[image: image1.png]

[image: image2.png]| teton vew || & » | @@ B
Tveel

B Locel Computer Folcy

=@ Conputer Confgurtion
e Stings
Windons Seings
Adninave Tenpltes
8 UsetConfqurtion
Sofwat Seings
Windons Seings
=+ Administrative Templates

ine of Business Apps settings

Operating System

Implementing Registry-Based Group Policy for Applications

White Paper

Abstract

This white paper focuses on implementing registry-based Group Policy for applications that you are developing. This document begins with some details on what registry-based policy is, and when to use it. From there, the steps to develop registry based policy are described. The appendix to this white paper contains a full language reference to the .adm language used to deploy registry based policies.

© 2000 Microsoft Corporation. All rights reserved.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This white paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

Microsoft, Active Directory, IntelliMirror, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective owners.

Microsoft Corporation • One Microsoft Way • Redmond, WA 98052-6399 • USA

08/00

Contents

1Introduction

2Overview of Registry-Based Policy

2Policy versus Preference

2Defining Policies and Preferences

3How to Use Both Policy Settings and Preferences

4When to use Registry-Based Group Policy

6Designing and Developing Registry-Based Policy

6Design Considerations

6Best Practices for When to Create Group Policy

8Best Practices for User Interface Design

8Creating Explain Text for Group Policy

8.adm Files

9Best Practices for Developing Registry Based Policy Settings

9When to Create a Policy

9When Not to Create a Policy

10Writer’s Role in Developing Registry-Based Group Policy

10Creating Names for Group Policy

10Creating the Explain Text

12Developers Role in Developing Registry-Based Policy

17Testing Registry-Based Policy

18Building Your .adm File.

18Loading your .adm File Into the Group Policy Snap-In

20Appendix A: .adm Language Reference

20Sample .adm File

21Components of the .adm Language:

21Comments

21Strings

22CLASS

23CATEGORY

24POLICY

27PART

41Appendix B: Additional Keywords

45Appendix C: Other .adm Topics

45Using Simple Policies, and Policies with the VALUEOFF and VALUEON Statements

46EXPLAIN

46Line Breaks

46#if Version (for Version Comparison)

47Changing the .adm Files Being Used for a GPO

47Duplicate Category Sections

49Summary

49For More Information

20Figure 1. Example of .adm code and results in Group Policy.

24Figure 2. Example of CATEGORY.

25Figure 3. Example of POLICY.

26Figure 4. Example of Group Policy.

27Figure 5. Example of PARTS.

29Figure 6. Example of different Part types.

32Figure 7. Example of EDITTEXT and TEXT PART.

34Figure 8. Example of CheckBox.

37Figure 9. Example of NUMERIC part.

39Figure 10. Example of DROPDOWNLIST.

List of Tables

1Table 1. Components of Group Policy.

3Table 2. Results of Group Policy Settings and Preferences.

27Table 3. Policy Part Types.

31Table 4. Options for EDITTEXT part types.

35Table 5. Options for NUMERIC Part Types.

38Table 6. Option for DROPDOWNLIST Part Type.

40Table 7. Options for LISTBOX Part Type.

41Table 8. Variants for ACTIONLIST used with Policy and Checkbox.

45Table 9. Example 1 Policy Defaults.

46Table 10. Example 2 Policy Defaults.

47Table 11. Valid Operators for the Version statement number.

Introduction

Group Policy is the foundation of the IntelliMirror™ management technologies in the Windows 2000® Server operating system. To make use of all of its features, Group Policy requires Active Directory and Windows 2000 clients. In this environment, it allows an administrator to define and control the state of computers and users in an organization. Group Policy may be set on the following containers of the Active Directory: Sites, Domains, and Organizational Units (OUs). Additionally, the effect of Group Policy may be filtered using memberships in security groups. Once set, the system (Group Policy) maintains that state without further intervention.

The following table lists the components of Group Policy.

Table AUTONUM Components of Group Policy.

	Component
	Description

	Administrative Templates
	Registry based policy, known as System Policy in Windows NT® Server 4.0.

	Security Settings
	Security settings for domains, computers and users.

	Software Installation
	Assign or publish applications.

	Internet Explorer Maintenance
	Administer Internet Explorer after deployment.

	Scripts
	User logon/logoff and computer startup/shutdown.

	Folder Redirection
	The ability to re-direct folders and files to the network.

This document focuses on how you can implement registry-based policy for your application. The following topics are presented:

· Overview of registry-based policy.

· When to use registry-based policy.

· How to design, develop, and test registry-based policy.

· Language reference for the .adm language used by registry-based policy.

After reading this document, you can find out more about Group Policy from the following resources:
· Windows 2000 Group Policy white paper.
· Microsoft Platform Software Development Kit home page.

· Windows 2000 Server Resource Kit Deployment Planning Guide and the Windows 2000 Server Resource Kit.

Overview of Registry-Based Policy

Registry-based policy is the simplest and most common type of policy setting. This type of policy is implemented using:

· The Administrative Templates extension snap-in in the Group Policy snap-in to configure which policies are applied from the server side.

· A built in registry client side extension on every Windows 2000 or higher client to process the data and create the client registry keys.

Registry-based policy settings are stored in any of the four Group Policy keys listed below. These are considered the approved registry locations for policy settings.

For computer policy settings:

· HKLM\Software\Policies (The preferred location)

· HKLM\Software\Microsoft\Windows\CurrentVersion\Policies

For user policy settings:

· HKCU\Software\Policies (The preferred location)

· HKCU\Software\Microsoft\Windows\CurrentVersion\Policies

These locations have security permissions so that a standard user cannot change these keys to disable or change the behavior of applied policies. The keys are created when the GPO is applied. If the GPO that applied the keys is ever removed, the registry keys associated with it will also be removed at that time.

Note: A local administrator can overwrite these registry keys and thus change or disable the behavior of the policy. (Refer to the Windows 2000 Group Policy white paper for more information.)

Policy versus Preference

Although Group Policy settings and preferences can both be implemented using registry settings, it is important that you understand the differences between them, when to use which, and when to use them together. Policies and preferences both contain configuration information, and can be used alone or together.

Defining Policies and Preferences

Preferences are set by the user or by the operating system at installation time. The registry values that store preferences are not located under the Group Policy keys listed in the preceding section. Users can typically change their preferences at any time, usually through the user interface of your application. For example users may decide to change the location of their local dictionary for Microsoft Word to a different location or to set their wallpaper to a different bitmap.

Group Policy settings are set by administrators and take precedence over user preferences; these registry values are stored under the approved Group Policy keys. The Group Policy keys are secure, so users cannot change or disable these settings.

Although Group Policy settings take priority over a preference, they do not overwrite or touch the registry key used by the preference. If both a policy and preference are present, the preference will be successfully restored if the policy is removed or disabled. Preference settings persist in the registry until they are reversed by a counteracting policy setting or by editing the registry.

How to Use Both Policy Settings and Preferences

It is common practice to offer both a preference and a policy setting for most applications. When building components of your application, you may want to offer the ability to allow a user to configure part of your component and also control this setting centrally using a registry-based policy.

The configuration of the wallpaper on the Windows desktop provides us with an example of where both a policy and preference co-exist. For example, in the Windows shell, it is possible for users to configure their desktop wallpaper to be displayed using the Display icon in Control Panel. The desktop wallpaper can also be configured using a policy setting that ships in Windows 2000. A policy called Active Desktop Wallpaper can be found in the Group Policy snap-in, under the User Configuration\Administrative Templates\Desktop\Active Desktop node. Administrators can use this policy to specify the desktop wallpaper that is displayed on users’ desktops.

The following table lists the resultant behavior for Group Policy settings and preferences.

Table AUTONUM Results of Group Policy Settings and Preferences.

	Scenario
	Policy present
	Preference present
	Resultant behavior

	1
	No
	No
	Default

	2
	No
	Yes
	Preference configures behavior

	3
	Yes
	No
	Policy configures behavior

	4
	Yes
	Yes
	Policy configures behavior. Preference is ignored

Note: If you disable or remove a policy, the preference will take effect again. Preference settings are not overwritten by any policy setting in the registry, as they use different keys for both the policy and preference.

When to use Registry-Based Group Policy

As stated previously, registry-based policy is simple and easy to implement for the developer. For the administrator, registry based policy is easy to configure and deploy to users.

The following are some questions you can ask to determine whether registry-based policy is the correct choice for your application. Before proceeding, consider the types of things you want to control with Group Policy.

