[image: image4.png]

[image: image5.jpg]Best practices, experiences,
and global solutions from Microsoft IT.

Application Security Best Practices at Microsoft
The Microsoft IT group shares its experiences
White Paper

Published: January 2003

Contents

4Executive Summary

5Introduction

5Microsoft IT Organizational Structure

5Microsoft Corporate Culture

6 Microsoft IT Business Challenge

6 Microsoft IT Planning Process

6Motivation for Appropriate Application Security

7Cost of recovery and lost productivity

7Loss of data

7Impact on consumer confidence

7Legal risks

8APPLICATION Security Assurance Program

8Security Principles

8Managing Risk

8Strategic

9Tactical

9Operational

9Legal

10Creating the Application Security Program

10Criteria Used for Conducting an Assessment

10Definition of an application

11Scope of assessments

12Participants

13Application Security Process Framework

16Application Security Management

16Secure Infrastructure

17Building Secure Networks To Support the Application

18Building Secure Hosts for Applications

20Application Layer Requirements

22Common Application Development Issues

26Threat Modeling

30Best Practices and Lessons Learned

30Policies

31Future Security Considerations

33Conclusion

34For More Information

Executive Summary

Like many global enterprises, Microsoft depends on both internally developed and third-party line-of-business (LOB) applications for running its daily business activities. The sheer number of applications used is enormous, and their reach extends to all business-sensitive data and confidential employee data maintained within the company.

Because reports of business security breaches are increasing worldwide, the Microsoft IT group wanted to make sure that the company’s exposure and vulnerability to attacks were as low as possible. As a result, this team created the Application Security Assurance Program (ASAP) to inventory, assess and—when necessary—ensure the resolution of security vulnerabilities found in LOB applications. In addition, the team would provide best practices for enhancing the security of all new applications currently under development.

The application review team for ASAP developed and published security guidelines that were to be followed for all existing and future applications. The team developed comprehensive education programs to teach application development teams how to comply with the guidelines and emphasized the need for making security topics a top priority for all future development projects. This paper contains descriptions of the processes and policies that the ASAP puts into place, and also discusses key technical findings and best practices that might be useful to other organizations that create and enforce application security processes.

This white paper, one in a planned series of security-related documentation projects, was written for enterprise-level technical decision makers, IT architects, corporate security teams, and operations staff who are responsible for securing and maintaining the integrity of their businesses.

Introduction

Like other large enterprise businesses, Microsoft depends on a wide variety of line-of-business (LOB) applications to run its day-to-day operations. Most of these applications are designed, developed, and maintained by either the Microsoft IT group or individual business unit IT teams within functional groups at Microsoft. Some LOB applications are third-party applications. As Microsoft has come to rely more and more on LOB applications, securing these applications and the data they manage has grown in significance and complexity.

Microsoft LOB applications function in a complex operational and legal environment, with an equally complex underlying infrastructure that supports these environments. As a result, application security touches many different areas, including:

· Networking standards and security

· Computer server standards and security

· Enterprise data management standards and security

· Information privacy

Every organization is unique; and, therefore, every organization should develop its own plan for securing applications. This paper is a discussion of the issues that Microsoft IT encountered when it developed its plans for securing Microsoft enterprise infrastructure server computers and sensitive business data. Although the paper is not intended to serve as a specific “how-to” guide for securing all forms of computer technology, Microsoft IT is sharing its particular findings and recommendations to assist customers as they develop plans for securing their own infrastructure and business data.

Note: For security reasons, names of forests, domains, internal resources, and organizations used as examples in this paper do not represent actual names that are used within Microsoft.

Microsoft IT Organizational Structure

As of this writing, Microsoft IT comprises roughly 2,400 people worldwide, including full-time employees, contractors, and interns, who are responsible for managing roughly 57,000 users, more than 150,000 desktop computers, and thousands of servers that span more than 400 sites in 62 countries.

The IT service at Microsoft is organized into functional groups, including those that run the IT utility (such as Microsoft IT) and those responsible for running individual business units, such as human resources, finance, legal, and other business operations. Microsoft IT manages application development consistency and coordination across all IT groups, including security.

Microsoft Corporate Culture

At Microsoft, empowering the employee is a priority. Employees go to the corporate intranet to order supplies, report sick days, configure their benefits package, and much more. Third parties who supply services to the company are often selected in part because of their use of sophisticated Web-based tools.

Although this concentration of services on the intranet has streamlined workflow for employees, it has also created a pool of disparate applications and databases that contain business-sensitive data and confidential employee data. As of this writing, there are over 1,000 such applications and tools. Securing all of these applications and databases is the responsibility of Microsoft IT.

Microsoft IT Business Challenge

Microsoft IT has two primary responsibilities. The first is to work with Microsoft product-development groups to test and deploy beta products in a real-world enterprise computing environment. The second is to increase enterprise agility by providing and maintaining the Microsoft computing environment, which enables Microsoft employees, partners, and customers worldwide to work more efficiently and effectively.

Faced with the daunting task of inventorying, cataloging, assessing, and securing each LOB application, Microsoft IT needed to create an organizational framework for handling the job.

Microsoft IT Planning Process

Microsoft IT used a process similar to the Microsoft Operations Framework (MOF) during the planning, implementation, and operations phases to establish a team to oversee the design and implementation of internal application security assessments.

MOF is a collection of best practices with guiding principles and models. MOF provides standards for achieving an IT solution’s reliability, availability, supportability, and manageability. These best practices guidelines are gathered from Microsoft Consulting Services, Microsoft IT Group, the Information Technology Infrastructure Library, and business partners of Microsoft. It has been designed to meet the following goals:
· Use ideas that have been proven in action.

· Leverage industry-wide best practices.

· Provide an extensible foundation for operations knowledge.

· Address people, processes, and technology.

· Incorporate input from customers and partners.

· Increase the IT agility so that the business can adjust rapidly to changing conditions.

· Manage end-to-end services, including processes and procedures, rather than just managing servers and technology.

Motivation for Appropriate Application Security

Some professionals claim that the costs of properly securing their internal applications are too high and are a poor investment of constrained IT budget and staff resources. Their argument maintains that, if you have a good firewall in place and employees need access to sensitive business data as part of their jobs, it is not necessary to spend the money to secure these applications.

This point of view is no longer realistic because the cost of not being proactive in securing your enterprise’s IT infrastructure and data is often far higher than the investment that is necessary to secure them. Unfortunately, a large percentage of unauthorized access to sensitive or confidential data is often attributable to attackers who are already inside the firewall.

In the face of the following prospective costs, Microsoft IT was motivated to develop a comprehensive and flexible solution to address Microsoft application security.

Cost of recovery and lost productivity

After a malicious attack has occurred, the cost of repairing the damage, both in terms of the downtime required to repair corrupted databases and in terms of addressing the security breach and damage to public business perception, can be staggering. Hypothetically, two days of downtime for a one-billion-dollar online retailer can constitute millions of dollars in lost revenue in addition to recovery costs ($1 billion revenue/365 days * 2 days outage = $5.5 million).

