
[image: image14.wmf]
Writing Accessible Web Applications
Authors: Cynthia Shelly, George Young
Version 1.0
Published: October 2006

Copyright
© 2006 Microsoft Corporation. All rights reserved.

Summary

This white paper is intended to help readers better understand the issues involved in making Web applications accessible to people with disabilities, a legal obligation that also benefits all users of the Web. The paper describes accessibility goals, explains how accessibility works in the browser, and provides an overview of how assistive technology (AT) devices communicate with client or Web applications.

More specifically, this document deals with topics such as designing for accessibility, writing good core HTML, and understanding the requirements of AT devices; it includes guidelines, code samples, and checklists. The recommendations in this paper are based on W3C recommendations, Microsoft guidelines, and user feedback and can be applied to simple HTML, complex DHTML, and Asynchronous JavaScript + XML (AJAX) applications.
Status

This document is the first release of the technical white paper on the accessibility of Web sites that are based on Microsoft solutions; it references the norms and standards that were available at the date of publication and the features available in current versions of the above-mentioned products and technologies at the date of publication. This document will be updated as required based on product modifications.

Copyright

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

 2006 Microsoft Corporation. All rights reserved.

Microsoft, Win32, and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.
Microsoft Corporation • One Microsoft Way • Redmond, WA 98052-6399 • USA

Contents
5Introduction

5What is Accessibility?

7Assistive Technology

7Use of DOM and MSAA

8Tools

8Inspect32.exe

9Internet Explorer Developer Toolbar

10Designing for Accessibility

11Developing Accessible Web Applications

11Use Correct HTML Semantics

13Using Roles Correctly

19Specifying Names

22Using Correct Element Order

22Implementing Correct Visual Elements

22Using Scalable Fonts and Relative Sizing

23Creating Accessible Help and Instructions

23Use Correct DHTML Logic

23Maintaining Semantics and Source Order

28Using Semantically Correct Elements and Events for Actions

33Use Update Notifications with Asynchronous (AJAX) Updates

35Summary

36Resources

[image: image1.wmf]Writing Accessible Web Applications
Introduction
This white paper provides an overview of the techniques you can use to design and write accessible Web applications. The paper describes accessibility goals, explains how accessibility works in the browser, and provides an overview of how assistive technology (AT) devices communicate with client or Web applications.

The focus of this paper is on those things that application designers and developers can do to ensure that their Web-based applications are as accessible as possible. These things include designing for accessibility, writing good core HTML, and understanding the requirements of AT devices. This white paper includes guidelines, code samples, and checklists. The recommendations in this paper are based on W3C recommendations, Microsoft guidelines, and user feedback and can be applied to simple HTML, complex DHTML, and Asynchronous JavaScript + XML (AJAX) applications.
What is Accessibility?
Accessibility refers to the ability of a user, despite disabilities or impairments, to use a resource. In the computer industry, accessibility standards and guidelines help to ensure that any computer user, despite impairment, can experience at least the minimum functionality that the computer resource (hardware and software) is capable of providing. For Internet-based applications, accessibility means that all users can perceive, understand, navigate, interact with, and contribute to the Web.

Microsoft® recognizes its responsibility to develop technology that is accessible and usable to everyone, including those with disabilities, and is committed to educating developers on how to create accessible technology. Perhaps most importantly, Microsoft is committed to providing all users with an equivalent software experience. Note that equivalent does not mean exactly the same. The goal is an equivalent measure of usefulness and access to features that can achieve the desired result. Therefore, when you design Web applications, you should consider the needs of all potential users, including older people who use large fonts, users with low vision who use magnifiers, users with color blindness; users who are sight impaired, users with mobility impairments who use specific input devices, users who are deaf or hard of hearing, users with cognitive and reading disabilities, and so on.

Follow three basic rules to make software accessible:

· Make the user interface work with assistive technology (AT). AT is a type of software that acts as a bridge between a mainstream software product and a disabled user who is unable to use that product by itself. One example of AT is a screen reader, which converts text and other properties of the user interface (UI) elements into speech.

· Make the user interface work with operating system settings. Examples in the Microsoft Windows® operating system include high contrast mode and large fonts.
· Design the user interface so that, by default, it works for as many users as possible. For example, use reasonably sized fonts and enough color contrast between text and backgrounds.

The Web and Web-based applications present some challenges to accessibility that are absent in desktop software. As with desktop applications, Web content relies on visual cues and dynamic content that might not display correctly if the user configures his computer for large fonts, for example; or the content might not interact well with alternative input devices. The Web adds a level of complexity because all Web-based applications are rendered in a browser, which controls the interaction with the operating system and AT. However, by focusing on a set of fairly simple guidelines, you can make your Web-based applications more accessible and avoid common pitfalls.

The next section provides an overview of some of the accessibility technologies available and how you can use them effectively. The remainder of this white paper provides specific guidance and examples that you can use to design, develop, and test accessible Web applications.

Assistive Technology
Assistive technology (AT) devices are designed to improve accessibility for individuals who have physical or cognitive difficulties, impairments, and disabilities. An AT device sits between a user and an application and allows the user to interact more successfully with that application. The devices translate the application data into a format that the user can access and interact with and, in turn, render the user's input into a format that the application can interpret. To function effectively, AT devices must be compatible with the computer operating system and programs on the particular computer being used.
Use of DOM and MSAA

Fortunately, developers do not need to understand each AT device. AT devices use a standard object model, such as the Document Object Model (DOM), or a set of interfaces, such as Microsoft Active Accessibility (MSAA), to communicate with a client application running on Windows or with an application running on the Web (see Figure 1). A wide variety of AT devices are built on this common base.

[image: image3.emf]Assistive

Technology

MSAA/UIA

Browser

HTML

Client Application

Object

Model

Object

Model

P

r

o

p

e

r

t

i

e

s

E

v

e

n

t

s

Browser

User

Figure 1.
Assistive technology use

MSAA is a set of COM interfaces and application program interfaces (APIs) that provides a reliable way to expose and collect information about Microsoft Windows-based UI elements and Web content. AT devices can then use this information to communicate the UI in alternative formats, such as voice or Braille, and voice command and control applications can remotely manipulate the interface.

The key difference between developing accessible desktop applications and developing accessible Web applications is that, while the Microsoft Win32® application program interface allows the writing of accessibility members on arbitrary controls, HTML is read-only for roles and events. A browser maps HTML tags to MSAA values, and the developer has no direct access to them. For more information, see the section, "Use Correct HTML Semantics."
Tools
You might not have AT devices available to you when you design, develop, and test your applications. However, the following tools can serve as proxies for actual assistive technology devices. These tools are free and easy to use, and can help you uncover the vast majority of accessibility issues.
Inspect32.exe

The Inspect Object tool (Inspect32.exe) exposes the MSAA name and role (as well as other properties) for functional elements, images, and tables. With this tool, you can quickly tab through your application and verify that the names and roles for key elements—such as links and form elements—are set correctly. You can also use Inspect32 to navigate a DOM hierarchy, call the default action on an element, and highlight the keyboard focus.
See Figure 2 for an example of the Inspect Object tool.

