
[image: image1.jpg]Microsoft: .

Windows Server 2003

UDDI Services: Qwest Technical Case Study
Microsoft Corporation

Published: April 2003
Abstract

Using Universal Description, Discovery, and Integration (UDDI) Services in Microsoft® Windows Server™ 2003, Enterprise Edition, Qwest Communication International Inc. provided a reliable discovery infrastructure for its mission-critical Web services strategy. This paper describes in detail the process Qwest used to select and implement UDDI Services for their Web services framework.
The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

©2003 Microsoft Corporation. All rights reserved.

Microsoft, Active Directory, Visual Studio, Windows, Windows Server 2003, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Contents

1Introduction

1About Qwest

2Architectural Vision

3Evaluation

3UDDI Product Requirements

3Vendor Selection

4Planning

4Data Modeling

5Modeling the Four Core UDDI Entities

6Categorization Strategy

7UDDI Controls and Process

7Promotion of Entries Among Internal Registries

9Data Validation

10Syntactic Checking

10Semantic Checking

11Developer Education

13Deployment

13Server Topology and Hardware

13Production Registry

13Test Registry

13Developer Registry

13Sandbox Registry

14Configuring Security

14Testing

15Operations

15Monitoring

15Logging

15Data Recovery Strategy

16UDDI Services in Production

16Dynamic Application Configuration and Failover

16Modeling Non-Web Services in UDDI Services

17Summary

18Related Links

Introduction

To help their developers design and reuse Web services, Qwest Communications International Inc. implemented Universal Description Discovery and Integration (UDDI) Services in Microsoft® Windows Server™ 2003 within their organization. UDDI is a standard for publishing and discovering the existence of services on a network
.

Windows Server 2003 features an implementation of the Enterprise UDDI Services specification, a dynamic and flexible infrastructure for XML Web services. This standards-based solution enables companies to run their own UDDI directory for intranet or extranet use and helps companies organize and catalog Web services and other programmatic resources. Addressing a design-time, developer reuse scenario, Qwest looked to UDDI Services in Windows Server 2003 to promote discovery and usage of Web services among their 4,500 corporate developers.

This paper describes, step by step, how Qwest proceeded in using UDDI Services as a core infrastructure component of their Web services strategy. It addresses the following topics:

· Architectural vision. This section presents the overall Qwest vision for how UDDI would fit into their Web services architecture.

· Evaluation stage. During this phase, Qwest performed a requirements analysis before selecting UDDI Services in Windows Server 2003.

· Planning stage. This stage included data modeling, categorization strategy, registry topology, and data consistency strategy.

· Deployment stage. This stage included hardware specifications, security configuration, and testing.

· Operations stage. During this stage, monitoring, logging, data recovery strategy, and custom utilities were implemented.

· Future considerations. This section future plans at Qwest for UDDI Services.

About Qwest

Qwest Communications International Inc. is a leading provider of voice, video, and data services to more than 25 million customers. The company’s 50,000-plus employees are committed to the “Spirit of Service” and providing world-class services that exceed customers’ expectations for quality, value, and reliability. For more information, see the Qwest Web site at http://www.qwest.com/.
Architectural Vision

In moving forward with a Web services framework, Qwest decided to use UDDI Services in Windows Server 2003 for the purposes of Web service description and discovery. In the mixed development environment at Qwest, UDDI Services presented a compelling, interoperable solution that enabled Web services to be discovered and reused from different developer platforms across the organization. The interoperable nature of the UDDI API meant that all developers in the organization, regardless of language or development environment, could take advantage of a UDDI Services registry. Developers on the Microsoft® .NET platform would be able to query the UDDI Services registry with Microsoft Visual Studio® .NET development system and consume the Web services discovered therein, ambivalent to the platform of the Web service. J2EE developers could behave similarly.

Overall, UDDI Services gave Qwest a solution for design-time reuse of Web services in their large, heterogeneous environment. At a high level, Qwest envisioned the following process:

1. A team within Qwest writes a Web service.

2. When the Web service is ready for production, a member of the team publishes the Web service to the UDDI registry.

3. When another team within Qwest has need for new functionality, a member of the team searches UDDI Services to discover a relevant Web service.

