
[image: image1.wmf][image: image2.png]

Operating System

Optimizing Message Queuing Performance

White Paper

Abstract

Message queue-based communication using the Microsoft® Message Queuing (MSMQ) Service in Windows® 2000 Server offers applications the promise of extremely fast communication. In fact, the performance of MSMQ can meet and exceed the performance of most other communication technologies on the Windows 2000 operating system. However, optimal performance is not automatic. The application developer and systems administrator both have important roles to play. This white paper will help developers understand what aspects of application design affect performance most. And administrators will find valuable information regarding hardware and network configuration. Finally, a series of tables lists the results of benchmarks run by Microsoft. These results will help developers and administrators understand the impact of different design and configuration alternatives.

© 2000 Microsoft Corporation. All rights reserved.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

Microsoft, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. If you keep “the BackOffice logo”, add it to footnote, or if you replace it with Windows 2000 logo, add “the Windows 2000 logo” to the footnote.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Microsoft Corporation • One Microsoft Way • Redmond, WA 98052-6399 • USA

1000

Contents

2Introduction

WINDOWS 2000 MSMQ vs. WINDOWS NT 4.0 MSMQ: PERFORMANCE IMPROVEMents
3
Application Design
4
Single Machine Optimizations
4
Recoverable Mode Considerations
4
Multiple Senders and Receivers Optimization
5
Transaction Coordination Alternatives
6
Locating and Opening Queues
7
Authentication and Encryption Considerations
7
Message Header Considerations
7
Acknowledgment Messages
8
Journaling Considerations
8
Hardware Configuration
9
System Memory Size
9
Number of Hard Disks and Hard Disk Type
10
Registry Key Settings
10
MSMQ Performance Measurements
11
Windows 2000 MSMQ Performance Measurements
11
Single Machine, High-Performance Disk Scenario
11
Measurements
12
Single Machine, Conventional Disk Scenario
13
Measurements
13
Networked Machine Scenario
13
Measurements
14
Windows NT 4.0 MSMQ Performance Measurements
15
Single Machine, High-Performance Disk Scenario
15
Measurements
15
Single Machine, Conventional Disk Scenario
16
Measurements
16
Networked Machine Scenario
17
Measurements
17

Introduction

Message queue-based communication using Microsoft Message Queuing (MSMQ) offers applications the promise of extremely fast communication. In fact, the performance of MSMQ can meet and exceed the performance of most other communication technologies on the Microsoft Windows 2000 operating system. However, optimal performance is not automatic. The application developer and systems administrator both have important roles to play.

This white paper will help developers understand what aspects of application design affect performance most. And administrators will find valuable information regarding hardware and network configuration. Finally, a series of tables lists the results of benchmarks run by Microsoft. These results will help developers and administrators understand the impact of different design and configuration alternatives.

WINDOWS 2000 MSMQ vs. WINDOWS NT 4.0 MSMQ: PERFORMANCE IMPROVEMents

Several MSMQ performance improvements have been introduced in Windows 2000, relative to MSMQ in Windows NT® 4.0. This section describes these improvements.

In particular, transactional messaging performance has been significantly enhanced. In MSMQ for Windows 2000, the number of I/Os required to commit a transaction has been significantly decreased compared to MSMQ in Windows NT 4.0. This yields a large performance boost for both transactional send and transactional receive operations. For example, using Distributed Transactions Coordinator (DTC) transactions, single-threaded, single-message MSMQ performance for send has been improved from two messages per second to 300 messages per second. (See Tables 2 and 4 under Single Machine, High-Performance Disk Scenario, in Windows 2000 MSMQ and Windows NT 4.0 MSMQ Performance Measurements sections.)

Similarly, receive operations have improved. In Windows NT 4.0, receive was implemented internally as a synchronous operation; in Windows 2000, this implementation is asynchronous. Thus, receive requests from several threads can be handled simultaneously, resulting in improved performance and scalability for multi-threaded receiving applications.