[image: image4.wmf]
Figure 2.

Inspect Object tool
You can download Inspect32 and related tools at
http://www.microsoft.com/downloads/details.aspx?FamilyId=3755582A-A707-460A-BF21-1373316E13F0&displaylang=en.
Internet Explorer Developer Toolbar
There are element types important to AT that are not explicitly identified in MSAA, such as headings and lists. The View DOM and Select Element functions of the Internet Explorer Developer Toolbar allow you to confirm that the appropriate HTML element type—for example, <h3>, , and so on—is used.

If you select View Source from the browser, you can view the HTML as it was downloaded to the browser. However, if you use the developer toolbar, you can view the DOM after it has been manipulated by script.

The toolbar is also valuable as a debugging and testing tool. You can use it to inspect the tag name, HTML attributes, and cascading style sheet (CSS) properties of elements. The toolbar has other useful features for testing your work, such as validators and the ability to quickly view CSS or alternate text for images.

See Figure 3 for an example of the toolbar.

[image: image5.png]&1 MSN.com - Microsoft Internet Explarer [B=%]
Fle Edt Gow Favortos Tooh Hop Dovioobar ViewDOM Diable View Outine vaidate Images Revoe Mac Sowruer | AN
Qo - © X B @ Lo Jorovons @ R-BHFL) 3 B wemme

idcress |] heepifjwww.msn.com Go
Instant Sports: Faotball games Sunday, October 22, 2006

web | tmages | News | Locsl | Shopping | Qnal

MISI. - ——— e

[T—
Welcome Restore defaults SIGN IN ECOEEE

Hotmail Autas Games Money Shopping Travel

B Messenger Careers tdobs Health & Fitness Movies Slate Magazine TV
City Guides Horoscopes Music Spaces Weather

2ty risn Classifieds Lifestyle Hews Sports White Pages

I MSNDirectory Dating & Personals Maps & Directions Real Estate Tech & Gadgets Yellow Pages

NFL Sunday: B S
Week 7
NETEUIK

Get all the scares,

File Find Dissble View Outine Valste Images Resize Misc Show Ruler
Current style
Propert Current Vake |~
backgroundC... #ffit
borderBattam... #aaches

borderBattom... ol
borderBattom.. 1px

accesskey

o fi borderColor #aaches
¥ <LABEL> borderLeftColar #aaches
<mpuT maxtength = bordertefistyle ol

name. a

<JpUT>
<P

borderisftwidh 1pc
bordrRioheC,..#asches (V]
J<t m =)

I~ Show Default Sty Values

@ Trusted sites

Figure 3.

Internet Explorer Developer Toolbar
You can download the toolbar at
http://www.microsoft.com/downloads/details.aspx?FamilyID=e59c3964-672d-4511-bb3e-2d5e1db91038&DisplayLang=en
Designing for Accessibility

It important that application architects and designers consider the needs of all users during the initial planning and design phases of development. You should do this early because it might affect your design in ways that would be difficult to change after your code is written. As stated in the introduction, the goal of equivalent functionality for all users does not mean that all users must experience an application in the same way. Instead, when you design for equivalent functionality, focus on what the user is trying to do, not necessarily on the control they use or the way they use it.

To effectively design and develop accessible applications, you should:

· Consider accessibility during the early design and development phases of your application life cycle. Include accessibility features in requirements and specification documents.

· Think about how to expose application functionality, not necessarily about the control or visual.
· Consider the flow of logic in the application and how you can communicate that logic through different devices.

· Think about HTML structure and how it can reflect the application logic.

· Be aware of how assistive technologies work with the browser, and consider how the application UI could work with different AT devices.
· In particular, be aware of the following accessibility requirements:

· For any action, you must use a click on a link or a button.
· You may use hover effects if they are purely decorative or if the functionality is also available from a click on a link or a button.
· You must use scalable fonts and containers.
· You must use sufficient color contrast.
· You must never use color alone to convey information.
· You should use real text and available fonts, not images of text.
· You should use UI text that is unambiguous and can stand on its own.
· You should provide Help topics about accessibility.
· You should be cautious about using custom controls, because it takes more work to make them accessible than if you use built-in HTML controls.
Developing Accessible Web Applications

This section provides specific information and examples that you can use when developing accessible Web applications. This discussion can be seen as a cascading or layered approach, with the more fundamental requirements discussed first. The guidelines fall into the following general categories (see Table 1):
· HTML issues – Use semantically correct HTML. Focus on correct use of roles and names, and always supply alternative text for visual elements. To facilitate the use of large fonts and other display options, always use relative sizing.
· Dynamic HTML (DHTML) issues – Maintain source order and use elements and events with built-in action semantics.
· Asynchronous JavaScript And XML (AJAX) issues – AJAX is DHTML with asynchronous updates. When you use AJAX, you need to notify AT that the page has been updated.
Table 1: Web Technology and Accessibility Categories

	
	HTML
	DHTML
	AJAX

	Definition
	HTML Web pages. These can be hard-coded, server- generated, or generated from client-side scripts.
	HTML plus user interaction through client-side scripting.
	DHTML plus asynchronous updating.

	Considerations
	· HTML semantics

· DOM order

· Relative sizing

· Colors
	· Links and buttons

· Click event

· DOM order
	Callback notification to AT

The following sections describe these categories and the corresponding accessibility guidelines in greater detail.

Use Correct HTML Semantics
HTML offers a limited set of elements, or tags, each of which expresses the structural purpose of that content element. A content element might be a link, a heading, part of a list, tabular data, and so on. In addition, some of the tags are mapped to MSAA, and the MSAA properties are exposed through the browser. By using MSAA or the DOM, AT devices can interpret these elements and their structural logic and present the information in a manner suitable for a variety of users with different needs. For example, a screen reader might present all the links on a page or all the headings on a page as a spoken list, which the user can use to navigate to a subsection of the page. This is similar to how a sighted user can visually scan a page looking for headings and links.
Headings and lists are examples of HTML tags that have straightforward semantics. These tags are not mapped to roles in the browser; an AT device obtains these tag definitions from the DOM. HTML heading elements are similar to the heading styles available in word processing style sheets. They are available in levels from 1 to 6: <h1>, <h2>, and so on. As the heading numbers increase, the headings become progressively less important. AT devices use the underlying heading logic from the DOM to create an accessible alternative presentation for the device user.

Note: Be careful not to skip HTML heading levels. If you skip a level (for example, if you use an <h1> tag followed by an <h3> tag), AT cannot correctly interpret your interface.

By default, headings appear in decreasing font size in browsers. However, you can use CSS to change the look of a heading without affecting its underlying logic. If you use heading tags correctly, you can use CSS to create the exact appearance that your application requires without compromising HTML logic or the ability of an AT device to interpret your application.

The following HTML shows the use of level 2 and 3 headings. See Figure 4 for an example of how this might appear in the browser.

<h2 class="sampleHeading">News</h2>

<h3 class="sampleHeading">MSNBC</h3>

[image: image6.png]MSNBC

Figure 4.