Security exposures can have a significant impact on application and network performance and availability, which can directly affect end-user productivity across an entire company. Infrastructure, application, and public relations teams that have to deal with such exposures also are significantly affected, which translates to yet more resources required to repair the damage.

Loss of data

Entire applications and databases can be compromised as a result of security breaches. Depending on the severity of the attack, the attack can result in complete loss of data.

Impact on consumer confidence

Any enterprise that is offline for a period of time as a result of a security breach may be unable to conduct normal, day-to-day business. Depending upon the severity of the outage, this effect is likely to attract the attention of news media, if not that of business competitors. Many attackers take delight in advertising their exploits, further damaging the victim of the attack. Confidence among consumers and business partners, which takes so much work and time to build and nurture, can be irretrievably lost in a matter of moments.

Legal risks

Security lapses can potentially expose customer data, such as credit card information or other personal customer data, which can lead to privacy violations and possible litigation.
APPLICATION Security Assurance Program
To manage the process of assessing and maintaining the security of all existing LOB applications, as well as those in development, Microsoft IT created a team of internal specialists from various disciplines and groups who had a thorough understanding of both Microsoft business requirements and information security. This team of specialists developed the Application Security Assurance Program (ASAP) to meet the need for addressing potential vulnerabilities in Microsoft internal business applications by ensuring that applications comply with Microsoft IT security policies.

The following sections describe the security principles and attitude toward risk that form the basis for Microsoft security policy, how ASAP was created to guide Microsoft in compliance with these policies, and the participants and practices that constitute the ASAP.

Security Principles

Applying basic security principles at the earliest stages of application design is critical to create secure and reliable applications. Microsoft established application security policies to ensure that internal applications become and remain secure. The following principles are at the heart of this effort:
· Confidentiality. Preventing disclosure of information to unauthorized persons.

· Integrity. Preventing corruption, impairment, or modification of information and services.

· Authentication. Verifying the identity of an individual or other entity on the network before allowing that person or entity access to data.

· Authorization. Ensuring that only those with appropriate authorization and appropriate rights (read, write, modify, and so forth) have access to data.

· Availability. Ensuring that information, services, and equipment are working and available for use.

· Non-repudiation. Binding of a user or entity with an action. This is necessary to prove that a suspect who has denied involvement is associated with a particular action.
These principles can be tested using the threat model named STRIDE. STRIDE stands for spoofing identity, tampering with data, repudiation, information disclosure, denial of service, and elevation of privilege. For additional information about STRIDE, see the section “Threat Modeling” later in this paper.

Managing Risk

Any computer that is connected to a network presents a risk to network security. Connecting to the Internet, the largest of all networks, entails inherent and significant risks. Managing these risks is necessary to provide users with the services of the application and to minimize the threat of successful intruder attacks and the exposure of sensitive data.

Microsoft IT applies several methodologies simultaneously to mitigate the risks of adding internal applications to the Microsoft corporate network.

Strategic

· Hire the best security experts available.

· Ensure that the organization is current on the latest technologies and actively searching for the latest security vulnerabilities, constantly working to stay ahead of the attackers, regardless of the technology.

· Offer ongoing education for application development teams to ensure that security considerations are the top priority as they develop their products.

· Heighten security awareness across all groups so that security concerns become ubiquitous in all areas (not just applications) and the overall environment is secure.

Tactical

· Make sure all existing applications are secure on the basis of the relative risk associated with each application.

· Require security assessments for all applications, whether existing, updated, or new releases.

· Ensure that executives are accountable for the applications developed in their organizations.

· Ensure that all application project teams make security a top priority throughout the development cycle, maintenance, and operations.

Operational

· Track all current and future application releases.

· Define and rank security vulnerabilities.

· Create risk assessment guidelines to identify which applications require more comprehensive security assessments (for example, external-facing applications such as the Internet).

· Create and maintain policy and guideline documents so that application development teams can develop and test against known vulnerabilities.

· Define processes to ensure that all new applications and new releases complete the necessary security review process and that issues are resolved prior to release.

· Set up escalation processes for exception management.

· Require that all employees receive appropriate security training for their position, and ensure that ongoing training is available.

Legal

By securing Microsoft applications, legal issues around privacy are mitigated. Weak security is the primary means by which unauthorized individuals obtain business sensitive or employee confidential information.

· Develop language about security expectations for contracts with vendor developers and providers of third-party applications. This also applies to third parties that house Microsoft data on their sites.

Creating the Application Security Program

Microsoft IT wanted a centralized team that was accountable for the directive to make Microsoft applications secure. It was necessary to have agreement about how policies were to be interpreted, applied, and enforced across the company. Microsoft IT created the Application Security Assurance Program (ASAP) to describe and integrate the necessary practices, knowledge, and procedures.

Whenever new processes are created, there might be resistance from staff members who implement them because of the perception that the process imposes additional costs. The goal of ASAP was to minimize the impact on development time frames. Providing security guidelines and predefined security milestones prior to application design and development is one way ASAP minimizes the impact on application teams. In some cases, the functionality provided in applications can be affected by the security implications for the features.

Initially, the ASAP required all applications currently in production to undergo a security assessment. The depth of the assessment was based on an application’s rated security risk. Addressing the most severe issues ensured that applications currently in production were compliant and provided a baseline for compliance standards across application teams before standards were applied to new applications.

The ASAP includes several possible checkpoints for applications in the software development lifecycle. At a high level, the checkpoints are the following:

· Risk assessment. Early in the design phase, the application team determines the level of assessment that will be required.

· Design review. High-risk applications that qualify for the ASAP undergo a design review toward the end of the design phase. This design review often detects security vulnerabilities that require design changes.

· Preproduction assessments. At the end of the testing phase, all applications that qualify for the ASAP undergo an automated security assessment that is conducted by the application development team. This assessment identifies high-priority, server-level vulnerabilities, such as weak passwords and patch compliance issues. High-risk and medium-risk applications also undergo a comprehensive assessment by the application review team or Corporate Security to verify that the application is resistant to attacks.

· Postproduction followup. All applications that qualify for ASAP undergo a postproduction followup within two weeks of the application launch. In this assessment, the application team runs the automated security assessment against their production servers to ensure that no vulnerabilities were introduced during deployment.

Criteria Used for Conducting an Assessment

The application review team considers a variety of criteria when making its security assessment of applications.

Definition of an application

First and foremost, the ASAP needed to define what specifically makes a particular software product an application. Items that are not applications must adhere to Microsoft IT’s domain control policies. If the person who is responsible for an internal software product can answer “yes” to all of the following questions, it is determined that they own an application.

· Does the software support a Microsoft business function? (This includes all software, whether it has been custom-developed within Microsoft or is a purchased third-party product or an outsourced service.)

· Does the software provide more than just static content or data? For example, is it more complex than a SharePoint Web site, pure HTML Web page, or a static Microsoft Excel spreadsheet?