In both the recoverable and transactional messaging cases, a specific optimization that significantly enhances the existing batch-write mechanism has been applied. As a result, MSMQ in Windows 2000 receive operations involving the disk are much faster.
To clarify, from the MSMQ programming model’s point of view, receive is still synchronous. The relevant optimization is internal to MSMQ’s implementation and is transparent to the user. A single-threaded user application does not benefit from this feature, because it cannot start receiving a new packet before the previous receive has completed. However, receive requests from multi-threaded applications are now handled much faster in MSMQ. (See Tables 2 and 4 under Single Machine, High-Performance Disk Scenario, and Table 7 under Single Machine, Conventional Disk Scenario.)

In the Windows NT 4.0 MSMQ Performance Paper, much attention is given to hardware configuration, especially on hard-disk requirements. In MSMQ for Windows 2000, great measures have been taken to improve performance of I\O operations. Therefore, in this paper, less emphasis is given to hardware requirements. Nonetheless, disk-related performance still constrains I/O operations, so many MSMQ applications will benefit from faster hard disks.

As will be shown, reasonably good performance can be obtained on standard hardware in MSMQ for Windows 2000. (See Table 7 under Single Machine, Conventional Disk Scenario for Windows 2000 MSMQ and Windows NT 4.0 MSMQ.)

Application Design

Because MSMQ is designed to provide a number of automatic performance optimizations, most MSMQ applications will perform reasonably well with no special design attention. It is the rare MSMQ-based application, however, that will not benefit from one or more of the optimizations that developers can exploit. Also, there are MSMQ features that involve processing and network overhead; if these features are not needed, simply knowing how to turn them off can provide significant performance gains. This section lists many of the optimizations that MSMQ provides, and describes the overhead of options that may not be needed all of the time.

Single Machine Optimizations

Any time that sending and receiving applications are on the same machine as the queues they are using, for example, local applications, performance will be better than when a network connection is required. The simple reason is that operations that involve moving or copying messages, such as data, can occur faster at memory speeds than at network speeds. In addition, MSMQ provides a performance optimization to local applications that remove messages quickly from their queues. If a receiving application is running and waiting to receive a message, MSMQ copies the message from the sender directly into the receiver’s incoming message buffer. As long as the receiver removes the message quickly, MSMQ can avoid the overhead of writing the message to a queue.

Recoverable Mode Considerations

MSMQ supports two modes of message delivery: express and recoverable. Express messages are stored in RAM during routing and delivery, providing extremely fast performance but no recoverability when machines fail. Recoverable messages are written to disk during routing and delivery, making them somewhat slower than express messages but ideal when failures cannot be tolerated and when machine shutdowns are expected to occur while messages remain in queues, for example, when a mobile application is running on a laptop. If a machine crashes immediately after MSMQ accepts a message for delivery, but before the message is delivered to the target queue, MSMQ will find the message on disk when service restarts and will resume the sending process automatically. In a similar fashion, when an application reads a recoverable message from a queue, MSMQ makes a record of the read operation on disk. Even if the machine crashes immediately after the read operation occurs, MSMQ will not deliver the same copy of the message again when the machine restarts, although another copy of the message may be resent by the sending queue manager; transactional queues are required for once-only delivery. Understanding more about the way MSMQ implements recoverable messaging enables developers to write significantly faster applications.

MSMQ stores all messages in queues based on a memory-mapped file structure. In the case of recoverable messages, MSMQ flushes changed memory segments to disk before confirming a successful outcome to the application. Express messages use the same memory-mapped structure, except MSMQ skips flush-to-disk operations. That said, MSMQ is designed to minimize write operations and is able to avoid writing recoverable messages to disk when the MSMQ queue manager is able to confirm message delivery to the receiving application within a short internal time-out period. This situation generally occurs when the receiving application is online waiting for messages to arrive, and when the target queue depth gets close to zero.

When the sending queue manager and the target queue are on the same machine, meaning the same queue manager is used, one write operation is avoided. When the sending queue manager and the target queue (and its associated queue manager) are on different machines, two write operations can be eliminated. Using efficient dequeuing techniques, such as asynchronous notifications, will maximize the chance that queue depths stay close to zero, thereby enabling this optimization to occur.

Multiple Senders and Receivers Optimization

As mentioned above, MSMQ periodically needs to write information to disk and confirm that the write operation occurred, before reporting a successful operation to the calling application. When a single application with a single thread uses the MSMQ service on a given machine, the performance of the application is effectively limited by the time it takes to write information to the disk. However, when there are multiple threads (part of the same or different applications) sending messages, MSMQ is able to batch write operations and minimize the impact of disk delays.