Use of level 2 and 3 headings

There are a few types of lists available in HTML. The two most common are ordered (numbered) lists and unordered (bulleted) lists, represented by the tags and , respectively. AT devices inform the user that the content is part of a list and might then indicate the ordinal position and level (nesting) of any item in the list. As with headings, you can use CSS to change the look of a list without affecting its underlying logic. For example, horizontal toolbars are best written as elements. This approach presents a collection of toolbar buttons as a group of related list items, even though they are still displayed as a set of horizontal buttons on the toolbar. AT devices can then interpret this list and present it in an accessible manner to the device user.

The following HTML shows how a horizontal toolbar can be presented as an unordered list. See Figure 5 for an example of how this might appear in the browser.

<ul class="sampleList">

Home

Mail

Shopping

[image: image7.png]Home Mail Shapping

Figure 5.

Unordered list displayed as horizontal toolbar

Two critical pieces of MSAA information on which AT devices rely to help users interact with Web applications are an element's role and name. The role is the type of control: for example, a checkbox, link, and so on. The name provides information about that specific control instance: for example, First Name, Next, More Information, and so on. In Web programming (unlike Win32 programming), you cannot specify the role programmatically. Role information comes entirely from the control itself. You can, however, specify the name.
Using Roles Correctly

Roles are immutable: the role for an HTML element is mapped to MSAA as part of the browser code. Developers who work with content within the browser have no direct control over the role, and can only specify it by their choice of tags. This is differs from Windows applications, in which developers can specify all of the MSAA properties directly in code.

Intrinsic HTML elements, such as links, buttons, and form elements, are mapped to MSAA by the browser. A custom UI element might look like one of these elements, but it does not have MSAA information built in, and there is no way for the developer to specify it. For example, an image with a click handler might look like a button, but its role would be Graphic, not Push Button, and clicking it would not send an event to AT.
When you develop your applications, try to avoid using custom controls. Custom controls are often built out of div and span elements, which do not have the correct role definition built in, and AT devices cannot interpret them correctly. However, there are times when an innovative UI requires the use of custom controls. If you need to use custom controls, build them out of intrinsic HTML elements that have some level of role information. These include links, lists, buttons, and so on. Be aware that using custom UI elements requires more development and testing time than using intrinsic HTML elements.

Using Form Elements
Use the <form> element and the submit and reset buttons. This provides default navigation and keyboard support. Do not, however, use auto-submit (automatic post back).
With the exception of buttons, give everything a <label for> definition.
If the label has no visible text, do one of the following:

· Set display:none on the <label>.
· Use the title attribute on the form element as a last resort.

AT devices provide broad support for <fieldset> and <legend> tags.
When you supply a name—for example, when you supply labels for form elements—always use descriptive text that can stand alone and that does not rely on screen position.
To implement a button, use one of the following tags:

· <button></button>

· <input type="button" />

· <input type="submit" />

· <input type="reset" />

· <input type="image" />

To set the button name, use the following syntax:

· <button>name</button>
· <button></button>
· <input type="button" value="name" />
· <input type="submit" value="name" />
· <input type="reset" value="name" />
· <input type="image" title="name" />
Do not use any other techniques to create buttons because AT does not recognize them. The following is an example of a technique that you should not use.

In the following example, a table is used to create a button with rounded corners. The following HTML has many roles, one for each element, and none of them are push button. This technique does not work correctly with AT.

<table>

<tr>

<td></td>

<td></td>

<td></td>

</tr>

<tr>

<td></td>

<td>foo</td>

<td></td>

</tr>

<td></td>

<td></td>

<td></td>

</tr>

</table>

Using Lists

For any grouped list of information, use an unordered list () unless the list has a sequence (such as a procedure). In that case, use an ordered list (). This includes toolbars, menus, menu bars, left-hand navigation elements, tree views, and tables of contents, in addition to anything that looks like a list. You can use CSS to make the underlying list structure appear the way you want it to.

Grouping Toolbar Items in a List

This technique provides semantically correct grouping information for toolbar buttons. This allows AT to provide an alternative user interface for the same semantics. Toolbar buttons are a group of hierarchically equal items, and the HTML list elements (and) are ideal for expressing these semantics. The list element provides the grouping mechanism, and a list item represents each node in the group.
The functioning elements of the toolbar are created with links, which ensures that they are device independent. CSS is used to make the underlying structure of the list appear as a toolbar in visual user agents. The HTML for the toolbar introduces the model used in all list-based examples, a list element with a few child list items, each containing a link.
<ul class="toolbar">

 <li class="first">Category 1

 Category 2

 Category 3

The CSS for the toolbar turns off margin padding and list style for the list element. The list item elements are floated left, so that they appear horizontally rather than in the default vertical list layout. The display property on the links is set to block so that the entire toolbar item is hot.
ul.toolbar { margin:0; padding:0; list-style-type:none; }

ul.toolbar li { float:left; border:1px solid gray; border-left:none;

 background-color:#eeeeee; }

ul.toolbar li.first { border-left:1px solid gray; }

ul.toolbar li a { color:black; text-decoration:none; width:100%; height:100%;

 padding:0.2em 2em 0.2em 0.5em; width:8em; display:block; }

ul.toolbar a:hover { text-decoration:underline; }

The following example shows a toolbar with icons and text. The icons are placed inside the same link as the text and have null alt attributes. This allows the text to serve as the name of the link and allows the toolbar links to continue to function much like buttons.

<ul class="toolbar">

<li class="first"><img height=”16” width=”16”

 src="icon1.gif" alt="" />Category 1

 <img height=”16” width=”16”

 src="icon2.gif" alt="" />Category 2

 <img height=”16” width=”16”

 src="icon3.gif" alt="" />Category 3

Additional CSS for this example is just a rule on images to hide borders.

ul.toolbar li a img { border:none; }
Creating a Tab Control

This technique provides an accessible version of a tab control, which is a common UI feature on operating systems but is not natively available in HTML. The tab control is modeled in HTML as a list () of panes (<div>), which can contain any other HTML, including form elements. This provides a good structure for grouping and navigating the panes of the tab control.
CSS and script are used to make the list look and behave like a tab control. The logic is similar to the tree or the click menu: when a list item element is clicked, the child content is displayed. Rather than absolutely positioned content (as in the click menu), the content is displayed in the flow beneath its relevant list.

The tab control consists of a top-level list element. Rather than child list elements, each list item contains complex content in a <div> element with a class of "tab".
<ul id="tabControl">

 Layout

 <div class="tab">

 <div>

 <label for="columns">Columns</label>

 <select id="columns">

 <option>1</option>

 <option>2</option>

 <option>3</option>

 <option>4</option>

 </select>

 </div>

 <div>

 <fieldset>

 <legend>Sort Order</legend>

 <input type="radio" name="order" id="order_alpha" />

 <label for="order_alpha">Alphabetical</label>

 <input type="radio" name="order" id="order_default"

checked="true" />

 <label for="order_default">Default</label>

 </fieldset>

 </div>

...

