procedure.
3. Inside the Try block

a. Call the Clear method of the form's DataSet, ds.

b. Create a new SqlConnection object named connection and set the ConnectionString property to txtConnect.Text.
c. Create a new SqlDataAdapter object named adapter and in its constructor, pass txtSelect.Text and the connection object you created in the previous step.
d. Create a new SqlDependency object named dependency and pass adapter.SelectCommand in its constructor.
e. Specify that when the OnChange event of the SqlDependency object occurs, the code will call the DataChanged procedure in the form's class. The code looks like this:
' Visual Basic
AddHandler dependency.OnChanged, _

 AddressOf Me.DataChanged

// C#

dependency.OnChanged +=
 new OnChangedEventHandler(this.DataChanged);
Note

Don't worry that DataChanged appears as if it was a compile error. You'll create the DataChanged procedure in a later step.
f. Call the adapter.Fill method, specifying the DataSet ds and the table "Contact".

g. Set the DataSource property of the DataGridView control to the DataSet, ds. Set the DataMember property of the DataGridView to be the data table, "Contact".
4. In the Catch block, display the exception message using the MessageBox.Show method.
5. The completed procedure should look like the following:

' Visual Basic

Private Sub GetData()

 Try

 ds.Clear()

 Dim connection As New SqlConnection()
 connection.ConnectionString = txtConnect.Text

 Dim adapter As New SqlDataAdapter(_

 txtSelect.Text, connection)

 Dim dependency As New SqlDependency(_

 adapter.SelectCommand)

 AddHandler dependency.OnChanged, _

 AddressOf Me.DataChanged

 adapter.Fill(ds, "Contact")
 grdDemo.DataSource = ds

 grdDemo.DataMember = "Contact"
 Catch ex As Exception

 MessageBox.Show(ex.Message)

 End Try

End Sub
//C#
private void GetData()

{

 try

 {

 ds.Clear();

 SqlConnection connection = new SqlConnection();

 connection.ConnectionString = txtConnect.Text;

 SqlDataAdapter adapter = new SqlDataAdapter(

 txtSelect.Text, connection);
 SqlDependency dependency =

 new SqlDependency(adapter.SelectCommand);

 dependency.OnChanged +=
 new OnChangedEventHandler(this.DataChanged);
 adapter.Fill(ds, "Contact");
 grdDemo.DataSource = ds;

 grdDemo.DataMember = "Contact";
 }

 catch (Exception ex)

 {

 MessageBox.Show(ex.Message);

 }

}
· Task 3: Create the callbacks to handle the SqlDependency notification and to bind data to the user interface
1. In the form's class, create a void method/sub named ReBindOnUIThread with no parameters. This method will be invoked when the code receives the callback indicating that data has changed.

2. In the ReBindOnUIThread procedure, call the GetData method and update the Label control on the form, so that the procedure looks like the following:

' Visual Basic

Private Sub ReBindOnUIThread()

 GetData()

 Me.lblStatus.Text = _

 String.Format("{0} changes have occurred.", _

 changeCount)
End Sub

// C#

private void ReBindOnUIThread()

{

 GetData();

 this.lblStatus.Text =

 String.Format("{0} changes have occurred.",
 changeCount);

}

3. In the form's class, create a new Delegate that will bind the data to the grid:
' Visual Basic
Private Delegate Sub UICallback()

// C#

private delegate void UICallback();
4. In the form's class, create a callback procedure that will be invoked when the sample receives notification from the dependency object that the data has changed. The code should look like the following:
' Visual Basic
Private Sub DataChanged(ByVal sender As Object, _

 ByVal e As SqlNotificationEventArgs)

 changeCount += 1

 Me.Invoke(New UICallback(AddressOf ReBindOnUIThread))
End Sub

// C#

private void DataChanged(Object sender,

 SqlNotificationEventArgs e)

{
 changeCount++;
 this.Invoke(new UICallback(ReBindOnUIThread));

}
· Task 4: Add code to the btnGetData click event
· Modify the btnGetData click event handler, adding the following code:
' Visual Basic
GetData()

Me.lblStatus.Text="No changes have occurred."
changeCount = 0
Me.btnGetData.Enabled = False
Me.txtSelect.Enabled = False
Me.txtConnect.Enabled = False
// C#
GetData();
this.lblStatus.Text="No changes have occurred.";

changeCount = 0;

this.btnGetData.Enabled = false;

this.txtSelect.Enabled = false;

this.txtConnect.Enabled = false;
· Task 5: Run the application
1. Select the File | Save All menu command.

2. Run the application, click the button, and verify that it fills the grid with data.
Exercise 2:
Build the Change application

In this exercise, you will build an application that inserts, updates, and deletes a row of data in the Contact table.

· Task 1: Build the User Interface
1. Start a new instance of Visual Studio 2005.