For example, as shown in Table 3, a benchmark application is able to send 1,740 messages per second using one thread to send them, and 3,300 messages per second with three threads sending them. The same improvement is seen when three copies of the single-threaded version of the application are started. Increasing the number of sending applications/threads will continue to improve message throughput up to about 50 applications/threads per machine. With 50 senders, for example, it is reasonable to expect up to four times the number of messages per second possible from a single application/thread.

MSMQ essentially combines the disk write operations required by multiple sending threads into a single operation. Because the time it takes to write extra data in an existing write operation is much less than the time required to begin, execute, and confirm a second (or third, and so on) stand-alone write operation, this optimization dramatically reduces the average time that it takes to send a message. This optimization does not affect the recoverability of send requests because no single application thread ever has more than one pending disk write request.

MSMQ does not implement an equivalent optimization for read operations because an existing caching mechanism saves in unnecessary disk read operations anyway. However, in Windows 2000, MSMQ leverages optimal batched writes when multiple threads receive from queues, as well, so the throughput of applications that read from queues also benefits as the number of applications/threads running on a single machine increases. (See Tables 3 and 4 in Single Machine, High-Performance Disk Scenario in the Windows 2000 MSMQ Performance Measurements section.)

Transaction Coordination Alternatives

MSMQ further differentiates message types by segmenting recoverable message types into transactional and nontransactional subtypes. Transactional messages can only be manipulated (sent, received, and so on) from within transactional units of work, and they roll back to their prior state when transactions abort. Including sending and receiving operations in a transaction enables developers to accomplish the following tasks:

· Ensure that multiple message queuing operations occur together or are rolled back to appear that none occurred. For example, a developer may not want to send a message to a checking account application unless a corresponding message to a savings account system can also be sent.

· Ensure that message queuing operations succeed or fail along with other actions that occur in the transaction. For example, application logic may require that a database update not occur if a message cannot be sent to an auditing application.

As a general note, the performance of applications that use transactions will be slower than those that do not because, due to the nature of the two-phase commit protocols used to implement transactions, messages actually get written to disk twice, and greater CPU resources are required. However, to optimize resource consumption, MSMQ provides the following two transaction types for developers to use:

· External transactions, coordinated by the DTC

· Internal transactions, coordinated by MSMQ

Both options enable applications to include a set of MSMQ operations in a single transaction. However, external transactions are required if resources other than MSMQ need to be included in the transaction. The online documentation titled MSMQ SDK Help contains information and code examples for both types of transactions.

MSMQ internal transactions provide optimized performance to applications that require transactions for message queuing operations that do not need to be coordinated with other resources. For these applications, MSMQ internal transactions are significantly faster than external DTC-based transactions. For example, as shown in Table 6, a benchmark application is able to send 320 messages per second using external transactions and 1,100 messages per second using internal transactions.

In both internal transactions and external transactions, disk activities take place only when the application attempts to commit the transaction. Performance, in terms of messages sent per second, will therefore improve as the number of message operations per transaction rises. While application logic requirements usually dictate the boundaries of a transaction, developers should look for ways to reduce the total number of transactions required to send a group of messages, to maximize performance. The exception is a single message internal transaction, which is not logged to the transactional log and therefore may perform better than some multimessage transactions.

Also, because MSMQ transactions use recoverable messages, all of the guidelines for optimizing recoverable mode operations included in this white paper apply to applications that use transactions as well.

Locating and Opening Queues

When applications locate queues in the MSMQ Directory Service – for example, using MQLocateBegin() – or open a public queue for reading or writing, for example, using MQOpenQueue(), MSMQ makes a remote procedure call (RPC) over the network to one of the site’s directory servers. Because network operations are always expensive from a performance perspective, applications that minimize locate and open calls will perform better than those that do not. For example, applications can locate and open queues once they start, instead of opening and closing them for each message.