4. Upon discovering the Web service in UDDI Services, the developer can add code to his or her project and so invoke that Web service. Information about who to contact for more information about the Web service is provided as well.

After this ideal process was defined, the IT department mandated that all departments within Qwest would be required to list their Web services in a corporate UDDI registry. All developers would be made aware of how to proceed with such a publication; they would be trained in both the consuming of web services and the registration of the services they developed. Qwest took a strong policy-based approach to building and deploying Web services and intended that all new projects adhere to corporate policies for Web services. This stipulation provided a key incentive to ensure the usage of the registry.

The Architecture and Transversal Services group within Qwest was responsible for implementing and organizing the Qwest UDDI Services registry. They had the charter to implement this vision, putting the right procedures and policies into place such that developers would gain maximum benefit from this piece of infrastructure.

Lynn Fischer, Chief Information Officer and Vice President at Qwest commented, “UDDI Services is a fundamental component of the Qwest IT strategy for implementing a Web services architecture. By enabling registration and discovery of Web services, it enables reuse and eliminates duplication, thus saving costs and producing faster delivery.”

Over the course of next several months, the Architecture and Transversal Services group proceeded to evaluate, plan, deploy, and maintain a UDDI Services installation within Qwest, handling both procedural and technical issues.

The remainder of the paper explores exactly how Qwest planned and implemented UDDI Services on their Windows Server 2003 platform.
Evaluation
With the decision in place to move forward with UDDI as a key piece of infrastructure for their Web services strategy, the next step was to find a vendor from which to purchase UDDI software in order to support this vision. Qwest performed an exhaustive analysis of six different UDDI products on the market based on a matrix of weighted features that was governed by priority.
UDDI Product Requirements
Although the entirety of the evaluation process and results are not provided in this paper, the following list represents the highest priority requirements:
Sophisticated Graphical User Interface (GUI). Because much of the interaction with the UDDI registry would be at design time, it was important to Qwest that the GUI for the UDDI data be as sophisticated and comprehensive as possible. They wanted as much of the UDDI API to be exposed through the GUI. At the same time, they wanted an intuitive and simple GUI for a high-quality user experience so that the registry would be compelling for developers to interact with.

Interoperability. Because of the multiple platforms within Qwest’s organization—Microsoft technologies coexisted with J2EE—the UDDI product needed to live up to the interoperability claim of the UDDI specification itself. The software had to interoperate with the different UDDI client toolkits available on different platforms.

Standards Supported. It was important for Qwest that the UDDI product be compliant with both version 1 and version 2 of the UDDI specifications.

Performance. UDDI would be providing key data for the Qwest Web services infrastructure, and so the UDDI product had to perform at a high level of reliability and availability.

Security. Because the UDDI registry would contain critical data, such as access points to production Web services, Qwest demanded a powerful security infrastructure for managing authentication and authorization of UDDI. They needed the ability to grant selective users different rights for the registry, such as read, write, and so on.

Qwest also evaluated third-party software dependencies, the level of support provided, whether additional utilities or additional client APIs existed, the maturity of the product, the backend data store, and cost.

Vendor Selection
After a thorough review of the different UDDI offerings on the market based on the above criteria, Qwest chose UDDI Services in Microsoft Windows Server 2003. The Microsoft offering met and exceeded the criteria listed above, providing a solution that supported their needs for features and abilities.

Planning
After selecting Microsoft UDDI Services in Windows Server 2003, Qwest proceeded to the next stage of their UDDI Services deployment: planning. Several steps needed to be met for a successful deployment to occur. The following questions needed to be addressed:

How would data be modeled in the UDDI Services registry?

How would a high level of data quality be maintained in the UDDI Services registry while still allowing developers to have the autonomy to publish to the registry?

How would consistency of data be maintained?

What kinds of metadata should be associated with the UDDI Services registry entries?

How would developers learn to use the registry?

The following sections take a close look at how Qwest addressed these issues and others that arose.