Note: Software that is a key component of an existing application (such as a Web service, COM+ component, Microsoft .NET service, replicated reporting database, or batch job) is not tracked independent of the application to which the component belongs.

Scope of assessments

The depth of the investigation or assessment for an application is based on the risk involved for that application. Higher-risk applications therefore receive a greater security investment. There are three risk levels for applications:

· High-risk. An external-facing application that customers and partners use.

· Medium-risk. Highly sensitive data (such as business, customer, or intellectual property) and more risky architecture.

· Low-risk. Less sensitive data or applications for which the associated risk is neither medium nor high.

Assessments made by the application review team are considered to be either limited assessments or comprehensive assessments.

Limited assessments are used for the network layer, operating system, and Microsoft BackOffice technologies, such as the database and Web servers. The vulnerabilities searched for include unused, open router ports, file permissions, unused services, weak passwords, and unnecessary accounts.

Limited assessments are required for all applications that qualify for a security review, regardless of their risk level. Key characteristics of this type of assessment are the following:

· They are conducted by the application owner.

· They include a Corporate Security vulnerability scan.

· They verify that the correct internal service pack and hot fixes are present.

· They indicate specific actions that must be taken to secure Microsoft Windows 2000, Microsoft Internet Information Services (IIS), and Microsoft SQL Server installations.

Comprehensive assessments encompass everything that is included in the limited assessment process, plus examinations of the application’s source code and the data it uses. The vulnerabilities searched for include Web pages that do not check for authorization, sessions that fail to prevent impersonation or cookie replay attacks, error messages that reveal sensitive information (such as server or user names), and information from one application that enables an exploit within another application.

Comprehensive assessments are required for all high-risk and medium-risk risk applications. Key characteristics of this type of assessment are the following:

· They are conducted by the application review team and Corporate Security.

· They include exhaustive assessment of application vulnerabilities using penetration testing.

· They include all of the assessments used in the limited assessment process.

Participants

The effectiveness of any security program relies on a strong team of individuals with varied responsibilities. Ideally, a security team includes members with security expertise (network, host, and application), strong technical and development background, project management skills, technical documentation skills, and training skills. At Microsoft, the application review team works with Corporate Security and operations IT groups to provide guidance for business unit IT groups. Figure 1 illustrates the relationships between these groups and each group’s responsibilities.
[image: image1.wmf]Corporate

Security

Application

Review

Team

Operations

IT

Ÿ

Security Policy

Ÿ

Threat Modeling

Ÿ

Risk Assessment

Ÿ

Audits

Ÿ

Action on Audit

Findings

Ÿ

Action on Audit

Findings

Business

Unit IT

Groups

Figure 1. Groups involved with the ASAP

Corporate security team

· Determines the security policies at Microsoft.

· Defines what application behaviors are acceptable from a security perspective.

· Has the authority to remove the network privileges of potentially harmful applications.

· Participates in the ASAP reviews and assessments.

· Performs attack and penetration testing; is solely responsible for network and application penetration attempts.

· Identifies specific vulnerabilities and coordinates with application review team to include these in the ASAP assessment guidelines.

· Coordinates all response activities from internal groups when a security exposure has occurred (including public relations, legal, business unit IT groups, and so forth).

Application review team

· Owns the ASAP.

· Creates guidelines for Corporate Security policies and vulnerabilities.

· Updates security review checklists as needed in accordance with updated guidelines.

· Documents standards from the security policies (how it applies to an application, what needs to be checked, how to check, how to develop to policy items, and so forth).

· Documents best practices and ensures that the latest security issues are documented and passed on to the application owners.

· Conducts application design reviews for high-risk applications.

· Conducts preproduction and postproduction deployment assessments for all applications; coordinates with Corporate Security on attempts to penetrate network or applications.

· Conducts security assessments on production applications as identified by Corporate Security.

· Manages ongoing developer training curriculum for application security.

· Manages the security tools used for assessment process.

· Provides reports, metrics, and status to management.

Operations IT

· Deploys and configures applications per ASAP guidelines and recommendations.

Business unit security liaisons

· Acts as primary point of contact for the ASAP within each of the business units. The business unit security liaisons are expected to drive all security communications, requirements, and activities within their organizations.

· Ensures that application teams are aware of policies and guidelines and acts as the escalation point for related issues.

· Ensures that program managers, developers, testers, and technical support analysts are receiving the appropriate training.

· Ensures that applications go through the appropriate security review checkpoints.

· Conducts risk assessments for all new and modified applications.

· Verifies that security is considered at every step in the software development life cycle.

· Ensures that approved scanning tools are available and used within the business unit ITs in accordance with appropriate guidelines.
Application Security Process Framework
The overall mission of the ASAP is defined in the application security process framework, as shown in Figure 2.
[image: image2.wmf]Maintain and Publish Policies and Guidelines

Educate IT Professionals

Design, Develop, Test and Verify Secure Apps

Verify In Production Applications

Respond to Security Exposure Incidents

A

p

p

l

y

L

e

s

s

o

n

s

L

e

a

r

n

e

d

Figure 2. Application security process framework

Maintain and publish policies and guidelines

Policies provide general statements, whereas guidelines and standards refer to specific technologies, methodologies, implementation procedures, and other practices. Generally speaking, policies are intended to last for many years, whereas guidelines and standards are intended to last for only a few years.

The process used to maintain and publish policies and guidelines is illustrated in Figure 3.
[image: image3.wmf]Identify Policy

Update/Addition

Needed

Draft Policy

Changes

Review and

Publish Policy

Changes

Notify

Appropriate

Groups

Update

Appropriate

Review

Checklists

Figure 3. Process for maintaining and publishing policies and guidelines

Educate IT professionals

The application review team is responsible for ensuring that current application security knowledge is transferred to all types of Microsoft IT professionals, including developers, testers, and support personnel by means of up-to-date training. The training, offered by both internal and third-party vendor personnel, is tailored to the role of the individual and is offered on an ongoing basis.

Design, develop, test, and verify secure applications

Whenever the development of a new or updated application is proposed, this process ensures that application security checkpoints are placed into the software development life cycle. This ensures that all new and revised applications that could pose a potential security risk are screened thoroughly before being released.

All applications that have characteristics that Microsoft considers deserving of an evaluation go through three separate security checks: one after design, one after testing, and one after deployment to production. Optimally, a risk assessment should be completed prior to the design phase if the technical details needed to do it are already known. This allows for more accurate planning for the design review.

Specific tasks that describe the test and verification checkpoints include:

· Document the requirements.

· Design the application.

· Conduct the risk assessment.

· Conduct the application design review.

· Develop or purchase the application.

· Test the application.

· Conduct the preproduction assessment and enforcement.

· Conduct the user acceptance testing, and deploy the application.

· Provide ongoing application support.

· Conduct postproduction followup (ensures that production configuration introduces no risks for applications).