Authentication and Encryption Considerations

By default, MSMQ does not encrypt or authenticate messages. When sending authenticated messages, MSMQ computes a hash value of each message using the sender’s cryptographic certificate, and attaches the value to the message. When the message reaches the destination machine, MSMQ recomputes the hash value and compares it to the value attached to the message. If the values match, MSMQ can verify that the message came from the sender listed on the message and that the message was not tampered with during delivery. MSMQ can also encrypt messages using certificates to ensure that message contents cannot be viewed or changed by unauthorized applications. Regarding performance, both authenticating and encrypting messages incur a performance cost. This cost is primarily against CPU resources and is difficult to predict in a general sense.

Message Header Considerations

MSMQ messages are composed of a body and a set of properties contained in a header. Because longer messages take more time and resources to deliver than shorter ones, minimizing the size of messages will help to optimize performance. Minimizing the size of the message body will usually have the greatest effect, but in cases where the body is small, the size of the header can represent a significant percentage of a message’s size. MSMQ helps to minimize header sizes by sending properties that are set explicitly by the application; other properties assume their default values.

One property that MSMQ does send by default is the sender’s Security Identifier (SID). By default, MSMQ inserts the Windows 2000 SID of the sender’s security context into the PROPID_M_SENDERID property of each message. Normally, a Windows 2000 SID is about 28 bytes in length, but may be as long as 68 bytes in cases where there are many subauthorities listed, for example, up to 50. To specify that the sender’s SID should not be sent, the sending application should set the PROPID_M_SENDERID_TYPE property on the message equal to MQMSG_SENDERID_TYPE_NONE. (The default is MQMSG_SENDERID_TYPE_SID.) The minimum size of the message header for MSMQ, with no SID or other properties specified, is approximately 136 bytes.

It is important to note that the sender’s SID can be trusted by the receiver only when using authenticated MSMQ messages. A user’s Windows 2000 SID is not a secret; malicious applications could form an MSMQ message with the SID of another user. Only authenticated messages, in which MSMQ signs the message with the sender’s certificate, ensure that the SID contained within the message can be trusted. In general, if the receiving application does not use the PROPID_M_SENDERID property, or the message is not sent in authenticated form (in which MSMQ requires the SID for processing and can verify the SID), applications can improve performance by not sending a SID.

Acknowledgment Messages

Applications can direct MSMQ to generate acknowledgement messages that report the success or failure of an individual message’s delivery. By default, MSMQ doesn’t generate acknowledgments, but applications may request acknowledgments by setting the PROPID_M_ACKNOWLEDGE property on a given message. MSMQ treats acknowledgement messages like any other message from a delivery perspective, and using acknowledgements will consume resources and lessen performance. Applications can select acknowledgement messages on a message-by-message basis; developers should therefore use them only when required.

Journaling Considerations

MSMQ makes it easy for applications to keep copies of messages in journal queues. Messages can be journaled on the sending machine on a message-by-message basis, or on the receiving machine on a queue-by-queue basis. MSMQ always uses recoverable messages for journal operations. All performance guidelines for recoverable messages apply.

Hardware Configuration

Like the basic performance characteristics of other applications and services that run on Windows 2000 Server, those of MSMQ are heavily influenced by the performance of the underlying Windows 2000 operating system. In that sense, it is important to ensure that machines have the resources required to run Windows 2000 efficiently before focusing on MSMQ performance. Once basic Windows 2000 requirements are met, administrators need to understand the minimum resource requirements of MSMQ. These requirements must be addressed for MSMQ to operate efficiently as a service. (The MSMQ Administrator’s Guide is an excellent resource for information on this topic.) Most importantly, applications affect the way MSMQ consumes specific system resources, such as RAM, in predictable ways. Optimizing the configuration of these resources can have a dramatic effect on the performance of MSMQ-based applications. The following sections identify MSMQ performance characteristics that are affected by applications, and suggest ways to improve performance by way of resource configuration.

System Memory Size

As mentioned earlier, MSMQ supports two types of messages—express and recoverable. Recoverable messages are always written to disk, so that MSMQ can recover them in the event of a machine failure, and express messages are kept entirely in RAM while awaiting routing and delivery. In both cases, however, working copies of messages are kept in RAM. MSMQ only accesses disk-based copies of recoverable messages in the event of a failure. When RAM is exhausted, Windows 2000 has to swap memory pages out to disk, which degrades performance.

