52 Error! No text of specified style in document. Error! No text of specified style in document.
Introduction 57

[image: image1.png]L/
..... g

[7]
Windows Server2003

Using Administrative Template Files with Registry-Based Group Policy
Microsoft Corporation

Published: September 2004

Abstract

This white paper explains the concepts, architecture, and implementation details for registry-based Group Policy in Microsoft® Windows® operating systems. It shows how to create custom Administrative Template (.adm) files and includes a complete reference for the .adm language. In addition, it includes information about changes in .adm files for Windows XP with Service Pack 2 (SP2).

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, e-mail address, logo, person, place or event is intended or should be inferred.

© 2004 Microsoft Corp. All rights reserved.

Microsoft, Active Directory, Windows, Windows NT, and Windows Server are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Table of Contents

5Introduction

5Overview of Registry-Based Policy and Administrative Template Files

6Default .adm Files

7When to Use Registry-Based Group Policy

7True Policies vs. Preferences

8How to Use Policy Settings and Preferences

9Design Considerations for Creating Policy Settings

10When to Create Policy Settings

10Controlling Feature Releases to Users

10Create Policy Settings to Reduce Need for Support

10Control Data

11When Not to Create a Policy

11User Interface Design

11Policy Names

12Explain Text

14Best Practices for Developing Registry-Based Policy Settings

15Creating Custom .Adm Files

17How to Write a Simple .Adm File for Registry-based Group Policy

21Testing Administrative Template Files

22Creating an .Adm Test File

22Loading an .Adm File into the Group Policy Snap-in

23Maintaining and Managing .Adm Files

23Importance of Timestamps for .Adm Files

24Duplicate CATEGORY Sections

24.Adm Files Used by the Group Policy Object Editor

25.Adm Files Used by GPMC

25Controlling .Adm File Replication

25Turn Off Automatic Updates of .Adm Files

25Always Use Local .Adm Files for Group Policy Object Editor

26Maintaining .Adm files on Administrative Workstations

26Multilanguage Administration Issues

27Operating System and Service Pack Release Issues

28Keyboard Shortcuts for Administrative Templates Node

28What’s New for Administrative Template Files in Windows XP SP2

29Changes to LISTBOX ADDITIVE

30Managing Policy Settings on Earlier Operating Systems or Service Packs

31“String Too Long…” Hotfix for Earlier Operating Systems and Service Packs

32Language Reference for Administrative Template Files

32.Adm File Language Versions

32Comments

33Strings

33CLASS

33Syntax

34Example

34CATEGORY

34Syntax

35Example

35Supported Tag

36CATEGORY Keywords

36POLICY

37Syntax

38POLICY Example

38POLICY Keywords

39PART

39Syntax

41Using PART Types to Add Controls to the User Interface

41CHECKBOX PART Type

42TEXT PART Type

43EDITTEXT PART Type

46NUMERIC PART Type

49COMBOBOX PART Type

49DROPDOWNLIST PART Type

51LISTBOX PART Type

52ACTIONLIST

53Additional Elements

57.Adm File String/Tag Limits

58Related Links

Introduction
Administrators can use Group Policy to deliver and apply one or more desired configurations or policy settings to a set of targeted users and computers within an Active Directory® directory service environment. The majority of available policy settings are provided through Administrative Template files (.adm files) and are designed to modify specific keys in the registry. This is known as registry-based policy. For many applications, the use of registry-based policy delivered by .adm files is the simplest and best way to support centralized management of policy settings.
Intended for IT administrators and developers, this document describes how to implement registry-based Group Policy by using .adm files.
For detailed instructions about enabling applications for Group Policy, see “Group Policy” in the Microsoft Platform Software Development Kit at http://go.microsoft.com/fwlink/?LinkId=26258.
Overview of Registry-Based Policy and Administrative Template Files

By using registry-based policy, operating system components and applications can respond to registry key settings that administrators can manage centrally with Group Policy. These policy settings determine the behavior of the application for targeted computers or users. As long as a component or application has been policy-enabled (that is, its behavior changes based on registry values indicated in the .adm file), you can manage its features and settings through registry-based policy.

.Adm files are UNICODE text files that Group Policy uses to describe where registry-based policy settings are stored in the registry. All registry-based policy settings appear and are configured in the Group Policy Object Editor under the Administrative Templates node. .Adm files do not apply policy settings; they simply enable administrators to view the policy settings in the Group Policy Object Editor. Administrators can then create Group Policy objects (GPOs) containing the policy settings that they want to use. For example, you might have one GPO that contains various policy settings for managing the Active Desktop feature.
With the release of Microsoft® Windows XP Service Pack 2 (SP2), IT administrators have more than 1,300 Administrative Template policy settings available for their use. In addition, administrators and developers can add their own custom settings.
Registry-based Group Policy uses .adm files in the following manner:

· The Group Policy Object Editor reads the .adm files. By default, when an administrator opens a GPO, a comparison is made between the timestamps of the .adm files stored in the GPO being edited and those on the local computer. If the local .adm files have a more recent timestamp then they are uploaded to the domain controller and replicated throughout the domain.
· The Group Policy Object Editor console (gpedit.msc) displays the settings, and, depending on the .adm file, the policy settings can be displayed in a localized language.

· The Group Policy Object Editor uses .adm files to configure user interface settings such as dialog boxes, radio buttons, and drop-down lists, thereby enabling administrators to manage these settings centrally.

· The Group Policy Management Console (GPMC) uses .adm files to display policy settings when using Group Policy Results or Group Policy Modeling, also known as Resultant Set of Policy (RSoP).

[image: image2.wmf]
Note

Windows XP SP2 includes modifications to the LISTBOX ADDITIVE behavior in .adm files (implemented by a new version of gptext.dll, the .dll used by the Group Policy Object Editor.) For details about these changes, see the, “What’s New for .Adm Files in Windows XP SP2” section later in this document
For more information about the architecture of Administrative Templates, see Administrative Templates Extension Technical Reference at http://go.microsoft.com/fwlink/?LinkId=35291.

Default .adm Files
The Group Policy Object Editor displays the policy settings within the .adm files that are included with the operating system by default. These .adm files are:
· System.adm. Provides policy settings to configure the operating system. System.adm is installed by default in Windows Server™ 2003, Windows XP, and Windows 2000 Server operating systems.

· Inetres.adm. Provides policy settings to configure Internet Explorer. Inetres.adm is installed by default in Windows Server 2003, Windows XP, and Windows 2000 Server operating systems.
· Wuau.adm. Provides policy settings to configure Windows Update. Wuau.adm is installed by default in Windows Server 2003, Windows XP Service Pack 1 (SP1), and Windows 2000 Server Service Pack 3 (SP3) operating systems.
· Wmplayer.adm. Provides policy settings to configure Windows Media Player. Wmplayer.adm is installed by default in Windows Server 2003 and Windows XP operating systems. Wmplayer.adm is not available on 64-bit versions of the Windows Server 2003 operating system and Windows XP 64-Bit Edition.
· Conf.adm. Provides policy settings to configure NetMeeting. Conf.adm is installed by default in Windows Server 2003, Windows XP, and Windows 2000 Server operating systems. Conf.adm is not available on 64-bit versions of the Windows Server 2003 operating system and Windows XP 64-Bit Edition.
Most Group Policy settings are contained in the System.adm file. The .adm files that ship with Windows Server 2003, Windows XP Professional, and Windows 2000 Server operating systems are located in the %windir%\inf\ folder. (for example, C:\Windows\inf). For more information about .adm file maintenance, see the “Maintaining and Managing .Adm Files” in this document.

When to Use Registry-Based Group Policy

In general, if a policy setting can be configured using a simple user interface, and any configuration input can be stored in the registry as plain text, you should consider using registry-based policy. Specifically, registry-based Group Policy is an appropriate solution for the following scenarios:

· Creating available and unavailable (on/off, or yes/no) functionality. You can use registry-based policy as if it were a switch, to turn functionality on or off. For example, you can create a policy setting to allow administrators to control whether a certain item is displayed on the desktop.

· Defining a set of static modes. For example, you can set the language used on a computer. You can set up a static list of the possible language selections, and when the policy setting is enabled, the administrator can select a language from the pre-created list. This action is typically shown in the user interface as a drop-down list.

· Creating a policy setting that requires simple input that can be stored in the registry as plain text. For example, you can create a policy setting to define the screensaver or bitmap that is displayed on the user’s desktop. With this policy setting enabled, Group Policy administrators are provided with a text dialog box into which they can enter the name and path of the bitmap file to be used. This information is then stored in the registry as plain text.

True Policies vs. Preferences

Group Policy settings that administrators can fully manage are known as “true policies.” In contrast, settings that users configure or that reflect the default state of the operating system at installation time are known as “preferences.” Both true policies and preferences contain information that modifies the registry on users’ computers. True policy settings take precedence over preference settings.

Registry values for true policies are stored under the approved registry keys as listed in Table 1. Users cannot change or disable these settings.
Table 1 Approved Registry Key Locations for Group Policy Settings

	For Computer Policy Settings:
	For User Policy Settings:

	HKLM\Software\Policies (The preferred location)
	HKCU\Software\Policies (The preferred location)

	HKLM\Software\Microsoft\Windows\CurrentVersion\Policies
	HKCU\Software\Microsoft\Windows\CurrentVersion\Policies

Preferences are set by the user or by the operating system at installation time. The registry values that store preferences are located outside the approved Group Policy keys listed in Table 1. They are located in other areas of the registry. Users can typically change their preferences at any time. For example, users can decide to change the location of their local dictionary to a different location, or set their wallpaper to a different bitmap. Most users are familiar with setting preferences that are available to them through the operating system or application user interface.

It is possible for an administrator to write an .adm file that sets registry values outside of the approved Group Policy registry trees included in Table 1. In this case, the administrator is only ensuring that a given registry key or value is set in a particular way. With this approach, the administrator configures preference settings, instead of true policy settings, and marks the registry with these settings (that is, the settings persist in the registry even if the preference setting is disabled or deleted).

If you configure preference settings by using a GPO in this manner, the GPOs that you create do not have Access Control List (ACL) restrictions. As a result, users might be able to change these values in the registry. When the GPO goes out of scope (that is, it is unlinked, disabled, or deleted), these values are not removed from the registry. In contrast to this, true registry policy settings do have ACL restrictions to prevent users from changing them, and the policy values are removed when the GPO that set them goes out of scope. For this reason, true policies are considered to be policy settings that can be fully managed. By default, the Group Policy Object Editor only shows policy settings that can be fully managed. To view preferences in the Group Policy Object Editor, you need to click the Administrative Templates node, click View, then click Filtering, and then clear Only show policy settings that can be fully managed.
Although Group Policy settings take priority over preferences, they do not overwrite or modify the registry keys used by the preferences. If a policy setting is deployed that conflicts with a preference, the policy setting takes precedence over the preference setting. If a conflicting policy setting is removed, the original user preference setting is restored.