Data Modeling

One of the first steps for any organization proceeding with UDDI Services is an exercise in working with the UDDI data model and understanding how that organization can map their structures and processes to the schema provided by the UDDI specification. The architecture group at Qwest immersed themselves in the UDDI data model to better understand how best to take advantage of the way the service renders data and metadata. Qwest carefully considered how Web services would be modeled in UDDI as well as how categorization schemes would work. Lastly, Qwest established a data validation strategy to ensure that the data modeling recommendations they established were in fact followed.

By taking the time to think through their data modeling strategy before deploying UDDI Services, Qwest ensured a level of quality and consistency for the data registered.

Modeling the Four Core UDDI Entities

The relatively simple UDDI data model provides four core entities as Figure 1 shows. Three of the entities—providers, services, and bindings—have a clear, hierarchical containment relationship: Services are the logical children of providers, and bindings are the logical children of services. The other entity, known as a tModel, exists outside of these three core entities and acts as a shared structure across the other entities, thus creating a design pattern of reuse.

[image: image2.wmf]Provider: Information about the

Provider: Information about the

entity who offers a service

entity who offers a service

0…n

Service: Descriptive information

Service: Descriptive information

about a particular family of

about a particular family of

technical offerings

technical offerings

0…n

Service: Descriptive information

Service: Descriptive information

about a particular family of

about a particular family of

technical offerings

technical offerings

Service: Descriptive information

Service: Descriptive information

about a particular family of

about a particular family of

technical offerings

technical offerings

0…n

Binding: Technical information

Binding: Technical information

about a service entry point

about a service entry point

0…n

Binding: Technical information

Binding: Technical information

about a service entry point

about a service entry point

Binding: Technical information

Binding: Technical information

about a service entry point

about a service entry point

tModel: Descriptions of

tModel: Descriptions of

specifications for services.

specifications for services.

Bindings contains

Bindings contains

references to tModels.

references to tModels.

These references declare

These references declare

the interface specifications

the interface specifications

for a service.

for a service.

0…n

tModel: Descriptions of

tModel: Descriptions of

specifications for services.

specifications for services.

tModel: Descriptions of

tModel: Descriptions of

specifications for services.

specifications for services.

Bindings contains

Bindings contains

references to tModels.

references to tModels.

These references declare

These references declare

the interface specifications

the interface specifications

for a service.

for a service.

0…n

Figure 1. Core UDDI Entities

Although the data model is simple, it does necessitate up-front planning. One of the first decisions that must be made when considering data modeling in UDDI is determining what represents a provider within an organization. Depending on the situation, a provider can be modeled in a variety of different ways. At the most abstract level, providers offer services; the question, then, was to identify a provider within Qwest. After some consideration, Qwest found that each Web service project, which was composed of a small team of developers, managers and testers, was in fact a provider. Each new project that arose, whether it was a matter of wrapping existing functionality as a Web service or creating new functionality as a Web service, would become a provider of services in the UDDI data model.

After that decision was made, the rest of the model fell into place. The Web services that were built as a result of the project became the services offered by that provider. The access points to invoke those Web services were the bindings of the service. Lastly, the Web Service Description Language (WSDL) files associated with the services were represented as tModel element types. Representing WSDL files as tModel elements fits with how the industry at large models Web services in UDDI.

This modeling process worked with the internal structure at Qwest as follows:

A provider might be titled Customer Service Information.

That provider would contain one service called GetCustomerServiceInfo.

Below that service would be a binding to the accessPoint for that service.

The binding would implement a tModel called GetCustSvcInfo WSDL.

Categorization Strategy

One critical aspect of the UDDI data model is the ability to categorize entries using values from one or more classification schemes. Providers, services, and tModel elements all can be classified so that they are easily discoverable through searches. Attributing UDDI Services entries with typed metadata allows precise, complex queries to be issued, thus empowering users to find the data they seek quickly.

According to Jeff Kenyon, a software architect and member of the Architecture and Transversal Services group, “Correct categorization of UDDI Services entries was critical to our ability to reap the benefits of the Web service approach to application development. If an entry is not categorized, the chances of it being discovered and reused is somewhat slim. Keyword searches are unreliable due to different synonyms being used, different mental models between producer and consumer, an so on, and it is unreasonable to expect someone to peruse the entire catalog of services in the hope of finding something applicable.”