To maximize performance, there should be enough memory on a given machine to hold all of the messages that are expected to accumulate in its queues under normal operation. Messages may accumulate on the sending machine, for example, if the target machine is unreachable, on the target machine, such as if the receiving application is not running, or is unable to keep up with the arrival rate of messages, or on intermediate routing servers.

Calculating the amount of RAM required to hold all messages requires an understanding of message sizes. The size of a message is the sum of the size of the message body and the size of the data kept in the message header. Minimal message headers contain approximately 190 bytes of data, although the actual size of a given header is dependent on the number and size of the properties used by the application. Therefore, when sending 20,000 messages of 1 kilobyte (KB) each with typical headers, it would be best to have at least 23.8 megabytes (MB) (20,000 X 1 KB + 20,000 X 190) of available RAM beyond minimal system requirements. Note that this recommendation only applies to cases in which messages actually accumulate on a machine. If messages are normally dequeued and processed as quickly as they are delivered, significantly less RAM will be required.

Number of Hard Disks and Hard Disk Type

Because Windows 2000 and MSMQ are able to perform many disk I/O operations in parallel, configuring MSMQ to use separate physical disks, as opposed to single disks with multiple partitions, may result in performance improvements for some MSMQ-based applications. Applications that use recoverable or transactional messages might see improvement because messages are constantly being written to, and read from, disk storage. For instance, when virtual memory exceeds available physical memory, a significant improvement can be achieved by storing Windows 2000 virtual memory paging files and MSMQ message files on separate disks.

In the MSMQ Administrator’s Guide, the section titled Improving Messaging Performance with Multiple Disks suggests how MSMQ performance may be improved by separating Windows 2000, MSMQ components, and the application’s database across separate disks. To summarize what is described there, maximum performance will be obtained when five separate physical disks are used for:

· MSMQ message files

· MSMQ message log files

· MSMQ transaction log files

· Windows 2000 virtual memory paging files

· Application data files

In addition, when applications use Microsoft DTC or a database such as Microsoft SQL Server™, configuring their log files to use separate disks can also yield performance gains. Locating log files on separate disks is faster because it enables the sequential write operations used by logging algorithms to occur extremely quickly.

Not all hard disks deliver equivalent performance. In particular, high-performance disks use hardware striping and battery-protected write-through disk controllers that defer write operations until they can be performed most efficiently. These disks will improve the performance of MSMQ, especially when sending or receiving recoverable messages.

Registry Key Settings

MSMQ enables developers and administrators to set many different parameters that affect MSMQ performance through the MSMQ Control Panel applet and the MSMQ Explorer administration tool. These parameters are described in detail in the MSMQ Administrator’s Guide found in the online documentation for Windows 2000. Beyond these parameters, several esoteric aspects of an MSMQ installation can be manipulated through changes to registry keys. For more information, see the Regentry.hlp file, under MSMQ Parameters Subkey, in the MSMQ Resource Kit documentation. As always, modify registry keys with great caution.

MSMQ Performance Measurements

This section presents a series of careful performance measurements taken by Microsoft Corporation in its MSMQ performance lab.

Several performance improvements were achieved in Windows 2000 MSMQ, as compared to Windows NT 4.0 MSMQ. To show these improvements, Windows 2000 MSMQ performance measurements presented in the first subsection are followed by Windows NT 4.0 performance results obtained in the same environment.

It is important to note that there are many factors that influence MSMQ performance. In fact, virtually every aspect of an application environment, such as machine configuration and network load, has some effect on performance. Therefore, any set of measurements, including the measurements below, can only serve as an indication of performance potential. The measurements are likely to differ somewhat from those taken in virtually any other application environment.

It is also important to note that the size of the disks and amount of RAM used for the measurements are larger than those required by most applications to experience optimized performance. Microsoft selected these configurations to ensure that measurements not be constrained by hardware configurations, and to be able to run tests with many messages to observe reliable and consistent results.