· If you want to create available and non-available type functionality for a part of your component, registry-based policy is an excellent choice as it will give administrators a switch to turn functionality on or off by configuring the policy.

Example:

Let us assume you want to control whether a certain item is displayed or not. You may be able to create a Group Policy that either enables or disables having this item displayed.

· If the type of policy you want to create will define a set of static modes, registry-based policy is also a good choice.

Example:

You would like to create a Group Policy that sets the language that is used by a computer. You have a static list of the selections that an administrator can choose from.

When the administrator enables the policy setting from the Administrative Templates snap-in, he or she will be provided with a list of languages to choose from.

· If the type of policy you want to create requires simple input, which can be stored in the registry as plain text from the administrator to configure the policy, then registry-based policy is a good choice.

Example:

· You would like to create a Group Policy to define the screensaver or bitmap to be displayed.

· When users enable this policy setting, they are given a text dialog to enter the name and path of the file to be used. This information is stored to the registry as plain text.

· Your application checks for this information and behaves accordingly.

· If the policy you want to create can be configured using a simple UI and this configuration information can be stored in the registry as plain text, you should consider registry-based policy.

The UI controls provided by the Administrative Templates snap-in in which your registry-based policy will be stored are:

· CheckBox

· ComboBox

· DropDownList

· EditText

· ListBox

· Numeric with Optional SpinControl

· Static text

These controls are described in the .adm language section of this document.

Designing and Developing Registry-Based Policy

Design Considerations

It is important to clearly define what aspects of your component or application you would like to enable with Group Policy.

For example, consider the following issues:

· What specific things would you like policy to control?

· How many policy settings will it require to control this behavior? Refer to the section on Best Practices for User Interface Design for more information.

· What is the default behavior? What is the behavior when the policy is enabled or disabled? How is this reflected in the UI?

· Will the policy settings affect users or computers or possibly both?

· Understand the UI capabilities that the .adm language offers. The .adm language will be used to build the UI that is presented to administrators when they configure the policy using the Group Policy snap-in.

Best Practices for When to Create Group Policy

This section highlights best practices for when it would be appropriate to create Group Policy.

· Policy on/off. Provide a single policy setting that controls whether or not policy is to be applied to your application at all. It should handle allowing defaults and/or tightly managed type policy.

For example:

HKCU\Software\Policies\CoName\AppNameVersion\Settings, with the value of “Policy” the data would be one of the following values: 0,1,2,3.

With 0 = No policy applied; 1 = only apply defaults; 2 = only apply mandated policy; and 3 = apply both.

This allows the administrator to have a ‘switch’ that can be used to control the behavior of the application.

· New options for a new release. Provide policy settings for all of the new features of the application. Provide a single Group Policy for all of the new features, as well as a policy for each logical grouping of new features. A policy should also be considered for specific features that administrators would need to control after the new features have been enabled.

Rationale - One significant cause for upgrade delays in corporate environments is the administrator’s inability to rollout the new version of an application without overwhelming users and the support staff with the new features. Enabling policy settings in this area will allow the administrator to control how and when users get the features. Grouping related features will allow the administrator to prevent use (or lock-out) of a new feature set until users have been trained.

Options that create support problems. Determine the top issues that users have with the application and consider ways that policies could be used to prevent the support call. This applies to both the applications support and also to “in-house” corporate support centers.

· Feature re-design. When a product feature is being redesigned, consider why and if a policy could help address the reason for the re-design. For instance, if the feature was deemed overly complex, consider creating a Group Policy that would shield users from the more advanced functions.

· Requires advanced knowledge of the application. If there are complicated or more advanced settings that the typical user does not normally need to know about, use Group Policy to give the administrator the ability to control access to the settings.

Data population. Use policy to populate data for your application. For example, a phone dialer could use policy to provide the administrator with the ability to either default and/or mandate certain items in the phone directory.

· Home market issues. Group Policy settings are not just for the corporate environment. Consider issues like limiting functions for different user skills or feature levels for home users sharing the same computer (dad, mom, 3 to 10 year olds, 11 to 21 year olds, and so on).
· Do you need or already support preferences?

Can the item that you need to policy-enable be set by a preference? If so, you will want to ensure that you have covered the scenarios of having both the Group Policy and preference in existence. Refer to the How to Use Both Policy Settings and Preferences section, earlier in this document.

Define a registry key and values for these settings. Any registry keys that are required for your policy settings must be located under the approved Group Policy keys. If your policy is based on an existing preference, then use the same registry key/value under the policies key.

· After you understand how your policy will behave, make sure to provide details on how this will be reflected in the user interface. The user interface must always adhere to policy settings that are applied. Policy settings should have a visible, immediate effect on the UI. If possible, the policy settings should hide the UI that is associated with this policy.

Best Practices for User Interface Design

This section highlights best practices for user interface (UI) issues related to creating Group Policy.

The following example lists some design options that developers could use to disable My Network Places:

· Do nothing. In this case, the user clicks My Network Places and nothing is displayed. The user will assume something is wrong and call the helpdesk. This would be a poor design option. Correctly creating and using Group Policy should reduce IT calls not increase them.

· Create an error message. In this case, the user clicks My Network Places and an error message is displayed saying: “This has been disabled by your administrator.” The user will call the administrator to ask why this feature has been disabled. Again this is not recommended.

· Disable the UI. A disabled (grayed-out) UI feature typically implies that there is a way to enable the UI. The user will likely spend a lot of time trying to get this feature to work. In the end, they will either give up frustrated or call the helpdesk.

· Hide the UI feature. If you choose to hide the UI, the user will generally not recognize that anything is wrong. This is the preferred choice for Group Policy settings.

Creating Explain Text for Group Policy

Developers and technical writers typically work together to write the Explain text that is displayed in the UI whenever an administrator tries to configure your policy setting. This text is an important piece of documentation that should explain the behavior of your policy, its interaction with other policies, and any other notes that you would like to make users aware of. More details and a template are provided later in this document in the Writers Role in developing Registry-Based Policy section.

.adm Files

To determine which registry-based policies are currently available for the operating system, you can read the .adm files provided with Windows 2000 Server. To do this, you can use a text editor such as Notepad. The .adm files that ship with Windows 2000 Server are located in the folder: %windir%\inf\
Note: You should treat the .adm files that ship in the operating system as read only. These files will be updated from time to time in service packs and in the future releases of the product. If you want to customize these files, you should make a copy and save them using a different filename.

You will want to determine if there are any policies similar to the ones you would like to create. Looking for similar policies will provide the following:

· A model to use as a basis for your Group Policy settings.

· Consistency with available policy settings.

· Information about possible interactions between policies.

When you create the specification document for your component, you should make sure to include all this type of information.

Best Practices for Developing Registry Based Policy Settings

For the design of your policy, consider the following issues:

· Try not to make a single policy to control all aspects of your component. Group Policy is easier to implement and use if you have several smaller policies. This approach gives the user more flexibility.

· Your policy should have associated behavior for each of the following three possible states:

· Enabled should turn on the behavior indicated by the policy name.

· Disabled should turn on the default behavior.

· Not Configured should have no effect.

· The User Interface should always reflect the policy applied.

· You should aim to have an associated policy for each user preference in your application.

When to Create a Policy

You should create a policy for the following purposes:

· To hide or disable new behavior that may confuse your customers.

· To hide settings and options that users may waste time setting and unsetting.

· To hide or disable a UI that can lead users into a situation in which they must call the help desk for support.

· To help customers administer their computers and lock-down their desktops.

When Not to Create a Policy

You should not create a policy:

· For all your application settings—be selective about the features you would like to enable or disable.

· If you do not intend to provide support for the policy setting. Treat each policy as a feature that needs to be tested, validated, and supported.

Writer’s Role in Developing Registry-Based Group Policy

The writer plays two important roles in developing registry-based policy settings: creating the policy name and writing the Explain text. Both are detailed here.

Creating Names for Group Policy

The writer’s first task is to help develop the name of the policy setting that will be displayed in the Group Policy snap-in. The Group Policy name should be short but also reflect what the policy does.

Note: Policy names are limited to 256 characters. However, depending on the font used on the user’s workstation, a smaller number of characters will be displayed, and all others truncated. On most systems, you can assume that you will have the ability to display policy names up to 65 characters. (Resolution 1024 / 768 with small fonts installed).