Verify in-production applications
Some existing applications undergo a limited postproduction security audit. Corporate Security does real-world threat assessments that target specific vulnerabilities or newly discovered vulnerabilities. They usually focus their assessments on high-risk applications. The ASAP provides assessments for the following:

· Newly discovered applications that have not yet been assessed.

· Applications that were not assessed during the past year.

· Applications that are scheduled for regular vulnerability scans. There are two types of assessment:

· Vulnerability scans that ensure the application environment is resistant to attackers.

· Security reviews that ensure legacy applications meet application security standards.

Any previously undetected vulnerability that is identified during this process is evaluated and documented in the policies, guidelines, and training to further strengthen overall security at Microsoft.

Respond to security exposure incidents

The security incident response process is engaged when an application security breach is suspected or identified by either a Microsoft employee or an outside party. The procedures followed during the incident response are the same as those used for virus issues, network breaches, and other IT security issues. Corporate Security manages this process.

The lessons learned in responding to a security exposure incident are fed back into the policy and guideline review process so that similar incidents can be avoided in the future.
Application Security Management
This section covers more specific elements that are built into the security process and that are essential for the success of an ASAP.

Secure Infrastructure

A secure infrastructure is necessary for ensuring the security of applications. Vulnerabilities at the network or host levels can potentially compromise the security of applications and application data. The infrastructure is organized into five major architectural areas:

· Network

· Host

· Application

· Account

· Trust

Within each of these areas are specific examples of vulnerabilities to monitor, as shown in Table 1.
Table 1. Architecturally defined points of vulnerability
	Network
	Host
	Application
	Account
	Trust

	Architecture

Transport

Network device

Access control list (ACL) permission settings
	Operating system

Services

· Internet Information Services

· SQL Server

· Simple Mail Transfer Protocol (SMTP)

· File Transfer Protocol (FTP)

· NetBIOS/Remote Procedure Call (RPC)

Terminal Services

Microsoft SQL Server
	Input validation

Plaintext protocol

Authentication

Authorization

Cryptography

Auditing and logging
	Unused accounts

Weak or blank passwords

Shared accounts

Access privileges
	Rogue trusts

To minimize the risk of compromising security, an in-depth strategy should be established that helps to protect application environments from both external and internal threats. This strategy, called defense in depth (sometimes referred to as security in depth), refers to the layering of security countermeasures around areas of potential vulnerabilities. These security layers should include the deployment of protective measures at each level of the application infrastructure, from external routers to the location of physical resources, and all points in between. Deploying multiple layers of security helps ensure that applications and resources are not subject to any single points of failure.

· Security countermeasures come in many forms: written policies, infrastructure configuration settings, and application monitoring and intrusion detection.
Building Secure Networks To Support the Application

The first step in ensuring the security of an application is to ensure that the network on which the application will run is secured.

Network configuration

Proper configuration of the network can minimize the exposure to servers and databases that contain the data you want to isolate.

Network segmentation

The topology of the network within the organization should be evaluated to ensure that the network is properly secured.

· Segmenting the network minimizes “implied trust” relationships between servers that are commonly exploited during attacks.

· Segmenting the network by means of a Virtual Local Area Network configuration allows for separating servers according to their role in the organization and the sensitivity of the data they contain.

Firewalls

Microsoft IT uses the following guidelines for its implementation of firewall technology:

· Firewalls should allow only the minimum number of open ports to both inbound and outbound traffic for both external-facing and internal-facing networks.

· Firewall configurations should be audited regularly to ensure that no additional services or servers are exposed when firewall settings are updated.

· Each firewall should have its own unique password or other access control mechanism. This prevents an intruder from using the same mechanism to compromise multiple firewalls.

· Privileges to modify the functionality, connectivity, and services that are supported by firewalls should be restricted to a few trusted and technically trained individuals who have a business need for these privileges.

· Firewall servers should have only the bare minimum of operating system software resident and enabled. The use of an application-level, proxy-type firewall, such as Microsoft Internet Security and Acceleration (ISA) Server, is a more effective solution than a simple, packet-filtering firewall solution. ISA Server can implement additional rules that allow only expected communication requests and protocols.

Routers and switches

The following guidelines are used by Microsoft IT to configure and operate routers and switches:
· The Enable Password for a router should be kept in a secure, encrypted form.

· Only the network operation and engineering groups that are responsible for designing, installing, and configuring network devices should be authorized to install or uninstall devices, perform hardware maintenance, and change the physical configuration of a router.

· Routers should log all configuration changes with the time, the date, and the identity of the user who performed the change.

· Router logs should be sent to a log host, which is a dedicated computer on the protected or trusted network whose only job is to store logs. Protect the log host by removing all unnecessary services and accounts from it.

· Router logs should be reviewed regularly for unauthorized access. This should be done by the network operations group that is responsible for router maintenance.

· Router tables should be secured from unauthorized access and should not be shared outside the company. Compromise of a router’s routing tables can result in reduced performance, denial of network communication services, and exposure of sensitive data.

· Services, ports, and protocols that are not explicitly required should be disabled.

· The administration of the router should be done only at the local LAN, not remotely from within the Wide Area Network (WAN) or from a dial-up connection.

Network intrusion detection systems

Monitoring for intrusion and security events should be an ongoing process within the organization and should include both passive and active tasks at the network and application layers. You get the best value with respect to cost when an intrusion detection system (IDS) is inside the security perimeter, where the signal-to-noise ratio is low. But IDS can provide value only if there is an established monitoring and response process in place. Network IDS can be accomplished through the use of third-party tools and should, at a minimum, include monitoring for the following types of attack:

· Reconnaissance attacks

· Exploit attacks

· Denial of service attacks

Note: It is not unusual for more than 90 percent of IDS detections to be false positives or attempted attacks rather than actual intrusions. Although IDS logs can be full of non-significant events, security teams must stay vigilant in monitoring these logs to detect actual intrusions.

Network encryption
Encryption is a key tool in preventing sensitive data from being read even when unauthorized users have access to the data. Sensitive front-channel and back-channel communication should be encrypted to ensure that data traveling across the network is secure. Front-channel communication is data sent between a client and a server. Back-channel communication is data sent between servers. Industry-standard encryption methods should be used, such as Secure Sockets Layer (SSL), a secure shell program such as SSH, or Internet Protocol Security (IPSec).

Building Secure Hosts for Applications

Equally important for a secure network is the security of the host computer on which the application runs.

Patch management

Servers should be updated regularly with the latest security patches as these patches are released (including patches from every software manufacturer who has software running on the server). Operations personnel should regularly monitor software manufacturer’s Web sites and third-party bug-tracking Web sites for the latest news and patch releases.

Until now, Microsoft IT has used internally developed tools to apply patches to data center servers. However, planning is underway to test and pilot the System Management Server (SMS) Software Update Service (SUS) Feature Pack for applying critical security patches to core infrastructure servers, production application servers, and eventually all other servers that are managed in the data center. The long-term Microsoft IT goal is for all clients, including desktops, notebooks, Tablet PCs, and Pocket PCs, to have all critical and severe patches installed automatically by means of SMS.