2. Create a new Windows application (in either C# or Visual Basic .NET). Set its name to AdoNetChangeApp.
3. In the Solution Explorer window, right-click the AdoNetChangeApp project, and select Add Reference from the context menu. In the Add Reference dialog box, select System.Data.dll, and click OK to add the reference. Your project may already include this reference, but adding it again won't cause any trouble. Repeat for the System.Xml.dll assembly.
4. Add a Textbox control to Form1. Set its Name property to txtConnect and its Text property to the following connection string:
Server=localhost; Integrated Security=true;Initial Catalog=AdventureWorks
5. Add a Label control to the form. Set the Label control's name to lblStatus. Set its AutoSize property to False, its Text property to an empty string. Set the control's Dock property so that it docks to the bottom of the form.

6. Add three Button controls to the form, setting properties as shown below:

	Name
	Text

	

	btnAddRow
	Add Row

	btnUpdateRow
	Update Row

	btnDeleteRow
	Delete Row

Once you're done, the form should look something like Figure 1.
[image: image3.png]

Figure 1: The completed form.
· Task 2: Adding Change code to the Application

1. Press F7 to load the code editor.

2. In the form's class, add an Imports/using statement to import the System.Data.SqlClient namespace. If you're using Visual Basic, add an Import statement to import the System.Data namespace, as well.
' Visual Basic

Imports System.Data.SqlClient

Imports System.Data

// C#

using System.Data.SqlClient;

3. Create a method/function named ExecCommand that returns an integer and accepts one string parameter named cmdText.
' Visual Basic

Private Function ExecCommand(_

 ByVal cmdText As String) As Integer

End Function
//C#

private int ExecCommand(string cmdText)

{
}
4. Inside the procedure, create a local variable named result that is of type int/Integer, and assign the variable the value 0.

' Visual Basic

Dim result As Integer = 0
//C#

int result = 0;

5. Inside the procedure, add a SqlConnection variable named cnn. In C#, initialize the variable to null.
' Visual Basic

Dim cnn As SqlConnection

//C#

SqlConnection cnn = null;
6. Add a Try/Catch block to the function. In the Catch block, catch an Exception object named ex.
7. Inside the Try block:

a. Instantiate cnn to be a new SqlConnection object and pass the constructor txtConnect.Text as the connection string.
' Visual Basic

cnn = New SqlConnection(txtConnect.Text)

//C#

cnn = new SqlConnection(txtConnect.Text);

b. Create a new SqlCommand object and pass the constructor cmdText (the parameter passed into this procedure) and the newly created SqlConnection object.
' Visual Basic

Dim command As New SqlCommand(_

 cmdText, cnn)

//C#

SqlCommand command =

 new SqlCommand(cmdText, cnn);

c. Open the connection.
' Visual Basic

cnn.Open()

//C#

cnn.Open();

d. Call the ExecuteNonQuery method of the SqlCommand object and assign the return value to the local variable named result.
' Visual Basic

result = command.ExecuteNonQuery()

//C#

result = command.ExecuteNonQuery();

8. In the catch block, display the exception's message using MessageBox.Show.
' Visual Basic

MessageBox.Show(ex.Message)

//C#

MessageBox.Show(ex.Message);

9. Add a Finally block, inserting code that checks to ensure that the connection is not null/nothing, and if so, closes the connection.

' Visual Basic

If cnn IsNot Nothing Then

 cnn.Close()

End If

//C#

if (cnn != null)

 {

 cnn.Close();

 }

10. Return the result variable as the return value of the function.
' Visual Basic

Return result
//C#

return result;
The completed code should look like the following:

' Visual Basic

Private Function ExecCommand(_

 ByVal cmdText As String) As Integer

 Dim cnn As SqlConnection

 Dim result As Integer = 0
 Try

 cnn = New SqlConnection(txtConnect.Text)

 Dim command As New SqlCommand(_

 cmdText, cnn)

 cnn.Open()

 result = command.ExecuteNonQuery()

 Catch ex As Exception

 MessageBox.Show(ex.Message)

 Finally

 If cnn IsNot Nothing Then

 cnn.Close()

 End If

 End Try
 Return result
End Function
//C#

private int ExecCommand(string cmdText)

{
 int result = 0;

 SqlConnection cnn = null;
 try
 {

 cnn = new SqlConnection(txtConnect.Text);

 SqlCommand command =

 new SqlCommand(cmdText, cnn);

 cnn.Open();

 result = command.ExecuteNonQuery();

 }

 catch (Exception ex)

 {

 MessageBox.Show(ex.Message);

 }

 finally

 {

 if (cnn != null)

 {

 cnn.Close();