Given this, it was important for Qwest to create custom categorization schemes and to clearly dictate how these schemes were to be used. As a result, Qwest strongly evangelized proper categorization to individuals creating registry entries.

Qwest constructed custom categorization taxonomies and added them to UDDI Services so that businesses, services, and technical specifications could be classified in a manner appropriate for Qwest. The new taxonomies allowed categorization using the following classifications:

The TeleManagement Forum Model. By adapting the TeleManagement Forum business framework (TOM/TOMe), Qwest created a comprehensive taxonomy that allowed them to categorize services based on this industry standard. Values from this taxonomy included broad categories such as Network and Systems Management and Service Deployment and Operations, as well as more narrow items, such as Initiate Traffic Control Functions and Apply Customer and Customer Account Rates to Services/Products. Getting users familiar with this taxonomy was important for the overall Web services discovery and reuse strategy at Qwest. It was required that registry entries be classified with this taxonomy, as it was anticipated that searches based on its values would be the primary mechanism by which all services would be discovered within Qwest.

For more information about the TeleManagement Forum, see their Web site at http://www.tmforum.org.
Qwest Organizational Hierarchy. Qwest created a simple taxonomy representing their hierarchical organization chart, which included values such as Human Resources, Finance, Consumer Markets, and so on. While this taxonomy was not required, developers were encouraged to use it.

Qwest Customer Segments. A breakdown of the different customer segments within Qwest (for example, Consumer, Government, Large Business, and so on) allowed them to categorize services based on the segment they served. For example, if a Web service was used to retrieve data from a service request filed by a Large Business account, the service would be appropriately categorized.

After these custom classification schemes were created, Qwest added them to UDDI Services. In addition to these custom classification schemes, Qwest also used standard taxonomies for geographical and industry classification. Each classification scheme could then be browsed through the ASP.NET user interface provided by UDDI Services so that queries could be easily conducted based on the values within these schemes. Alternately, these same precise queries based on the custom Qwest classification schemes could be issued at the API level through the SOAP XML interface.

UDDI Controls and Process

With a clear plan in place for what users were to publish in UDDI Services, the next step for Qwest was to determine exactly how data was to be published to the registry. Qwest initially thought that all developers would be able to publish to the production registry. However, upon further consideration, there was a concern that allowing anyone to publish could jeopardize the quality of the data within the registry. The question for Qwest, then, was how to go about implementing procedures to ensure that only quality data entered their registry while still maintaining their initial vision of developer autonomy.

According to Jeff Kenyon, “At first, we were going to offer only a single UDDI Services registry with the permissions pretty open. However, after further discussion, it was decided that it would be beneficial to have a registry where developers could just play with the technology and get used to it, registering their ‘Hello World’ Web services and so on.”

As a result, Qwest decided to implement multiple registry environments. Each registry would serve different purposes, and data would be promoted among them as necessary.

Qwest ended up establishing four UDDI Services registries, each with a distinct purpose and user community:

Production Registry. This registry serves as the official Qwest corporate registry. Web services discovered in the Production Registry are guaranteed to be fully tested, ready to be consumed by clients throughout the organization. To deliver on this guarantee, the ability to publish is restricted to a small set of individuals. However, inquiry rights are widely granted to developers across the organization, so that they can discover and reuse Web services in their applications.

Test Registry. This registry serves as a mirror to the Production Registry. Before moving to production, entries are added to the test registry so that quality assurance testing can be performed on those entries before migrating them to the production registry. Inquiry rights are widely granted so that different test teams can access the data, but publication rights are restricted to a small set of individuals.

Development Registry. This registry is available for inquiry and publication to all Qwest corporate developers. Developers can populate this registry at will with Web services of any caliber, quality, or completeness. When a developer believes that a given Web service is ready for production, the entry is migrated to the test registry for quality assurance testing.

Sandbox Registry. This registry is entirely for experimentation, as well as for testing software updates.
Promotion of Entries Among Internal Registries
Key to the success of this multiple registry topology is the correct flow of data among registries. With this in mind, Qwest established a process that carefully controlled how registry entries were promoted from one registry to another.