Windows 2000 MSMQ Performance Measurements

Single Machine, High-Performance Disk Scenario

This scenario measures the performance of MSMQ when used between two applications running on the same machine. Because message queuing applications frequently perform queue operations within one machine, for example, reading a message from one queue and writing it to another, these measurements aptly represent MSMQ performance when no network activity is required. Measurements in this section were performed with the following machine configuration:

Exhibit 1:

· Compaq Proliant 5500; single 450MHz Pentium II processor; 1 gigabyte (GB) of system RAM

· Windows 2000 Server

· Four physical hard disk drives:

· Disk1: MSMQ message storage files; 4 x 9.1-GB capacity; four-way hardware striped disk with Compaq SmartArray 3200 controller

· Disk2: Windows 2000 system page file; 9.1-GB capacity; SCSI II controller

· Disk3: MSMQ transactional log; 9.1-GB capacity; SCSI II controller

· Disk4: DTC log; 9.1-GB capacity; SCSI II controller

Measurements

	Metric \ Message size
	10 bytes
	1,000 bytes
	2,000 bytes
	4,000 bytes

	Messages per second
	29,700
	22,800
	17,300
	12,800

	CPU utilization
	100%
	100%
	100%
	100%

Table 1 – Messages Sent, 1 Thread, Express Mode

	Metric \ Message size
	10 bytes
	1,000 bytes
	2,000 bytes
	4,000 bytes

	Messages per second
	22,600
	19,200
	14,800
	10,800

	CPU utilization
	100%
	100%
	100%
	100%

Table 2 – Messages Received, 1 Thread, Express Mode

	Metric \ Message size
	10 bytes
	1,000 bytes ytes
	10,000 bytes

	One thread
	Messages per second
	1,740
	1,540
	850

	
	CPU utilization
	45%
	45%
	40%

	Three threads
	Messages per second
	3,300
	3,000
	1,100

	
	CPU utilization
	43%
	45%
	42%

Table 3 – Messages Sent, Recoverable Mode, No Transactions

	Metric \ Message size
	10 bytes
	1,000 bytes
	10,000 bytes

	One thread
	Messages per second
	1,750
	1,870
	1,340

	
	CPU utilization
	44%
	47%
	42%

	Three threads
	Messages per second
	3,300
	3,100
	1,580

	
	CPU utilization
	44%
	45%
	46%

Table 4 – Messages Received, Recoverable Mode, No Transactions

The measurements shown in Tables 5 and 6 below were performed using a large number of transactions with one message per transaction.

	Metric \ Message size
	10 bytes
	1,000 bytes
	10,000 bytes

	
	DTC
	Internal
	DTC
	Internal
	DTC
	Internal

	One thread
	Messages/Sec
	300
	1,070
	305
	1,000
	230
	590

	
	CPU utilization
	83%
	73%
	86%
	82%
	85%
	68%

	Three threads
	Messages/Sec
	365
	1,500
	310
	1,400
	315
	1,020

	
	CPU utilization
	95%
	97%
	98%
	88%
	98%
	91%

	Five threads
	Messages/Sec
	370
	1,640
	320
	1,540
	320
	1,015

	
	CPU utilization
	98%
	98%
	98%
	92%
	98%
	95%

Table 5 – Messages Sent, Recoverable Mode, Transactions as Indicated

	Metric \ Message size
	10 bytes
	1,000 bytes
	10,000 bytes

	
	DTC
	Internal
	DTC
	Internal
	DTC
	Internal

	One thread
	Messages/Sec
	320
	 1,100
	 315
	1,070
	 280
	940

	
	CPU utilization
	88%
	75%
	88%
	87%
	92%
	72%

	Three threads
	Messages/Sec
	330
	 1,620
	 330
	1,530
	 330
	1,230

	
	CPU utilization
	 98%
	97%
	99%
	90%
	97%
	88%

	Five threads
	Messages/Sec
	 345
	 1,730
	 350
	 1,620
	 335
	1,240

	
	CPU utilization
	100%
	98%
	98%
	96%
	98%
	92%

Table 6 – Messages Received, Recoverable Mode, Transactions as Indicated

Single Machine, Conventional Disk Scenario

The measurements shown below were performed with a conventional machine configuration.

Exhibit 2:

· Del Optiplex; Pentium III 500 MHz processor; 128-MB system memory; 9.1-GB SCSI II disk.