Best Practices for Naming Group Policy

· When Group Policy names get localized to foreign languages, they typically require additional characters. Therefore, we recommend that if you are using English to name your Group Policy, you limit it to 49 characters. (This allows your title to grow by 33 percent during localization without causing any truncation issues when displayed.

· Do not try to supplement your Group Policy title in the UI with a TIP text that can be displayed in the UI using the TEXT Part Type provided by the .adm language.

Creating the Explain Text

The writer’s second task in developing registry-based policy is creating the associated Explain text for each policy setting. Explain text is displayed in the policy Properties dialog box whenever an administrator selects a policy setting, and then clicks the Explain tab. This text is an important piece of documentation that provides information about the behavior of the policy, its interaction with other policies, and any other issues that you would like to make administrators aware of.

It is helpful to draft the Explain text soon after creating the specification document. This will serve as a high-level roadmap for developers, and it also assists testers in creating a test plan for the policy.

Note: Explain text is limited to a maximum of 4096 characters.

The following is a template that you may want to use to layout the Explain text. You will want to include the following items (listed in order):

1. A one or two line description of the policy.

2. A one or two line description of the feature that the policy affects.

3. A description of the behavior of the policy when it is enabled.

4. A description of the behavior of the policy when it is disabled.

5. A description of the behavior when the policy is not configured.

6. Any tips for using the policy setting.

7. Any notes or interactions that this policy has with other settings.

As a Best Practice, you should provide information on:

· Items that are not covered by this policy setting.

· Any other policies required for your policy to function.

· Any other policies that are related to the same component that your policy affects and which may have a higher or lower priority. An example of this would be if you have a policy to restrict access to the LAN settings for a computer. This policy would take priority over any more granular policy settings that covered the actual items you can configure within a LAN connection.

· Any related policies that you would like to make the administrator aware of.

Sample Explain Text

The following is an example of Explain text from the System.adm file that is included in Windows 2000 Server:

The policy displayed is: Administrative Templates\User Settings\Desktop\Active Desktop\Active Desktop Wallpaper.

Specifies the desktop background ("wallpaper") displayed on all users' desktops.

This policy lets you specify the wallpaper on users' desktops and prevents users from changing the image or its presentation. The wallpaper you specify can be stored in a bitmap (*.bmp), JPEG (*.jpg), or HTML (*.htm, *.html) file.

To use this policy, type the fully-qualified path and name of the file that stores the wallpaper image. You can type a local path, such as C:\Winnt\Logo.bmp or a UNC path, such as \\Server\Share\Logo.bmp.

If the specified file is not available when the user logs on, no wallpaper is displayed. Users cannot specify alternate wallpaper.

You can also use this policy to specify that the wallpaper image be centered, tiled, or stretched. Users cannot change this specification.

If you disable this policy or do not configure it, no wallpaper is displayed. However, users can select the wallpaper of their choice.

Note: This policy requires that Active Desktop be enabled. By default, Active Desktop is disabled. To use a policy to enable Active Desktop, use the "Enable Active Desktop" policy.

Also, see the "Allow only bitmapped wallpaper" and the "Disable changing wallpaper" policies.

Developers Role in Developing Registry-Based Policy

1) Understand how and when policy is applied.

2) Understand the behavior of the policy to be developed. When deploying your policy, an administrator will be able to set your policy settings to one of three states: Enabled, Disabled or Not Configured. The specification document should detail the behavior for all three of these states.

3) Select registry location, naming and data types.

· Registry keys used for your policy setting must live in one of the policy keys:

i. HKCU\Software\Policies
(preferred location)

ii. HKLM\Software\Policies

(preferred location)

iii. HKCU\Software\Microsoft\Windows\CurrentVersion\Policies

iv. HKLM\Software\Microsoft\Windows\CurrentVersion\Policies

· The folder in which your registry keys are created under these policy keys is up to you. We recommend that you mimic the directory structure of any associated preferences that you have under the policies key that you suggest.

For example, if your component stores its preferences in the location: Software\Microsoft\Windows\Component Name

Then you would store the associated policy settings in the location:

Software\Policies\Microsoft\Windows\Component Name
4) Select values that can be assigned to these registry keys that you selected in Step 2.

You will want to choose an appropriate registry value for each of these states that your code will look for under the key you selected in Step 2.

· The Enabled and Disabled states should have an associated registry key and value.

· The Not Configured state should not write any value to the registry.

· For the actual keys that will be used, the only types of data that can be stored to them are:

i. REG_DWORD

ii. REG_SZ

iii. REG_EXPAND_SZ

· Confirm the values selected with the developer for each of these three states.

a. You will want to confirm these values with the developer or the writer of the .adm file so they match.

b. These values should be documented in the specifications.

5) Modify your component to check the policy key for the registry key and associated value(s) that you selected to be used for your policy. In the case where you have a policy and preference:

· Read the policy value first, and then if not found, read the preference. (Policy always takes priority)
· Use the standard registry functions to read both the policy and the preference.

· If no policy exists, then default in the code. In most instances you will read an associated preference at this point if one exists.

· Consider the sample code below to perform this lookup for you.

#define PREFERENCE_KEY TEXT(“Software\\Microsoft\\Windows\\CurrentVersion\\Explorer”)

#define POLICY_KEY TEXT(“Software\\Policies\\Microsoft\\Windows\\Explorer”)

DWORD ReadValue (LPTSTR lpValueName, DWORD dwDefault)

{

 HKEY hKey;

 LONG lResult;

 DWORD dwValue, dwSize = sizeof(dwValue);

 // First, check for a policy

 lResult = RegOpenKeyEx (HKEY_CURRENT_USER, POLICY_KEY, 0,

 KEY_READ, &hKey);

 if (lResult == ERROR_SUCCESS)

 {

 lResult = RegQueryValueEx (hKey, lpValueName, 0, &dwType,

 (LPBYTE) &dwValue, &dwSize);

 RegCloseKey (hKey);

 }

 // Exit now if a policy value was found

 if (lResult == ERROR_SUCCESS)

 {

 return dwValue;

 }

// Second, check for a preference

 lResult = RegOpenKeyEx (HKEY_CURRENT_USER, PREFERENCE_KEY, 0,

 KEY_READ, &hKey);

 if (lResult == ERROR_SUCCESS)

 {

 dwSize = lResult = RegQueryValueEx (hKey, lpValueName, 0,

 &dwType, (LPBYTE) &dwValue, &dwSize);

 RegCloseKey (hKey);

 }

 // Exit now if a preference was found

 if (lResult == ERROR_SUCCESS)

 {

 return dwValue;

 }

 // Neither a policy or a preference was found, so return the default value

 return dwDefault;

}

6) Make sure that the UI for your component adheres to any policies that you create. If your policy removes or disables functionality this must be reflected in the UI. Refer to more details in the Developers Role in Developing Registry-Based Policy for UI behavior guidelines.

7) The component which you are policy enabling should check the appropriate policy keys when your component starts and also during a policy refresh. Policy is refreshed periodically and the assigned policy settings could change. Therefore, if you have a policy setting that changes the user interface, it is even more important for you to monitor when a policy refresh occurs so you can refresh the display.

For example:

· You create a policy that removes the Find command from a menu in your application. When this policy is enabled, a registry key is set to indicate that the Find command should not be available.

· When your application starts it should check for this key, and if so make the Find command unavailable.

· But what if the user is already logged on, and has the application open? In this scenario, when policy is refreshed, you want this change to take effect immediately and not require the user to close and reopen the application. By watching for a policy refresh, and refreshing the display, you can prevent this problem.