The UDDI Services development registry is used during 90-day development cycles for Web services in the development or planning phases. When a Web service is ready to be released, a member of the project development staff, the development point of contact (POC), creates the appropriate entries in the development registry. For example, entries could be tModel elements that represent the WSDL file of the Web service and providers, services, and bindings that represent the access point of the Web service. Then, using a Qwest-developed custom validation utility, the developer verifies that the entry conforms to the Qwest corporate UDDI standard. A project architect also validates the development registry entry. When the POC and the project architect are satisfied with the registry entry, and no errors are returned by the validation utility, they send a request through e-mail to a specified alias. The message includes the names of the providers, services, and tModel elements to migrate and the request to migrate the registry entry.

After the Web service has been tested and deployed, an individual designated as Application in Production (AIP) sends an e-mail message to the specified alias, requesting that the registry entry be migrated to the production registry. Again, the message specifies the names of the providers, services, and tModel types to migrate. Modifications to existing registry entries follow this same promotion process, which Figure 2 illustrates.

[image: image3.png]Development

et

ey
— 3H ‘ vaigmen
Uiy

1- Dovelopmen,
2 Rogistration in Sandoor,
3 Enty Validaton Uty Runs

Dovsopmet POC S
Aophcuten 6 - QWSI Developer migrates entries to Test UDDI Registry
;
oot =8 —=
6

Migrating to Production

=1—&

s - Applcation migrates to production area
9 AP nolifes QWS! Developer

10 - QWS! Dov. migrates entrios o Production Registry
11-QWS! Dev. noffies AIP.

==

s Deveioper

10

-& =

gy Tonp

Figure 2. Process for Migrating New Registry Entries

This process ensured that the architects gained and maintained a reasonably complete knowledge of the Web services—under development and published—in their respective area. They were then able to guarantee that only approved Web services from their area are registered. They could also suggest and enforce a uniform publication signature within UDDI Services so that services would be categorized appropriately and easily discovered.

“Another benefit,” Jeff Kenyon noted, “is that because the architects would be intimately familiar with the Web services available within the corporation, they would be in a key position to evangelize the architecture as a whole and promote the reuse of different Web services.”

These benefits would not be realized if members of the architect group were not properly trained. All individuals within the architect group attended a one-hour administrator training class. Then selected members of the architect group were given publisher access to the test registry so that they could promote entries from the development registry. In addition, an architects’ conference call was held regularly after the initial deployment of the production registry to address issues and concerns.

The ability to promote entries from registry to another and change ownership of those entries turned out to be a key feature for Qwest, one they used to advantage to support the process above. The preservation of the unique UDDI keys assigned to each entry was important, especially for dynamic application configuration scenarios. In those cases, client applications have been written to retrieve entries from the UDDI Services registry based on a particular GUID. For example, if a developer wrote a WinForm application that included a hard-coded reference to that Web service’s GUID, the application would break if that Web service received a new GUID when the Web service’s UDDI entry was promoted from the test registry to the production registry.

UDDI Services supports entity promotion—the ability to migrate an entry from one registry to another while preserving the unique keys of that entry. The tools and features to do so are native to the product. Using either a utility called bootstrap.exe or the Web user interface, an administrator can import XML representations of UDDI entries into the system, preserving the keys of the entry.

Qwest took advantage of these capabilities and developed a migration tool using the UDDI .NET client SDK, which automates the process of moving entries from one registry to another. This tool extracts an entry from one registry, serializes the entry using XML, and then automatically invokes the Microsoft bootstrap utility. The utility the entry into the target registry, preserving the key.

The ability to change the custody of ownership is also important in the Qwest procedural schematic. With UDDI Services, ownership of an entry is permitted to change. Users with coordinator/administrator access to a registry can modify any entry. These features are important in at least two scenarios. For example, if the one person’s responsibilities change, someone else will need to maintain an entry. In addition, when a registry entry is promoted from development to test to production, different owners can be responsible for that entry. Again, UDDI Services in Windows Server 2003 supports this feature through a role type in the product called the Coordinator role, which allows custody transfer of entries in the registry.