Measurements

	Metric / Number of threads
	1
	2
	5
	10
	20
	50

	Messages sent per second
	530
	590
	2,890
	3,720
	5,200
	5,280

	Messages received per second
	540
	570
	2,920
	3,800
	5,680
	5,990

Table 7 – Messages Sent and Messages Received, 1,000 Byte Messages, Recoverable Mode, No Transactions

Networked Machine Scenario

This scenario measures the performance of MSMQ when used between two applications running on different machines linked by a 100-Mbit Ethernet network. The test was performed by starting the sending application while the sending machine was disconnected from the network, letting all messages accumulate on the sender’s machine, then reconnecting the sender to the network. Allowing messages to accumulate makes it easier to gather consistent, conservative performance information, but prevents some MSMQ optimizations from occurring. Therefore, in test environments where senders and receivers are running simultaneously, results can be significantly better.

Measurements in this section were performed with the following machine configurations:

Exhibit 3:

· Compaq Proliant 5500; single 450MHz Pentium II processor; 1-GB system RAM on Sender, 256 MB on Receiver

· Windows 2000 Server
· MSMQ message files on 4 X 9.1-GB capacity, four-way hardware striped disk
· System and pagefile and MSMQ message log on 2x 9.1-GB capacity disks, SCSI II controller
· Compaq NetFlex 3, Fast Ethernet Network adapter

Measurements

	Metric \ Message size
	200 bytes
	1,000 bytes
	2,000 bytes
	4,000 bytes

	Messages per second
	3,740
	3,250
	2,680
	2,110

	Sending CPU utilization
	80%
	78%
	80%
	85%

	Receiving CPU utilization
	98%
	100%
	100%
	99%

	Network utilization
	10%
	30%
	55%
	75%

Table 8 – Messages Received, One Thread, Express Mode

	Metric \ Message size
	200 bytes
	1,000 bytes
	2,000 bytes
	4,000 bytes

	Messages per second
	3,560
	3,120
	2,440
	1,860

	Sending CPU utilization
	85%
	85%
	82%
	80%

	Receiving CPU utilization
	95%
	85%
	76%
	78%

	Network utilization
	10%
	30%
	50%
	70%

Table 9 – Messages Received, One Thread, Recoverable Mode, No Transactions

	Metric \ Message size
	10 bytes
	1,000 bytes
	10,000 bytes

	
	DTC
	Internal
	DTC
	Internal
	DTC
	Internal

	1 msg per

transaction
	1 thread
	275
	350
	156
	160
	91
	94

	
	5 threads
	285
	420
	210
	247
	91
	95

	
	20 threads
	320
	670
	310
	500
	94
	95

	50 msg per transaction
	1 thread
	358
	407
	346
	392
	87
	94

	
	5 threads
	1378
	1210
	812
	890
	93
	97

	
	20 threads
	1315
	1237
	714
	735
	89
	91

Table 10 – Messages Received, Recoverable Mode, Transactions as Indicated

Windows NT 4.0 MSMQ Performance Measurements

This section presents the same measurements as those shown in the previous section, only for Windows NT 4.0. The results were obtained using the same physical machines and test scenarios as those used in the previous section. This enables an accurate comparison between Windows 2000 MSMQ and Windows NT 4.0 MSMQ performance.

Single Machine, High-Performance Disk Scenario

Measurements presented here were performed with the same machine configuration as described in Exhibit 1 in the previous section.

Measurements

	Metric \ Message size
	10 bytes
	1,000 bytes
	2,000 bytes
	4,000 bytes

	Messages per second
	30,200
	22,500
	14,400
	13,500

	CPU utilization
	100%
	100%
	100%
	100%

Table 1 – Messages Sent, One Thread, Express Mode

	Metric \ Message size
	10 bytes
	1,000 bytes
	2,000 bytes
	4,000 bytes

	Messages per second
	31,500
	22,500
	17,800
	12,300

	CPU utilization
	100%
	100%
	100%
	100%

Table 2 – Messages Received, One Thread, Express Mode

	Metric \ Message size
	10 bytes
	1,000 bytes
	10,000 bytes

	One thread
	Messages per second
	1,100
	970
	620

	
	CPU utilization
	35%
	28%
	32%

	Three threads
	Messages per second
	2,100
	2,000
	1,240

	
	CPU utilization
	50%
	52%
	42%

Table 3 – Messages Sent, Recoverable Mode, No Transactions

	Metric \ Message size
	10 bytes
	1,000 bytes
	10,000 bytes

	One thread
	Messages per second
	2,450
	2,400
	2,000

	
	CPU utilization
	27%
	22%
	26%

	Three threads
	Messages per second
	2,460
	2,420
	1,970

	
	CPU utilization
	28%
	29%
	38%

Table 4 – Messages Received, Recoverable Mode, No Transactions
Note: Receive was synchronous in Windows NT 4.0, and was made asynchronous in Windows 2000. This gives benefit to multiple threads, with a penalty for single-threaded applications. Therefore, results shown in the first line of Table 4 are better than the corresponding results shown in the previous section.