Configuration

Servers and any host software they contain should be properly configured according to vendor security guidelines. All services that are not required for the application should be disabled and blocked instead of running with default settings.

Unnecessary file extensions should not be mapped on the Web servers because this can result in the risk of possible zero-day exploits. A zero-day exploit is defined as a vulnerability that has been discovered and an exploit written and released to the wild before the vendor has been notified or has released a patch.

Permissions

The ACL permission settings should be properly set on all file shares and other system, database, and COM+ objects to prevent unauthorized access.

Simple Network Management Protocol community strings

Simple Network Management Protocol (SNMP) community strings are used to authenticate access to Management Information Base (MIB) objects; they function as embedded passwords on network equipment. The same guidelines should be used for SNMP community strings that are defined for setting, storing, and periodically changing strong passwords. If you do not have a business need to use SNMP, delete the community string and disable the SNMP service. Remember, almost all devices ship with the SNMP default password set to "public".

Antivirus software

Servers, regardless of their function, should at a minimum have antivirus software running and actively scanning all system file areas as well as all shared directories. Microsoft IT has a three-pronged approach to enterprise-wide antivirus management:

· Automatic checks of desktop computers upon user log-on to ensure that the latest version of the corporate-sponsored antivirus application is installed and running with the current virus signature files.

· Scanning of all messaging channels as messages pass through.

· Running antivirus software on all servers on the network and automatically keeping their virus signature files up-to-date.

Server auditing and logging

Auditing and logging are important for detecting possible intruders and ensuring data integrity. Auditing is most useful for helping administrators and security investigators determine what has happened in the event of an intrusion or for troubleshooting other problems. It is also critical in helping to protect users from unwarranted suspicion associated with computer crime and abuse. All systems that contain business-sensitive information should have auditing enabled and follow these policies:

· Adhere to local regulations and practices with respect to logging. Consult your legal counsel about the practices you want to put in place.

· Never alter audit logs.

· Maintain audit logs for a reasonable amount of time. For sensitive information, security and application logs should be saved for no less than 60 days.

· Log audit events outside the system that is being audited to protect the logs from deletion or alteration by unauthorized users.

· Protect all system and application logs with strong ACLs so that the logs can be viewed or accessed only by users with a bona fide business need or by members of security, internal audit, or systems management teams.

Note: People are considered unauthorized users if they are not members of an internal audit, security, or systems management team or they do not have a clear need for such access to perform their regular duties.

Server backup and restore
Backups and restores ensure that critical information is not lost in the event of a disaster, hardware failure, or unauthorized or accidental modification or deletion.

· Backups contain the same sensitive information that resides on the server and should be protected in the same manner.

· To prevent unauthorized access, restores should be controlled, with access provided only to the owner.

· Protect individual backup or backup media sets by using passwords to protect against unauthorized restores. Without the password, the backup cannot be restored. Backup data files should be on a secure partition with directory permissions set to prevent unauthorized users from gaining access to the files.

Application Layer Requirements

After the network and the host server have been secured properly, the next step is to ensure the security of the application itself.

Input validation

Validate user input programmatically inside the application code. Check for the use of special characters, numeric values outside the expected range, string lengths, possible code injection, and file upload content length. For more detail about input validation, see the section “Common Application Development issues” later in this paper.

Note: Code injection is a technique that is often used to gain unauthorized access to data or privileges. The user input string is usually malformed through appending special symbol characters and other text that is recognized and executed as script by script engines and databases.

Session management

Session IDs should be random and of sufficient length to prevent brute force guessing. Sessions should be stored on the server and not on the client. If the application stores session data in plaintext cookies on the client, a malicious user can easily change the session information and gain access to data he or she is not authorized to access. This method can also be used by a malicious user to escalate his or her access privileges to that of a user with higher privileges, such as Administrator. Sessions should time out after a period of inactivity or expire upon log-out. Because session IDs can be stolen and replayed, sessions should not be used to cache user authentication. For additional information about session IDs and cookies, see the section “Common Application Development Issues” later in this paper.
Note: A session ID is a unique identifier that identifies a user and associates him or her with previous requests that have been sent recently to the server. The session ID acts as a form of continuous authentication. Unless stronger forms of authentication (such as basic authentication or Windows integrated authentication) are used, anyone with a user’s session ID can impersonate that user to the Web application until the session expires. User sessions usually expire after 5 to 20 minutes of inactivity.

Authentication and authorization

Inadequate authentication and authorization processes can lead to unauthorized access to the application. Authentication should be securely managed by the application. Authorization tokens should be strong enough to prevent guessing and should be always validated correctly on the server.
· Application source code should be secured in a manner that allows only authorized individuals access. If authentication fails, access should not be granted.

· If access control subsystems are malfunctioning, the systems or applications they support should remain unavailable until the problem has been rectified.

· All access control systems should use a unique user ID and password for each user. Shared passwords should be prohibited.

Password standards

Application passwords should be strong, and they should be stored securely. A poorly chosen password can result in the compromise of your entire network. For additional information about the requirements for creating strong passwords, see the section “Common Application Development Issues” later in this paper.

Design and code review

Applications should undergo a formal security design review before coding begins to ensure good security architecture and coding practice. This review should, at a minimum, include the items discussed in this paper. A preproduction security assessment should be conducted after coding is complete to ensure that all problems identified during the design review were fixed and that the application is secure. Security scanning tools should be used on the preproduction environment to ensure that no known exploits are exposed in the system. This should include checks for code injection attacks, cross-site scripting, denial of service, buffer overruns, and so forth. Code reviews should also be performed frequently by the application development project teams to check for these error categories.

Application and server error handling

Error handling routines should not disclose information about server names, share paths, file names, or database table names. Errors should be detected when they occur and handled without crashing the application. The code should provide recovery for “soft” errors, such as timeout retries, and should provide an orderly exit with a detailed logging of the error.

A failure at any point in the application should not compromise security. All security-related control variables should be initialized to the most secure condition, and abnormal terminations of the application should result in an orderly exit that removes all sensitive data and invalidates the session ID, thereby effectively blocking exploitation of the error condition by a malicious user or code.

Application auditing and logging

Applications need to collect information about successful and failed logons and other important security actions. Logging also aids in debugging; without log data, the developer can only speculate about why a user was denied access to a resource. In addition to the policies discussed in the section “Server Auditing and Logging,” these policies also should be followed:

· All production application systems that handle sensitive information should generate logs that record every addition, modification, and deletion to the information. The log should also include the date, the time, the user ID, and, if possible, the source IP address and computer name.

· All user ID creation, deletion, and privilege change activity should be securely logged on a remote system.

· Security logs should be reviewed regularly by the application owner for unauthorized access. Applications that access highly sensitive customer data or business plans should have their logs monitored daily; applications that access source code, project schedules, and employee data should have their logs monitored weekly.