ToggleTab() cancels the default action for the <a href>. It looks for the first child div of the list item, hides the "tab" div that is currently shown (which is stored in the global window.activeTab variable), and then shows the "tab" for the list item the user clicked.
function ToggleTab(evt)

{

 HarmonizeEvent(evt);

 evt.preventDefault();

 var src = evt.target;

 var node = src.parentNode.getElementsByTagName("DIV")[0];

 if (node)

 {

 var active = window.activeTab;

 if (active && active != node)

 {

 active.style.display = "none";

 active.parentNode.className = active.parentNode.className.replace(/active/,'');

 }

 node.style.display = "block";

 node.parentNode.className += " active";

 window.activeTab = node;

 }

}

The CSS is fairly complex. To highlight the important items, the list items are set to float:left, so that they align horizontally rather than the default vertical layout. In addition, height and width are explicitly set on the tab container and on the "tab" div elements, so that the control and its contents line up properly.
div#tabControlBox { clear:both; float:none; background-color:buttonface;

 border:1px outset buttonface; font-size:90%; position:relative; padding:0.2em; }

ul#tabControl { margin:0; padding:0; height:20em; }

ul#tabControl li { list-style:none; margin-left:0; padding-left:0.5em;

 display:block; float:left; border:1px outset buttonface; z-index:100; }

ul#tabControl li.active { border-bottom:none; }

ul#tabControl a { color:black; text-decoration:none; padding:0.1em 1em 0.1em 0.1em;

 margin-right:1em; height:100%; width:100%; }

ul#tabControl a.active { background-color:beige; }

ul#tabControl a img { border:0; vertical-align:middle; margin:0.2em 0.2em 0.2em 0em; }

ul#tabControl div.tab { display:none; padding:1.5em 1em 1em 1em;

 background-color:transparent; float:none; clear:both; position:absolute;

 border:1px outset buttonface; border-top:none; }

ul#tabControl div.tab div { margin-bottom:1em; }

ul#tabControl div.tab fieldset { padding-bottom:1em; }

ul#tabControl input { }

/* sizing */

div#tabControlBox { width:25em; height:20em; }

ul#tabControl div.tab { top:1.9em; left:0.2em; height:15.6em; width:22.8em; }

Creating a Tree Control

This technique provides an accessible version of a tree control, which is a common UI feature in operating systems, but not natively available in HTML. A tree control is a list of items that can be expanded to show secondary items under them and collapsed to hide the secondary items. A tree control, much like a menu, is semantically a set of nested lists of links. In HTML, CSS and script are used to make the list look and behave like a tree control.

The top-level list items are links that include an image to show open or closed state and a text description of the top-level category. The images are a plus sign (+) and a minus sign (-), and the symbols are described in text in the alt attribute. The onclick event of a top-level link triggers a script that uses CSS to hide or show the secondary list, exchange the + and - images, and update the alt attribute. All actual navigation is in the leaf nodes of the nested lists. The other links just trigger the show/hide scripts. You can nest this type of tree as deeply as you want.

In the following example, the HTML for the tree is a set of nested list elements. Note that the ToggleTree() event handler is bound to the <a href> element. Also note the + alt attribute on the image ().
<ul id="tree">

 <img alt="+"

 height="9" width="9" src="img/p.png" />Category 1

 Sub-Category 1.1

 Sub-Category 1.2

 Sub-Category 1.3

 ...

The ToggleTree() function cancels the default action for the <a href> and then finds the list item's child list element. After it finds the child list element, it toggles the display of that child list element and changes the list item's image and alt element.
The example uses show/hide for lists that already exist in the HTML, but you can also inject the secondary lists from script, provided that the result is the DOM shown above after the injection. Obviously, the script for this would be somewhat different than that shown below.

function ToggleTree(evt,src)

{

 HarmonizeEvent(evt);

 evt.preventDefault();

 var node = src.parentNode.getElementsByTagName("UL")[0];

 if (node)

 {

 var img = src.getElementsByTagName("img")[0];

 if ("block" == node.style.display)

 {

 node.style.display = "none";

 if (img)

 {

 img.src = "p.png";

 img.alt = "+";

 }

 }

 else

 {

 node.style.display = "block";

 if (img)

 {

 img.src = "m.png";

 img.alt = "-";

 }

 }

 }

}

The CSS turns off the margins, padding, and list glyphs, and hides the child list elements.

ul#tree, ul#tree ul { list-style-type:none; margin:0; padding:0; }

ul#tree a { color:black; text-decoration:none; height:1.5em; padding:0 0.2em;

display:block; display:inline-block; }

ul#tree a img { border:0; vertical-align:middle; margin-right:0.2em; }

ul#tree ul { display:none; margin-left:2em; }
Using Tables

You should avoid using tables to create the page layout. In particular, avoid nested and complex tables with row and column spans. While these techniques do not completely prevent accessibility, many AT devices have difficulty deciphering complex layout tables to present a coherent user interface. In addition, the combination of nested tables and percentage-based font sizes causes text to get very large in High Contrast Mode in some browsers. However, browser text size features require percentage-based font sizes to function correctly. Therefore, the only way to eliminate this issue is to avoid nested tables and instead use CSS for layout.

As table-based layouts have become unfashionable, many Web developers have gone too far in the other direction and removed table markup from tabular data. Table markup provides important semantic information to AT users. Many AT devices allow users to navigate tables cell-by-cell and provide contextual information about the current cell based on the row and column headings.

For example, in Table 2, when an AT user’s focus is in the cell containing the number 21, he or she has access to the headings “Fred” and “Apples” and knows that the number refers to how many apples Fred has.

Table 2: AT Device Interpretation Example

	
	Bananas
	Apples
	Pears

	George
	10
	16
	5

	Fred
	1
	21
	8

	Sam
	4
	0
	2

If you use tables in your Web application UI, follow these guidelines:

· Use the <th> tag for table heading cells. This allows an AT device to identify the major items in the table and give context for individual cells.

· Do not use structural tags, such as <th>, <summary>, and so on merely to provide visual effects. For example, do not use <th> to make text appear in bold font when that text is not semantically a heading.

· Do not use empty cells or cells that contain only spacer graphics for padding. When an AT device interprets a table, an empty cell can cause the rest of the linear version of the table to be out of sequence.
· Keep related content in the same table.
· Avoid nesting tables. These are very difficult to represent in a linear fashion.
Specifying Names
For many HTML elements, the element name comes from its inner text. If you are using a link, for example, you assign the name by specifying the text within the <a href> tags. You should make sure that the text you specify is easy to understand and does not require additional information. Do not use jargon, abbreviations, or acronyms that might confuse the user.
For images, use the alt attribute to specify the element name. In this case, the name should be a description of the image content. AT devices use this alternative text to communicate a description of the image to the user.

Note: In Internet Explorer, the content of the alt attribute is also displayed as a tool tip; however, you should not use it for this purpose. For specific tool tips, use the title attribute, and think of the alt attribute only as the element name. It is acceptable to have an empty string alt attribute for contextually unimportant images, such as images that are purely decorative, but all images must have the alt attribute set.