Data Validation

With these normative modeling and procedural decisions in place, Qwest needed some way to enforce their practices. Because the UDDI data model does not have many required fields (a feature of the UDDI specification), there was the chance that a UDDI Services entry might not contain information required by the modeling and metadata strategy put in place by the architecture group. To address this issue, Qwest performed both syntactic and semantic validation prior to the migration of any entries into the test registry.

Syntactic Checking

Syntactic checking refers to validation that entries have the appropriate fields completed. For example, Qwest mandated rules such as the following:

Each UDDI Services entry must have a description.

Each UDDI Services entry must be categorized with the TOM taxonomy.

Automatically generated WSDL files should not be used as tModel elements.

Because these rules are based on the normalized syntax determined by the Architecture and Transversal Services group, entries could be checked at a programmatic level using the UDDI API. Qwest developed an internal tool using a Java toolkit to check the entry to make sure required fields were completed and required categorizations were chosen according to their guidelines. The validation tool can be run by developers before even submitting an entry. It can also be run by architects who are auditing a given entry that is slated for migration.

Semantic Checking

The syntax checking tool that Qwest developed helps to automate the validation process, but it cannot completely validate an entry. Some guidelines require human interpretation. So a semantic check is performed as well on any entry slated for migration. This semantic check applies both to the UDDI Services entry itself and, in the case of tModel elements, to the WSDL file represented by the tModel element. When checking the UDDI Services entry, the architect ensures the following:

Names are short, simple, meaningful, and descriptive.

Descriptions are concise, meaningful, and complete.

Web services names are nouns and in mixed case with the first letter of each internal word capitalized (for example, DSLOrderingService) or space in between (such as DSL Ordering Service).

When looking at a WSDL file, the following checks are also performed:

Methods are verbs, in mixed case, with the first letter of each internal word capitalized. For example, the DSLOrderingService can have a placeOrder method.

Method parameter names are short yet meaningful. Parameter names like x, y, and z should not be used.

Only whole words are used; acronyms and abbreviations are avoided, unless an abbreviation is much more widely used than the long form.

More naming convention guidelines can be added in the future.

Although Web service developers and their project managers are responsible for the correctness of their services, it is also the responsibility of a member of the architect group to ensure that the above validation checking is performed. Only entries that have passed the validation checking are allowed to be migrated. Otherwise, the architect notifies the Web service developers and works with them to take corrective actions.

Validation of the functionality of the Web service itself is then performed by testing groups associated with each individual project. The architecture group is concerned onlywith syntactic and semantic validation.

Developer Education

Another key aspect during the planning phase was the evangelism and education of Qwest developers, who needed to understand how UDDI Services fit into the overall Qwest Web services architecture. According to Jeff Kenyon, “This education was largely facilitated through a Web site, which was built to serve as a nexus for all UDDI knowledge internal to Qwest, and to provide pointers to useful information outside the company.” Along with links to the UDDI Services registries themselves, the site includes:

Links to the available internal UDDI Services registries.

A toolkit with information specific to the programmatic use of UDDI.

Links to proof-of-concept samples.

Resources, including known books, articles, UDDI registries, Internet discussion groups about UDDI, and other useful links.

A “Getting Started” document.

Links to the list of CIO architect contacts, the internal UDDI User’s Group, and frequently asked questions.

A clearly stated process through which users can send comments and suggestions to the UDDI Services implementation team. This feedback is sent to an e-mail distribution list. There is also a survey based on Windows SharePoint™ Services through which users can provide more structured feedback.

The developer education extended beyond UDDI Services to providing tools and information about creating Web services to ensures that the Qwest process was followed. Ultimately, Qwest intended to establish and train its developers to conform to the process outline in Figure 3.

[image: image4.png]3 Callof UDDI Lookup API
—
1. Sun R d o

0. Recuives bimes a
delals g on s NET

7. FindBinding (LCUrdu{dpasz)

v

ot tation 0. Receives bindi
Ll 2. Lookup UDDI Registry pergetsia) ol

/

M. Invoke WebServics mithod
using Access P oint

16. Tracking # & / 14. Receives

User

displayed in browser Trading #
\ Intermet ___/«5 Sends Trackings
_/b Cient

4, FindBusiness call

5. Returns business
2. WebSenice & FindBinding call details
method cal . Retdms binding details

12, Retums
Tradking #

uDor Regety
=) Wty ddi qusst netOR
i susa 251 awes nt oD OF
WebSemice i sead351 quest e 155001
[

(htp 15 ucad251.qwest.net 18230webs ervices P C/OPC.wed)

Figure 3. Process Flow for Invoking Web Services on a UDDI Registry with J2EE and the NET Framework

Deployment
With a clear plan in place for how the target users were intended to use UDDI Services, the next step was to deploy the system into production. This process involved hardware procurement, installation procedures, and configuration.