Application backup and restore

The policies that are listed in the section “Server Backup and Restore” apply also to applications. In addition, all source code for applications also should be backed up. To prevent sensitive data from being revealed to or used by unauthorized parties, all confidential information recorded on backup computer media (magnetic tapes, floppy disks, optical disks, and so forth) and stored outside the company should be stored in encrypted form.

Private data encryption

All private data, such as user names, passwords, information that identifies a user, credit card information, and dates of birth, should be encrypted by using industry supported strong encryption such as Triple Data Encryption Standard (3DES). This type of data should not be stored in plaintext in any database or file, however well-protected the database or file may seem.

Common Application Development Issues

Making applications secure should be addressed from the beginning of the development process. Application developers need to consider many issues in addition to their own application code. The security of the network on which an application is to be used, the security of the server platform, and the validity of the input received from end users are all issues developers should take into consideration in securing their applications.

When Microsoft IT assesses the security of internal applications, a pattern of development issues usually emerges. By addressing these identified issues from the outset, developers can improve the security of their products and the data they contain.

The following is a sample view of application security issues that Microsoft IT has most commonly encountered:

· Many high-risk vulnerabilities stemmed not from problems in server configurations but from poor design of the applications themselves.

· Application-level vulnerabilities appeared to be the result of addressing and incorporating security concerns too late in the development cycle.

· Fixing application-level vulnerabilities often required significant redesign and re-coding of the application.

· Fixing network-level and server-level vulnerabilities often required reapplying the latest patch or hot fix or securing poorly secured accounts.

User input validation

Simply put, user input cannot be trusted to be valid. Microsoft IT recommends that all user input be filtered and examined at the Web server before being acted upon by the application. Check for proper size and content type to prevent buffer overflows and code injections. Client-side validations are not useful for security because they can be bypassed easily.

In Microsoft IT’s assessment, user input validation compliance should be required at all times because the vulnerability severity is judged to be high.

Assume that incoming data should be treated as invalid until proven otherwise, even if the application assumes that all requests are valid. The sooner the application recognizes an invalid request, the less chance there is for damage caused by intentionally malicious code. Attackers count on the fact that it is easy to impede server performance in servicing legitimate requests when system recognition of illegitimate requests takes a long time. This is a prime example of a denial of service attack.

Lengthy operations and resource-intensive operations should always be handled as securely as private data. If you need to perform a lengthy SQL query or if you have an operation that requires a great deal of processing power, you should first confirm that that the request is legitimate. Authenticating the request Web page not only prevents malicious users from consuming resources on the application server, it also provides the ability to track misuse in audit logs, which means that administrators can trace illegitimate use back to a particular user.

Cookies, authentication, and access

Cookies should be avoided for session management. All values stored in client-side cookies are discoverable by the user. Web applications that use server-based session management must use strong, nonpredictable session IDs and protect them from being exposed.

In Microsoft IT’s assessments, compliance with cookie encryption is required at all times. Cookies should never be used to store user privileges or permissions because this enables replay attacks and unauthorized impersonation. For example, if an application stores a user variable in an unsecured, persistent cookie, a user could change this value from User to Admin, enabling the user to escalate his or her privileges. Also, if an application stores sensitive information in ASP session variables on the server, the application might not be secure if the ASP session ID is stored in an unencrypted client cookie.

Access controls should not be based on sequentially incremented plaintext IDs. For example, a key is sometimes passed through a Web page, usually as a Uniform Resource Locator (URL) parameter or form post parameter; if keys are sequential, people can guess other valid values and retrieve data that was not intended for them. Avoid this vulnerability by authenticating the user and validating the user’s permissions. Alternatively, send a nonsequential value to the client by encrypting the sequential key and sending the encrypted value to the client.

Internal Web pages should check for authorization credentials. This prevents attackers from connecting directly to these pages because their identities have not been authenticated.

The use of plaintext in Hypertext Transfer Protocol (HTTP) allows attackers on a local network to use network sniffing tools to analyze and collect sensitive information, including cookies and form posted values. When you use basic authentication, even the user credentials (including the password) are exposed.

JavaScript and include files are accessible to all users, resulting in the potential for disclosure of application design. Client-side script is always accessible to the user, whereas server-side include files are usually protected from unauthorized access.

Passwords

Microsoft IT policy dictates that applications residing on the corporate network should rely on Windows integrated authentication. When authentication fails, access to the application and its data is automatically denied.

Compliance with password policies is required at all times. The vulnerability severity for weak passwords is judged to be high. Guessing passwords is a popular and often successful method that unauthorized persons use to gain access to systems. After they are inside the firewall and on the target computer, most attackers can use widely accessible exploits to gain root or administrator access.

Microsoft IT’s strong password policies and recommended usage are as follows:

· Passwords must be significantly different from passwords and SNMP community strings that are used for other accounts and environments. For example, do not use the same password for an account that is also used for a local account or an application or for an account on a home computer.

· Passwords should never be written down or stored in readable form in batch files, in automatic log-in scripts, in software macros, in terminal function keys, on computers without access control, or in other locations where unauthorized persons might discover them.

· Passwords should always be encrypted when they are transmitted over networks or wireless devices. Use strong encryption, not encoding, for passwords. The encryption method should be an industry-supported method and not one that has been privately developed. Examples of acceptable encryption technologies are Triple Data Encryption Standard (3DES), 128-bit Secure Socket Layer (SSL), and RSA RC4, 128-bit or stronger. Encryption in this manner prevents unauthorized disclosure to wire tappers, technical staff reading system logs, and other unauthorized parties.

· Passwords should be changed immediately if they are suspected of being or are known to have been disclosed.

· Passwords should never be shared or revealed to anyone other than the authorized user.

All user-chosen passwords for computers and networks should be difficult to guess and meet all of the following criteria:

· A password must be at least 7 characters long for user accounts and 15 characters long for domain administrator accounts.

· A password must contain all four of the following classes:

· Uppercase letters: (A, B, C…Z).

· Lowercase letters: (a, b, c…z).

· Numbers: (0, 1, 2, 3…9).

· Symbols: all other characters not defined as letters or numbers (! @ # $ % ^ & * () _ + | ~ - = \ ` { } [] : " ; ' < > ? , . /).

· One or more characters in the second to sixth positions of the password should be a symbol.

· A password must be significantly different from previously used passwords. For example, users should not use “cyclical” passwords because they contain the same basic content as previous passwords, with only a part of the content changed. Cyclical passwords allow users to bypass automated processes that compare the old and new passwords and prevent password reuse.

· A password must not contain words that have the capital letter “O” changed to a zero or the capital letter “L” changed to a pipe.

· A password must not be based on a name, a user’s name, personal information, or the names of family members.

· A password must not be a common word or name in any language, slang, dialect, or jargon.

· All default passwords, such as demo or guest accounts and accounts with no passwords, should be changed to comply with this policy before users connect to the corporate network.