You can implement this using two different methods. The first is to use the RegisterGPNotification API to allow you to be notified when Group Policy has been changed. To use RegisterGPNotification, an application will more than likely do this from a background thread. A code sample is provided below:

//

 // Call CreateThread to watch for GP notifications

 //

 hThread = CreateThread (NULL, 0, (LPTHREAD_START_ROUTINE) NotifyThread,

 0, 0, &dwID);

// GP notification thread. When the events are signalled, a message is added to the main window

DWORD NotifyThread (DWORD dwDummy)

{

 HANDLE hHandles[3];

 DWORD dwResult;

 RegisterGPNotification(hMachineEvent, TRUE);

 RegisterGPNotification(hUserEvent, FALSE);

 hHandles[0] = hExit;

 hHandles[1] = hMachineEvent;

 hHandles[2] = hUserEvent;

 while (TRUE) {

 dwResult = WaitForMultipleObjects (3, hHandles, FALSE, INFINITE);

 if ((dwResult == WAIT_FAILED) || ((dwResult - WAIT_OBJECT_0) == 0)) {

 if (dwResult == WAIT_FAILED) {

 AddString (TEXT("WaitForMultipleObjects failed."));

 }

 break;

 }

 if ((dwResult - WAIT_OBJECT_0) == 1) {

 AddString (TEXT("Machine notify event signaled."));

 } else {

 AddString (TEXT("User notify event signaled."));

 }

 }

 UnregisterGPNotification(hMachineEvent);

 UnregisterGPNotification(hUserEvent);

 return 0;
The second method to implement this is by watching the WM_SETTINGCHANGE window message with the IParam set to “Policy”. A code sample is provided below:

case WM_SETTINGCHANGE:

 if (!lstrcmpi ((LPTSTR)lParam, TEXT("Policy"))) {

 if (wParam) {

 AddString (TEXT("Received WM_WININICHANGE: machine policy applied."));

 } else {

 AddString (TEXT("Received WM_WININICHANGE: user policy applied."));

 }

 }

 break;
Best Practice for Developing Registry-Based Policy:

· If security is important to you, you should try to implement registry-based policy at the lowest level possible. If you can make your APIs policy aware, it will be very difficult for the policy to be defeated. If you implement the policy at a higher level, possibly just at the UI level, a user can create an application that will bypass your policy.

· How deep you need to go is determined by what you want to provide to your customer. Most times, you will use policy to simplify the user experience and reduce the TCO of the desktop. In this case you can get away with implementing policy settings at a higher level in your code.

Testing Registry-Based Policy

Create a test plan. Your test plan should clearly document:

1) What is the default behavior? What is the behavior when the policy is enabled, disabled, and not configured?

2) What are the possible settings that the policy can be configured as? What is the associated behavior?

3) Is there an associated preference? What is the behavior of the preference?

4) What changes in the UI when a policy is enabled, disabled, or not configured?

5) If you allow the administrator to give input when setting a policy, you should test the behavior for incorrect input.

· For example: You create a policy to configure the bitmap to be displayed when your application, and the policy setting requires the administrator to enter a path to the bitmap. You will want to test what occurs if the path is incorrect or if the file is not present.

6) Test your new policies individually first. Then test how each policy interacts with other policies that are similar, or affecting the component that your new policy affects.

Example: You create a policy to configure the wallpaper that will be displayed on your clients’ desktops. If you check the current list of policy settings that ship with Windows 2000, you will find that there are other wallpaper policies that already exist. In this scenario, you should test how these policies interact. Any issues that arise need to be addressed or documented in the Explain text.

Best Practice:

Testing should ensure that the UI is policy aware. If the UI is not aware of the policy, the user experience will be confusing and cause confusion for the end user.

For example: If your policy restricts access to a certain item in your component, then all access to this component and its configuration should not be available in the UI. Some of the possible ways to achieve this are:

a. Removing the item completely visually.

b. Grey-out the item and disable it.

Building Your .adm File.

Once you have modified your component to check the appropriate registry keys and behave accordingly, you need to create an .adm file.

The .adm file will be used to configure your Group Policy settings on the client computers.

Once you have created an .adm file, copy it into the Group Policy snap-in. Using the Group Policy snap-in, administrators can configure and deploy the policy registry settings to client computers.

For the details on how to create an .adm file, please refer to Appendix A: .adm Language Reference.

Loading your .adm File Into the Group Policy Snap-In

Once your have created an .adm file to test your policy, you can load this template into the Administrative Templates extension snap-in by performing the following steps:

1) Load the Group Policy snap-in.

· At a command prompt type: GPEDIT.msc and press ENTER.

2) Under either Computer Settings OR User Settings, right click on Administrative Templates.

3) On the context menu that appears, click on Add/Remove Templates.

4) A new dialog box will appear that will allow you to add or remove .adm templates. Click on Add.

5) Enter the name of the filename of the .adm file that you would like to add.

6) Click on Open.

7) If your .adm file was successfully loaded, you will be returned to the dialog that you saw in Step 4. In this case click on Close. Your policy template has been added successfully. Skip all the steps below.

8) If your .adm file was not successfully loaded, you will be presented with a dialog displaying the errors that occurred during the loading of .adm.

· At this point, make a note of the errors that were found. Click on OK.
· You will be returned to the dialog that you saw during Step 4. Although your .adm file was not successfully loaded, it will still appear in the list of .adm files loaded.

· Select your .adm file, and click on Remove.

· Click on Close.

· You are now back to the Group Policy snap-in. At this point, edit your .adm file and correct any problems. Then repeat this process again starting from Step 2, to try to load your .adm template again.

Appendix A: .adm Language Reference

Once you have policy enabled your application to use registry-based policy, you need to create a method for a local administrator or domain administrator to enable and configure your policy setting. All registry-based policy settings appear and are configured using the Administrative Templates snap-in in the Group Policy Editor (GPE).

You must create a text file that describes your policy settings using the .adm language for your policy to be available in the GPE. The .adm language provides a framework language.

Once an .adm file is created to detail your policies, an administrator can add this template to the Administrative Templates snap-in and the policies will appear in the UI. Multiple .adm files can be loaded in the Administrative Templates snap-in at the same time. By default with Windows 2000 or higher, the following .adm files are already loaded:

· System.adm

· Conf.adm

· Inetres.adm

Sample .adm File

For an example of a completed .adm file, see Figure 1 below. The following sections of this document will provide more specific details of the syntax and functionality available in the .adm language.

The .adm code is presented on the left, and a screenshot on the right reflects the effect of this template in the Group Policy snap-in.

[image: image3.png]=lolx|

| acion view || & = | @Em |5 B2

Tiee |

B Locel Computer Folcy

@ Conpute Congion
Sotware Setings
Widows Setings
Adninststve Tenpltes
82 Use Conguton
Softate Stings
Widows Setings
Adninststve Tonpltes
23 Deskiop Setings

=

Foie I
% Dicable ooy

Disable Autoplay Properties

Pl ||

58 Disable Autoley

& Not Configured
© Enabled
 Disabled

Disable Autoplay ot [CD-AOM dives <

CLASS USER

CATEGORY !!DesktopLockDown

 KEYNAME "Software\Policies\System"

 POLICY !!DisableTaskMgr

 EXPLAIN !!DisableTaskMgr_Explain

 VALUENAME "DisableTaskMgr"

VALUEON NUMERIC 1

VALUEOFF NUMERIC 0

 END POLICY

[strings]

DisableTaskMgr="Disable Task Manager"

DisableTaskMgr_Explain="Prevents users from starting Task Manager"

DesktopLockDown="Desktop Settings"

Figure 1. Example of .adm code and results in Group Policy.
This sample .adm code allows you to configure a policy called “Disable Task Manager,” which appears in the Group Policy Editor namespace: User Configuration\Administrative Templates\Desktop Settings.
This policy achieves the following:

· If you enable this policy it will create a registry key called DisableTasMgr and set its value to 1.

· If you disable this policy it will create a registry key called DisableTasMgr and set its value to 0.

· In both cases the DisableTasMgr key will be created below HKCU\Software\Policies\System

This sample gives you a very basic example of what you can do with .adm files. The following sections of this document walk you through more details of the .adm language.

Components of the .adm Language:

Each .adm file can contain zero or more policies, and each policy in turn can contain zero or more parts. The .adm language includes the following components:

· Comments
· Strings
· CLASS
· CATEGORY
· POLICY
· PART
· ITEMLIST
· ACTIONLIST
Comments

There are two methods that you may use to add comments to an .adm file. You can precede the comment either with a semicolon (;) or two forward slashes (//). Or you can place comments at the end of any valid line.

Strings

To add strings to an .adm file, precede the text with two exclamation points (!!). At the end of your .adm file, all strings must be defined in the [strings] section of the .adm file. The strings must be enclosed in quotes. Optionally, you can enclose a variable name or hard-coded string in double quotation marks.

Example:

POLICY !!LimitSize

 EXPLAIN !!LimitSize_Explain
; This string is stored in the strings section

 TIP1 “Limit Profile Size to”
; This string is hard coded

[strings]

LimitSize="Limit profile size"

LimitSize_Explain="Limits the size of user profiles"

Best Practice:

It is a best practice to place all strings used in your .adm file in the [strings] section of the .adm file. This facilitates conversion of the .adm file to other languages (localization), as you will only need to modify the [strings] section of an .adm file to port it to different languages. Any names and strings with spaces in them must be enclosed in double quotation marks.