How to Use Policy Settings and Preferences

Applications commonly include a user preference and a policy setting that perform similar or related functions. For example, you might want to offer users the ability to configure part of a component through a user preference setting, and also centrally control this setting by using a registry-based policy setting.

An example of where both a policy and preference can co-exist is the configuration of the wallpaper on a Windows desktop. Users can set their desktop wallpaper to be displayed (or not displayed) by using the Display icon in Control Panel. You can also use a policy setting to configure desktop wallpaper. To specify the desktop wallpaper that displays on users’ desktops, administrators can use the Active Desktop Wallpaper policy setting (found in the Group Policy Object Editor, under the User Configuration\Administrative Templates\Desktop\Active Desktop. As a result, the user can choose to display or not display the wallpaper, but the administrator can choose which wallpaper is displayed when the display setting is ON.

Table 2 lists the resultant behavior for Group Policy settings and preferences.

Table 2 Results of Group Policy Settings and Preferences
	Scenario
	Policy Present
	Preference Present
	Resultant Behavior

	No policy or preference
	No
	No
	Default behavior.

	Preference Only
	No
	Yes
	Preference configures behavior.

	Policy only
	Yes
	No
	Policy configures behavior.

	Both policy and preference
	Yes
	Yes
	Policy configures behavior. Preference is ignored. In all cases, policy overrides preference.

Design Considerations for Creating Policy Settings
This section addresses essential issues for creating and configuring custom policy settings in .adm files.

Use the following questions as a guide to help you design Group Policy settings.

· What is the default behavior (that is, when the policy is set to Not Configured)?

· What is the behavior when the policy is Enabled, Disabled, or Not Configured? The Enabled behavior should always be the opposite of the default behavior (that is, Not Configured).

· Do administrators need to explicitly disable a feature?
· Do the proposed policy settings affect users or computers or both?
· What are some potential future ramifications of the new policy settings? When new products are released, you must continue to maintain the previous .adm settings to manage computers running legacy software. New products and settings must be able to co-exist with earlier versions.
When to Create Policy Settings
An administrator should consider creating a policy setting for the following purposes:

· To help administrators manage and increase security of their desktop computers.

· To hide or disable a user interface that can lead users into a situation in which they must call the helpdesk for support.

· To hide or disable new behavior that might confuse users. A policy setting created for this purpose allows administrators to manage the introduction of new features until after user training has taken place.

· To hide settings and options that might take up too much of users’ time.
Controlling Feature Releases to Users

An administrator can use .adm files to provide policy settings to manage new features of a new or updated application. By creating a single GPO for all new features, or by creating a GPO for each logical grouping of new features, an administrator can reduce the need for support and potential user frustration. A GPO should also be considered for specific features that administrators need to control after the new features have been enabled.

By enabling policy settings in this area, the administrator can control how and when users get new product features. By grouping related features, the administrator can prevent users from using a new feature set until they have been trained.

Create Policy Settings to Reduce Need for Support

To reduce the need for support, administrators can start by determining the top issues that users have and considering ways in which they can use policy settings to prevent support calls. For example, you could use policy settings to control software settings in the following scenarios:
· When proper configuration settings require advanced knowledge of the application.
· When there are complicated or advanced configuration settings that the typical user does not need to use.
In these scenarios, it would be appropriate to use Group Policy to give an administrator the ability to control access to the configuration settings.

Control Data

You can create policy settings to populate data for your application. Such data usually exists in small sets in the form of numbers, text strings, and so on. For example, a phone dialer could use policy settings to enable administrators to mandate that certain items exist in the phone directory.

When Not to Create a Policy

Although registry-based Group Policy provides an effective way of managing components and applications, there are some circumstances where its use is not recommended. For example:
· Do not create a policy for all of your application settings because large applications typically contain hundreds or even thousands of settings, and only a subset of these needs to be managed through Group Policy. Be selective about the features you want to enable or disable. Because Group Policy provides centralized management of the setting, you should evaluate whether administrators would want this kind of management before adding the policy setting.

· Do not create a policy if you do not intend to provide support for the policy setting. Treat each policy as a feature that needs to be tested, validated, and supported.

User Interface Design

Effective policy settings should be clearly written and displayed. You must also ensure that the user interface is clear and easy to understand. For example, review these user interface design options for disabling My Network Places:

· Create an error message. For example, the user clicks My Network Places and the following error message appears: “This option has been disabled by your administrator.” In response, the user calls the administrator or support desk to ask why this feature has been disabled.

· Disable the user interface. For example, a user interface feature in My Network Places is disabled (grayed-out). This implies to the user that there is a way to enable the user interface. In response, the user might spend a lot of time trying to get this feature to work. In the end, the user might either give up in frustration or call the support desk.

· Hide the user interface feature. For example, a user interface feature in My Network Places is hidden. In response, the user does not recognize that anything is missing or unavailable. This is the preferred choice in this scenario.

· Do nothing. For example, when a user clicks My Network Places, and the screen does not change (that is, nothing happens). In response, the user assumes that something is wrong and calls the support desk.

Policy Names

You set the name of the policy setting at the same time that you create it. The name of the policy setting is displayed in the Group Policy Object Editor. Use the following guidelines for creating policy names:

· Use a verb that reflects the effect of the policy setting. Examples of verbs commonly used in policy setting names include: allow, permit, turn on, prohibit, hide, and prevent.

· Do not use the terms “enabled” or “disabled” in your policy setting names. Instead, consider using the terms “turn on” and “turn off,” or “allow” and “prevent.”

· Avoid overly technical jargon that might not be understood by administrators who are not experts in a particular component. Include technical details of the policy setting in the Explain text.
· Use short, descriptive names that accurately reflect the function of the policy setting, for example, Turn off Internet File Association service.

[image: image3.wmf]
Note

Policy names are limited to 256 characters. However, depending on the font used on the user’s workstation, a smaller number of characters are displayed, and all others truncated. On most systems, you can assume that you have the ability to display policy names up to 65 characters. (Using a Resolution of 1024 / 768 with small fonts installed).

When Group Policy names are translated into additional languages, they typically require additional characters. Therefore, if you are using English to name a Group Policy, limit the name to 49 characters. This limitation allows your title to grow by 33 percent during translation, without causing any truncation issues.
Explain Text

Explain text provides information about the behavior of the policy setting, its interaction with other policy settings, and can include any other information that you would like administrators to be aware of. When an administrator selects a policy setting, and then clicks the Explain tab, the Explain text appears in the policy setting’s Properties dialog box . Explain text is limited to a maximum of 4096 characters, and Category Explain text is limited to a maximum of 256 characters.
[image: image4.wmf]
Note

Do not try to supplement a Group Policy setting title in the user interface with tip text that can be displayed in the user interface. Include any tips for using the policy setting in the Explain text.

Use the following guidelines when you create the Explain text:

· Draft the Explain text soon after creating the specification document for the policy setting. This serves as a high-level roadmap for developers, and assists testers in creating a test plan for the policy.
· Make sure your documentation team is available to help create the Explain text.

· Target the Explain text to the Group Policy administrator, rather than the end user.

Use the following template for the Explain text, and make sure that you include the following items:
· Write a one- or two-line description of the policy setting.

· Write a one- or two-line description of the feature that the policy setting affects.

· Use separate paragraphs within your Explain text for each policy setting state, as follows:

· If you enable this policy setting…<describe enabled behavior>.

· If you disable this policy setting…<describe disabled behavior>.

· If you do not configure this policy setting…<describe default behavior>.

· Include tips for using the policy setting.

· Include notes or interactions that this policy has with other settings.

As a best practice, you should also provide information about the following:

· Items that are not covered by this policy setting.

· Any other policy settings that are required for your policy setting to function.

· Any other policy settings that are related to the same component that your policy setting affects and which may have a higher or lower priority. For example, if you have a policy setting to restrict access to the LAN settings for a computer. This policy setting takes priority over more specific policy settings regarding the actual items you can configure within a LAN connection.

· Any related policies that the administrator needs to be aware of.

The following Explain text is from the Active Desktop Wallpaper policy setting in the User Configuration\Administrative Templates\Desktop\Active Desktop. This policy setting controls the desktop background (wallpaper) that is displayed on users' desktops.
Specifies the desktop background ("wallpaper") displayed on all users' desktops.

This setting lets you specify the wallpaper on users' desktops and prevents users from changing the image or its presentation. The wallpaper you specify can be stored in a bitmap (*.bmp), JPEG (*.jpg), or HTML (*.htm, *.html) file.

To use this setting, type the fully qualified path and name of the file that stores the wallpaper image. You can type a local path, such as C:\Windows\web\wallpaper\home.jpg or a UNC path, such as \\Server\Share\Corp.jpg. If the specified file is not available when the user logs on, no wallpaper is displayed. Users cannot specify alternative wallpaper. You can also use this setting to specify that the wallpaper image be centered, tiled, or stretched. Users cannot change this specification.

If you disable this setting or do not configure it, no wallpaper is displayed. However, users can select the wallpaper of their choice.

Also, see the "Allow only bitmapped wallpaper" in the same location, and the "Prevent changing wallpaper" setting in User Configuration\Administrative Templates\Control Panel.

Note: You need to enable the Active Desktop to use this setting.

Note: This setting does not apply to Terminal Server sessions.
Best Practices for Developing Registry-Based Policy Settings

It is strongly recommended that you do not try to create a single policy setting to control all aspects of your component. Group Policy is easier to implement and use if you have several smaller policy settings. This approach gives you more flexibility in designing and modifying your policy settings.

All policy settings should have an associated behavior for each of the three possible states shown in Table 3:

Table 3 Policy States and Associated Behaviors

	Enabled
	Disabled
	Not Configured

	Turns on the behavior indicated by the policy name
	Turns off the behavior indicated by the policy name
	Has no effect – default behavior

Consider the following guidelines when you design your policy settings:

· Policy settings are never removed from the .adm files supplied by Windows operating systems. Even if subsequent versions of Windows no longer support the policy setting, Microsoft will continue to include that policy setting in .adm files for all future Windows operating systems that support Group Policy.

· Computer policy settings should override user policy settings.

· The Enabled behavior should be the opposite of the default behavior. For example, if a feature is on by default, the policy setting should be named using something like “Turn off <feature>”, for example, Turn off reminder balloons. By default, reminder balloons are displayed when the Offline Files feature is enabled; they are used to notify users when they have lost the connection to a networked file and are working on a local copy of the file. If Turn off reminder balloons is set to Enabled, the system hides the reminder balloons, and prevents users from displaying them.
· Consider whether administrators need to explicitly disable a feature. You must understand the differences between the Not Configured state (which implies that the administrator does not care) and the Disabled state (which means that the administrator cares and wants to implement a very specific behavior).

· Make sure that your documentation team is involved with creating the Explain text. Well-written Explain text can help reduce support calls.