Server Topology and Hardware

As discussed, Qwest deployed multiple UDDI Services registries. UDDI Services supports a range of configurations and includes options to install in a distributed manner across machines as well as options for the database backend. Based on predicted server load and initial deployment requirements, Qwest made selections for each configuration in their UDDI Services environment as the following sections describe.

Production Registry

The production registry is hosted in a distributed manner, with the database component of UDDI Services residing on a different server than the Web component. In this case, the database component is Microsoft SQL Server™ 2000 running on a Compaq ProLiant 3000 with four 400 MHz Pentium II processors, 896 MB RAM, an 8.4 GB fixed disk and a 25.4 GB fixed disk.

The Web component, which includes the UDDI Services application, runs on a Compaq DL380 server with two 930 MHz Pentium III processors, 2048 MB RAM, and a 16.9 GB fixed disk. In the future, to support additional load as the service grows, the architecture allows this configuration to be scaled by adding additional machines with the UDDI Services Web component, which would point to the same database and so create a Web farm.

Test Registry

The test registry is hosted on a Compaq Proliant 6500 server with four 500 MHz Pentium II processors, 1280 MB RAM, an 8.4 GB fixed disk, and an 8.5 GB fixed disk. Unlike the production registry, the test registry runs on a single box installation, running the database component and the Web component on the same machine. The database component runs on SQL Server 2000 and mirrors the production registry.

Developer Registry

The developer registry is hosted on Compaq Proliant 6500 server with four 450 MHz Pentium II processors, 1280 MB RAM, an 8.4 GB fixed disk, and an 8.5 GB fixed disk. Like the test registry, the developer registry is a single-box installation that runs SQL Server 2000 on a multiple-processor machine.

Sandbox Registry

The sandbox registry runs on a repurposed single processor machine on which both the Web and database components are installed. For this registry, the database component runs MSDE (Microsoft Data Engine).

Configuring Security

After installing UDDI Services, Qwest adjusted the default security settings within each of their environments, development, test, and production. They determined which users would be able to read, write, coordinate, and administer a given UDDI Services instance. In their complex multiple-account, multiple-domain network topology, with its numerous Microsoft Windows NT® 4 domains and Microsoft Windows 2000 domains, it was vital to configure security settings correctly. Qwest did so by following these steps:

1. The various servers hosting UDDI Services were added to the Microsoft Active Directory® domain for Qwest.

2. Four domain local groups were created in that Active Directory domain, with names that corresponded to the four UDDI Services role types.

3. Within each given Windows NT 4 and Windows 2000 domain, four global user groups were created, again with names corresponding to the four UDDI Services role types.

4. Each appropriate global group from a Windows NT 4 or Windows 2000 domain was added to the domain local groups in the Active Directory domain.

5. Users within a given domain were added to the appropriate global group within his or her own domain.

From a management perspective, this process worked well for Qwest. After the initial groups were created and mapped accordingly, users could be added or removed from a group within their own domain as necessary.

Scott Stephens, Lead IT Engineer, handled the security configuration , noting, “UDDI Services was easy to configure out of the box.”

Testing

Another phase in deployment was testing to insure that UDDI Services could handle the expected load on the boxes. With 1,500 corporate developers, Qwest needed the production registry to support many thousands of hits a day to the registry. A capacity group within Qwest carried out a number of stress tests on the production and test registries. Given the hardware configurations discussed above and the load requirement, the capacity group determined that the UDDI Services registries would be capable of handling this required load and more.
Operations
With installation and configuration completed, Qwest was in operations mode. Several considerations needed to be addressed after the systems were up and running, including issues of monitoring, logging, and backup.