CLASS

This component is used to define where your policy will appear in the Group Policy Editor snap-in.

The first entry in the .adm file is the keyword CLASS. We use this to specify whether the subsequent entries should be displayed under the Computer Settings or the User Settings node of the Group Policy snap-in.

Syntax

The CLASS syntax is as follows:

CLASS name
name

This defines the name of the Class, which must be MACHINE or USER.

If the .adm file contains a Class other than the valid Classes (MACHINE or USER), the errors are ignored when the Group Policy snap-in loads.

CLASS Example

The following example illustrates use of CLASS.

CLASS MACHINE

CLASS USER

Note: You can define multiple CLASS USER or CLASS COMPUTER sections in an .adm file. When the file is processed, all the CLASS USER sections will be merged. The same occurs for all CLASS COMPUTER sections.

CATEGORY

Once you have defined if your policy will appear under the Computer Settings or User Settings node of the Group Policy snap-in using the CLASS component, you may need to use the CATEGORY component to display a node name under which your policy setting will be displayed in the Group Policy snap-in.

Note: To create child nodes, you may nest CATEGORY within CATEGORY.
Syntax

The CATEGORY syntax is as follows:

CATEGORY !!name

KEYNAME key name

[policy definition statements]

END CATEGORY

name

The CATEGORY name as it should appear in the Group Policy snap-in list box. Optionally, you can enclose the variable name in double quotation marks. Names with spaces must be enclosed by double quotation marks.

key name

This is an optional path to the registry key to use for the CATEGORY.

Do not use HKEY_LOCAL_MACHINE or HKEY_CURRENT_USER in the registry path; the preceding CLASS statement specifies which of these keys to use.

If you specify a key name, all child categories, policies, and parts will use this key name, unless they specifically provide a key name of their own. Names with spaces must be enclosed in double quotation marks.

policy definition statements

Categories can include zero or more POLICY statements. A policy definition statement cannot appear more than once within a single category.

CATEGORY Example

The example in Figure 2 below illustrates the use of CATEGORY and nesting.
CLASS USER

[image: image4.wmf]

; The following categories will be displayed

; under User settings

CATEGORY !!Desktop

 KEYNAME "Software\Policies\System"

 ; <INSERT POLICIES HERE>

 CATEGORY !!InternalApps

 KEYNAME "Software\Policies\InternalApps"

; <INSERT POLICIES HERE>

 END CATEGORY

END CATEGORY

[strings]

Desktop="Desktop Settings"

InternalApps="Line of Business Apps settings"

Figure 2. Example of CATEGORY.

Keywords

The valid keywords for CATEGORY are:

· KEYNAME

· CATEGORY

· POLICY

· END

Note: If you have a CATEGORY defined with a default KEYNAME in it, and the same category is found again later in the .adm file, that same default KEYNAME is still in effect. This means it is possible that you could get an error message about KEYNAME being defined twice, when it was actually just defined in the same category earlier.

POLICY

To identify a policy that the user can modify, you use the keyword POLICY. The policy and its associated controls are displayed in a dialog box that administrators use to set the state of the policy. You can use multiple POLICY key names under one KEYNAME.

The following examples in Figure 3 illustrate the syntax of POLICY.

[image: image5.wmf]

Syntax

POLICY name
[KEYNAME key name]

EXPLAIN help string
VALUENAME value name
CLIENTEXT guid

[part definition statements]

END POLICY

Figure 3. Example of POLICY.

name

The name of the policy as it should be displayed in the Group Policy snap-in namespace.

key name

This is an optional path to the registry key to use for the category. Do not include HKEY_LOCAL_MACHINE or HKEY_CURRENT_USER in the registry path; the preceding CLASS statement determines which of these keys is used.
If you specify a key name, all PART definition statements will use this key name unless they specifically provide a key name of their own.

help string

This is the text string that is displayed in the Explain tab of the policy's dialog box.

value name

This is the registry value to modify. Selecting the option sets the value as a REG_DWORD of 1. Clearing the option removes the registry value. To specify values other than the default values, use the VALUEON and VALUEOFF statements directly following the corresponding VALUENAME statement. These statements are specified as follows:
VALUEON on value
VALUEOFF off value
When you use these statements, the behavior is modified such that if the administrator selects the option, the value is set to on value. If the administrator clears the option, the value is set to off value.

guid

This is an optional value that specifies the GUID of the snap-in extension.

part definition statements

A policy can contain zero or more PART statements, which specify various options, including drop-down list boxes, text boxes, and text in the lower pane of the Group Policy snap-in.

POLICY Example

The following example in Figure 4 illustrates the use of POLICY.

CLASS MACHINE

CATEGORY !!DiskQuota

 KEYNAME "Software\Policies\MS\DiskQuota"

[image: image6.wmf]

 POLICY !!DQ_Enable

 EXPLAIN !!DQ_Enable_Help

 VALUENAME "Enable"

 VALUEON NUMERIC 1

 VALUEOFF NUMERIC 0

 CLIENTEXT {3610eda5-77ef-11d2-8dc}

 PART !!DQ_EnableTip1 TEXT

 END PART

 END POLICY

END CATEGORY

[strings]

DiskQuota="Disk Quotas"

DQ_Enable="Enable disk quotas"

DQ_Enable_Help="Enables and disables disk quota management"

DQ_EnableTip1="Enable disk quotas for all NTFS volumes"

Figure 4. Example of using the POLICY component for Group Policy.

KEYWORDS

The valid keywords for POLICY are:

· KEYNAME

· PART

· VALUENAME

· VALUEON

· VALUEOFF

· ACTIONLISTON

· ACTIONLISTOFF

· END

· HELP

· CLIENTEXT

· POLICY

PART

You can use PART to specify various options, such as drop-down list boxes, text boxes, and text in the lower pane of the Group Policy snap-in. See Figure 5 below.

Note:

[image: image7.wmf]

For a simple policy where you only need to set a registry key to either 1 or 0, you will not need to use PART. PART allow you to make the system administrator experience richer and also collect more information from the administrator through simple controls.

Syntax

The PART syntax is:

PART name part-type
 type-dependent data

 [KEYNAME key name]

 VALUENAME value name
END PART

Figure 5. Example of PART.

name

Specifies the PART name as it should appear in the Group Policy snap-in. It may optionally be enclosed by double quotation marks. Names with spaces must be enclosed by double quotation marks.

part-type
· A policy PART type. This can be one of the types shown in the following table.

Table AUTONUM Policy PART Types.

	CHECKBOX
	Displays a check box. The value is set in the registry with the REG_DWORD type. The value is other than zero if the check box is checked, and zero if it is not checked.

	COMBOBOX
	Displays a combo box.

	DROPDOWNLIST
	Displays a combo box with a drop-down list style. The user may choose only one of the entries supplied.

	LISTBOX
	Displays a list box with Add and Remove buttons. This is the only PART type that can be used to manage multiple values under one key.

	EDITTEXT
	Displays a text box that accepts alphanumeric text. The text is set in the registry with either the REG_SZ or the REG_EXPAND_SZ type.

	TEXT
	Displays a line of static text. There is no associated registry value with this PART type.

	NUMERIC
	Displays a text box with an optional spin control that accepts a numeric value. The value is set in the registry with the REG_DWORD type.

type-dependent data

This is information about the PART.

key name

This is an optional path to the registry key to use. Do not include HKEY_LOCAL_MACHINE or HKEY_CURRENT_USER in the registry path. If no key name is specified, the previous key name in the hierarchy is used.

value name
Indicates the registry value to modify. Selecting this option sets the value to a REG_DWORD of 1, and clearing the option removes the registry value. If you want to specify values other than the default values, use the VALUEON and VALUEOFF statements directly following the corresponding VALUENAME statement. You specify these statements as follows:
VALUEON on value
VALUEOFF off value
Figure 6 below illustrates the different PART types:

[image: image8.wmf]

Figure 6. Example of different PART types.

Keywords

The valid keywords for PART are:

· CHECKBOX

· TEXT

· EDITTEXT

· NUMERIC

· COMBOBOX

· DROPDOWNLIST

· LISTBOX

· END

· CLIENTEXT

· PART

Using PART Types to Add Controls to Your User Interface.

Using the valid keywords along with the PART component allow you to add text and various User Interface controls to the properties page belonging to the policy that you are creating when it appears in the Group Policy editor.

Because much of the syntax is related, the next section will present a task-based approach to writing the syntax for these PART types used to create the UI elements above.