Access control lists

Improperly set access control lists (ACLs) can result in users having inappropriate rights to system resources and data and can lead to the disclosure of sensitive information or loss of system availability or system integrity. You should always set the lowest level of privilege that is required for a given operation. Use proper ACL settings on the file shares and the temporary directories that are created by applications to prevent unauthorized access. Use read-only permissions when appropriate. Review all permissions that are granted to Everyone or to Authenticated Users. When files are created, set permissions that are appropriate to the user who is creating the file rather than applying unnecessarily broad permissions.

COM+ application configuration
COM+ applications can be secured by the built-in services that are configured by calling the APIs inside the application code or administratively in a process known as role-based security.

Role-based security allows defining security up to user level and method level; that is, it specifies which users can access what resources. If the user is in a role that is assigned to the called method or resource, the call succeeds; otherwise the call fails.

The advantages of using role-based security are as follows:

· Security can be implemented by using administration tools such as Component Services or administrative SDK functions for declarative role-based security, or it can be implemented programmatically within code.

· There is no need to write security-related logic because the necessary access control is provided by role protection at the method level.

· Security can be set on a method-by-method basis.

· Security policies can be modified on the basis of the requirements of the application.

· Role-based security can be used to do detailed auditing.

Using the Component Services administrative tool, you can change the role-based security settings that a COM+ application uses.

Microsoft IT strongly recommends against modifying an application's security settings. An application that uses role-based security might contain code that relies on checking role membership. If you modify its security settings, an application might not run at all, might not run as intended, or might run unsecured.

The COM+ application identity can be configured to that of the currently logged-in user or a designated user. The logged-in user setting is not recommended for a production situation because the application would require a user to be logged on for it to run. Furthermore, an application configured in this way exposes the user identity to misuse. This setting is therefore useful only in limited situations, such as during development of the COM+ application.

For more information about best practices for securing COM+ applications, see http://msdn.microsoft.com/library/default.asp?url=/library/en-us/biztalks/htm/lat_secure_intro_ygdi.asp.

Auditing and logging

Microsoft IT policy requires that auditing and logging rules be followed by application developers. See the related guidelines in the section “Building Secure Hosts for Applications” in this paper.

Threat Modeling

Threat modeling provides a consistent methodology for objectively evaluating threats to applications. It consists of the following steps:
1. Identify known threats to the system.

2. Rank threats in order from highest to lowest risk.

3. Determine how you want to respond to the threats.

4. Identify the techniques that mitigate the threats.

5. Choose the appropriate mitigation technologies from the identified techniques.

Microsoft IT uses a threat model named STRIDE to identify threats. STRIDE is an acronym for the following types of threats: spoofing identity, tampering with data, repudiation, information disclosure, denial of service, and elevation of privilege. Although the STRIDE model provides a broad definition of threats types, it can be simplified to facilitate the threat evaluation process.

· Spoofing identity. Impersonating a valid user, resource, or system. Spoofing is a threat that affects the confidentiality, integrity, and availability of the system. Examples include:

· Logging on with someone else’s name and password, either by password cracking or social engineering

· Masquerade: Appearing to be a valid user or system

· Replay attack: Recording and replaying a network exchange of a user’s identification

· Trojan horse: Distributing an apparently harmless program that contains malicious code, potentially enabling the impersonation of a user’s identification

· Tampering with data. Inappropriately modifying system or user data. Tampering with data is a threat that affects the integrity of a system. Examples include:

· Giving write access to a file to someone who should not have it

· Altering or injecting new packets in a network data stream

· Deleting data

· Repudiation. The inability to identify an attacker. Repudiation is a threat that challenges the integrity of a system. Examples include:

· Attacks via anonymous requests

· Running with audit logging disabled

· Tampering with logged data

· Spoofing someone else for an exploit

· Information disclosure. A breach of privacy; disclosing data to someone who should not see it. Information disclosure is a threat that affects the confidentiality of a system. Examples include:

· Giving read access to a file to someone that should not have such access

· Eavesdropping on a network data stream

· Reusing objects (that is, code snippets) without erasing old data

· Revealing adjunct data unintentionally

· Denial of service. Shutting down or reducing a system’s functionality. Denial of service is a threat that affects the availability of a system. Examples include:

· Flooding a server with spurious requests

· Destroying files

· Intentionally crashing a process or system

· A spurious process that consumes CPU resources, memory, bandwidth, and so on

· Viruses, worms, and so forth

Elevation of privilege. A person gaining privileges he or she should not have. Elevation of privilege is a threat that affects the confidentiality, integrity, and availability of a system. Examples include:

· Obtaining more rights than a user should have

· Spoofing a user with a higher level of privileges

· Manipulating a trusted process to run untrusted code

· Buffer overflow exploits

· Script injection exploits

· Trojan horses

Architecture modeling

Architecture modeling is one way to identify threats to a system during a threat modeling exercise. If you are designing an application that is made of components, consider first breaking down the application architecture to evaluate it. This simplifies the task of ensuring that your application is secure. Threats against the system as a whole are directly related to the threats against individual components and the environment in which the components operate. Architecture modeling involves four steps: component selection, component location, connection identification, and environment component identification.

Component selection

Before threats to the system can be evaluated, it is necessary to identify the architectural components of the system. Step one in the architecture modeling process is to identify these components, which include the client (user) systems, the front-end services (such as Web servers and portals), and the back-end services (such as SQL Server, file server, and enterprise data stores), and also to identify the connections between these components. Different types of components have different threat profiles and should be evaluated with the appropriate profile.

Component location

Step two in the architecture modeling process is to identify the location of each component. Locations fall into three zones:

· Untrusted. A computer that is outside the security control of corporate IT (for example, computers that are connected directly to the Internet and employee home computers).

· Semitrusted. A computer that is subject to some corporate IT security controls (for example, computers that are attached to a vendor extranet or that are located in a perimeter network, also known as a demilitarized zone (DMZ)).

· Trusted. A computer that is completely within the security control of corporate IT (for example, a computer that is attached to the corporate network).

Connection identification

Step three in the architecture modeling process is to classify the connections for each of the components. Connections fall into three classifications:

· Untrusted. Any connection where one or both end points are in an untrusted security zone (for example, the Internet).

· Semitrusted. Any connection where one or both end points are in a semitrusted security zone (such as a vendor extranet or perimeter network).

· Trusted. Any connection where both end points are in a trusted zone (the corporate network).

Environment component identification

The fourth step in architecture modeling is to identify infrastructure components that the system relies upon for security enforcement or control. Such components might include portal servers, firewalls, and proxy servers.

Architecture modeling is just one part of a threat modeling exercise. Although a complete description of threat modeling is beyond the scope of this paper, additional information is included in the book “Writing Secure Code” by Michael Howard and Matt LeBlanc, published by Microsoft Press in 2002.
Best Practices and Lessons Learned
Microsoft IT’s effort to inventory, assess, and, if necessary, fix security vulnerabilities that it discovers in its internal applications has proven to be successful. Microsoft IT has a much better grasp of the number and complexity of the applications that are used to run the company’s day-to-day business. Any vulnerability discovered in one application was noted and searched for in other applications. Security has been tightened, protecting business-sensitive data and confidential employee data at Microsoft. Formalizing the security assessment process by means of the ASAP has raised the level of security awareness among the many internal development teams in Microsoft IT, ensuring that future development projects are more secure.