Monitoring

To monitor their UDDI Services installation, Qwest used Microsoft Operations Manager (MOM) to capture and report critical events on the server with the UDDI Services installation. Counters from Internet Info Services (IIS), SQL Server, and UDDI Services are monitored with appropriate thresholds to signal when there might be an issue. The rules they have in place allow for appropriate individuals to be contacted and act based on critical events.

Logging

Qwest modified the default UDDI Services settings so that any critical event is logged both in a Windows NT event log and in a log file.

Also, Qwest regularly analyzes the IIS logs for the UDDI Services site using public domain software. They are able to report usage statistics on the extent to which the different registries are being used. These statistics are then available to executives on a monthly basis through a report containing charts and graphs.

Data Recovery Strategy

For data recovery, Qwest used Veritas software. A regular procedure is used to back up the SQL Server data, and then the Veritas software copies the backup on regular intervals.

UDDI Services in Production
Dynamic Application Configuration and Failover

Qwest also uses UDDI Services for dynamic application configuration, particularly at runtime in the event of failure of a Web service. Rather than hard-coding access points into client code, Qwest advocates that developers place UDDI-aware code in clients, both at initialization of a client and in the event of failure. Such a methodology relies on UDDI to get the most accurate and up-to-date access point for the Web service. By storing the binding key of a UDDI entry in a client, UDDI can be queried at runtime to get critical application information. To support this methodology, the architecture group has provided code samples and recommendations.

The ECE Qsession Web Service is one example of a Qwest application that follows this methodology. At startup and in the event of a failure, it queries UDDI Services at runtime to discover the binding information for a Web service it calls. Using UDDI Services at runtime helps Qwest provide a more reliable Web services architecture.

Qwest also incorporated UDDI Services as a fundamental infrastructure element when developing their Common Services Framework (CSF), a custom solution for Web services management.

Modeling Non-Web Services in UDDI Services

Qwest is exploring how other types of services can be modeled and discovered in UDDI Services. These services include other types of remote procedure call (RPC) services within their intranet, such as CORBA (Common Object Request Broker Architecture) components, internal software applications, and human-based services. The UDDI data model can accommodate a range of different types of services. Qwest sees the benefit of having a central repository where all the services within the organization are kept and thus are discoverable through a range of different means.

“We are exploring expanding our UDDI Services directory from Web services to all our software computing assets, such as database services, BIM (Business Information Model), and other systems, said Mahesh Dalvi, Director – Architecture and Technology Services at Qwest. “The goal is that by providing a central UDDI Services registry, we can facilitate reuse and better optimized use of our assets.”

This model takes advantage of the custom classification schemes Qwest has already created. For example, a search for DSL Ordering Service might return Web services, phone numbers, proprietary software, and so on.
Summary

UDDI Services in Windows Server 2003 provides a robust infrastructure for Web services discovery and reuse in a heterogeneous environment. Today, the Qwest registry includes Web service projects so that developers across the organization can find and reuse Web services at design time, and applications can take advantage of UDDI Services at runtime. With the data validation, registry topology, developer education plan, and overall procedural process established by the architecture group, Qwest has in place an effective, thorough methodology that maximizes the effectiveness of their implementation.

Related Links

See the following resources for further information:

For more information about UDDI Services in Windows Server 2003, see the UDDI Services page at http://www.microsoft.com/windowsserver2003/technologies/webapp/uddi/default.mspx.

For an introductory look at UDDI Services designed for IT managers, see the Enterprise UDDI Services—A Synopsis article at http://www.microsoft.com/windowsserver2003/technologies/webapp/uddi/default.mspx.

For more information about UDDI for developers, see the UDDI page on MSDN at http://msdn.microsoft.com/uddi.

For general information, see the UDDI Services Q & A article at http://uddi.microsoft.com/netserverinfo/questions.htm.

For more information about the UDDI specification, see the UDDI Web site at http://uddi.org/specification.html.

For the latest information about Windows Server 2003, see the Windows Server 2003 Web site at http://www.microsoft.com/windowsserver2003.

� See http://www.oasis-open.org/committees/uddi-spec/ for more on the OASIS UDDI Technical Committee.