For HTML form elements except buttons, use the label element to associate a name with a control. In addition to providing the name, the label element also provides a larger click surface for controls such as radio buttons and checkboxes.
For the <button> element, the name comes from the inner text. For <input type="button|submit|reset" /> elements, the name comes from the value attribute of the input tag. For <input type="image" /> elements, the name comes from the title attribute of the input tag.
The following HTML example shows the use of descriptive link text.
<p>Use descriptive text in links!</p>
The following HTML example shows the use of alternative text for an image (the open and close folder control: see Figure 6).

Close Folder

[image: image8.png][Close Folder

Figure 6.

Use of alternative text for an image

The following HTML example shows two ways to specify descriptive text in button controls. (See Figure 7.)
<button type="button">I am a button tag</button>
<input type="button" value="I am an input" type="button"" />

[image: image9.png]Tamabuttontag | | T am an input type="button”

Figure 7.

Use of descriptive text for a button control

The following HTML examples show the use of radio buttons with and without label elements. You can use the Inspect Objects tool to see the differences in how these two code samples function with AT devices. (See Figures 8 and 9.)

<form>

 <fieldset>

 <legend>Buttons with Labels</legend>

 <div><input name="rad1" id="rad01" type="radio" /><label for="rad01">Ham & Pineapple</label></div>

 <div><input name="rad1" id="rad02" type="radio" /><label for="rad02">Pepperoni</label></div>

 <div><input name="rad1" id="rad03" type="radio" /><label for="rad03">Cheese</label></div>

 </fieldset>

 <fieldset>

 <legend>Buttons without Labels</legend>

 <div><input name="rad2" id="rad04" type="radio" />Ham & Pineapple</div>

 <div><input name="rad2" id="rad05" type="radio" />Pepperoni</div>

 <div><input name="rad2" id="rad06" type="radio" />Cheese</div>

 </fieldset>

</form>

[image: image10.wmf]
Figure 8.
Labeled radio buttons in Inspect32.exe. Note that the radio button has a name of “Ham & Pineapple.”
[image: image11.wmf]
Figure 9.
Unlabeled radio buttons in Inspect32.exe. Note that the name is none [nimpl]. This means that there is no name available to assistive technology and that this interface element has not been implemented.

Using Correct Element Order

AT does not have access to the visual placement of elements on the page. Instead, it relies on the order that the elements appear in the HTML source or DOM. This determines both the keyboard tab order and the order in which a screen reader would read the items.

Make sure that you anticipate how the user will tab through visual elements in the UI. As with lists and other logic elements, the order of your source code should define the visual tab-through order.

Implementing Correct Visual Elements
When you develop the visual aspects of your Web applications, you should keep the following in mind:

· Windows allows a user to select colors and to adjust brightness and contrast. These tools can increase the usability of an application, but they can also create problems if you do not anticipate these variables in your code. Therefore, to prevent conflicts (for example, when a user specifies a dark color background and your application uses the same color for text), use CSS to specify both background and foreground colors, including colors for all link pseudo classes.
· To anticipate the needs of color blind users, always provide a non-color alternative to color-based messaging. For example, if the color red conveys meaningful information, include an alternate textual description.

· Do not use blinking or flickering in ranges that can cause epileptic seizures.
Using Scalable Fonts and Relative Sizing

CSS allows you to specify font size as absolute or relative. Absolute units include pixels (px) and points (pt). Relative units include ems (the size of an m character) and percentages (%). Relative units resize more readily in response to user settings, such as when a user uses the Internet Explorer View menu to change the text size.
Many users who do not use AT or who do not know about the Windows display settings change the fonts of Web sites this way. People with minor vision impairments, who often do not consider themselves to be disabled, are a large portion of the Web market. The number of users who fall into this category is growing as the population ages. Relative fonts and containers that scale with the fonts are very helpful to these users.

Specifying Font Sizes in Percentages
You should specify font and container sizes as follows:
· Specify the dimensions of containers in em units or as a percentage of page width.

· Specify all font and container size information in CSS, rather than with HTML elements and attributes.

Note: If you use both percentage-based fonts and nested tables, the text might become too big in High Contrast Mode in some browsers. The best solution for this is to avoid nested tables, rather than to set the fonts in points or pixels. Nested tables cause other problems, and you should avoid them for a variety of reasons.

Creating Accessible Help and Instructions

Make sure that documentation is accessible. It should follow the same guidelines as any other HTML document. Document any special accessibility features you create, such as keyboard shortcuts. Insert all Help links near the beginning of the tab order.
If your application includes audio or video information, provide a text version of the information. For example, if you include recorded step-by-step training instructions, also provide a text-based version of these same steps.
Use Correct DHTML Logic
Dynamic HTML allows much of the page rendering logic to take place on the client, which reduces network traffic and increases response speed. However, use of DHTML can incur additional complexity when you are attempting to create accessible code.
The same core principles apply to DHTML as to HTML:

· Use semantically correct HTML.

· Maintain logical source order.

If you have used correct HTML logic, DHTML adds only two issues:
· Dynamic content must be accessible via the onclick() event handler on a link or a button.
· Positioned or inserted content must be in the source document context location. Do not append content to the end of your code, or the AT device cannot represent it in the correct logical location.
Maintaining Semantics and Source Order

There are two guidelines for source order in DTHML. The first is the same as in HTML: the source order should match the visual order of the page. The second is that content inserted into the DOM must be inserted after the element that triggered the action. For example, the HTML for a menu must be inserted after the link that was clicked to open the menu. This is true whether the content was there and hidden or was inserted by script. The reason for this is that the keyboard focus stays on the triggering link, and the content inserted after it in the document object becomes the next thing in the reading and tab order.

Occasionally, these guidelines conflict. For example, in a page with side-by-side panes in which clicks in one pane update the other, it is not possible to both insert the new content where it appears visually (in the right pane) and after the triggering element. This type of conflict is usually an indication that either the UI design does not account for the limitations of HTML or that the design was not modeled in semantically correct HTML. In the case of two panes, for example, use of a Frameset is more semantically correct than side-by-side divs that are updated from script.

When you use DHTML to create an interactive UI, use the following two patterns:

· Use a natively functional element, such as a link or a button, to initiate scripted behavior

· Maintain source order. AT devices, particularly screen readers, use the order of the DOM to build alternate UI for their users. The focus remains on the element that the user just activated; therefore, content inserted after that element will be next in both reading and keyboard tab order.
Initiating Show/Hide Behavior

Two common applications of this type of code are show/hide sections of a document and DHTML pop-up menus. Although you can use CSS to position the content being shown or hidden, you must maintain the source order. This is true both for existing content that is being hidden and shown and for new content inserted from script.
The following example shows the use of a show/hide toggle with on-page HTML.

Toggle

<div id="one">Some hidden content.</div>

The following example shows the use of a show/hide toggle script created with injected HTML.

Toggle
The following example shows the use of a pop-up menu created with on-page HTML.

Toggle

<div id="three">Some hidden content.</div>
The following example shows the use of a pop-up menu script created with injected HTML.