Many lessons were learned as part of this process. These included the following:

· If you wait until an application is already in production to make it secure, you are too late. The vulnerability has already been exposed.

· Security should be pushed to the host whenever possible, but good security practices take into account the application client as well.

· Create clearly written and easily accessible security guideline documentation.

· Create security checklists that include step-by-step instructions for securing applications, hosts, and networks.

· Develop a thoroughly considered policy exception tracking process.

· Education is crucial to the success of a security program. Developers, testers, and support personnel should be trained and then receive ongoing information to ensure that all applications are secure.

· Processes and reporting are required to ensure that inventory information is maintained. Within your security tracking system, maintain an up-to-date inventory of the following items:

· Applications and their versions

· Static IP addresses by group, owner, and server

· Server lists (development, test, and production) by application

· Policies and related guidelines

· Policy and guideline exceptions

· Security is an ongoing, always changing, concern. An experienced security team and well-developed process is required to ensure that ongoing changes are propagated to the applications.
Policies

The following general policies apply to all applications that support business functions, whether they are third-party or in-house developed applications.

· All software applications, including those under development, should comply with application security policies and guidelines. This includes following password policies for all types of credentials.

· All new, modified, and third-party applications should go through a security design review process and be approved before being deployed into production.

· For third-party applications, a written statement from the vendor should provide assurances that the software does not contain any hidden mechanisms that could be used to compromise or circumvent the software's security controls.

· Internet-facing applications should use existing methods of authentication. Do not create a new authentication process.

· Applications that reside on the corporate network should rely on Windows integrated authentication.

· Applications that cannot use Windows integrated authentication for valid business reasons or because of legacy code restrictions should either encrypt or hash the password stores to prevent passwords from being retrieved if they are stolen. If encryption is used, the decryption key should be stored on the same system.

· Credentials should never be stored or sent unencrypted. For example, credit card numbers, telephone calling card numbers, network login passwords, and ASP session IDs that can be used to gain access to goods or services should always be encrypted when they are stored or sent.

· Ensure that necessary legal requirements regarding privacy issues are followed. Some, but not all of the legislation and guidelines that regulate data privacy include the EU 95/46/EC Directive on Data Privacy (commonly known as Safe Harbor), Gramm-Leach-Biley Act (GLBA), Healthcare Insurance Portability and Accountability Act (HIPAA), and Cardholder Information Security Program (CISP).

· All user input should be filtered and examined at the Web server before being acted upon by scripts. Check for proper size and content type to prevent buffer overflows and code insertions.

· Web applications that deal with transactions should use strong, nonpredictable session IDs and protect them from being exposed.

· Web applications that deal with transactions should use an inactivity timeout to cause the user’s session to be terminated after a reasonable period of inactivity.

· Cookies that contain sensitive data, such as session IDs, should be marked as secure and nonpersistent. If you need to make it a persistent cookie, encrypt the contents to prevent viewing and tampering.
Future Security Considerations

With the pre-release version of Microsoft Windows Server 2003, there are new tools and features available that can enhance the security of internal applications managed by Microsoft IT. Some of the key features already being planned for implementation are listed in the following sections.

Authorization Manager

Authorization Manager, a new feature in Windows .NET Server 2003, is a centralized role-based permissions Web service that works with Active Directory. This component allows users to request, manage, update, and remove authorization to applications and Web sites. The service performs the actual access check against the Active Directory policy store.

The centralized access control that is provided with Authorization Manager reduces both administrative effort and the resources required to maintain user privileges. It decreases redundant development among disparate application development teams, which reduces the potential for introducing security vulnerabilities. Potential lapses in security that are made possible during the maintenance of privileges across applications are eliminated. Users are enabled to provide self-service for access requests from a single, standardized application with appropriate approval, and notification workflow is provided to maintain proper administrative control.

Microsoft IT is already planning to pilot Authorization Manager in the coming months. It is expected to be ready for use within the first half of 2003.
Constrained Delegation

Constrained Delegation is a method for providing multiple secured servers in a chained connection with the appropriate authentication from the account that is requesting access.

As of this writing, an application user can access a SQL Server database through an intranet application that is hosted by a server on which IIS is running. Because end-user credentials are authenticated only at the first server that is encountered and these credentials are not passed to subsequent servers, a separate account and password is needed to grant access to the computer running SQL Server. Using Constrained Delegation, a new feature of Windows Server 2003, trusted SQL Server connections can be used and the end-user credentials can be passed to the computer on which SQL Server is running. This is known as “hopping” a server.

Constrained Delegation is a good solution in situations where there are limited or specifically defined sets of users that can be given permissions in SQL Server, such as through a domain group. To take advantage of this new feature, all domain controllers and IIS application servers should be running Windows Server 2003.

Microsoft IT is looking for pilot opportunities for using the Constrained Delegation method and expects to implement it for use within the first half of 2003.
Conclusion

Securing your business data from unauthorized access has never been more important. Computer systems have revolutionized the way enterprises conduct business, and more internally developed applications are used to automate the daily needs of employees, business partners, and customers. As a result, business relies more and more on information technologies to operate.

As more custom applications are developed, they are increasing access to sensitive business data, such as marketing databases, and to confidential employee data, such as medical and retirement plan benefits. Securing access to these critical resources ensures that they continue to function as expected, that the integrity of their data is maintained, and that confidential information remains confidential.

The Microsoft IT group formed the ASAP to oversee the process of inventorying all applications used at Microsoft, of assessing their security risk, of undertaking any indicated remediation, and of providing ongoing education and oversight with respect to LOB application security. Microsoft IT put policies and guidelines in place to help Microsoft development teams secure their existing applications. They also set up processes to ensure that application security remains one of the highest priorities for future software development. Documenting and sharing the lessons that are learned by organizations and the best practices that are developed by them are central to maintaining security both within and among businesses.

For More Information

For more information about Microsoft products or services, call the Microsoft Sales Information Center at (800) 426-9400. In Canada, call the Microsoft Canada information Centre at (800) 563-9048. Outside the 50 United States and Canada, please contact your local Microsoft subsidiary. To access information via the World Wide Web, go to:

http://www.microsoft.com/

http://www.microsoft.com/technet/itshowcase

For any questions, comments, or suggestions on this document, or to obtain additional information about Microsoft IT Showcase, please send e-mail to:

showcase@microsoft.com
The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Microsoft grants you the right to reproduce this White Paper, in whole or in part, specifically and solely for the purpose of personal education.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2003 Microsoft Corporation. All rights reserved.

[image: image4.png]
PAGE

_928582940.doc
[image: image1.png]