	Metric \ Message size
	10 bytes
	1,000 bytes
	10,000 bytes

	
	DTC
	Internal
	DTC
	Internal
	DTC
	Internal

	One thread
	Messages/Sec
	2
	470
	3
	360
	2
	330

	
	CPU utilization
	12%
	75%
	12%
	76%
	10%
	62%

	Three threads
	Messages/Sec
	72
	680
	90
	650
	90
	530

	
	CPU utilization
	50%
	78%
	70%
	75%
	92%
	70%

	Five threads
	Messages/Sec
	92
	610
	100
	730
	130
	670

	
	CPU utilization
	80%
	70%
	88%
	82%
	92%
	78%

Table 5 – Messages Sent, Recoverable Mode, Transactions as Indicated

	Metric \ Message size
	10 bytes
	1,000 bytes
	10,000 bytes

	
	DTC
	Internal
	DTC
	Internal
	DTC
	Internal

	One thread
	Messages/Sec
	3
	650
	 2
	640
	2
	630

	
	CPU utilization
	6%
	70%
	7%
	66%
	5%
	72%

	Three threads
	Messages/Sec
	56
	 760
	 90
	1,750
	 80
	700

	
	CPU utilization
	52%
	78%
	68%%%%%
	82%
	65%
	82%

	Five threads
	Messages/Sec
	 83
	780
	95
	740
	150
	690

	
	CPU utilization
	75%
	80%
	75%
	78%
	93%
	75%

Table 6 – Messages Received, Recoverable Mode, Transactions as Indicated

Single Machine, Conventional Disk Scenario

The measurements shown below were taken using the machine configuration described in Exhibit 2 in the previous section.
Measurements

	Metric / Number of threads
	1
	2
	5
	10
	20
	50

	Messages sent per second
	370
	380
	430
	620
	1,120
	1,640

	Messages received per second
	870
	930
	970
	980
	950
	980

Table 7 – Messages Sent and Messages Received, 1,000-Byte Messages, Recoverble Mode, No Transactions
Networked Machine Scenario
The machine configurations and test scenarios used for the measurements presented here are described in Exhibit 3 in the previous section.

Measurements

	Metric \ Message size
	200 bytes
	1,000 bytes
	2,000 bytes
	4,000 bytes

	Messages per second
	530
	680
	900
	1,349

	Sending CPU utilization
	100%
	95%
	92%
	90%

	Receiving CPU utilization
	20%
	25%
	27%
	30%

	Network utilization
	2%
	3%
	15%
	35%

Table 8 – Messages Received, One Thread, Express Mode

	Metric \ Message size
	200 bytes
	1,000 bytes
	2,000 bytes
	4,000 bytes

	Messages per second
	1,885
	1,793
	1,640
	1,302

	Sending CPU utilization
	27%
	25%
	20%
	30%

	Receiving CPU utilization
	30%
	25%
	20%
	17%

	Network utilization
	6%
	10%
	20%
	30%

Table 9 – Messages Received, One Thread, Recoverable Mode

	Metric \ Message size
	10 bytes
	1,000 bytes
	10,000 bytes

	
	DTC
	Internal
	DTC
	Internal
	DTC
	Internal

	1 msg per

transaction
	1 thread
	6
	132
	6
	128
	5
	92

	
	5 threads
	58
	138
	54
	145
	48
	88

	
	20 threads
	 76
	146
	75
	139
	42
	96

	50 msgs per transaction
	1 thread
	158
	195
	60
	196
	84
	98

	
	5 threads
	261
	285
	95
	145
	73
	97

	
	20 threads
	190
	232
	143
	139
	64
	73

Table 10 – Messages Received, Recoverable Mode, Transactions as Indicated

_931945241.wmf