 }

 }
 return result;
}
· Task 3: Creating click events for buttons

1. Insert the following declaration into the form’s class:

' Visual Basic

Private newID As Integer = -1
// C#

private int newID = -1;

2. Insert the following code into the btnAddRow Click event handler:

' Visual Basic
Using cnn As New SqlConnection(txtConnect.Text)

 Dim cmd As New SqlCommand()

 ' Make up some fake values:

 Dim g As Guid = Guid.NewGuid()
 cmd.CommandText = _
 "INSERT INTO Person.Contact " & _
 "(FirstName, LastName, NameStyle, " & _

 "PasswordHash, PasswordSalt, RowGuid, ModifiedDate) " & _
 "VALUES ('Ken', 'Smith', 0, 'XXXXX', 'XXXXX','" & _

 g.ToString() + "', '5/16/2005'); " & _
 "SELECT SCOPE_IDENTITY() AS ID"
 cmd.Connection = cnn

 cnn.Open()

 newID = Convert.ToInt32(cmd.ExecuteScalar())
End Using

If newID > -1 Then

 Me.lblStatus.Text = "Record Added."

Else

 Me.lblStatus.Text = "No Record Added."

End If
// C#
using (SqlConnection cnn = new SqlConnection(txtConnect.Text))

{

 SqlCommand cmd = new SqlCommand();

 // Make up some fake values:

 Guid g = Guid.NewGuid();

 cmd.CommandText =

 "INSERT INTO Person.Contact " +

 "(FirstName, LastName, NameStyle, " +

 "PasswordHash, PasswordSalt, RowGuid, ModifiedDate) " +

 "VALUES ('Ken', 'Smith', 0, 'XXXXX', 'XXXXX','" +

 g.ToString() + "', '5/16/2005'); " +

 "SELECT SCOPE_IDENTITY() AS ID";
 cmd.Connection = cnn;

 cnn.Open();

 newID = Convert.ToInt32(cmd.ExecuteScalar());

}

if (newID > -1)

 this.lblStatus.Text = "Record added.";

else

 this.lblStatus.Text = "Record not added.";
3. Insert the following code into the btnUpdateRow Click event handler:

' Visual Basic
If newID > -1 Then

 If ExecCommand(_

 "UPDATE Person.Contact SET FirstName = 'Peter' " & _

 "WHERE ContactID = " & newID.ToString()) > 0 Then

 Me.lblStatus.Text = "Record Updated."

 Else

 Me.lblStatus.Text = "No Record Updated."

 End If

Else

 MessageBox.Show(_

 "Row cannot be updated before it is added.")

End If
// C#

if (newID > -1)

{

 if (ExecCommand(

 "UPDATE Person.Contact SET FirstName = 'Peter' " +

 "WHERE ContactID = " + newID.ToString()) > 0)

 this.lblStatus.Text = "Record Updated.";

 else

 this.lblStatus.Text = "No Record Updated.";

}

else

 MessageBox.Show(

 "Row cannot be updated before it is added.");
4. Insert the following code into the btnDeleteRow Click event handler:

' Visual Basic
If newID > -1 Then

 If ExecCommand(_

 "DELETE FROM Person.Contact " & _

 "WHERE ContactID = " & newID.ToString()) > 0 Then

 Me.lblStatus.Text = "Record Deleted."

 Else

 Me.lblStatus.Text = "No Record Deleted."

 End If

 newID = -1

Else

 MessageBox.Show(_

 "Row cannot be deleted before it is added.")

End If
// C#

if (newID > -1)

{

 if (ExecCommand(

 "DELETE FROM Person.Contact " +

 "WHERE ContactID = " + newID.ToString()) > 0)

 this.lblStatus.Text = "Record Deleted.";

 else

 this.lblStatus.Text = "No Record Deleted.";

 newID = -1;

}

else

 MessageBox.Show(

 "Row cannot be deleted before it is added.");
5. Run the AdoNetDependency application.
6. Click the Get Data button and note that the textboxes are read-only and the data is bound to the grid.

7. Run the AdoNetChange application. Click the Add Button and notice that the AdoNetDependency application registers the change and shows the new data.

8. Click on the Update Row button and notice, again, that the AdoNetDependency application receives a callback and shows the updated data.
9. Repeat for the Delete Button.

Lab Summary
In this lab you performed the following exercises:
· Created a Windows application that uses the SqlDependency object to update its data.

· Created a Windows application that allowed you to insert, update, and delete data.
· Added code for adding, updating, and deleting data.

In this lab, you created an application that leverages the ADO.NET SqlDependency class. This class provides a mechanism to receive notifications when data has changed. When coupled with the new asynchronous capabilities of ADO.NET, this can provide a powerful mechanism to retrieve data only when the data has changed.

Last Saved: 9/13/2004 1:34:00 PM
Last Printed: 0/0/0000 0:00:00 AM