Toggle
Inserting Content Into the DOM Immediately After a Triggering Element

This technique places inserted user interface elements into the DOM in such a way that the tab order and screen reader reading order are set correctly by default. You can use this technique for any user interface element that is hidden and shown, such as menus and dialogs.
The reading order in a screen reader is based on the order of the HTML elements in the DOM, as is the default tab order. This technique inserts new content into the DOM immediately after the element that was activated to trigger the script. The triggering element must be a link or a button, and the script must be called from the triggering element's onclick event. These elements are natively focusable, and their onclick event is device independent. Focus remains on the activated element, and the new content inserted after it is next in both the tab order and the reading order of the screen reader.

Note: This technique works for synchronous updates. For asynchronous updates (sometimes called AJAX), you need to use an additional technique to inform AT that the asynchronous content has been inserted.
The following example creates a menu when a link is clicked and inserts the menu after the link. The onclick event of the link is used to call the show/hide script and passes an ID for the new menu as a parameter.
<p>Toggle</p>

The show/hide script creates a div, which contains the new menu, and inserts a link into it. The last line is the core of the script. It finds the parent of the element that triggered the script and appends the div it created as a child. This causes the new div to be in the DOM after the link. When the user clicks the tab, the focus goes to the first focusable item in the menu, which is the newly inserted link.

function ShowHide(id,src)

{

var el = document.getElementById(id);

if (!el)

{

el = document.createElement("div");

el.id = id;

var link = document.createElement("a");

link.href = "javascript:void(0)";

link.appendChild(document.createTextNode("Content"));

el.appendChild(link);

src.parentElement.appendChild(el);

}

else

{

el.style.display = ('none' == el.style.display ? 'block' : 'none');

}

}
You can use CSS to make the div and link look like a menu.
Using the Source Order Pattern with DHTML Menus

DHTML menus represent a special and important case of the source order pattern, one which highlights the value of thinking of HTML documents and components in a structural fashion.

From a structural perspective, you can view a menu as a set of items and nested hierarchical sub-items. For this reason, you should mark up a menu as a nested set of unordered list () elements. AT devices, which present structural views of the document to users, show the menu as a tree view, in which a menu item is presented as the parent and sub-menus are presented as children of the menu item that launches them. This is a much better experience than that provided by the use of <div> or <table> elements, which do not represent hierarchical relationships.

When you combine an onclick event on an <a href> element to toggle the menu with an element, you create a very accessible DHTML menu solution. This is because this approach merely clicks links to show and hide portions of an HTML list. From this structural perspective, a DHTML menu is just a different view of a DHTML table of contents.

After you have the core HTML and script in place for the menu, you can add special effects and hooks to other events, such as onmouseover() and onmouseout().
The following example shows hooks to onclick() and some simple Windows-based CSS. On the browser, the example is rendered as a horizontal menu. However, the AT device interprets the same code as a nested unordered list.
<ul class="menu" onclick="ToggleMenu(this);" xxxonmouseover="ToggleMenu(this);">

File

Open

Save

Exit

Edit

Copy

Cut

Paste

Tools

Spell Check

Options

Help

About...

Creating Custom Dialogs in a Device Independent Way

Often, site designers need to create dialogs that do not use the pop-up windows supplied by the browser. They typically accomplish this by enclosing the dialog contents in a div>. They can then use z-order and absolute positioning in CSS to place the div above the page content.

To be accessible, these dialogs must adhere to the following rules:

· Use an onclick event on a link or button to trigger the script that starts the dialog.

· Place the dialog div in the DOM immediately after the element that triggered it. The triggering element maintains focus, and inserting the dialog content after that element makes the content inside the dialog next in the screen reader reading order and next in the tab order. You can still use absolute positioning to place the dialog elsewhere on the page visually. To do this, you can create the dialog in HTML and hide it with CSS, as in the example below, or use script to insert it immediately after the triggering element.

· Make sure that the HTML inside the dialog div meets the same accessibility standard as other content

It is also desirable, but not always necessary, to make the launching link toggle the dialog open and closed and to close the dialog when the keyboard focus leaves it.
The following example is an options button that opens a dialog. The HTML for this example includes a triggering element and a div that acts as the frame for the dialog. The triggering element is a button, and the script is triggered from the onclick event. This sends the appropriate events to the operating system so that AT is aware of the change in the DOM.

In this example, the Submit and Reset buttons inside the dialog simply hide the div.

<button onclick="TogglePopup(event,true)"

live:popupID="pop0001">Options</button>

<div class="popover" id="pop0001">

<h3>Edit Sort Information</h3>

<form onsubmit="SubmitForm(this);"

onreset="ResetForm(this);">

<fieldset>

<legend>Sort Order</legend>

<input type="radio" name="order" id="order_alpha" />

<label for="order_alpha">Alphabetical</label>

<input type="radio" name="order" id="order_default"

checked="true" />

<label for="order_default">Default</label>

</fieldset>

<div class="buttons">

<input type="submit" value="OK" />

<input type="reset" value="Cancel" />

</div>

</form>
</div>
The <div>, <h3>, and <form> elements are styled with CSS to look like a dialog, as shown in the following example.

a { color:blue; }

a.clickPopup img { border:none; width:0; }

div.popover { position:absolute; display:none; border:1px outset; background-color:beige; font-size:80%; background-color:#eeeeee; color:black; }

div.popover h3 { margin:0; padding:0.1em 0.5em; background-color:navy; color:white; }

#pop0001 { width:20em; }

#pop0001 form { margin:0; padding:0.5em; }

#pop0001 fieldset { margin-bottom:0.3em; padding-bottom:0.5em; }

#pop0001 input, #pop0001 label { vertical-align:middle; }

#pop0001 div.buttons { text-align:right; }

#pop0001 div.buttons input { width:6em; }

The script toggles the display of the pop-up div, showing it and hiding it.
function TogglePopup(evt,show)

{

HarmonizeEvent(evt);

var src = evt.target;

if ("click" == evt.type)

{

evt.returnValue = false;

}

var popID = src.getAttribute("live:popupID");

if (popID)

{

var popup = document.getElementById(popID);

if (popup)

{

if (true == show)

{

popup.style.display = "block";

}

else if (false == show)

{

popup.style.display = "none";

}

else

{

popup.style.display = "block" == popup.style.display

? "none" : "block";

}

if ("block" == popup.style.display)

{

window.alert(document.documentElement.scrollHeight);

popup.style.top = ((document.documentElement.offsetHeight - popup.offsetHeight) / 2) + 'px';

popup.style.left = ((document.documentElement.offsetWidth - popup.offsetWidth) / 2) + 'px';

}

}

}
function SubmitForm(elem)

{

elem.parentNode.style.display='none';

return false;

}

function ResetForm(elem)

{

elem.parentNode.style.display='none';

return false;

}

Using Semantically Correct Elements and Events for Actions

The only elements in HTML that are intended to perform an action are links and buttons. The only event that is intended to trigger an action is Click. Clicks on links and buttons are the only user actions that AT can interpret and present reliably.