· Each component should expose a user interface that always reflects the policy setting that is applied. For example, if a Group Policy setting removes the ability for the user to set a preference for a component, the user interface should clearly indicate this and access to that particular item in the component should be removed (for example, the item is disabled and grayed-out, or it is not visible to users).
Creating Custom .Adm Files

You can create custom .adm files to extend the use of registry-based policy settings to new applications and components. Creating and implementing custom .adm files involves the following tasks:

· The application or component must be enabled to use Group Policy-enabled. Many off-the-shelf applications for Windows are already Group Policy-enabled. For example, Microsoft Office is developed to work with Group Policy settings, and applicable .adm files are included in the Office Resource Kit. If a developer’s application is not already Group Policy-enabled, the developer must write code that changes the application so that an administrator can apply the application-specific Group Policy settings. For more information, see Microsoft Platform Software Development Kit at http://go.microsoft.com/fwlink/?LinkId=20540.

· After the application or component is Group Policy-enabled, a developer or administrator must write an .adm file that includes the appropriate settings for that application. Custom .adm files are created as text files that describe policy settings. A framework language is provided for .adm files, as described in “Language Reference for Administrative Template Files” later in this document. When you create a new policy setting in a custom .adm file, it is more efficient if you copy and modify existing policy settings that are similar to the ones that you want to create, rather than write new policy settings from scratch. To use an existing .adm file as a template for a custom .adm file, first copy the original .adm file into a new file with a different file name, and then edit the new file. Similar policy settings can provide:

· A model to use as a basis for your Group Policy settings.

· Consistency with available policy settings.

· Information about possible interactions between policies.
· Administrators use the Group Policy Management Console to view and manage GPOs and use the Group Policy Object Editor to view the Administrative Templates node under Computer Configuration or User Configuration.

[image: image5.wmf]
Caution

Treat the .adm files that ship in the operating system as read-only files. These files are often updated when you install service packs or future releases of the product. Policy settings should never be removed from .adm files that are included in the operating system by default.
Keep in mind that by itself, the .adm file does not actually apply Group Policy to the client computer. You must have a corresponding component or application that responds to the registry key that is affected by the policy setting.

The following code example illustrates a simple .adm file.

CLASS USER
CATEGORY !!DesktopLockDown

 POLICY !!DisableTaskMgr

 EXPLAIN !!DisableTaskMgr_Explain

 VALUENAME "DisableTaskMgr"

 VALUEON NUMERIC 1

 VALUEOFF NUMERIC 0
 KEYNAME "Software\Policies\System"

 END POLICY
END CATEGORY
[strings]
DisableTaskMgr="Disable Task Manager"

DisableTaskMgr_Explain="Prevents users from starting Task Manager"

DesktopLockDown="Desktop Settings"

This sample code exists in the System.adm file. It allows you to configure a policy called Disable Task Manager, which appears in the Group Policy Object Editor namespace in User Configuration\Administrative Templates\Desktop Settings.

This policy setting defines the following behavior:

· If an administrator enables this policy setting, it creates a registry key called DisableTaskMgr and set its value to 1. The VALUEON tag implements this behavior. In this case, users cannot start Task Manager.

· If an administrator disables this policy setting, it creates a registry key called DisableTaskMgr and set its value to 0. The VALUEOFF tag implements this behavior. In this case, users can start Task Manager.
· In both cases, the DisableTaskMgr registry key is created below HKCU\Software\Policies\System in the registry. Note that the key is created under CLASS USER and not under CLASS MACHINE because this is a user policy setting.

· If an administrator sets this policy setting to Not Configured, it deletes the registry key called DisableTaskMgr. In this case, users can start Task Manager.

Table 4 lists where registry-based policy settings are stored in any of the four approved registry locations for Group Policy.
Table 4 Approved Registry Key Locations for Group Policy Settings

	Computer Policy Settings
	User Policy Setting:

	HKLM\Software\Policies (The preferred location)
	HKCU\Software\Policies (The preferred location)

	HKLM\Software\Microsoft\Windows\CurrentVersion\Policies
	HKCU\Software\Microsoft\Windows\CurrentVersion\Policies

The registry keys are created when a GPO containing an enabled or disabled registry-based policy setting is applied. If the GPO is later removed (for example, unlinked from an OU in which a user resides), the registry keys associated with it are also removed. Security prohibits a standard user from changing the registry keys. A local administrator can overwrite these registry keys, and thus change or disable the behavior of the policy setting. For this reason, as a Group Policy administrator, you might want to enable the Registry policy processing policy setting (located in Computer Configuration\Administrative Templates\System\Group Policy)and select the following option: Process even if the Group Policy objects have not changed.

Selecting this option updates and reapplies the policy settings even if you -- the Group Policy administrator -- have not changed the policy settings. This provides an additional safeguard in the event that local administrators try to change policy settings through the registry. Policy settings are reapplied during the regular background refresh of Group Policy, which occurs by default every 90 minutes with a randomized delay of up to 30 minutes.
How to Write a Simple .Adm File for Registry-based Group Policy
This section shows you how to create a simple .adm file for delivering registry-based Group Policy settings. The code samples provided are parts of a single .adm file. Please refer to “Language Reference for Administrative Template Files,” later in this document for full details about the .adm language.

The sections of the sample .adm file illustrate how to set a registry value to:
· Turn a feature on or off.
· Allow the selection of one or more values from a list.

· Display a list with add and remove buttons.

· Enter EDITTEXT and static text.
· Display a numeric list to the administrator.

· Display a numeric list to the administrator, using a spin control.
· Display an actionable list to an administrator.
To Set a Registry Value to Turn a Feature ON or OFF
This sample code displays a check box. The value is set in the registry with the REG_DWORD type. By default, the check box is clear. If the check box is selected, it writes the value 1 to the registry. If the check box is clear, it writes the value 0 to the registry.

CLASS USER

CATEGORY!!SampleCategory

 KEYNAME "SOFTWARE\Policies\Microsoft\ADM_Samples"

 POLICY!!Sample_ADM_FeatureOnOff

 #if version >= 4

 SUPPORTED!!SUPPORTED_WindowsXPSP1

 #endif

 EXPLAIN!!Sample_ADM_FeatureOnOff_Help

 VALUENAME "ADM_Sample_FeatureOnOff"

 VALUEON 1

 VALUEOFF 0

 END POLICY
END CATEGORY

To Set a Registry Value to Allow the Selection of One or More Values from a List

You can use DROPDOWNLIST to display a combo box with a drop-down style list. You can pre-populate the list of items that are displayed in the list and the corresponding registry value to be written for each item in the list.

POLICY!!Sample_ADM_DropDownList

 #if version >= 4

 SUPPORTED!!SUPPORTED_WindowsXPSP1

#endif

EXPLAIN!!Sample_ADM_DropDownList_Help

PART!!Sample_ADM_DropDownList DROPDOWNLIST REQUIRED

 VALUENAME "Sample_ADM_DropDownList"

 ITEMLIST

 NAME !!Sample_ADM_DropDownList_Always
VALUE NUMERIC 1 DEFAULT

 NAME !!Sample_ADM_DropDownList_WorkStationOnly
VALUE NUMERIC 2

 NAME !!Sample_ADM_DropDownList_ServerOnly
VALUE NUMERIC 3

 END ITEMLIST

END PART

END POLICY

To Set a Registry Value to Display a List with Add and Remove Buttons
You can use registry-based Group Policy to display a list box that contains Add and Remove buttons.

By default, only one column appears in the list box, and for each entry, a value is created where the name and value are the same. For example, a name entry in the list box creates a value called name that contains data labeled name.
POLICY!!Sample_ADM_ListBox

#if version >= 4

 SUPPORTED !!SUPPORTED_WindowsXPSP1

#endif

EXPLAIN!!Sample_ADM_ListBox_Help

PART!!Sample_ADM_DropDownList LISTBOX

 KEYNAME "Sample_ADM_ListBox"

END PART

END POLICY

To Set a Registry Value for EDITTEXT and Static Text

This setting allows the user to type alphanumeric text in an edit field. The text is set in the registry with the REG_SZ type.

The following code is an example of how you can use the EDITTEXT PART type.

POLICY!!Sample_ADM_EditText

 #if version >= 4

 SUPPORTED !!SUPPORTED_WindowsXPSP1

#endif

EXPLAIN!!Sample_ADM_EditText_Help

PART!!Sample_ADM_EditText EDITTEXT

 VALUENAME "ADM_Sample_EditText"

END PART

END POLICY

To Set a Registry Value for Displaying a Numeric List to the Administrator

To display a list of numbers from which administrators can select one of the predefined numeric values, you can use a NUMERIC PART type.
POLICY!!Sample_ADM_Numeric

 #if version >= 4

 SUPPORTED !!SUPPORTED_WindowsXPSP1

#endif

EXPLAIN!!Sample_ADM_Numeric_Help

PART!!Sample_ADM_Numeric NUMERIC

 VALUENAME "ADM_Sample_Numeric"

END PART

END POLICY

To Set a Registry Value for Displaying a Numeric List to the Administrator, Using SPIN Control
To display a list of numbers from which administrators can select one of the predefined numeric values, you can use a SPIN control.
POLICY!!Sample_ADM_Spinner

 #if version >= 4

 SUPPORTED !!SUPPORTED_WindowsXPSP1

#endif

EXPLAIN!!Sample_ADM_Spinner_Help

PART!!Sample_ADM_Spinner NUMERIC

 VALUENAME "ADM_Sample_Spinner"

 MIN 5 MAX 23 DEFAULT 14 SPIN 3

END PART

END POLICY

To Set a Registry Value to Display an ActionList to an Administrator
To specify a set of arbitrary registry changes to make in response to a control being set to a particular state, you can use the ACTIONLIST option.

POLICY!!Sample_ADM_ActionList

#if version >= 4

 SUPPORTED !!SUPPORTED_WindowsXPSP1

#endif

EXPLAIN!!Sample_ADM_ActionList_Help

ACTIONLISTON

 KEYNAME "SOFTWARE\Policies\Microsoft\ADM_Sample\ActionOnList"

 VALUENAME "Action1"

 VALUE NUMERIC 1

 KEYNAME "SOFTWARE\Policies\Microsoft\ADM_Sample\ActionOnList"

 VALUENAME "Action2"

 VALUE NUMERIC 7

 KEYNAME "SOFTWARE\Policies\Microsoft\ADM_Sample\ActionOnList"

 VALUENAME "Action1"

 VALUE NUMERIC 100

END ACTIONLISTON

ACTIONLISTOFF

 KEYNAME "SOFTWARE\Policies\Microsoft\ADM_Sample\ActionOnList"

VALUENAME "Action1"

VALUE NUMERIC 0

 KEYNAME "SOFTWARE\Policies\Microsoft\ADM_Sample\ActionOnList"

 VALUENAME "Action2"

 VALUE NUMERIC 0

 KEYNAME "SOFTWARE\Policies\Microsoft\ADM_Sample\ActionOnList"

 VALUENAME "Action1"

 VALUE NUMERIC 0

END ACTIONLISTOFF

END POLICY

Testing Administrative Template Files

This section provides recommended procedures for testing .adm files. You should always test policy settings before deploying them in GPOs. Your test plan should examine and document the following for each policy setting:

· The default behavior

· The behavior when the policy setting is enabled, disabled, or not configured

· Changes in the user interface when a policy setting is enabled, disabled, or not configured

· The possible settings that the policy setting can be configured as

· The associated behavior. For example, does configuring the policy setting affect other policy settings, or is one policy setting dependent on another?
· Any associated preferences

· The behavior of the associated preferences

· The behavior in the event of invalid input by an administrator

First, test your new policy settings individually. Next, test how each policy setting interacts with other policy settings that are similar, or policy settings that are also designed to manage the affected component.