Using the different PART types, you can add different kinds of text and controls to enhance your policy setting. All of these types need to be used with the PART component defined earlier in this document.

Adding Text to Be Displayed on the Property Page of a Policy

1)TEXT
· The PART type TEXT can be used to display text.

Syntax

PART tezt TEXT

END PART

text:

Text to be displayed is entered here. It can be hard-coded and placed with quotes or you can make the string a variable by putting !! in front of the variable name.

The following example illustrates the use of TEXT. The Disable Active Desktop policy deactivates Active Desktop and prevents users from enabling or disabling Active Desktop, or modifying the configuration.

POLICY !!NoActiveDesktop

 KEYNAME "Software\Microsoft\Windows\CurrentVersion\Policies\Explorer"

 EXPLAIN !!NoActiveDesktop_Help

 VALUENAME "NoActiveDesktop"

 PART !!NoActiveDesktop_Tip
TEXT

 END PART

END POLICY

The valid keyword for TEXT is END.

Taking System Administrator Text Input from the Property Page of a Policy

2) EDITTEXT

Allows the user to input alphanumeric text in an edit field. The text is set in the registry with the REG_SZ type.

Syntax

PART tezt EDITTEXT

 VALUENAME value name
END PART

text:

Text to be displayed is entered here. It can be hard-coded and placed with quotes or you can make the string a variable by putting !! in front of the variable name. This text will be displayed on the left side of the edit box.

value name

This indicates the registry value to which the users input entered in the Edit Text box will be written.

The PART type, EDITTEXT, accepts the options shown in the following table.

Table AUTONUM Options for EDITTEXT.

	DEFAULT value
	Specifies the initial string to place in the edit field. If this option is not specified, the field is initially empty.

	MAXLEN value
	Specifies the maximum length of a string. The string in the edit field is limited to this length.

	REQUIRED
	Specifies that the Group Policy snap-in does not allow a policy containing this PART to be enabled, unless a value has been entered for this PART.

	OEMCONVERT
	Sets the ES_OEMCONVERT style in the edit field so that typed text is mapped from ASCII to OEM and back. ES_OEMCONVERT converts text entered in the edit control. The text is converted from the Windows character set (ASCII) to the OEM character set and then back to the Windows set. This ensures proper character conversion when the application calls the CharToOem <JavaScript:hhobj_1.Click()> function to convert an ASCII string in the edit control to OEM characters. This style is most useful for edit controls that contain file names.

The valid keywords for EDITTEXT are:

· KEYNAME

· VALUENAME

· DEFAULT

· REQUIRED

· MAXLENGTH

· OEMCONVERT

· END

· EXPANDABLETEXT

· CLIENTEXT

PART example with EDITTEXT and TEXT

The following example in Figure 7 illustrates the use of the EDITTEXT and TEXT PART types.
[image: image9.wmf]

CLASS USER

CATEGORY !!DesktopLockDown

 KEYNAME "Software\Policies\System"

 POLICY !!Wallpaper

 EXPLAIN !!Wallpaper_Explain

 PART !!Wallpaper_Tip1
 TEXT

 END PART

 PART !!Wallpaper_Filename EDITTEXT

VALUENAME Wallpaper

MAXLEN 60

 END PART

 END POLICY

END CATEGORY

[strings]

DesktopLockDown="Desktop Settings"

Wallpaper="Desktop Wallpaper"

Wallpaper_Explain="Used to set the desktop wallpaper"

Wallpaper_FileName="Filename"

Wallpaper_Tip1="Specify UNC Path for selected wallpaper"

Figure 7. Example of EDITTEXT and TEXT PART types.

In this example, when the policy setting is enabled the text entered into the edit field will be written to the registry key HKCU\Software\Policies\System\Wallpaper. This text may be a maximum of 60 characters.

When this policy is Not Configured or Disabled, this key will not be written.

3) COMBOBOX

Displays a combo box. The PART type, COMBOBOX, accepts the same options as EDITTEXT, as well as the SUGGESTIONS option, which begins a list of suggestions to be placed in the drop-down list. SUGGESTIONS are separated with spaces and must be enclosed by double quotation marks when a value includes spaces. If a suggestion name includes white space, it must be enclosed in quotes. The list ends with END SUGGESTIONS.

For example:

SUGGESTIONS

 Alaska Alabama Mississippi ”New York“

END SUGGESTIONS

The valid keywords for COMBOBOX are:

· KEYNAME

· VALUENAME

· DEFAULT

· SUGGESTIONS

· REQUIRED

· MAXLENGTH

· OEMCONVERT

· END

· NOSORT

· EXPANDABLETEXT

· CLIENTEXT

· END

Displaying a Checkbox on the Property Page of a Policy

CHECKBOX Part Type

Displays a check box. The value is set in the registry with the REG_DWORD type.

Default Behavior:

· By default the checkbox is unchecked.

· A check box writes the value 1 to the registry if it is checked, and 0 if it is unchecked.

Syntax

PART text CHECKBOX

 VALUENAME value name
END PART

text:

This represents the text to be displayed on the right of the check box that you are creating. It can be hard-coded and placed with quotes or you can make the string a variable by putting !! in front of the variable name.

value name

Indicates the registry value to which the selected value will be written. Selecting the option sets the value as a REG_DWORD of 1. Clearing the option removes the registry value. To specify values other than the default values, use the VALUEON and VALUEOFF statements directly following the corresponding VALUENAME statement. These statements are specified as follows:
VALUEON on value
VALUEOFF off value
When you use these statements, the behavior is modified such that if the administrator selects the option, the value is set to on value. If the administrator clears the option, the value is set to off value.

CHECKBOX example:

The example in Figure 8 below illustrates the use of CHECKBOX.

CLASS USER

CATEGORY !!Sample

 KEYNAME "Software\Policies"

 POLICY !!PartTypesSample

 EXPLAIN !!PartTypesSample_Help

 ; CheckBox (not checked)

 PART !!SampleChkBox_NotChked CHECKBOX

 VALUENAME "test1"

 END PART

 END POLICY

END CATEGORY

[strings]

Sample="Desktop Settings"

PartTypesSample="This policy shows the CheckBox Part Type"

PartTypesSample_Help="Sample Part Types"

SampleChkBox_NotChked="Sample CheckBox"

Figure 8

. Example of CheckBox.

To override the default behavior

· To have the checkbox checked by default use DEFCHECKED.

· In the sample above, the syntax would be:

 PART !!SampleChkBox_NotChked CHECKBOX

 DEFCHECKED

 VALUENAME "test1"

END PART

· You can use VALUEON and VALUEOFF.

· Using the sample in Figure 8 above, the commands below will:

· Write the string “Enabled” to the registry when the check box is checked.

· Write a numeric 12 when the check box is unchecked.

 PART !!SampleChkBox_NotChked CHECKBOX

 VALUENAME "test1"

 VALUEON “Enabled”

 VALUEOFF NUMERIC 12

END PART

· To modify more then one registry key you can use an ACTIONLIST.

The valid keywords for CHECKBOX are:

· KEYNAME

· VALUENAME

· VALUEON

· VALUEOFF

· ACTIONLISTON

· ACTIONLISTOFF

· DEFCHECKED

· CLIENTEXT

· END

Displaying a Numeric List to the Administrator From Which They Need to Select an Item From the Property Page of a Policy

If you are trying to display a list of numbers, and you would like to have your administrator select one of the predefined numeric values, you should use a spin control. A spin control is implemented using the PART type, NUMERIC.

1) NUMERIC

Displays an edit field with an optional spinner control (an up-down control) that accepts a numeric value.

Default behavior:

· The value is set in the registry as a REG_DWORD type.

· You can optionally have the value written as a REG_SZ type by using the TXTCONVERT keyword

The NUMERIC type accepts the options shown in the following table.

Table AUTONUM Options for NUMERIC.

	DEFAULT value
	Specifies the initial numeric value for the edit field. If this option is not specified, the field is initially empty.

	MAX value
	Specifies the maximum value for the number. The default value is 9999.

	MIN value
	Specifies the minimum value for the number. The default value is 0.

	REQUIRED
	Specifies that the Group Policy snap-in does not allow a policy containing this PART to be enabled unless a value has been entered for this PART.

	SPIN value
	Specifies increments to use for the spinner control. The default is SPIN 1. SPIN 0 removes the spinner control.

	TXTCONVERT
	Writes values as REG_SZ strings (“1”, “2”, or “128”) rather than as binary values.