All user interaction must be triggered from a click on a link or a button. Behavior based on other events, such as a MouseOver event or a KeyPress event, can exist in addition the core click-based behavior, provided that all functionality is also available from the click-based behavior. A great deal of MouseOver behavior is decorative and not functional. For example, a button that is highlighted when the mouse hovers over it is merely decorative. This type of behavior does not need to be available from a click. However, MouseOver functionality, such as opening a menu or showing content, must be available from click also.

Writing Accessible Hover Pop-up Windows
Hover pop-up windows—bits of content that appear on a page when the user moves the mouse over an element—are becoming more and more prevalent. They are used to display secondary or related content without requiring the user to navigate away from the current page or cluttering the page with the content. Pages can remain clean, and at the same time, interesting content is available with just a mouse movement.
These windows have two accessibility problems, however. First, and most severely, they are triggered only by mouse activity. Because of this, a large number of users cannot access this content. These users include those who prefer to use a keyboard, as well as those who rely on a variety of AT devices for Web browsing. Second, the use of inserted HTML (rather than a pop-up window) to render the content is problematic for non-visual browsers. Most often, the HTML is injected at the end of the document. Therefore, devices that rely on HTML source order, such as screen readers, have no way of determining if the content has appeared or if it is associated with the element that was activated.
You can, however, use the approach defined in this section to create an accessible version of a hover pop-up window. The accessible hover pop-up window alternative has the following characteristics:
· It provides non-hover access. The accessible hover pop-up window programmatically inserts a hidden link immediately after the hoverable link. This hidden link can contain either text or an image to indicate that the link is for displaying a hover pop-up window. This link is hidden by default, but it expands to its full size when it receives focus. The link is then visible to keyboard users who are tabbing through the document and can be exposed to non-sighted users who use a screen reader.

· It maintains contextual source order. The pop-up content is inserted into the document source immediately after the element that triggers the pop-up window. Browsers that rely on source order, rather then visual order, to read content are aware of the new content as it appears.
This technique adds a hidden link immediately after the hoverable link in the DOM. Mouse users never know that the link is there. Because it is an actual HTML link (<a href>), a keyboard user encounters it when tabbing through the page, right after the hoverable link. It is also exposed as a link to AT.

The hidden link can contain either text or an image to indicate that the link is for displaying a hover pop-up. The link is hidden by default, but the link expands to its full size when it receives focus. The onclick event of the link calls the same script as the hover effect it is augmenting, ensuring that all users can access the UI triggered by the hover action.

The following example simply launches a javascript alert window. You can apply the approach to call any script or to show any UI. The HTML shows two links. The first is the standard link with the onmouseover() event handler. The second link contains the inserted link and hidden image that displays onfocus() and whose onclick() handler calls the same function as the onmouseover() handler on the normal link.
This a some sample text with a

<a href="#" class="hoverPopup" onmouseover="TogglePopup(event,true);"

 live:popupID="pop001">hover popup

<a class="clickPopup" href="#"

 onfocus="TogglePopupImage(event,true)" onblur="TogglePopupImage(event,false);"

 onclick="TogglePopup(event)" live:popupID="pop001"><img

 height="10" width="10" src="smile.bmp" alt="Toggle popup for 'Sample Link 1'"/>

in the paragraph.
The TogglePopupImage() function handles the showing and hiding of the hidden image when its link receives or loses focus.
function TogglePopupImage(evt,show)

{

 HarmonizeEvent(evt);

 var src = evt.target;

 var img = src.getElementsByTagName("img")[0];

 if (img)

 {

 img.style.width = (show ? "10" : "0");

 img.style.marginLeft = (show ? "0.3em" : "0");

 }

}
The CSS for the example sets a dashed underline on the pop-up link and hides the image.
a { color:blue; }

a.hoverPopup { text-decoration:none; border-bottom:1px dashed; }

a.clickPopup img { border:none; width:0; }

Creating a DHTML Slider Control

This example shows a slider control implemented by using core HTML elements in a semantically correct way. There is no native HTML slider; therefore, it is not possible to use a role of "slider." To create an accessible slider, you must understand the functionality of a slider and model that in semantically correct HTML.

A slider must allow the user to increase or decrease the value by using accessibility interfaces and expose the current value to accessibility interfaces. To increase usability for all users, it should also allow the user to move the slider control (or nib) with the keyboard arrow keys or with the mouse.

A slider can meet these requirements as follows:

· Allowing the user to use accessibility interfaces to increase or decrease the value: Image links use an onclick event to trigger scripts that increase and decrease the value by one. The onclick event on links and buttons is device independent and exposed to accessibility interfaces. Additionally, triggering such a link sends a navigate event to the accessibility interface.

The images are + and - icons. These icons can be changed, depending on the functionality of the scroll bar in the application. The image links have descriptive alt text. For example, the text could be “increase by 1” and "decrease by 1". The links trigger the same scripts that are called when the slider nib is moved with the mouse or keyboard.

· Exposing the current value to accessibility interfaces: The slider nib is an image with alt text, and the alt text includes the value and units; for example, “3 widgets”. The increase and decrease scripts change the alt text to the new value, in addition to moving the nib visually.

· Allowing the slider nib to be moved with the keyboard arrow keys: The slider nib image is surrounded by a link (<a href>), which exposes it in the tab order. The slider nib link includes an onkeypress handler. The onkeypress handler calls the increase function for a right arrow key press and the decrease function for a left key press. These are the same scripts used with mouse or link operation.

· Allowing the slider nib to be moved with the mouse: The slider nib link includes ondragstart and ondragstop handlers. The ondragstart handler calls the same increase function when the nib is dragged to the right and the same decrease function when the nib is dragged to the left.

The following example implements the first two items from the list above.
The example HTML for the slider has a link around each of the two slider decrease and increase images. Note that the alt attribute values indicate that clicking these activates the slider. The empty alt on the button image is set in the script to the current value.
For ease of illustration, all of the standard (and inaccessible) mouse handler code used to move the slider image with the mouse has been removed.

 <div class="slider">

<img alt="Show fewer lines"

 height="17" width="22" src="less.gif"" />

<img alt="Show more lines"

 height="17" width="22" src="more.gif"" />

</div>

The two functions in the script handle the image link clicks and the positioning of the button. Note that the alt attribute on the button image is updated to reflect the new position.
var pos = 0;

function OnSliderClick(evt,dir)

{

 HarmonizeEvent(evt);

 evt.preventDefault();

 var newpos = pos + dir;

 if (0 <= newpos && newpos < range.length)

 {

 pos = newpos;

 }

 PositionButton();

}

function PositionButton()

{

 var btn = document.getElementById("btn");

 var bar = document.getElementById("bar");

 PositionElement(btn,bar);

 btn.style.left = btn.offsetLeft - 4 + ((bar.offsetWidth/3 + 12) * pos) + "px";

 btn.alt = range[pos] + " lines";

}

window.onload = PositionButton;
The CSS turns off link image borders and uses absolutely positioning for the slider button graphic.
.slider a img { border:none; }

#btn { position:absolute; }

Working with Large Hit Targets

One challenge you might face when you combine accessible interfaces with innovative layouts is that the required clickable area (or hit target) could be larger than the text contained in an <a href> element. A navigable element in the user interface must be an <a href> and it is semantically invalid to wrap block elements in an inline element.