Suppose for example that you create a policy setting to configure the wallpaper that is displayed on your clients’ desktops. The list of policy settings that ship with Windows Server 2003 includes other wallpaper policy settings. In this scenario, you should test how these policy settings interact. Any issues that arise should be addressed or documented in the Explain text.

Testing should ensure that the user interface is policy-aware. If the user interface is not aware of the policy setting, the user experience might be confusing. For example, if your policy setting restricts access to a certain item in a component, then no access to this component and its configuration should be available in the user interface. Some ways to achieve this are:

· Removing the item completely visually

· Gray-out the item and disable it

Creating an .Adm Test File

To simplify testing, create a sample .adm file for your policy setting. By doing this step, you can isolate testing of the new policy settings until they are ready to be merged into a larger .adm file, if appropriate.

Your test plan should include the following validations:

· Your policy settings display and can be configured in Group Policy Object Editor, and can be set to all pertinent combinations of values.

· The settings are configured properly on the client when configured in a GPO, and the component responds appropriately to the policy setting.

· You can generate settings and Resultant Set of Policy (RSoP) reports for your policy settings by using Group Policy Management Console.

· The Explain text for the policy setting is accurate and thoroughly explains how your policy setting works. It should describe the behavior for all states of the setting: Enabled, Disabled, and Not Configured.

Loading an .Adm File into the Group Policy Snap-in

After you create an .adm file, you can load it into the Administrative Templates section of Group Policy Object Editor by performing the following procedure.

[image: image6.wmf]
To load your .adm file into Group Policy Object Editor

1. Open Group Policy Object Editor.

2. Under either Computer Configuration or User Configuration, right-click Administrative Templates, and then click Add/Remove Templates.
3. In the Add/Remove Templates dialog box, click Add.
4. Navigate to the folder containing the .adm file that you would like to add. Select the file, and then click Open.
5. Do one of the following:

1. If your .adm file was successfully loaded, in the Add/Remove Templates dialog box, click Close. Your policy template has been added successfully.
2. If your .adm file was not successfully loaded, a dialog box is displayed, showing the error and line number of the error. Make a note of the errors that were found, and click OK. Although your .adm file was not successfully loaded, it still appears in the list of .adm files loaded. Select your .adm file, click Remove, and then click Close. Edit the .adm file and correct any problems.
Maintaining and Managing .Adm Files
This section provides guidance to ensure that your .adm files are properly configured for your administrative workstations.

Each domain-based GPO maintains a single folder in the Sysvol folder of each domain controller. This folder, known as the Group Policy template, contains all of the .adm files that were used in the Group Policy Object Editor when the GPOs were last created or edited.

Each Windows Server operating system includes a standard set of .adm files that are loaded by default into the Group Policy Object Editor. By default, the following .adm files are pre-loaded with a Windows 2000 or later operating system:

· System.adm
· Conf.adm
· Inetres.adm
Windows Server 2003 and Windows XP include the following additional .adm files:

· Wmplayer.adm

· Wuau.adm
Importance of Timestamps for .Adm Files

Each administrative workstation that is used to run the Group Policy Object Editor stores its .adm files in the %windir%\Inf folder. When GPOs are created and first edited, the .adm files from this folder are copied to the Sysvol and replicated to all the domain controllers. This includes the standard .adm files and any custom .adm files that are created by the administrator.
[image: image7.wmf]
Note

If you create a GPO and do not edit it, you will create a Group Policy template without any associated .adm files.

By default, when you edit GPOs, the Group Policy Object Editor compares the timestamps of the .adm files in the workstation’s %windir%\Inf folder (local .adm files) with those that are stored in the Sysvol (these are the .adm files used by the GPO that is being edited). If the local .adm files are newer, the Group Policy Object Editor copies these files to the Sysvol, overwriting any existing files of the same name. This comparison occurs whenever the Administrative Templates node (under Computer or User Configuration) is selected in the Group Policy Object Editor, regardless of whether the administrator actually edits the GPO.
[image: image8.wmf]
Caution

Because of the importance of timestamps on .adm file management, it is recommended that you do not edit system-supplied .adm files. If a new policy setting is required, it is highly recommended that you create a custom .adm file. This prevents the override of system-supplied .adm files whenever service packs are released.
Duplicate CATEGORY Sections

If the .adm file that you add includes a duplicate CATEGORY to one that is used in an existing .adm file, the policy settings are merged.

An error can occur when the existing and the added .adm file contain the same CATEGORY, and both of them have a default KEYNAME specified (regardless of whether it is the same name). If these conditions are met, the following error message appears.

Key name specified more than once. Likely causes are: 1) the KEYNAME tag is defined multiple times in this category, 2) this KEYNAME is already defined in another category with the same name, 3) this KEYNAME is already defined in another category with the same name in a different .adm file.

.Adm Files Used by the Group Policy Object Editor
By default, the first time the Group Policy Object Editor is started for a specified GPO, it copies the System.adm file from the current computer’s %windir%\inf\ directory to the GPO.

Subsequently, only those .adm files specified in the list are displayed. Each time you open Group Policy Object Editor, the Group Policy Object Editor also checks the listed .adm files and copies any newer versions from the local computer's %windir%\inf\ directory to the GPO.

.Adm Files Used by GPMC
By default, GPMC always uses local .adm files, regardless of their time stamp, and it never copies .adm files to Sysvol. If an .adm file is not found locally, GPMC looks for the .adm file in the Sysvol. In GPMC, you can specify an alternative location for .adm files. If an alternative location is specified, this alternative location takes precedence.

Controlling .Adm File Replication

Because .adm files are stored in the Group Policy template by default, they increase the Sysvol folder size. The File Replication Service (FRS) replicates all of the .adm files for GPOs throughout the domain. If you edit GPOs frequently, you might experience a significant amount of replication traffic. You can use a combination of the Turn off automatic updates of adm files and Always use local adm files for Group Policy Object Editor policy settings to reduce the size of the Sysvol folder and policy-related replication traffic.

Turn Off Automatic Updates of .Adm Files

The Turn off automatic updates of adm files policy setting is available under User Configuration\Administrative Templates\System\Group Policy in Windows Server 2003, Windows XP, and Windows 2000 operating systems. When this policy setting is enabled, the updating of an existing GPO remains local to the administrative workstation, and .adm files are not sent from the local computer to the Sysvol.

[image: image9.wmf]
Note

In Windows 2000 operating systems, when you edit a GPO for the first time the local .adm files are uploaded to the Sysvol, without regard to how this policy setting is set. If this policy setting is enabled in Windows XP, .adm files are not uploaded when a GPO is edited for the first time. The first time that the GPO is edited might or might not be when the GPO is created.

Always Use Local .Adm Files for Group Policy Object Editor

The Always use local ADM files for Group Policy Object Editor policy setting is available under Computer Configuration\Administrative Templates\System\Group Policy in Windows Server 2003 and Windows XP Professional. When a GPO is created, this policy setting has no immediate effect, and the .adm files on the local computer are still uploaded to the Sysvol. However, when you edit an existing GPO, any .adm files that are stored in the Sysvol are ignored, and Group Policy Object Editor uses the .adm files from the local computer only. If a policy setting has been set in the GPO, but the corresponding .adm file that describes the policy setting is not available on the local computer, Group Policy Object Editor does not display that policy setting.
[image: image10.wmf]
Note

If this policy setting is enabled, the Turn off automatic updates of adm files policy setting is also implied.

[image: image11.wmf]
To clear the Sysvol folder of .adm files
1. Enable the Turn off automatic update of adm files policy setting for all Group Policy administrators who will be editing GPOs and verify that this policy has been applied.

2. Copy any custom .adm templates to the %windir%\Inf folder.

3. Edit existing GPOs, and right-click Administrative Templates, and then click Add/Remove Template to remove all .adm files from the Sysvol.
4. Enable the Always use local adm files for Group Policy Object Editor policy setting for administrative workstations.

Maintaining .Adm files on Administrative Workstations

When you use the Always use local adm files for Group Policy Object Editor policy setting, make sure that each workstation has the latest version of the default and custom .adm files. If all .adm files are not available locally, some policy settings that are contained in a GPO will not be visible to the administrator. Avoid this by implementing a standard operating system and service pack version for all administrators. If you cannot use a standard operating system and service pack, implement a process to distribute the latest .adm files to all administrative workstations.
[image: image12.wmf]
Note

Because the workstation adm files are stored in the %windir%\Inf folder, any process that is used to distribute these files must run in the context of an account that has administrative credentials on the workstation.
Multilanguage Administration Issues

In some environments, policy settings must be presented to the user interface in several languages. Because the GPT folder can store only one set of .adm files, you cannot use the GPT folder to store .adm files for multiple languages.

For Windows 2000 operating systems, the use of local .adm files for the Group Policy Object Editor is not supported. If you are using Windows 2000, use the Turn off automatic updates of adm files policy setting. Because this policy setting has no effect on the creation of new GPOs, the local .adm files will be uploaded to the GPT folder in Windows 2000. Creating a GPO in Windows 2000 effectively defines the language of the GPO. If the Turn off automatic updates of adm files policy setting is in effect on all computers running Windows 2000, the language of the adm files in the GPT folder will be defined by the language of the computer that is used to create the GPO.

If you are using Windows 2000 workstations, use the Turn off automatic updates of adm files policy setting for administrators, and consider the adm files in the GPT folder to be the effective language for all Windows 2000 workstations.
For administrators who are using Windows Server 2003 and Windows XP operating systems, the Always use local adm files for Group Policy Object Editor policy setting can be used. For example, this policy setting allows a French administrator to view policy settings by using the French .adm files that are installed locally, regardless of the adm file that is stored in the GPT folder. Note that when you use this policy setting, it is implied that the Turn off automatic updates of adm files policy setting is also enabled, to avoid unnecessary updates of the adm files to the GPT folder.
Consider standardizing on Windows Server 2003 for administrative workstations in a multi-language administrative environment. Configure both the Always use local adm files for Group Policy Object Editor and Turn off automatic updates of adm files policy settings.
Operating System and Service Pack Release Issues

Each operating system or service pack release includes a superset of the .adm files provided by earlier releases, including policy settings that are specific to operating systems that are different to those of the new release. For example, the .adm files that are provided with Windows Server 2003 include all policy settings for all operating systems, including those that are only relevant to Windows 2000 or Windows XP Professional. This means that only viewing a GPO from a computer with the new release of an operating system or service pack effectively upgrades the .adm files. Because later releases are typically a superset of previous .adm files this will not typically create problems, assuming that the .adm files that are being used have not been edited.