Syntax

PART text NUMERIC

 VALUENAME value name

 MIN xx

 MAX xx

END PART

text:

This represents the text to be displayed on the right of the spin control that you are creating. It can be hard-coded and placed with quotes or you can make the string a variable by putting !! in front of the variable name.

value name

Indicates the registry value to which the selected value will be written.

NUMERIC Spin Control Example.

The following example in Figure 9 below illustrates implementing a spin control using the PART type, NUMERIC.
CLASS USER

CATEGORY !!Sample

 KEYNAME "Software\Policies"

 POLICY !!MaxOpenDocs

 EXPLAIN !!MaxOpenDocs_Help

 PART !!Sessions NUMERIC REQUIRED

 VALUENAME "MaxDocs"

 MAX 100

MIN 1

SPIN 5

 END PART

 END POLICY

END CATEGORY

[strings]

!!MaxOpenDocs=”The maximum number of connected users”

!!MaxOpenDocs_Help=This policy settings controls the max number of allowed connections

!!Sessions=”Maximum connections”

!!Sample="Desktop Settings"

[image: image10.wmf]

Figure 9. Example of the PART type, NUMERIC.

The valid keywords for NUMERIC are:

· KEYNAME

· VALUENAME

· MIN

· MAX

· SPIN

· DEFAULT

· REQUIRED

· TXTCONVERT

· END

· CLIENTEXT

Displaying an Alphanumeric List to the Administrator From Which They Need to Select an Item From the Property Page of a Policy

DROPDOWNLIST

You can use this PART type to display a combo box with a drop-down style list. You can pre-populate the list of items that are displayed in the list and the corresponding registry value to be written for each item in the list.

DROPDOWNLIST accepts the option shown in the following table.

Table AUTONUM Option for DROPDOWNLIST.

	REQUIRED
	Specifies that the Group Policy snap-in does not allow a policy containing this PART to be enabled unless a value has been entered for the PART.

Syntax

PART text DROPDOWNLIST

 ITEMLIST

 NAME name VALUE value

 ..

 NAME name VALUE value

 END ITEMLIST

END PART

text:

This represents the text to be displayed on the right of the spin control that you are creating. It can be hard-coded and placed with quotes or you can make the string a variable by putting !! in front of the variable name.

name:

This is text that will be displayed in the drop-down list for a particular item.

value:

The value to be written to the specified registry key if this item is selected. Values are assumed to be strings, unless they are preceded by NUMERIC. The following example shows both string and numeric values:

VALUE “Some value”

VALUE NUMERIC 1

DROPDOWNLIST Example:

The following example in Figure 10 below illustrates creating a Drop-down list using the PART type, DROPDOWNLIST.
CLASS USER

CATEGORY !!Sample

 KEYNAME "Software\Policies\System"

 POLICY !!Autorun

 EXPLAIN !!Autorun_Help

 PART !!Autorun_Box DROPDOWNLIST REQUIRED

 VALUENAME "NoDriveTypeAutoRun"

 ITEMLIST

 NAME !!Autorun_NoCD VALUE NUMERIC 181 DEFAULT

 NAME !!Autorun_None VALUE NUMERIC 255

 END ITEMLIST

 END PART

 END POLICY

END CATEGORY

[strings]

Sample="Desktop Settings"

Autorun_Box="Disable Autoplay on:"

Autorun_NoCD="CD-ROM drives"

Autorun_None="All drives"

Autorun_Help="Disables the Autoplay feature"

Autorun="Disable Autoplay"

[image: image11.wmf]

Figure 10. Example of DROPDOWNLIST.

The valid keywords for DROPDOWNLIST are:

· KEYNAME

· VALUENAME

· REQUIRED

· ITEMLIST

· END

· NOSORT

· CLIENTEXT

2) LISTBOX

Displays a list box with Add and Remove buttons. This is the only PART type that can be used to manage multiple values under one key. The VALUENAME option cannot be used with the LISTBOX part type because there is no single value name associated with this type.

LISTBOX accepts the options shown in the following table.

Table AUTONUM Options for LISTBOX.

	ADDITIVE
	By default, the content of list boxes overrides any values set in the target registry. This means that a control value is inserted in the policy file that causes existing values to be deleted before the values set in the policy file are merged. If this option is specified, existing values are not deleted, and the values set in the list box is in addition to whatever values exist in the target registry.

	EXPLICITVALUE
	This option makes the user specify the value data and the value name. The list box shows two columns, one for the name and one for the data. This option cannot be used with the VALUEPREFIX option.

	VALUEPREFIX prefix
	The prefix you specify is used in determining value names. If a prefix is specified, the prefix and an incremented integer are used, instead of the default value naming scheme described previously. For example, a prefix of “SampleName” generates the value names “SampleName1”, “SampleName2”, and so on. The prefix can be empty (“”), which causes the value names to be “1”, “2”, and so on.

By default, only one column appears in the list box, and for each entry a value is created whose name and value are the same. For instance, a “name” entry in the list box creates a value called “name” whose data is “name”.

The valid keywords for LISTBOX are:

· KEYNAME

· VALUEPREFIX

· ADDITIVE

· NOSORT

· EXPLICITVALUE

· EXPANDABLETEXT

· END

· CLIENTEXT

Appendix B: Additional Keywords

ACTIONLIST

You can use an action list to specify a set of arbitrary registry changes to make in response to a control being set to a particular state.

Syntax

The ACTIONLIST syntax is as follows:

ACTIONLIST

[KEYNAME key name]

VALUENAME value name
VALUE value
END ACTIONLIST

key name

This is an optional path to the registry key. Do not include HKEY_LOCAL_MACHINE or HKEY_CURRENT_USER in the registry path; the preceding CLASS statement defines which of these keys to use. If no key name is specified, the previous key name in the hierarchy is used.

value name
Indicates the registry value to modify. Selecting this option sets the value to a REG_DWORD of 1, and clearing the option removes the registry value. If you want to specify values other than the default values, use the VALUEON and VALUEOFF statements directly following the corresponding VALUENAME statement. You specify these statements as follows:
VALUEON on value
VALUEOFF off value
value

Values are treated as strings unless they are preceded by NUMERIC, as in the following examples:

VALUE "Some value"

VALUE NUMERIC 1

If VALUE is followed by DELETE (for example, VALUE DELETE), the registry entry will be deleted.

The table below contains the two variants for ACTIONLIST, that may be used with POLICY and CHECKBOX.

Table AUTONUM Variants for ACTIONLIST used with POLICY and CHECKBOX.

	ACTIONLISTON
	Specifies an optional action list to be used if the check box is selected.

	ACTIONLISTOFF
	Specifies an optional action list to be used if the check box is cleared.

ACTIONLIST Example

The following example illustrates the use of ACTIONLISTON and ACTIONLISTOFF.

POLICY "Deny connections requests"

 EXPLAIN "If enabled, TS will stop accepting connections"

 ACTIONLISTON

 VALUENAME "fDenyTSConnections" VALUE NUMERIC 1

 END ACTIONLISTON

 ACTIONLISTOFF

 VALUENAME "fDenyTSConnections" VALUE NUMERIC 0

 END ACTIONLISTOFF

END POLICY

EXPANDABLETEXT

Writes a value to registry with data type REG_EXPAND_SZ.

For example:

PART !!MyVariable
EDITTEXT EXPANDABLETEXT

VALUENAME ValueToBeChanged

END PART

REQUIRED

Generates an error if the user does not enter a value when required.

For example:

PART !!MyVariable
EDITTEXT REQUIRED

 VALUENAME ValueToBeChanged
END PART

MAXLEN

Specifies the maximum length of text.

For example:

PART !!MyVariable
EDITTEXT

 VALUENAME ValueToBeChanged
 MAXLEN 4

END PART

DEFAULT

Specifies a default value. This can be used for text or numeric data.

For example:

PART !!MyVariable
EDITTEXT

 DEFAULT !!MySampleText
 VALUENAME ValueToBeChanged
END PART

or:

PART !!MyVariable
NUMERIC

 DEFAULT 5

 VALUENAME ValueToBeChanged
END PART

MIN and MAX

Specify the minimum and maximum valid values for a variable.

For example:

PART !!MyVariable
NUMERIC

 MIN 100

 MAX 999

 DEFAULT 55

 VALUENAME ValueToBeChanged
END PART

KEYNAME

The KEYNAME keyword is used within a CATEGORY to define which key within the registry is modified as a result of an action here. KEYNAME should be followed by the registry path to the key that contains the value that you want to change. Do not specify HKEY_LOCAL_MACHINE or HKEY_CURRENT_USER because CLASS defines that portion of the key. If the KEYNAME contains a space, you must enclose the string in quotes.