One solution is to use a script and CSS to create a larger clickable surface on the container block element, on which an onclick handler calls click() on the child <a href>. In the following sample, the message subject is the accessible link element and the parent uses an onclick handler (as well as onmouseover() and onmouseout() handlers) to create a larger hit target and a more interesting user experience. The user can either click the entire message header or just the link, the keyboard user can press enter after setting focus on the link, and the screen reader user has a list of actionable links in the message list. Semantically, you implement this as an unordered list (), which creates a discrete group of items.
The objective of this technique is to optimize the mouse experience for larger items, while maintaining device independence. Often, UI designers want to allow users to click on a large area to trigger an action. To be device independent, the click must occur on a link or a button. However, the html <a href> element, because it is an inline element, cannot be wrapped around block elements such as <div> or <table> without creating invalid HTML.

This technique has two pieces. The first is a link with an onclick handler. Because this is just a normal link, it automatically gets a tab stop and has a default action of click, making it device independent. The second piece is a larger UI element that contains the link and passes any clicks it receives to the link by calling the click() method on the <a href>.
The example also uses CSS to highlight the larger UI element and make it look more clickable. This part is optional, but increases usability.

The example is a list of messages, and each message has a sender, a subject, and a receipt time. The user can click anywhere in the message to open it. A similar UI is often implemented by adding mouse handling to divs or spans or other elements that do not have native support for actions. Unfortunately, these alternative implementations do not interoperate with many types of AT.

Because this example is a list of messages, the HTML is a semantic list. Each list item has three div elements that contain message information. This approach can work with any container, including divs and table cells.

<ul class="msgList">

 <li class="msg" onclick="OnMsgClick(event,this);"

 onmouseover="OnMsgOver(event,this)" onmouseout="OnMsgOut(event,this);">

 <div class="date">Wed Jan 11 2006</div>

 <div class="from">Sarah Smith</div>

 <div class="subject">Ready for the presentation?</div>

 ...

The script for the example is simple. If the code finds a link child in the container, it calls click() on it.
function OnMsgClick(evt,el)

{

 HarmonizeEvent(evt);

 var link = el.getElementsByTagName("a")[0];

 if (link)

 {

 link.click();

 }

}

The CSS is used to style the elements to look like a message list.
ul.msgList { margin:0; padding:0; list-style:none; width:25em; border:1px solid #dddddd;

 font-family:tahoma; font-size:90%; color:black; line-height:120%; height:12em; }

ul.msgList li { padding:0.3em; border:1px solid #dddddd; margin:1px; cursor:pointer; }

ul.msgList li a { text-decoration:none; color:black; }

ul.msgList div.date { float:right; }

ul.msgList div.from { font-weight:bold; }

Use Update Notifications with Asynchronous (AJAX) Updates
Asynchronous content injection (sometimes called Javascript And Xml [AJAX]) presents one specific challenge for accessibility: that of letting screen readers know when content has been updated on the page. This is an issue because screen readers work by taking a snapshot of the page after it loads and then allowing the user to move around the snapshot. A screen reader must receive a navigate event to update the snapshot. The browser generates a navigate event in response to an onclick event on a link <href>.
AJAX works by updating only those page elements that actually change. Therefore, the snapshot is not updated when an AJAX call subsequently updates a single element on the page, such as when a user adds a stock to a stock tracking application or changes the city in a weather application. The browser does not initiate an event, and the AT device snapshot does not update its snapshot.
The objective of this technique is to make asynchronous content injection (sometimes called AJAX) accessible to screen readers and other assistive technology.
Screen readers take a snapshot of Web content and store it in a buffer, and users interact with that snapshot. When a user navigates to a new page, a navigate event is sent to the operating system, and the screen reader catches that event and updates its buffer. This also happens when a script is triggered from an onclick event on a link or button. With asynchronous updates, the content is returned and added to the DOM after the navigate event is processed. Adding an asynchronous event to the DOM does not generate any events that the screen reader can trap, and it is not possible to generate the navigate event directly from script.

However, a navigate event is generated for any navigation, including navigation inside a <frame> or <iframe>. The technique creates a hidden <iframe>in script and navigates to it at the end of the function that retrieves content from the asynchronous call. The <iframe>is navigated to a unique URL, created from a time stamp to avoid cache hits and to ensure that the event is generated, and location.replace is used to avoid cluttering the user agent history.
After the returned XML is confirmed, the callback function pastes the new content into the DOM or produces an error message. Then, the code generates a unique URL value and calls location.replace() on the hidden <iframe>.
function Callback(response)

{

 var target = document.getElementById("output");

 var out = null;

 if ("200" == response.status)

 {

 out = response.responseText;

 }

 else

 {

 out = response.status + ":" + response.statusText;

 }

 target.innerHTML = out;

 // create a unique href and navigate the iframe

 var url = 'blank.htm?' + (new Date()).getMilliseconds();

 window.frames['nav-i-frame'].location.replace(url);

}

The following is the HTML for the hidden <iframe>.
<iframe tabindex="-1" id="nav-i-frame" name="nav-i-frame"

 src="blank.htm" height="0" width="0"></iframe>

Summary

In conclusion, to improve the accessibility of your Web applications, focus on your HTML. If you structure your HTML logically, by following the order of the elements in your UI, and use HTML elements correctly, then AT devices can represent your application in an accessible manner.

Keep the following recommendations in mind:
· When you design your application, do not merely focus on the conventional interface. Think hierarchically, and think about what the user needs to do. Focus on simplicity and consistency in design.

· Use semantic HTML.
· Avoid custom controls; they do not use roles properly.

· Specify toolbars and menus as lists of links.
· Use names for appropriate elements: use clear, stand-alone alternate text descriptions.
· Specify sizes relatively, and specify colors in CSS.
· Use an onclick event on a <a href> or button to start a script.
· Insert HTML in the correct document location. Remember that AT devices use very linear logic; they cannot search for relevant code.
· Use an <iframe> to indicate an event when you use asynchronous updates.
Resources
The following resources provide additional information about creating accessible Web applications.
· Microsoft Active Accessibility Toolkit, which includes MSAA Inspect32 and Accessibility Explorer: http://www.microsoft.com/downloads/details.aspx?familyid=3755582A-A707-460A-BF21-1373316E13F0&displaylang=en>
· IE Developer Toolbar
http://www.microsoft.com/downloads/details.aspx?FamilyID=e59c3964-672d-4511-bb3e-2d5e1db91038&DisplayLang=en
· [image: image12.png]

� CONTROL VSTO.RuntimeStorage.1 \s ���

© Microsoft Corporation

1

[image: image13.wmf]_1222883311.vsd
Assistive Technology

MSAA/UIA

Browser

HTML

Client Application

Object
Model

Object
Model

Properties

Events

Browser

User

_1223054130.unknown

_1218830095.wmf