In some situations, an operating system or service pack release includes a subset of the .adm files that were provided with earlier releases. This has the potential to present an earlier subset of the .adm files, resulting in policy settings no longer being visible to administrators when they use Group Policy Object Editor. However, the policy settings will remain active in the GPO--only the visibility of the policy settings in Group Policy Object Editor is affected. Any active (either Enabled or Disabled) policy settings are not visible in Group Policy Object Editor, but remain active. Because the settings are not visible, it is not possible for the administrator to view or edit these policy settings. To work around this issue, administrators must become familiar with the .adm files that are included with each operating system or service pack release before using the Group Policy Object Editor on that operating system, keeping in mind that the act of viewing a GPO is enough to update the .adm files in the GPT, when the timestamp comparison determines an update is appropriate.

To plan for this in your environment, it is recommended that you either:

· Define a standard operating system/service pack from which all viewing and editing of GPOs occurs, making sure that the .adm files being used include the policy settings for all platforms.

· Use the Turn off automatic updates of adm files policy setting for all Group Policy administrators to make sure that .adm files are not overwritten in the Sysvol by any Group Policy Object Editor session, and make sure that you are using the latest .adm files that are available from Microsoft.
[image: image13.wmf]
Note

The Always use local adm files for Group Policy Object Editor policy is typically used with the Turn off automatic updates of adm files policy setting, (that is, when it is supported by the operating system from which you are running Group Policy Object Editor).

Keyboard Shortcuts for Administrative Templates Node
You can use the following keyboard shortcuts to navigate the Administrative Templates namespace:

· SHIFT+asterisk (*) (on the keypad only) automatically expands the current node and all of its child nodes.
· The plus sign (+) on the keypad expands one level.

· Minus (-) on the keypad collapses one level.

· Double-click a policy in the results pane to bring up the Properties page.

When the Properties page appears, move it out from in front of the Group Policy Object Editor window. Then, click back one of the Policies in the results pane. You can now use the cursor keys to navigate up and down the list. Notice that the information in the Properties page changes. This method also works for the text on the Explain tab. You can also use the Tab key to move back and forth between the tree pane and the results pane, while leaving the Properties page open.
What’s New for Administrative Template Files in Windows XP SP2
Windows XP SP2 includes modifications to tools used to administer Group Policy. This includes changes to the LISTBOX ADDITIVE behavior, which is implemented through an update to gptext.dll. This section includes details of these changes.

For information about managing new features released in Windows XP SP2, see Managing Windows XP Service Pack 2 Features Using Group Policy at http://go.microsoft.com/fwlink/?LinkId=31974.
Changes to LISTBOX ADDITIVE

Policy settings defined by the LISTBOX keyword allow you to manage multiple values under one registry key. When LISTBOX is used, the specified settings are written as a REG_MULTI registry value type, which allows for multiple values to be stored within one registry key.

An example of the use of LISTBOX is the Windows Firewall: Define Port Exceptions policy setting, located in Computer Configuration\Administrative Templates\Network\Network Connections\Windows Firewall, under both the Domain Profile and Standard Profile nodes.
By default, when LISTBOX policy settings are used in multiple GPOs, the list of the values written to the registry is defined entirely by the last GPO applied (“last writer wins”). The additive keyword changes the behavior so that the aggregate values from multiple GPOs are applied. For example, suppose that you have two GPOs with the following values for the Windows Firewall: Define Port Exceptions policy setting:

· GPO x. Sets values A, B, and C.

· GPO y. Sets values D, E, and F.

Without the additive keyword, only the values D, E, and F in GPO y are applied to the registry of targeted computers. This is because GPO y is the last GPO applied. With the additive keyword, all of the values from both GPOs are applied: A, B, C, D, E, and F.

The LISTBOX ADDITIVE behavior in Windows XP with SP2 gives you more flexibility in determining the values that will be applied to targets in a given Active Directory container. For example, the ability to disable policy settings from lower precedent GPOs is a key tenet of Group Policy management. Prior to Windows XP with SP2, the disabled behavior had no effect for policy settings that used LISTBOX ADDITIVE. Furthermore, prior to Windows XP with SP2, LISTBOX ADDITIVE was only found in several, rarely used policy settings affecting offline files. In Windows XP with SP2, LISTBOX ADDITIVE is used more prominently including policy settings that affect Windows Firewall and Internet Explorer.

Therefore, in Windows XP with SP2, the disabled behavior now functions as expected: removing any entries inherited from other lower precedent GPOs.

For example, suppose GPOs with values A, B, and C is normally applied to all computers in a domain. But, as an OU administrator, you wish to prevent these values from taking effect on computers in your OU. You can create a new GPO to disable values A, B, and C. This is illustrated in the following example:

· GPO x. Enables values A, B, and C for all computers in the domain.

· GPO z. Disables values A, B, and C. for all computers in your OU.

· GPO y. Enables values D, E, and F for all computers in the domain.

In this scenario, the values D, E, and F are applied to the computers in your OU.

Because, the disabled functionality only works when using the latest version of the gptext.dll, all policy settings that use LISTBOX ADDITIVE are enclosed by the #if version > 5 …#end if construct. This eliminates the possibility of having multiple administrators experiencing different disabled behavior if they are using earlier versions of gptext.dll. Consequently, the policy settings that use LISTBOX ADDITIVE are not visible when editing a GPO from a computer running Windows Server 2003, Windows XP with SP1, or Windows 2000 operating systems.

If you have administrative workstations that are not using Windows XP with SP2, you will need to install a hotfix in order to manage these policy settings. For more information, see the “‘String too long…’ Hotfix for Earlier Operating Systems or Service Packs” section later in this document.

Managing Policy Settings on Earlier Operating Systems or Service Packs

The .adm files that use the LISTBOX ADDITIVE syntax do not fully load on earlier versions of the Group Policy Object Editor (gpedit), which is present by default in Windows Server 2003, Windows XP with SP1, and Windows 2000. If attempted, multiple error messages will appear when the system.adm and inetres.adm files are loaded in earlier versions of gpedit.

The error message is "The following entry in the [strings] section is too long and has been truncated." This occurs because earlier versions of gpedit cannot correctly handle the “#if version >= 5 / #endif” construct in the inetres.adm and system.adm files. Although clicking OK on all the pop-up error messages does result in the .adm files loading correctly, the new Windows XP SP2 policy settings that use the LISTBOX syntax will not be displayed. (This problem does not occur on computers running Windows XP with SP2 or computers that have been updated with the latest version of gpedit.)
This issue is of particular significance because of the way .adm files are distributed through a domain. By default, when a GPO is opened, a comparison is made between the timestamps of the .adm files stored in the GPO being edited and those on the local computer. If the local .adm files have a more recent timestamp then they are uploaded to the domain controller and replicated throughout the domain. From that point, all earlier versions of gpedit use the new .adm files. This scenario is illustrated in the following steps.

1. Install Windows XP SP2 on the administrative computer.

2. Open existing GPO in Group Policy Object Editor. The .adm file stored on the administrative computer is uploaded to domain controller. GPO is "upgraded" to Windows XP SP2.

3. This .adm file is replicated to all domain controllers in the domain.

4. If the GPO is opened by other administrative workstations in the domain that are not running Windows XP with SP2 or the latest version of gpedit, error messages appear.

“String Too Long…” Hotfix for Earlier Operating Systems and Service Packs

If you or other administrators in your organization are going to manage policy settings on computers running earlier operating systems or service packs (for example, Windows Server 2003 or Windows XP with SP1), you need to install a hotfix in order for policy settings to appear correctly in the Group Policy Object Editor.

These hotfixes are available for the following:

· Windows Server 2003

· Windows XP with SP1

· Windows 2000

To obtain these hotfixes, see article 842933, ""The following entry in the [strings] section is too long and has been truncated" error message when you try to modify or to view GPOs in Windows Server 2003, Windows XP Professional, or Windows 2000," in the Microsoft Knowledge Base at http://go.microsoft.com/fwlink/?LinkId=4441.

If you are going to manage policy settings from workstation computers running Windows XP with SP2 only, you will be able to manage policy settings without applying any hotfixes. For example, you will be able to run the Group Policy Object Editor and view all the new policy settings delivered with Windows XP SP2.

[image: image14.wmf]
Important

Opening a GPO on a computer running Windows XP with SP2 causes all other administrative workstations to use the new .adm files (note that no changes need be made to the GPO for this to occur). This will generate error messages when earlier versions of gpedit are loaded. For more information about this issue, see article 842933, ""The following entry in the [strings] section is too long and has been truncated" error message when you try to modify or to view GPOs in Windows Server 2003, Windows XP Professional, or Windows 2000," in the Microsoft Knowledge Base at http://go.microsoft.com/fwlink/?LinkId=4441.

By installing the hotfix for Windows Server 2003, Windows XP with Service Pack 1, and Windows 2000, you ensure that the Windows XP SP2 .adm files load correctly on these platforms.

Language Reference for Administrative Template Files

This section includes a complete reference guide for using the .adm language to create policy settings.
Each .adm file can contain zero or more policy settings, and each policy setting in turn can contain zero or more parts. The .adm language includes the following components:

· Comments
· Strings
· CLASS
· CATEGORY
· POLICY
· PART
· ITEMLIST

· ACTIONLIST

.Adm File Language Versions

You can specify that any part of your .adm file be evaluated only in specific versions of the Group Policy editing tools. Table 5 lists the versions of the Group Policy editing tools.

Table 5 Versions of Group Policy Editing Tools

	Operating System(s)
	Version
	Type

	Windows XP SP2
	5.0
	Group Policy

	Windows Server 2003 and Windows XP
	4.0
	Group Policy

	Windows Server 2000
	3.0
	Group Policy

	Windows NT® 3.x and 4.x
	2.0
	System Policy

	Windows 95
	1.0
	System Policy

Comments

You can use two methods to add comments to an .adm file. You can precede the comment either with a semicolon (;) or with two forward slashes (//). You can place comments at the end of any valid line.

Strings

To add strings to an .adm file, precede the text with two exclamation points (!!). At the end of the .adm file, all strings must be defined in the [strings] section. The strings must be enclosed in quotation marks ("). Optionally, you can enclose a variable name or hard-coded string in quotation marks.

Example

POLICY 34]!!LimitSize

 EXPLAIN!!LimitSize_Explain
; This string is stored in the strings section

 TIP1 “Limit Profile Size to”
; This string is hard coded

[strings]

LimitSize="Limit profile size"

LimitSize_Explain="Limits the size of user profiles"

Best Practice

Place all strings in the [strings] section of the .adm file. This facilitates conversion of the .adm file to other languages (that is, for localization), as you only need to modify the [strings] section of an .adm file to port it to different languages.
CLASS

This component defines where your policy setting is displayed in the Group Policy Object Editor.