VALUENAME

Defines the options available within a POLICY. First identify the registry value that is to be modified as a result of using the keyword VALUENAME. For example, VALUENAME MyFirstValue.

The following example illustrates the use of VALUENAME. The Disable Boot / Shutdown / Logon / Logoff status messages policy prevents the display of system status messages.

POLICY !!DisableStatusMessages
 KEYNAME "Software\Microsoft\Windows\CurrentVersion\Policies\System"

 EXPLAIN !!DisableStatusMessages_Help
 VALUENAME "DisableStatusMessages"

END POLICY

Unless you specify otherwise, the value is written in the following format when the user checks or clears the option:

· Checked. Uses a REG_DWORD type with a value of 1.

· Cleared. Removes the value.

You can specify options other than these defaults by using VALUEOFF and VALUEON. If the option is to be selected within the lower pane of the Group Policy snap-in, the VALUENAME needs to be within a PART scope.

CLIENTEXT

The CLIENTEXT keyword is used to specify which client-side extension to the Group Policy snap-in needs to process the particular settings on the client computer. By default, the registry extension processes all settings configured under the Administrative Templates node. The CLIENTEXT keyword changes the default behavior and causes the specified extension to process these settings after the registry extension has placed them in the registry.

CLIENTEXT must be used within either the POLICY scope or the PART scope and should follow the VALUENAME statement.

For example:

POLICY !!DQ_Enforce

 EXPLAIN !!DQ_Enforce_Help

VALUENAME "Enforce"

CLIENTEXT {3610eda5-77ef-11d2-8dc5-00c04fa31a66}

 PART !!DQ_EnforceTip1 TEXT

END PART

END POLICY

The GUID that follows the CLIENTEXT keyword is the GUID of the client-side extension. The client-side extensions are listed in the registry under HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\Winlogon\GPExtensions.

VALUEON and VALUEOFF

You can use VALUEON and VALUEOFF to write specific values based on the state of the option. You can enable this functionality by writing the .adm file as described in the following examples:

KEYNAME key name
 POLICY !!MyPolicy
 VALUENAME ValueToBeChanged
 VALUEON “Turned On” VALUEOFF “Turned Off”

 END POLICY

or:

KEYNAME key name

 POLICY !!MyPolicy

 VALUENAME ValueToBeChanged

 VALUEON 5 VALUEOFF 10

 END POLICY

Appendix C: Other .adm Topics

Using Simple Policies, and Policies with the VALUEOFF and VALUEON Statements

This section presents two examples that illustrate the difference between using the default policy states and specifying VALUEON and VALUOFF statements. There is a significant difference between the two example policies below that you should be aware of.

Example 1

In this example, no explicit VALUEON or VALUEOFF statements are used. This means that the Administrative Templates will use the default behavior when the user changes the state of this policy.

POLICY !!EnableSlowLinkDetect

EXPLAIN !!EnableSlowLinkDetect_Help

KEYNAME "Software\Policies\Microsoft\Windows\System"

VALUENAME "SlowLinkDetectEnabled"

END POLICY

The following table lists the default behavior.

Table AUTONUM Example 1 Policy Defaults.

	State
	Behavior

	Policy setting enabled
	A DWORD with the value 1 is written to the registry.

	Policy setting disabled
	The registry value is deleted.

	Policy setting not configured
	Nothing is changed in the registry.

The important thing to note is the policy-disabled state. The value is not written to the registry with the value of 0; instead it is explicitly deleted. This means a component reading the policy will not find it in the registry, and will fall back to using the default in the code.

Example 2

In this example, the state values are explicitly defined, so when the user changes the policy, the Administrative Templates use these values.

POLICY !!EnableSlowLinkDetect

EXPLAIN !!EnableSlowLinkDetect_Help

KEYNAME "Software\Policies\Microsoft\Windows\System"

VALUENAME "SlowLinkDetectEnabled"

 VALUEON NUMERIC 1

 VALUEOFF NUMERIC 0

END POLICY

The following table lists the behavior in this example.

Table AUTONUM Example 2 Policy Defaults.

	State
	Behavior

	Policy setting enabled
	A DWORD with the value 1 is written to the registry.

	Policy setting disabled
	A DWORD with the value 0 is written to the registry.

	Policy setting not configured
	Nothing is changed in the registry.

EXPLAIN

The EXPLAIN keyword is used to provide online Help text for a specific Group Policy. In Windows 2000, each policy’s Properties page includes an Explain tab, which provides details about the policy settings.

Each Group Policy that you create should include one EXPLAIN keyword, followed by at least one space, and then the EXPLAIN string in quotes or a reference to the Help string.

For example:

POLICY !!Pol_NoConfigCache

#if VERSION >= 3

EXPLAIN !!Pol_NoConfigCache_Help

#endif

VALUENAME "NoConfigCache"

PART !!Lbl_NoConfigCacheHelp1 TEXT

END PART

END POLICY

[Strings]

Pol_NoConfigCache_Help="Prevents users from changing the\n\nautomatic synchronization behavior at logoff."

In the preceding example, Help is offered for one of the Offline Files options. The EXPLAIN keyword wrapped in the #if VERSION allows this .adm file to be used with the Windows 2000 Group Policy snap-in (which is version 3).

Refer to the section “Writers Role in designing Registry Based Policy” for more details.

Line Breaks

To start text on a new line or to create a line break, use this syntax:

\n = Starts a new line

\n\n = Creates a line break

#if Version (for Version Comparison)

You can specify that any part of your .adm file be evaluated only in specific versions of the policy editing tools (either the Windows 2000 Group Policy snap-in or the Windows NT 4.0 System Policy Editor). The latest version for the Windows NT 4.0 System Policy Editor is 2. The first version for the Windows 2000 Group Policy snap-in is 3. To compare versions, use the following syntax:

#if Version (operator) x

#endif

The valid Operators for the Version statement number are listed in the following table.

Table AUTONUM Valid Operators for the Version statement number.

	Operator
	Signifies

	> (GT)
	Greater than. For example, a > b means a is greater than b.

	< (LT)
	Less than. For example, a < b means a is less than b.

	== (EQ)
	Equal. For example, a == b means a is equal to b.

	!= (NE)
	Not equal.

	>= (GTE)
	Greater than or equal to. For example, a >= b means a is greater than or equal to b.

	<= (LTE)
	Less than or equal to. For example, a <= b means a is less than or equal to b.

Changing the .adm Files Being Used for a GPO

By default, the first time the Group Policy snap-in is started for a specified GPO, it copies the System.adm file from the current computer’s \%systemroot%\Winnt\Inf directory to the GPO.

Subsequently, only those .adm files specified in the list will be displayed. At each invocation, the Group Policy snap-in also checks the listed .adm files and copies any newer versions from the local computer's \%systemroot%\Winnt\Inf directory to the GPO.

Duplicate Category Sections

If the .adm file that you add includes a duplicate Category to one that is used in an existing .adm file, the policy settings are merged.

An error may occur under the following conditions. When the existing and the added .adm file contain the same Category and both of them have a default KEYNAME specified (regardless of whether it is the same name), the following error message is displayed:

"Key name specified more than once. Likely causes are: 1) the KEYNAME tag is defined multiple times in this category, 2) this KEYNAME is already defined in another category with the same name, 3) this KEYNAME is already defined in another category with the same name in a different adm file."

Using Keyboard Shortcuts to Navigate the Administrative Templates Namespace

You can use the following keyboard shortcuts to navigate the Administrative Templates namespace:

· SHIFT+asterisk (*) on the keypad automatically expands the current node and all of its child nodes.

· The plus sign (+) on the keypad expands one level.

· Minus (-) on the keypad collapses one level.

· Double-click on a policy in the results pane to bring up the floating Properties page.

When the floating Properties page is displayed, move it out from in front of the Group Policy snap-in window. Then click back onto one of the Policies in the results pane. You can now use the cursor keys to navigate up and down the list. Notice that the information in the Properties page changes. This method also works for the Explain text. You may also use the Tab key to move back and forth between tree pane and the results pane, while leaving the Properties page open.

Summary

For More Information

For the latest information on Windows 2000 Server, check out our Web site at http://www.microsoft.com/windows2000 and the Windows 2000/NT Forum at http://computingcentral.msn.com/topics/windowsnt.