The first entry in the .adm file is the keyword CLASS. This specifies whether the subsequent entries should be displayed under the Computer Configuration or User Configuration node of Group Policy Object Editor.
Syntax

The CLASS syntax is as follows:

CLASS name
Name
This defines the name of the CLASS, which must be MACHINE or USER.

If the .adm file contains a CLASS other than the valid classes (MACHINE or USER), the errors are ignored when loaded in Group Policy Object Editor.
Example
The following examples illustrate the use of the CLASS component.
CLASS MACHINE

CLASS USER

[image: image15.wmf]
Note

You can define multiple CLASS USER or CLASS MACHINE sections in an .adm file. When the file is processed, all the CLASS USER sections are merged, and all CLASS MACHINE sections are merged. However, for ease of ongoing .adm file management, it is recommended that you define CLASS USER or CLASS MACHINE once.

CATEGORY
After you define the CLASS component, you can use the CATEGORY component to display a node name under which your policy setting is displayed in the Group Policy Object Editor.
[image: image16.wmf]
Note

You can create child nodes by nesting a CATEGORY within another CATEGORY.

Syntax
To specify a CATEGORY, use the following syntax.
CATEGORY!!name

KEYNAME key name

[policy definition statements]

END CATEGORY

name
The CATEGORY name as it should appear in the Group Policy Object Editor list box. Optionally, you can enclose the variable name in quotation marks ("). Names with spaces must be enclosed in quotation marks.

key name
The key name is an optional path to the registry key to use for the CATEGORY.

Do not use HKEY_LOCAL_MACHINE or HKEY_CURRENT_USER in the registry path as the preceding CLASS statement specifies the keys to use. If you specify a key name, all child categories, policies, and parts will use this key name, unless they specifically provide a key name of their own. Names with spaces must be enclosed in double quotation marks.
If a key name is not specified and if no higher level category specifies a key name, each policy in this category must specify its own key name: otherwise, the key name for the next category that does specify a key name will be used.
policy definition statements

A CATEGORY can include zero or more POLICY statements. A POLICY definition statement cannot appear more than once within a single category, as shown in the following sample code.

Example
CLASS USER

; The following categories will be displayed

; under User Configuration
CATEGORY !!Desktop

 KEYNAME "Software\Policies\System"

 ; <INSERT POLICIES HERE>

 CATEGORY !!InternalApps

 KEYNAME "Software\Policies\InternalApps"

; <INSERT POLICIES HERE>

 END CATEGORY

END CATEGORY

[strings]

Desktop="Desktop Settings"

InternalApps="Line of Business Apps settings"

Supported Tag
The Group Policy Object Editor uses the Supported tag to populate the Requirements field. This tag informs the Group Policy administrator about the platforms or applications for which the policy setting is supported. For example, many of the policy settings included in the System.adm file use a Supported tag that specifies a specific service pack release. Often, the string used for the Supported tag will make reference to multiple operating system or service packs.

While operating system components generally use an operating system or service pack reference in this field, applications – which can be updated outside the release of a service pack – can refer to a specific version of an application. The Supported tag is an essential element in the data presented to Group Policy administrators to ensure they are equipped with the right information to make informed decisions about the use of the policy setting.

Because your .adm file may be localized, it is highly recommended that the Supported tag use the !!Stringname construct, which allows the referenced string to be localized easily. In addition, since the Supported tag is only supported in Windows XP and later operating systems, it should be enclosed within a Version construct, as follows (this ensures that the Windows 2000 version of Group Policy Object Editor does not attempt to interpret the Supported tag):

#if version >= 4

SUPPORTED!!SUPPORTED_MyApplication

#endif

CATEGORY Keywords

The valid keywords for CATEGORY are:

· KEYNAME

· CATEGORY

· POLICY

· END

· SUPPORTED

[image: image17.wmf]
Note

If you have a CATEGORY defined with a default KEYNAME in it, and the same category is found again later in the .adm file, that same default KEYNAME is still in effect. This means that you can get an error message about KEYNAME being defined twice, when it was actually just defined in the same category earlier. To remove the error condition, remove the duplicate category entry.

POLICY
To identify a policy setting that the user can modify, use the keyword POLICY. The policy and its associated controls are displayed in a dialog box that administrators use to set the state of the policy. You can use multiple POLICY key names under one KEYNAME.

The following examples illustrate the syntax of POLICY.

Syntax

POLICY name
 [KEYNAME key name]

 [EXPLAIN help string]
 [VALUENAME value name]
 [CLIENTEXT guid]
 [part definition statements]

END POLICY

name

The name of the policy as it should be displayed in the Group Policy Object Editor namespace.

key name

This is an optional path to the registry key to use for the category. Do not include HKEY_LOCAL_MACHINE or HKEY_CURRENT_USER in the registry path as the preceding CLASS statement determines which of these keys is used.

If you specify a key name, all PART definition statements will use this key name unless they specifically provide a key name of their own.
If a key name is not specified and if no higher level category specifies a key name, each policy in this category must specify its own key name: otherwise, the key name for the next category that does specify a key name will be used.
help string

The Help string is the text displayed in the Explain tab of the dialog box for the policy setting.

value name

Value name is the registry value to modify. Selecting this option sets the value as a REG_DWORD of 1. Clearing the option removes the registry value. To specify values other than the default values, use the VALUEON and VALUEOFF statements directly following the corresponding VALUENAME statement. These statements are specified as follows:

VALUEON on value
VALUEOFF off value
When you use these statements, the behavior is modified such that if the administrator selects the option, the value is set to on value. If the administrator clears the option, the value is set to off value.

guid
This is an optional value that specifies the globally unique identifier (GUID) of the snap-in extension.

part definition statements

A policy can contain zero or more PART statements to specify various options, including drop-down list boxes, text boxes, and text in the lower pane of the Group Policy Object Editor.

POLICY Example

CLASS MACHINE

CATEGORY!!DiskQuota

 KEYNAME "Software\Policies\MS\DiskQuota"

 POLICY!!DQ_Enable

 EXPLAIN !!DQ_Enable_Help

 VALUENAME "Enable"

 VALUEON NUMERIC 1

 VALUEOFF NUMERIC 0

 CLIENTEXT {3610eda5-77ef-11d2-8dc}

 PART!!DQ_EnableTip1 TEXT

 END PART

 END POLICY

END CATEGORY

[strings]

DiskQuota="Disk Quotas"

DQ_Enable="Enable disk quotas"

DQ_Enable_Help="Enables and disables disk quota management"

DQ_EnableTip1="Enable disk quotas for all NTFS volumes"

POLICY Keywords

The valid keywords for POLICY are:

· KEYNAME

· PART

· VALUENAME

· VALUEON

· VALUEOFF

· ACTIONLISTON

· ACTIONLISTOFF

· END

· HELP

· CLIENTEXT

· POLICY
PART

Use PART to specify various options, such as drop-down list boxes, text boxes, and text in the lower pane of Group Policy Object Editor.

For a simple policy where you only need to set a registry key to either 1 or 0, you do not need to use PART. PART allows a richer system administrator experience, and collects more information from the administrator through simple controls.

Syntax

PART name part-type type-dependent data

 [KEYNAME key name]

 [VALUENAME value name]
END PART

name

Specifies the PART name as it should appear in Group Policy Object Editor. You can enclose it in quotation marks ("). Names with spaces must be enclosed in quotation marks (").

part-type

A policy PART type. Table 6 lists the valid types for POLICY.

Table 6 Policy PART Types
	Type
	Description

	CHECKBOX
	Displays a check box. The value is set in the registry with the REG_DWORD type. The value is other than zero if the check box is selected and zero if it is not selected.

	COMBOBOX
	Displays a combo box.

	DROPDOWNLIST
	Displays a combo box with a drop-down list style. The user may choose only one of the entries supplied.

	LISTBOX
	Displays a list box with Add and Remove buttons. This is the only PART type that can be used to manage multiple values under one key.

	EDITTEXT
	Displays a text box that accepts alphanumeric text. The text is set in the registry with either the REG_SZ or the REG_EXPAND_SZ type.

	TEXT
	Displays a line of static text. There is no associated registry value with this PART type.

	NUMERIC
	Displays a text box with an optional spin control that accepts a numeric value. The value is set in the registry with the REG_DWORD type.

type-dependent data

This is information about the PART.

key name

This is an optional path to the registry key to use. Do not include HKEY_LOCAL_MACHINE or HKEY_CURRENT_USER in the registry path as the preceding CLASS statement determines which of these keys is used.

If no key name is specified, the previous key name in the hierarchy is used.

value name
The value name indicates the registry value to modify. Selecting this option sets the value to a REG_DWORD of 1, and clearing the option removes the registry value. If you want to specify values other than the default values, use the VALUEON and VALUEOFF statements directly following the corresponding VALUENAME statement. You specify these statements as follows:

VALUEON on value
VALUEOFF off value
Keywords

The valid keywords for PART are:

· CHECKBOX

· TEXT

· EDITTEXT

· NUMERIC

· COMBOBOX

· DROPDOWNLIST

· LISTBOX

· END

· CLIENTEXT

· PART

Using PART Types to Add Controls to the User Interface
Using the valid keywords along with the PART component allows you to add text and various user interface controls to the properties page of the policy.

Because much of the syntax is related, the next section presents a task-based approach to writing the syntax for these PART types used to create the user interface elements above.

Using the different PART types, you can add text and controls to enhance a policy setting. These types need to be used with the PART component as previously defined.

CHECKBOX PART Type
This PART type displays a check box on the Property page of a policy setting. The value is set in the registry with the REG_DWORD type. The default behavior is as follows:

· By default the check box is not selected.

· A check box writes the value 1 to the registry if it is selected and 0 if it is not selected.

Syntax

PART text CHECKBOX
 VALUENAME value name

END PART

text

This represents the text to be displayed on the right of the check box that you are creating. You can hard code it and enclose it in quotation marks (") or you can make the string a variable by putting !! in front of the variable name.

value name

Indicates the registry value to which the selected value will be written. Selecting the option sets the value as a REG_DWORD of 1. Clearing the option removes the registry value. To specify values other than the default values, use the VALUEON and VALUEOFF statements directly following the corresponding VALUENAME statement. These statements are specified as follows:

VALUEON on value

VALUEOFF off value

When you use these statements, the behavior is modified such that if the administrator selects the option, the value is set to on value. If the administrator clears the option, the value is set to off value.

To override the default behavior:

To have the check box selected by default use DEFCHECKED. In the preceding sample, the syntax would be:

 PART !!SampleChkBox_NotChked CHECKBOX

 DEFCHECKED

 VALUENAME "test1"

 END PART

You can use VALUEON and VALUEOFF. This example accomplishes the following::
· Writes the string “Enabled” to the registry when the check box is selected.

· Writes a numeric value of 12 when the check box is not selected.

 PART !!SampleChkBox_NotChked CHECKBOX

 VALUENAME "test1"

 VALUEON “Enabled”

 VALUEOFF NUMERIC 12

 END PART

To modify more than one registry key, use an ACTIONLIST.

The valid keywords for CHECKBOX are:

· KEYNAME

· VALUENAME

· VALUEON

· VALUEOFF

· ACTIONLISTON

· ACTIONLISTOFF

· DEFCHECKED

· CLIENTEXT

· END

TEXT PART Type
The PART type TEXT can be used to display text on the Property page of a policy setting. Text uses the following syntax.
PART text TEXT
END PART

text

Text that is to be displayed is entered here. You can hard code it and enclose it in quotation marks ("), or you can make the string a variable by putting !! before the variable name.

The following example illustrates the use of TEXT. The Disable Active Desktop policy deactivates Active Desktop and prevents users from enabling or disabling Active Desktop, or from modifying the configuration.

TEXT Example
POLICY !!NoActiveDesktop

 KEYNAME "Software\Microsoft\Windows\CurrentVersion\Policies\Explorer"

 EXPLAIN!!NoActiveDesktop_Help

 VALUENAME "NoActiveDesktop"

 PART !!NoActiveDesktop_Tip
TEXT

 END PART

END POLICY

The valid keyword for TEXT is END.

EDITTEXT PART Type
The EDITTEXT option allows the user to input alphanumeric text into an edit field. The text is set in the registry with the REG_SZ type.

Syntax

PART !!text EDITTEXT
 VALUENAME value name
END PART

text

Text to be displayed is entered here. You can hard code it and enclose it in quotation marks (") or you can make the string a variable by putting two explanation points (!!) before the variable name. This text is displayed on the left side of the edit box.

value name

The value name indicates the registry value to which the users input entered in the Edit Text box will be written.

Table 7 lists the options for EDITTEXT.
Table 7 Options for EDITTEXT
	Option
	Description

	DEFAULT value
	Specifies the initial string to place in the edit field. If this option is not specified, the field is initially empty.

	MAXLEN value
	Specifies the maximum length of a string. The string in the edit field is limited to this length.

	REQUIRED
	Specifies that the Group Policy Object Editor does not allow a policy containing this PART to be enabled, unless a value has been entered for this PART.

	OEMCONVERT
	Sets the ES_OEMCONVERT style in the edit field so that typed text is mapped from ASCII to OEM and back. ES_OEMCONVERT converts text entered in the edit control. The text is converted from the Windows character set (ASCII) to the OEM character set and then back to the Windows set. This ensures proper character conversion when the application calls the CharToOem <JavaScript:hhobj_1.Click()> function to convert an ASCII string in the edit control to OEM characters. This style is most useful for edit controls that contain file names.

	EXPANDABLETEXT
	Specifies that the text is set in the registry with the REG_EXPAND_SZ type. By default, the text is set in the registry with the REG_SZ type

The valid keywords for EDITTEXT are:

· KEYNAME

· VALUENAME

· DEFAULT

· REQUIRED

· MAXLENGTH

· OEMCONVERT

· END

· EXPANDABLETEXT

· CLIENTEXT

EDITTEXT Example

An example of use of the PART component with EDITTEXT and TEXT follows:

CLASS USER

CATEGORY !!DesktopLockDown

 KEYNAME "Software\Policies\System"

 POLICY !!Wallpaper

 EXPLAIN !!Wallpaper_Explain

 PART !!Wallpaper_Tip1
 TEXT

 END PART

 PART !!Wallpaper_Filename EDITTEXT

 VALUENAME Wallpaper

 MAXLEN 60

 END PART

 END POLICY

END CATEGORY

[strings]

DesktopLockDown="Desktop Settings"

Wallpaper="Desktop Wallpaper"

Wallpaper_Explain="Used to set the desktop wallpaper"

Wallpaper_FileName="Filename"

Wallpaper_Tip1="Specify UNC Path for selected wallpaper"

In the preceding example, the text entered into the edit field is written to the registry key HKEY_CURRENT_USER\Software\Policies\System\Wallpaper. The text can be a maximum of 60 characters.

When this policy setting is Not Configured or Disabled, this key is not written.
EXPANDABLETEXT Example
The following example writes a value to registry with data type REG_EXPAND_SZ.

For example:

PART!!MyVariable
EDITTEXT EXPANDABLETEXT

VALUENAME ValueToBeChanged

END PART
REQUIRED Example
The following example generates an error if the user does not enter a value when required.

PART!!MyVariable
EDITTEXT REQUIRED

 VALUENAME ValueToBeChanged

END PART

MAXLEN Example
The following example specifies the maximum length of text.

PART!!MyVariable
EDITTEXT

 VALUENAME ValueToBeChanged

 MAXLEN 4

END PART
DEFAULT Example
The following example specifies a default value. This can be used for text or numeric data.

PART!!MyVariable
EDITTEXT

 DEFAULT !!MySampleText

 VALUENAME ValueToBeChanged

END PART
NUMERIC PART Type

Displays an edit field with an optional spinner control (an up-down control) that accepts a numeric value.
NUMERIC Syntax

PART text NUMERIC

 VALUENAME value name

 MIN value
 MAX value

...DEFAULT value
...SPIN value
END PART

text

This represents the text to be displayed on the right of the spin control that you are creating. You can hard code it and enclose it in quotation marks (") or you can make the string a variable by putting !! before the variable name.

value name

Indicates the registry value to which the selected value will be written.
NUMERIC Default Behavior

The default behavior for the NUMERIC PART type is as follows:

· The value is set in the registry as a REG_DWORD type.

· You can optionally have the value written as a REG_SZ type by using the TXTCONVERT keyword.
Table 8 shows the options for the NUMERIC type.
Table 8 Options for NUMERIC
	Option
	Description

	DEFAULT value
	Specifies the initial numeric value for the edit field. If this option is not specified, the field is initially empty.

	MAX value
	Specifies the maximum value for the number. The default value is 9999.

	MIN value
	Specifies the minimum value for the number. The default value is 0.

	REQUIRED
	Specifies that the Group Policy Object Editor does not allow a policy containing this PART to be enabled unless a value has been entered for this PART.

	SPIN value
	Specifies increments to use for the spinner control. The default is SPIN 1. SPIN 0 removes the spinner control.

	TXTCONVERT
	Writes values as REG_SZ strings (“1”, “2”, or “128”) rather than as binary values.

The valid keywords for NUMERIC are:

· KEYNAME

· VALUENAME

· MIN

· MAX

· SPIN

· DEFAULT

· REQUIRED

· TXTCONVERT

· END

· CLIENTEXT
Examples of NUMERIC Use

The following example illustrates use of the NUMERIC PART type using the DEFAULT option.

PART!!MyVariable
NUMERIC

 DEFAULT 5

 VALUENAME ValueToBeChanged

END PART

The following example illustrates use of the minimum and maximum valid values for a variable.

PART!!MyVariable
NUMERIC

 MIN 100

 MAX 999

 DEFAULT 55

 VALUENAME ValueToBeChanged

END PART
The following example illustrates use of the NUMERIC PART type using SPIN. In this case, increments of 100 are used for the spin control.

PART !!ProfileSize
NUMERIC REQUIRED SPIN 100

 VALUENAME "MaxProfileSize"

 DEFAULT 30000

 MAX 30000

 MIN 300

END PART

The following example illustrates use of the NUMERIC PART type using the TXTCONVERT option, which writes values as REG_SZ strings (such as “60”) instead of binary values.

PART !!ScreenSaverTimeOutFreqSpin
NUMERIC DEFAULT 900

 MIN 0 MAX 599940 SPIN 60

 TXTCONVERT

 VALUENAME "ScreenSaveTimeOut"

END PART

COMBOBOX PART Type
This PART type displays a combo box. It accepts the same options as EDITTEXT, as well as the SUGGESTIONS option, which begins a list of suggestions to be placed in the drop-down list. SUGGESTIONS are separated with spaces and must be enclosed in quotation marks (") when a value includes spaces. If a suggestion name includes white space, it must be enclosed in quotation marks. The list ends with END SUGGESTIONS.

Example

The following example illustrates the use of the SUGGESTIONS option.
SUGGESTIONS

 Alaska Alabama Mississippi ”New York“

END SUGGESTIONS

Keywords
The valid keywords for COMBOBOX are:

· KEYNAME

· VALUENAME

· DEFAULT

· SUGGESTIONS

· REQUIRED

· MAXLENGTH

· OEMCONVERT

· END

· NOSORT

· EXPANDABLETEXT

· CLIENTEXT

· END
DROPDOWNLIST PART Type

Displays a combo box with a drop-down list style. The user may choose only one of the entries supplied.

[image: image18.wmf]
Note

GPMC requires that you define the key name and value name before you specify DROPDOWNLIST.

DROPDOWNLIST Syntax

DROPDOWNLIST uses the following syntax.
PART !!text DROPDOWNLIST

 ITEMLIST

 NAME name VALUE value
 ..

 NAME name VALUE value
 END ITEMLIST

END PART

text

This represents the text to be displayed on the right of the spin control that you are creating. You can hard code it and enclose it in quotation marks (") or you can make the string a variable by putting !! in front of the variable name.

name

This is text that will be displayed in the drop-down list for a particular item.

value

The value to be written to the specified registry key if this item is selected. Values are assumed to be strings, unless they are preceded by NUMERIC. The following example shows both string and numeric values:

VALUE “Some value”
VALUE NUMERIC 1

The valid keywords for DROPDOWNLIST are:
· KEYNAME
· VALUENAME

· REQUIRED

· ITEMLIST

· END

· NOSORT

· CLIENTEXT

LISTBOX PART Type
The LISTBOX PART component specifies various options such as drop-down list boxes, text boxes, and text in the lower pane of the Group Policy Object Editor. LISTBOX accepts the options shown in Table 9.
Table 9 LISTBOX Options

	LISTBOX Option
	Description

	ADDITIVE
	By default, the content of list boxes overrides any values set in the target registry. This means that a control value is inserted in the policy file that causes existing values to be deleted before the values set in the policy file are merged. If this option is specified, existing values are not deleted, and the values set in the list box is in addition to whatever values exist in the target registry.

	EXPLICITVALUE
	This option makes the user specify the value data and the value name. The list box shows two columns, one for the name and one for the data. This option cannot be used with the VALUEPREFIX option.

	VALUEPREFIX prefix
	The prefix you specify is used in determining value names. If a prefix is specified, the prefix and an incremented integer are used, instead of the default value naming scheme described previously. For example, a prefix of “SampleName” generates the value names “SampleName1”, “SampleName2”, and so on. The prefix can be empty (“”), which causes the value names to be “1”, “2”, and so on.

By default, only one column appears in the list box, and for each entry a value is created whose name and value are the same. For instance, a “name” entry in the list box creates a value called “name” that contains data called “name”. When using a LISTBOX, use the ADDITIVE keyword unless you have a specific reason not to do so.

The valid keywords for LISTBOX are:

· KEYNAME

· VALUEPREFIX

· ADDITIVE

· NOSORT

· EXPLICITVALUE

· EXPANDABLETEXT

· END

· CLIENTEXT
[image: image19.wmf]
Note

Windows XP SP2 fixed issues relating to the LISTBOX ADDITIVE functionality. For more information, see the “Changes to LISTBOX ADDITIVE” section in this document.
ACTIONLIST
You can use an action list to specify a set of arbitrary registry changes to make in response to a control being set to a particular state.

Syntax

The ACTIONLIST syntax is as follows:

ACTIONLIST

[KEYNAME key name]

VALUENAME value name
VALUE value
END ACTIONLIST

key name

This is an optional path to the registry key. Do not include HKEY_LOCAL_MACHINE or HKEY_CURRENT_USER in the registry path as the preceding CLASS statement determines which of these keys is used. If no key name is specified, the previous key name in the hierarchy is used.

value name
Indicates the registry value to modify. Selecting this option sets the value to a REG_DWORD of 1, and clearing the option removes the registry value. If you want to specify values other than the default values, use the VALUEON and VALUEOFF statements directly following the corresponding VALUENAME statement. You specify these statements as follows:

VALUEON on value
VALUEOFF off value
value

Values are treated as strings unless they are preceded by NUMERIC, as in the following examples:

VALUE "Some value"

VALUE NUMERIC 1

If VALUE is followed by DELETE (for example, VALUE DELETE), the registry entry is deleted.

Table 10 lists the two variants for ACTIONLIST that can be used with POLICY and CHECKBOX.
Table 10 Variants for ACTIONLIST

	Variant
	Description

	ACTIONLISTON
	Specifies an optional action list to be used if the check box is selected.

	ACTIONLISTOFF
	Specifies an optional action list to be used if the check box is not selected.

ACTIONLIST Example

The following example illustrates the use of ACTIONLISTON and ACTIONLISTOFF.

POLICY "Deny connections requests"

 EXPLAIN "If enabled, TS will stop accepting connections"

 ACTIONLISTON

 VALUENAME "fDenyTSConnections" VALUE NUMERIC 1

 END ACTIONLISTON

 ACTIONLISTOFF

 VALUENAME "fDenyTSConnections" VALUE NUMERIC 0

 END ACTIONLISTOFF

END POLICY

Additional Elements

The .adm language supports the following elements:
KEYNAME

The KEYNAME keyword is used within a CATEGORY to define which key within the registry is modified as a result of an action here. KEYNAME should be followed by the registry path to the key that contains the value that you want to change. Do not include HKEY_LOCAL_MACHINE or HKEY_CURRENT_USER in the registry path as the preceding CLASS statement determines which of these keys is used.

If the KEYNAME contains a space, you must enclose the string in quotation marks (").

VALUENAME

Defines the options available within a POLICY. First identify the registry value that is to be modified as a result of using the keyword VALUENAME. For example, VALUENAME MyFirstValue.

The following example illustrates the use of VALUENAME. The Disable Boot / Shutdown / Logon / Logoff status messages policy prevents the display of system status messages.

POLICY!!DisableStatusMessages

 KEYNAME "Software\Microsoft\Windows\CurrentVersion\Policies\System"

 EXPLAIN!!DisableStatusMessages_Help

 VALUENAME "DisableStatusMessages"

END POLICY

Unless you specify otherwise, the value is written in the following format when the user checks or clears the option:

· Checked. Uses a REG_DWORD type with a value of 1.

· Cleared. Removes the value.

You can specify options other than these defaults by using VALUEOFF and VALUEON. If the option is to be selected within the lower pane of the Group Policy Object Editor, the VALUENAME needs to be within a PART scope.

CLIENTEXT

The CLIENTEXT keyword is used to specify which client-side extension to the Group Policy Object Editor needs to process the particular settings on the client computer. By default, the registry extension processes all settings configured under the Administrative Templates node. The CLIENTEXT keyword changes the default behavior and causes the specified extension to process these settings after the registry extension has placed them in the registry.

CLIENTEXT must be used within either the POLICY scope or the PART scope and should follow the VALUENAME statement.

The following example illustrates use of CLIENTEXT.
 POLICY !!DQ_Enforce

#if version >= 4

SUPPORTED !!SUPPORTED_Win2k

#endif

EXPLAIN !!DQ_Enforce_Help

VALUENAME "Enforce"

VALUEON NUMERIC 1

VALUEOFF NUMERIC 0

CLIENTEXT {3610eda5-77ef-11d2-8dc5-00c04fa31a66}

 END POLICY

The GUID that follows the CLIENTEXT keyword is the GUID of the client-side extension. The client-side extensions are listed in the registry under HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\Winlogon\GPExtensions.
VALUEON and VALUEOFF

You can use VALUEON and VALUEOFF to write specific values based on the state of the option. To enable this functionality, you can write the .adm file as described in the following examples:

KEYNAME key name

 POLICY!!MyPolicy

 VALUENAME ValueToBeChanged

 VALUEON “Turned On” VALUEOFF “Turned Off”

 END POLICY

KEYNAME key name

 POLICY!!MyPolicy

 VALUENAME ValueToBeChanged

 VALUEON 5 VALUEOFF 10

 END POLICY

Using Simple Policies and Policies with the VALUEOFF and VALUEON Statements

This section presents two examples that illustrate the difference between using the default policy states and specifying VALUEON and VALUEOFF statements. There is a significant difference between the two example policies.

Example 1

In this example, no explicit VALUEON or VALUEOFF statements are used. This means that the Administrative Templates use the default behavior when the user changes the state of this policy.

POLICY!!EnableSlowLinkDetect

EXPLAIN !!EnableSlowLinkDetect_Help

KEYNAME "Software\Policies\Microsoft\Windows\System"

VALUENAME "SlowLinkDetectEnabled"

END POLICY

Table 11 lists the default behavior.

Table 11 Example 1 Policy Defaults
	State
	Behavior

	Policy setting enabled
	A DWORD with the value 1 is written to the registry.

	Policy setting disabled
	The registry value is deleted.

	Policy setting not configured
	Nothing is changed in the registry.

Note the policy-disabled state. The value is not written to the registry with the value of 0—instead it is explicitly deleted. This means that a component reading the policy will not find the value in the registry, and will fall back to using the default in the code.

Example 2

In this example, the state values are explicitly defined, so when the user changes the policy, the Administrative Templates use these values.

POLICY!!EnableSlowLinkDetect

EXPLAIN!!EnableSlowLinkDetect_Help

KEYNAME "Software\Policies\Microsoft\Windows\System"

VALUENAME "SlowLinkDetectEnabled"

 VALUEON NUMERIC 1

 VALUEOFF NUMERIC 0

END POLICY

Table 12 lists the behaviors in Example 2.

Table 12 Example 2 Policy Defaults
	State
	Behavior

	Policy setting enabled
	A DWORD with the value 1 is written to the registry.

	Policy setting disabled
	A DWORD with the value 0 is written to the registry.

	Policy setting not configured
	Nothing is changed in the registry.

EXPLAIN
The EXPLAIN keyword is used to provide online Help text for a specific Group Policy. In Windows 2000, the Properties page for each policy setting includes an Explain tab, which provides details about the policy settings.

Each Group Policy that you create should include one EXPLAIN keyword, followed by at least one space, and then the EXPLAIN string in quotation marks (") or a reference to the Help string. For example:
POLICY!!Pol_NoConfigCache

#if VERSION >= 3

EXPLAIN!!Pol_NoConfigCache_Help

#endif

VALUENAME "NoConfigCache"

PART!!Lbl_NoConfigCacheHelp1 TEXT

END PART

END POLICY

[Strings]

Pol_NoConfigCache_Help="Prevents users from changing the automatic synchronization behavior at logoff."

In the preceding example, Help is offered for one of the Offline Files options. The EXPLAIN keyword wrapped in the #if VERSION allows this .adm file to be used with the Windows 2000 Group Policy Object Editor (version 3).
Line Breaks

To start text on a new line or to create a line break, use this syntax:

\n = Starts a new line

\n\n = Creates a line break

#If Version for Version Comparison

The IF VERSION conditional statement is used to control the display of certain policy settings and features in the Administrative Templates node, based on the version of the Group Policy Object Editor that you are using. IF VERSION allows for part of the .adm files to be conditionally parsed and ignored by earlier versions of the Group Policy Object Editor tool. For example, the SUPPORTED tag is not supported on versions of the Group Policy Object Editor earlier than version 4. For this reason any statement using the SUPPORTED tag should be enclosed by #If Version…#endif.

You can specify that any part of your .adm file be evaluated only in specific versions of the Group Policy editing tools, as shown in Table 5, in the “.Adm File Language Versions” section of this document.
To compare versions, use the following syntax:
#if Version (operator) x

#endif

The valid operators are listed in Table 13.
Table 13 Valid Operators for the Version Statement Number
	Operator
	Signifies

	> (GT)
	Greater than. For example, a > b means a is greater than b.

	< (LT)
	Less than. For example, a < b means a is less than b.

== (EQ)

	
	Equal. For example, a == b means a is equal to b.

	!= (NE)
	Not equal.

	>= (GTE)
	Greater than or equal to. For example, a >= b means a is greater than or equal to b.

	<= (LTE)
	Less than or equal to. For example, a <= b means a is less than or equal to b.

.Adm File String/Tag Limits

Various restrictions apply to .adm files and settings. Table 14 provides a complete list of these restrictions.

Table 14

	File String
	Tag Limits

	Maximum string length for Explain text
	4096

	Maximum string length for Category Explain text
	255

	Maximum string length for EDITTEXT string
	1023

Related Links

To learn more about Group Policy, see the following resources:

· Microsoft Group Policy Home Page at http://go.microsoft.com/fwlink/?LinkId=15088.

· Group Policy ADM Files at http://go.microsoft.com/fwlink/?linkid=31057.

· Managing Windows XP Service Pack 2 Features Using Group Policy on the TechNet Web site at http://go.microsoft.com/fwlink/?LinkId=31974.
· Group Policy in the Microsoft Platform SDK at http://go.microsoft.com/fwlink/?LinkId=26258.

· Group Policy Management Console on the MSDN Web site at http://go.microsoft.com/fwlink/?LinkId=17912.
· Group Policy in Windows Server 2003 on the Microsoft Web site at http://go.microsoft.com/fwlink/?linkid=29269.

· Article 816662, “Recommendations for Managing Group Policy Administrative Template (.adm) Files,” in the Microsoft Knowledge Base at http://go.microsoft.com/fwlink/?LinkId=4441.

· The Core Group Policy Technical Reference collection of the “Windows Server 2003 Technical Reference” at http://go.microsoft.com/fwlink/?LinkId=31788.

· The “Designing a Managed Environment” book of the Microsoft Windows Server 2003 Deployment Kit on the Microsoft Web site at http://go.microsoft.com/fwlink/?LinkId=30650.

